1 /* 2 * linux/drivers/mmc/host/omap.c 3 * 4 * Copyright (C) 2004 Nokia Corporation 5 * Written by Tuukka Tikkanen and Juha Yrjölä<juha.yrjola@nokia.com> 6 * Misc hacks here and there by Tony Lindgren <tony@atomide.com> 7 * Other hacks (DMA, SD, etc) by David Brownell 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/moduleparam.h> 16 #include <linux/init.h> 17 #include <linux/ioport.h> 18 #include <linux/platform_device.h> 19 #include <linux/interrupt.h> 20 #include <linux/dmaengine.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/delay.h> 23 #include <linux/spinlock.h> 24 #include <linux/timer.h> 25 #include <linux/of.h> 26 #include <linux/omap-dma.h> 27 #include <linux/mmc/host.h> 28 #include <linux/mmc/card.h> 29 #include <linux/clk.h> 30 #include <linux/scatterlist.h> 31 #include <linux/slab.h> 32 #include <linux/platform_data/mmc-omap.h> 33 34 35 #define OMAP_MMC_REG_CMD 0x00 36 #define OMAP_MMC_REG_ARGL 0x01 37 #define OMAP_MMC_REG_ARGH 0x02 38 #define OMAP_MMC_REG_CON 0x03 39 #define OMAP_MMC_REG_STAT 0x04 40 #define OMAP_MMC_REG_IE 0x05 41 #define OMAP_MMC_REG_CTO 0x06 42 #define OMAP_MMC_REG_DTO 0x07 43 #define OMAP_MMC_REG_DATA 0x08 44 #define OMAP_MMC_REG_BLEN 0x09 45 #define OMAP_MMC_REG_NBLK 0x0a 46 #define OMAP_MMC_REG_BUF 0x0b 47 #define OMAP_MMC_REG_SDIO 0x0d 48 #define OMAP_MMC_REG_REV 0x0f 49 #define OMAP_MMC_REG_RSP0 0x10 50 #define OMAP_MMC_REG_RSP1 0x11 51 #define OMAP_MMC_REG_RSP2 0x12 52 #define OMAP_MMC_REG_RSP3 0x13 53 #define OMAP_MMC_REG_RSP4 0x14 54 #define OMAP_MMC_REG_RSP5 0x15 55 #define OMAP_MMC_REG_RSP6 0x16 56 #define OMAP_MMC_REG_RSP7 0x17 57 #define OMAP_MMC_REG_IOSR 0x18 58 #define OMAP_MMC_REG_SYSC 0x19 59 #define OMAP_MMC_REG_SYSS 0x1a 60 61 #define OMAP_MMC_STAT_CARD_ERR (1 << 14) 62 #define OMAP_MMC_STAT_CARD_IRQ (1 << 13) 63 #define OMAP_MMC_STAT_OCR_BUSY (1 << 12) 64 #define OMAP_MMC_STAT_A_EMPTY (1 << 11) 65 #define OMAP_MMC_STAT_A_FULL (1 << 10) 66 #define OMAP_MMC_STAT_CMD_CRC (1 << 8) 67 #define OMAP_MMC_STAT_CMD_TOUT (1 << 7) 68 #define OMAP_MMC_STAT_DATA_CRC (1 << 6) 69 #define OMAP_MMC_STAT_DATA_TOUT (1 << 5) 70 #define OMAP_MMC_STAT_END_BUSY (1 << 4) 71 #define OMAP_MMC_STAT_END_OF_DATA (1 << 3) 72 #define OMAP_MMC_STAT_CARD_BUSY (1 << 2) 73 #define OMAP_MMC_STAT_END_OF_CMD (1 << 0) 74 75 #define mmc_omap7xx() (host->features & MMC_OMAP7XX) 76 #define mmc_omap15xx() (host->features & MMC_OMAP15XX) 77 #define mmc_omap16xx() (host->features & MMC_OMAP16XX) 78 #define MMC_OMAP1_MASK (MMC_OMAP7XX | MMC_OMAP15XX | MMC_OMAP16XX) 79 #define mmc_omap1() (host->features & MMC_OMAP1_MASK) 80 #define mmc_omap2() (!mmc_omap1()) 81 82 #define OMAP_MMC_REG(host, reg) (OMAP_MMC_REG_##reg << (host)->reg_shift) 83 #define OMAP_MMC_READ(host, reg) __raw_readw((host)->virt_base + OMAP_MMC_REG(host, reg)) 84 #define OMAP_MMC_WRITE(host, reg, val) __raw_writew((val), (host)->virt_base + OMAP_MMC_REG(host, reg)) 85 86 /* 87 * Command types 88 */ 89 #define OMAP_MMC_CMDTYPE_BC 0 90 #define OMAP_MMC_CMDTYPE_BCR 1 91 #define OMAP_MMC_CMDTYPE_AC 2 92 #define OMAP_MMC_CMDTYPE_ADTC 3 93 94 #define DRIVER_NAME "mmci-omap" 95 96 /* Specifies how often in millisecs to poll for card status changes 97 * when the cover switch is open */ 98 #define OMAP_MMC_COVER_POLL_DELAY 500 99 100 struct mmc_omap_host; 101 102 struct mmc_omap_slot { 103 int id; 104 unsigned int vdd; 105 u16 saved_con; 106 u16 bus_mode; 107 unsigned int fclk_freq; 108 109 struct tasklet_struct cover_tasklet; 110 struct timer_list cover_timer; 111 unsigned cover_open; 112 113 struct mmc_request *mrq; 114 struct mmc_omap_host *host; 115 struct mmc_host *mmc; 116 struct omap_mmc_slot_data *pdata; 117 }; 118 119 struct mmc_omap_host { 120 int initialized; 121 struct mmc_request * mrq; 122 struct mmc_command * cmd; 123 struct mmc_data * data; 124 struct mmc_host * mmc; 125 struct device * dev; 126 unsigned char id; /* 16xx chips have 2 MMC blocks */ 127 struct clk * iclk; 128 struct clk * fclk; 129 struct dma_chan *dma_rx; 130 u32 dma_rx_burst; 131 struct dma_chan *dma_tx; 132 u32 dma_tx_burst; 133 struct resource *mem_res; 134 void __iomem *virt_base; 135 unsigned int phys_base; 136 int irq; 137 unsigned char bus_mode; 138 unsigned int reg_shift; 139 140 struct work_struct cmd_abort_work; 141 unsigned abort:1; 142 struct timer_list cmd_abort_timer; 143 144 struct work_struct slot_release_work; 145 struct mmc_omap_slot *next_slot; 146 struct work_struct send_stop_work; 147 struct mmc_data *stop_data; 148 149 unsigned int sg_len; 150 int sg_idx; 151 u16 * buffer; 152 u32 buffer_bytes_left; 153 u32 total_bytes_left; 154 155 unsigned features; 156 unsigned use_dma:1; 157 unsigned brs_received:1, dma_done:1; 158 unsigned dma_in_use:1; 159 spinlock_t dma_lock; 160 161 struct mmc_omap_slot *slots[OMAP_MMC_MAX_SLOTS]; 162 struct mmc_omap_slot *current_slot; 163 spinlock_t slot_lock; 164 wait_queue_head_t slot_wq; 165 int nr_slots; 166 167 struct timer_list clk_timer; 168 spinlock_t clk_lock; /* for changing enabled state */ 169 unsigned int fclk_enabled:1; 170 struct workqueue_struct *mmc_omap_wq; 171 172 struct omap_mmc_platform_data *pdata; 173 }; 174 175 176 static void mmc_omap_fclk_offdelay(struct mmc_omap_slot *slot) 177 { 178 unsigned long tick_ns; 179 180 if (slot != NULL && slot->host->fclk_enabled && slot->fclk_freq > 0) { 181 tick_ns = (1000000000 + slot->fclk_freq - 1) / slot->fclk_freq; 182 ndelay(8 * tick_ns); 183 } 184 } 185 186 static void mmc_omap_fclk_enable(struct mmc_omap_host *host, unsigned int enable) 187 { 188 unsigned long flags; 189 190 spin_lock_irqsave(&host->clk_lock, flags); 191 if (host->fclk_enabled != enable) { 192 host->fclk_enabled = enable; 193 if (enable) 194 clk_enable(host->fclk); 195 else 196 clk_disable(host->fclk); 197 } 198 spin_unlock_irqrestore(&host->clk_lock, flags); 199 } 200 201 static void mmc_omap_select_slot(struct mmc_omap_slot *slot, int claimed) 202 { 203 struct mmc_omap_host *host = slot->host; 204 unsigned long flags; 205 206 if (claimed) 207 goto no_claim; 208 spin_lock_irqsave(&host->slot_lock, flags); 209 while (host->mmc != NULL) { 210 spin_unlock_irqrestore(&host->slot_lock, flags); 211 wait_event(host->slot_wq, host->mmc == NULL); 212 spin_lock_irqsave(&host->slot_lock, flags); 213 } 214 host->mmc = slot->mmc; 215 spin_unlock_irqrestore(&host->slot_lock, flags); 216 no_claim: 217 del_timer(&host->clk_timer); 218 if (host->current_slot != slot || !claimed) 219 mmc_omap_fclk_offdelay(host->current_slot); 220 221 if (host->current_slot != slot) { 222 OMAP_MMC_WRITE(host, CON, slot->saved_con & 0xFC00); 223 if (host->pdata->switch_slot != NULL) 224 host->pdata->switch_slot(mmc_dev(slot->mmc), slot->id); 225 host->current_slot = slot; 226 } 227 228 if (claimed) { 229 mmc_omap_fclk_enable(host, 1); 230 231 /* Doing the dummy read here seems to work around some bug 232 * at least in OMAP24xx silicon where the command would not 233 * start after writing the CMD register. Sigh. */ 234 OMAP_MMC_READ(host, CON); 235 236 OMAP_MMC_WRITE(host, CON, slot->saved_con); 237 } else 238 mmc_omap_fclk_enable(host, 0); 239 } 240 241 static void mmc_omap_start_request(struct mmc_omap_host *host, 242 struct mmc_request *req); 243 244 static void mmc_omap_slot_release_work(struct work_struct *work) 245 { 246 struct mmc_omap_host *host = container_of(work, struct mmc_omap_host, 247 slot_release_work); 248 struct mmc_omap_slot *next_slot = host->next_slot; 249 struct mmc_request *rq; 250 251 host->next_slot = NULL; 252 mmc_omap_select_slot(next_slot, 1); 253 254 rq = next_slot->mrq; 255 next_slot->mrq = NULL; 256 mmc_omap_start_request(host, rq); 257 } 258 259 static void mmc_omap_release_slot(struct mmc_omap_slot *slot, int clk_enabled) 260 { 261 struct mmc_omap_host *host = slot->host; 262 unsigned long flags; 263 int i; 264 265 BUG_ON(slot == NULL || host->mmc == NULL); 266 267 if (clk_enabled) 268 /* Keeps clock running for at least 8 cycles on valid freq */ 269 mod_timer(&host->clk_timer, jiffies + HZ/10); 270 else { 271 del_timer(&host->clk_timer); 272 mmc_omap_fclk_offdelay(slot); 273 mmc_omap_fclk_enable(host, 0); 274 } 275 276 spin_lock_irqsave(&host->slot_lock, flags); 277 /* Check for any pending requests */ 278 for (i = 0; i < host->nr_slots; i++) { 279 struct mmc_omap_slot *new_slot; 280 281 if (host->slots[i] == NULL || host->slots[i]->mrq == NULL) 282 continue; 283 284 BUG_ON(host->next_slot != NULL); 285 new_slot = host->slots[i]; 286 /* The current slot should not have a request in queue */ 287 BUG_ON(new_slot == host->current_slot); 288 289 host->next_slot = new_slot; 290 host->mmc = new_slot->mmc; 291 spin_unlock_irqrestore(&host->slot_lock, flags); 292 queue_work(host->mmc_omap_wq, &host->slot_release_work); 293 return; 294 } 295 296 host->mmc = NULL; 297 wake_up(&host->slot_wq); 298 spin_unlock_irqrestore(&host->slot_lock, flags); 299 } 300 301 static inline 302 int mmc_omap_cover_is_open(struct mmc_omap_slot *slot) 303 { 304 if (slot->pdata->get_cover_state) 305 return slot->pdata->get_cover_state(mmc_dev(slot->mmc), 306 slot->id); 307 return 0; 308 } 309 310 static ssize_t 311 mmc_omap_show_cover_switch(struct device *dev, struct device_attribute *attr, 312 char *buf) 313 { 314 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); 315 struct mmc_omap_slot *slot = mmc_priv(mmc); 316 317 return sprintf(buf, "%s\n", mmc_omap_cover_is_open(slot) ? "open" : 318 "closed"); 319 } 320 321 static DEVICE_ATTR(cover_switch, S_IRUGO, mmc_omap_show_cover_switch, NULL); 322 323 static ssize_t 324 mmc_omap_show_slot_name(struct device *dev, struct device_attribute *attr, 325 char *buf) 326 { 327 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); 328 struct mmc_omap_slot *slot = mmc_priv(mmc); 329 330 return sprintf(buf, "%s\n", slot->pdata->name); 331 } 332 333 static DEVICE_ATTR(slot_name, S_IRUGO, mmc_omap_show_slot_name, NULL); 334 335 static void 336 mmc_omap_start_command(struct mmc_omap_host *host, struct mmc_command *cmd) 337 { 338 u32 cmdreg; 339 u32 resptype; 340 u32 cmdtype; 341 342 host->cmd = cmd; 343 344 resptype = 0; 345 cmdtype = 0; 346 347 /* Our hardware needs to know exact type */ 348 switch (mmc_resp_type(cmd)) { 349 case MMC_RSP_NONE: 350 break; 351 case MMC_RSP_R1: 352 case MMC_RSP_R1B: 353 /* resp 1, 1b, 6, 7 */ 354 resptype = 1; 355 break; 356 case MMC_RSP_R2: 357 resptype = 2; 358 break; 359 case MMC_RSP_R3: 360 resptype = 3; 361 break; 362 default: 363 dev_err(mmc_dev(host->mmc), "Invalid response type: %04x\n", mmc_resp_type(cmd)); 364 break; 365 } 366 367 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) { 368 cmdtype = OMAP_MMC_CMDTYPE_ADTC; 369 } else if (mmc_cmd_type(cmd) == MMC_CMD_BC) { 370 cmdtype = OMAP_MMC_CMDTYPE_BC; 371 } else if (mmc_cmd_type(cmd) == MMC_CMD_BCR) { 372 cmdtype = OMAP_MMC_CMDTYPE_BCR; 373 } else { 374 cmdtype = OMAP_MMC_CMDTYPE_AC; 375 } 376 377 cmdreg = cmd->opcode | (resptype << 8) | (cmdtype << 12); 378 379 if (host->current_slot->bus_mode == MMC_BUSMODE_OPENDRAIN) 380 cmdreg |= 1 << 6; 381 382 if (cmd->flags & MMC_RSP_BUSY) 383 cmdreg |= 1 << 11; 384 385 if (host->data && !(host->data->flags & MMC_DATA_WRITE)) 386 cmdreg |= 1 << 15; 387 388 mod_timer(&host->cmd_abort_timer, jiffies + HZ/2); 389 390 OMAP_MMC_WRITE(host, CTO, 200); 391 OMAP_MMC_WRITE(host, ARGL, cmd->arg & 0xffff); 392 OMAP_MMC_WRITE(host, ARGH, cmd->arg >> 16); 393 OMAP_MMC_WRITE(host, IE, 394 OMAP_MMC_STAT_A_EMPTY | OMAP_MMC_STAT_A_FULL | 395 OMAP_MMC_STAT_CMD_CRC | OMAP_MMC_STAT_CMD_TOUT | 396 OMAP_MMC_STAT_DATA_CRC | OMAP_MMC_STAT_DATA_TOUT | 397 OMAP_MMC_STAT_END_OF_CMD | OMAP_MMC_STAT_CARD_ERR | 398 OMAP_MMC_STAT_END_OF_DATA); 399 OMAP_MMC_WRITE(host, CMD, cmdreg); 400 } 401 402 static void 403 mmc_omap_release_dma(struct mmc_omap_host *host, struct mmc_data *data, 404 int abort) 405 { 406 enum dma_data_direction dma_data_dir; 407 struct device *dev = mmc_dev(host->mmc); 408 struct dma_chan *c; 409 410 if (data->flags & MMC_DATA_WRITE) { 411 dma_data_dir = DMA_TO_DEVICE; 412 c = host->dma_tx; 413 } else { 414 dma_data_dir = DMA_FROM_DEVICE; 415 c = host->dma_rx; 416 } 417 if (c) { 418 if (data->error) { 419 dmaengine_terminate_all(c); 420 /* Claim nothing transferred on error... */ 421 data->bytes_xfered = 0; 422 } 423 dev = c->device->dev; 424 } 425 dma_unmap_sg(dev, data->sg, host->sg_len, dma_data_dir); 426 } 427 428 static void mmc_omap_send_stop_work(struct work_struct *work) 429 { 430 struct mmc_omap_host *host = container_of(work, struct mmc_omap_host, 431 send_stop_work); 432 struct mmc_omap_slot *slot = host->current_slot; 433 struct mmc_data *data = host->stop_data; 434 unsigned long tick_ns; 435 436 tick_ns = (1000000000 + slot->fclk_freq - 1)/slot->fclk_freq; 437 ndelay(8*tick_ns); 438 439 mmc_omap_start_command(host, data->stop); 440 } 441 442 static void 443 mmc_omap_xfer_done(struct mmc_omap_host *host, struct mmc_data *data) 444 { 445 if (host->dma_in_use) 446 mmc_omap_release_dma(host, data, data->error); 447 448 host->data = NULL; 449 host->sg_len = 0; 450 451 /* NOTE: MMC layer will sometimes poll-wait CMD13 next, issuing 452 * dozens of requests until the card finishes writing data. 453 * It'd be cheaper to just wait till an EOFB interrupt arrives... 454 */ 455 456 if (!data->stop) { 457 struct mmc_host *mmc; 458 459 host->mrq = NULL; 460 mmc = host->mmc; 461 mmc_omap_release_slot(host->current_slot, 1); 462 mmc_request_done(mmc, data->mrq); 463 return; 464 } 465 466 host->stop_data = data; 467 queue_work(host->mmc_omap_wq, &host->send_stop_work); 468 } 469 470 static void 471 mmc_omap_send_abort(struct mmc_omap_host *host, int maxloops) 472 { 473 struct mmc_omap_slot *slot = host->current_slot; 474 unsigned int restarts, passes, timeout; 475 u16 stat = 0; 476 477 /* Sending abort takes 80 clocks. Have some extra and round up */ 478 timeout = (120*1000000 + slot->fclk_freq - 1)/slot->fclk_freq; 479 restarts = 0; 480 while (restarts < maxloops) { 481 OMAP_MMC_WRITE(host, STAT, 0xFFFF); 482 OMAP_MMC_WRITE(host, CMD, (3 << 12) | (1 << 7)); 483 484 passes = 0; 485 while (passes < timeout) { 486 stat = OMAP_MMC_READ(host, STAT); 487 if (stat & OMAP_MMC_STAT_END_OF_CMD) 488 goto out; 489 udelay(1); 490 passes++; 491 } 492 493 restarts++; 494 } 495 out: 496 OMAP_MMC_WRITE(host, STAT, stat); 497 } 498 499 static void 500 mmc_omap_abort_xfer(struct mmc_omap_host *host, struct mmc_data *data) 501 { 502 if (host->dma_in_use) 503 mmc_omap_release_dma(host, data, 1); 504 505 host->data = NULL; 506 host->sg_len = 0; 507 508 mmc_omap_send_abort(host, 10000); 509 } 510 511 static void 512 mmc_omap_end_of_data(struct mmc_omap_host *host, struct mmc_data *data) 513 { 514 unsigned long flags; 515 int done; 516 517 if (!host->dma_in_use) { 518 mmc_omap_xfer_done(host, data); 519 return; 520 } 521 done = 0; 522 spin_lock_irqsave(&host->dma_lock, flags); 523 if (host->dma_done) 524 done = 1; 525 else 526 host->brs_received = 1; 527 spin_unlock_irqrestore(&host->dma_lock, flags); 528 if (done) 529 mmc_omap_xfer_done(host, data); 530 } 531 532 static void 533 mmc_omap_dma_done(struct mmc_omap_host *host, struct mmc_data *data) 534 { 535 unsigned long flags; 536 int done; 537 538 done = 0; 539 spin_lock_irqsave(&host->dma_lock, flags); 540 if (host->brs_received) 541 done = 1; 542 else 543 host->dma_done = 1; 544 spin_unlock_irqrestore(&host->dma_lock, flags); 545 if (done) 546 mmc_omap_xfer_done(host, data); 547 } 548 549 static void 550 mmc_omap_cmd_done(struct mmc_omap_host *host, struct mmc_command *cmd) 551 { 552 host->cmd = NULL; 553 554 del_timer(&host->cmd_abort_timer); 555 556 if (cmd->flags & MMC_RSP_PRESENT) { 557 if (cmd->flags & MMC_RSP_136) { 558 /* response type 2 */ 559 cmd->resp[3] = 560 OMAP_MMC_READ(host, RSP0) | 561 (OMAP_MMC_READ(host, RSP1) << 16); 562 cmd->resp[2] = 563 OMAP_MMC_READ(host, RSP2) | 564 (OMAP_MMC_READ(host, RSP3) << 16); 565 cmd->resp[1] = 566 OMAP_MMC_READ(host, RSP4) | 567 (OMAP_MMC_READ(host, RSP5) << 16); 568 cmd->resp[0] = 569 OMAP_MMC_READ(host, RSP6) | 570 (OMAP_MMC_READ(host, RSP7) << 16); 571 } else { 572 /* response types 1, 1b, 3, 4, 5, 6 */ 573 cmd->resp[0] = 574 OMAP_MMC_READ(host, RSP6) | 575 (OMAP_MMC_READ(host, RSP7) << 16); 576 } 577 } 578 579 if (host->data == NULL || cmd->error) { 580 struct mmc_host *mmc; 581 582 if (host->data != NULL) 583 mmc_omap_abort_xfer(host, host->data); 584 host->mrq = NULL; 585 mmc = host->mmc; 586 mmc_omap_release_slot(host->current_slot, 1); 587 mmc_request_done(mmc, cmd->mrq); 588 } 589 } 590 591 /* 592 * Abort stuck command. Can occur when card is removed while it is being 593 * read. 594 */ 595 static void mmc_omap_abort_command(struct work_struct *work) 596 { 597 struct mmc_omap_host *host = container_of(work, struct mmc_omap_host, 598 cmd_abort_work); 599 BUG_ON(!host->cmd); 600 601 dev_dbg(mmc_dev(host->mmc), "Aborting stuck command CMD%d\n", 602 host->cmd->opcode); 603 604 if (host->cmd->error == 0) 605 host->cmd->error = -ETIMEDOUT; 606 607 if (host->data == NULL) { 608 struct mmc_command *cmd; 609 struct mmc_host *mmc; 610 611 cmd = host->cmd; 612 host->cmd = NULL; 613 mmc_omap_send_abort(host, 10000); 614 615 host->mrq = NULL; 616 mmc = host->mmc; 617 mmc_omap_release_slot(host->current_slot, 1); 618 mmc_request_done(mmc, cmd->mrq); 619 } else 620 mmc_omap_cmd_done(host, host->cmd); 621 622 host->abort = 0; 623 enable_irq(host->irq); 624 } 625 626 static void 627 mmc_omap_cmd_timer(unsigned long data) 628 { 629 struct mmc_omap_host *host = (struct mmc_omap_host *) data; 630 unsigned long flags; 631 632 spin_lock_irqsave(&host->slot_lock, flags); 633 if (host->cmd != NULL && !host->abort) { 634 OMAP_MMC_WRITE(host, IE, 0); 635 disable_irq(host->irq); 636 host->abort = 1; 637 queue_work(host->mmc_omap_wq, &host->cmd_abort_work); 638 } 639 spin_unlock_irqrestore(&host->slot_lock, flags); 640 } 641 642 /* PIO only */ 643 static void 644 mmc_omap_sg_to_buf(struct mmc_omap_host *host) 645 { 646 struct scatterlist *sg; 647 648 sg = host->data->sg + host->sg_idx; 649 host->buffer_bytes_left = sg->length; 650 host->buffer = sg_virt(sg); 651 if (host->buffer_bytes_left > host->total_bytes_left) 652 host->buffer_bytes_left = host->total_bytes_left; 653 } 654 655 static void 656 mmc_omap_clk_timer(unsigned long data) 657 { 658 struct mmc_omap_host *host = (struct mmc_omap_host *) data; 659 660 mmc_omap_fclk_enable(host, 0); 661 } 662 663 /* PIO only */ 664 static void 665 mmc_omap_xfer_data(struct mmc_omap_host *host, int write) 666 { 667 int n, nwords; 668 669 if (host->buffer_bytes_left == 0) { 670 host->sg_idx++; 671 BUG_ON(host->sg_idx == host->sg_len); 672 mmc_omap_sg_to_buf(host); 673 } 674 n = 64; 675 if (n > host->buffer_bytes_left) 676 n = host->buffer_bytes_left; 677 678 nwords = n / 2; 679 nwords += n & 1; /* handle odd number of bytes to transfer */ 680 681 host->buffer_bytes_left -= n; 682 host->total_bytes_left -= n; 683 host->data->bytes_xfered += n; 684 685 if (write) { 686 __raw_writesw(host->virt_base + OMAP_MMC_REG(host, DATA), 687 host->buffer, nwords); 688 } else { 689 __raw_readsw(host->virt_base + OMAP_MMC_REG(host, DATA), 690 host->buffer, nwords); 691 } 692 693 host->buffer += nwords; 694 } 695 696 #ifdef CONFIG_MMC_DEBUG 697 static void mmc_omap_report_irq(struct mmc_omap_host *host, u16 status) 698 { 699 static const char *mmc_omap_status_bits[] = { 700 "EOC", "CD", "CB", "BRS", "EOFB", "DTO", "DCRC", "CTO", 701 "CCRC", "CRW", "AF", "AE", "OCRB", "CIRQ", "CERR" 702 }; 703 int i; 704 char res[64], *buf = res; 705 706 buf += sprintf(buf, "MMC IRQ 0x%x:", status); 707 708 for (i = 0; i < ARRAY_SIZE(mmc_omap_status_bits); i++) 709 if (status & (1 << i)) 710 buf += sprintf(buf, " %s", mmc_omap_status_bits[i]); 711 dev_vdbg(mmc_dev(host->mmc), "%s\n", res); 712 } 713 #else 714 static void mmc_omap_report_irq(struct mmc_omap_host *host, u16 status) 715 { 716 } 717 #endif 718 719 720 static irqreturn_t mmc_omap_irq(int irq, void *dev_id) 721 { 722 struct mmc_omap_host * host = (struct mmc_omap_host *)dev_id; 723 u16 status; 724 int end_command; 725 int end_transfer; 726 int transfer_error, cmd_error; 727 728 if (host->cmd == NULL && host->data == NULL) { 729 status = OMAP_MMC_READ(host, STAT); 730 dev_info(mmc_dev(host->slots[0]->mmc), 731 "Spurious IRQ 0x%04x\n", status); 732 if (status != 0) { 733 OMAP_MMC_WRITE(host, STAT, status); 734 OMAP_MMC_WRITE(host, IE, 0); 735 } 736 return IRQ_HANDLED; 737 } 738 739 end_command = 0; 740 end_transfer = 0; 741 transfer_error = 0; 742 cmd_error = 0; 743 744 while ((status = OMAP_MMC_READ(host, STAT)) != 0) { 745 int cmd; 746 747 OMAP_MMC_WRITE(host, STAT, status); 748 if (host->cmd != NULL) 749 cmd = host->cmd->opcode; 750 else 751 cmd = -1; 752 dev_dbg(mmc_dev(host->mmc), "MMC IRQ %04x (CMD %d): ", 753 status, cmd); 754 mmc_omap_report_irq(host, status); 755 756 if (host->total_bytes_left) { 757 if ((status & OMAP_MMC_STAT_A_FULL) || 758 (status & OMAP_MMC_STAT_END_OF_DATA)) 759 mmc_omap_xfer_data(host, 0); 760 if (status & OMAP_MMC_STAT_A_EMPTY) 761 mmc_omap_xfer_data(host, 1); 762 } 763 764 if (status & OMAP_MMC_STAT_END_OF_DATA) 765 end_transfer = 1; 766 767 if (status & OMAP_MMC_STAT_DATA_TOUT) { 768 dev_dbg(mmc_dev(host->mmc), "data timeout (CMD%d)\n", 769 cmd); 770 if (host->data) { 771 host->data->error = -ETIMEDOUT; 772 transfer_error = 1; 773 } 774 } 775 776 if (status & OMAP_MMC_STAT_DATA_CRC) { 777 if (host->data) { 778 host->data->error = -EILSEQ; 779 dev_dbg(mmc_dev(host->mmc), 780 "data CRC error, bytes left %d\n", 781 host->total_bytes_left); 782 transfer_error = 1; 783 } else { 784 dev_dbg(mmc_dev(host->mmc), "data CRC error\n"); 785 } 786 } 787 788 if (status & OMAP_MMC_STAT_CMD_TOUT) { 789 /* Timeouts are routine with some commands */ 790 if (host->cmd) { 791 struct mmc_omap_slot *slot = 792 host->current_slot; 793 if (slot == NULL || 794 !mmc_omap_cover_is_open(slot)) 795 dev_err(mmc_dev(host->mmc), 796 "command timeout (CMD%d)\n", 797 cmd); 798 host->cmd->error = -ETIMEDOUT; 799 end_command = 1; 800 cmd_error = 1; 801 } 802 } 803 804 if (status & OMAP_MMC_STAT_CMD_CRC) { 805 if (host->cmd) { 806 dev_err(mmc_dev(host->mmc), 807 "command CRC error (CMD%d, arg 0x%08x)\n", 808 cmd, host->cmd->arg); 809 host->cmd->error = -EILSEQ; 810 end_command = 1; 811 cmd_error = 1; 812 } else 813 dev_err(mmc_dev(host->mmc), 814 "command CRC error without cmd?\n"); 815 } 816 817 if (status & OMAP_MMC_STAT_CARD_ERR) { 818 dev_dbg(mmc_dev(host->mmc), 819 "ignoring card status error (CMD%d)\n", 820 cmd); 821 end_command = 1; 822 } 823 824 /* 825 * NOTE: On 1610 the END_OF_CMD may come too early when 826 * starting a write 827 */ 828 if ((status & OMAP_MMC_STAT_END_OF_CMD) && 829 (!(status & OMAP_MMC_STAT_A_EMPTY))) { 830 end_command = 1; 831 } 832 } 833 834 if (cmd_error && host->data) { 835 del_timer(&host->cmd_abort_timer); 836 host->abort = 1; 837 OMAP_MMC_WRITE(host, IE, 0); 838 disable_irq_nosync(host->irq); 839 queue_work(host->mmc_omap_wq, &host->cmd_abort_work); 840 return IRQ_HANDLED; 841 } 842 843 if (end_command && host->cmd) 844 mmc_omap_cmd_done(host, host->cmd); 845 if (host->data != NULL) { 846 if (transfer_error) 847 mmc_omap_xfer_done(host, host->data); 848 else if (end_transfer) 849 mmc_omap_end_of_data(host, host->data); 850 } 851 852 return IRQ_HANDLED; 853 } 854 855 void omap_mmc_notify_cover_event(struct device *dev, int num, int is_closed) 856 { 857 int cover_open; 858 struct mmc_omap_host *host = dev_get_drvdata(dev); 859 struct mmc_omap_slot *slot = host->slots[num]; 860 861 BUG_ON(num >= host->nr_slots); 862 863 /* Other subsystems can call in here before we're initialised. */ 864 if (host->nr_slots == 0 || !host->slots[num]) 865 return; 866 867 cover_open = mmc_omap_cover_is_open(slot); 868 if (cover_open != slot->cover_open) { 869 slot->cover_open = cover_open; 870 sysfs_notify(&slot->mmc->class_dev.kobj, NULL, "cover_switch"); 871 } 872 873 tasklet_hi_schedule(&slot->cover_tasklet); 874 } 875 876 static void mmc_omap_cover_timer(unsigned long arg) 877 { 878 struct mmc_omap_slot *slot = (struct mmc_omap_slot *) arg; 879 tasklet_schedule(&slot->cover_tasklet); 880 } 881 882 static void mmc_omap_cover_handler(unsigned long param) 883 { 884 struct mmc_omap_slot *slot = (struct mmc_omap_slot *)param; 885 int cover_open = mmc_omap_cover_is_open(slot); 886 887 mmc_detect_change(slot->mmc, 0); 888 if (!cover_open) 889 return; 890 891 /* 892 * If no card is inserted, we postpone polling until 893 * the cover has been closed. 894 */ 895 if (slot->mmc->card == NULL || !mmc_card_present(slot->mmc->card)) 896 return; 897 898 mod_timer(&slot->cover_timer, 899 jiffies + msecs_to_jiffies(OMAP_MMC_COVER_POLL_DELAY)); 900 } 901 902 static void mmc_omap_dma_callback(void *priv) 903 { 904 struct mmc_omap_host *host = priv; 905 struct mmc_data *data = host->data; 906 907 /* If we got to the end of DMA, assume everything went well */ 908 data->bytes_xfered += data->blocks * data->blksz; 909 910 mmc_omap_dma_done(host, data); 911 } 912 913 static inline void set_cmd_timeout(struct mmc_omap_host *host, struct mmc_request *req) 914 { 915 u16 reg; 916 917 reg = OMAP_MMC_READ(host, SDIO); 918 reg &= ~(1 << 5); 919 OMAP_MMC_WRITE(host, SDIO, reg); 920 /* Set maximum timeout */ 921 OMAP_MMC_WRITE(host, CTO, 0xff); 922 } 923 924 static inline void set_data_timeout(struct mmc_omap_host *host, struct mmc_request *req) 925 { 926 unsigned int timeout, cycle_ns; 927 u16 reg; 928 929 cycle_ns = 1000000000 / host->current_slot->fclk_freq; 930 timeout = req->data->timeout_ns / cycle_ns; 931 timeout += req->data->timeout_clks; 932 933 /* Check if we need to use timeout multiplier register */ 934 reg = OMAP_MMC_READ(host, SDIO); 935 if (timeout > 0xffff) { 936 reg |= (1 << 5); 937 timeout /= 1024; 938 } else 939 reg &= ~(1 << 5); 940 OMAP_MMC_WRITE(host, SDIO, reg); 941 OMAP_MMC_WRITE(host, DTO, timeout); 942 } 943 944 static void 945 mmc_omap_prepare_data(struct mmc_omap_host *host, struct mmc_request *req) 946 { 947 struct mmc_data *data = req->data; 948 int i, use_dma, block_size; 949 unsigned sg_len; 950 951 host->data = data; 952 if (data == NULL) { 953 OMAP_MMC_WRITE(host, BLEN, 0); 954 OMAP_MMC_WRITE(host, NBLK, 0); 955 OMAP_MMC_WRITE(host, BUF, 0); 956 host->dma_in_use = 0; 957 set_cmd_timeout(host, req); 958 return; 959 } 960 961 block_size = data->blksz; 962 963 OMAP_MMC_WRITE(host, NBLK, data->blocks - 1); 964 OMAP_MMC_WRITE(host, BLEN, block_size - 1); 965 set_data_timeout(host, req); 966 967 /* cope with calling layer confusion; it issues "single 968 * block" writes using multi-block scatterlists. 969 */ 970 sg_len = (data->blocks == 1) ? 1 : data->sg_len; 971 972 /* Only do DMA for entire blocks */ 973 use_dma = host->use_dma; 974 if (use_dma) { 975 for (i = 0; i < sg_len; i++) { 976 if ((data->sg[i].length % block_size) != 0) { 977 use_dma = 0; 978 break; 979 } 980 } 981 } 982 983 host->sg_idx = 0; 984 if (use_dma) { 985 enum dma_data_direction dma_data_dir; 986 struct dma_async_tx_descriptor *tx; 987 struct dma_chan *c; 988 u32 burst, *bp; 989 u16 buf; 990 991 /* 992 * FIFO is 16x2 bytes on 15xx, and 32x2 bytes on 16xx 993 * and 24xx. Use 16 or 32 word frames when the 994 * blocksize is at least that large. Blocksize is 995 * usually 512 bytes; but not for some SD reads. 996 */ 997 burst = mmc_omap15xx() ? 32 : 64; 998 if (burst > data->blksz) 999 burst = data->blksz; 1000 1001 burst >>= 1; 1002 1003 if (data->flags & MMC_DATA_WRITE) { 1004 c = host->dma_tx; 1005 bp = &host->dma_tx_burst; 1006 buf = 0x0f80 | (burst - 1) << 0; 1007 dma_data_dir = DMA_TO_DEVICE; 1008 } else { 1009 c = host->dma_rx; 1010 bp = &host->dma_rx_burst; 1011 buf = 0x800f | (burst - 1) << 8; 1012 dma_data_dir = DMA_FROM_DEVICE; 1013 } 1014 1015 if (!c) 1016 goto use_pio; 1017 1018 /* Only reconfigure if we have a different burst size */ 1019 if (*bp != burst) { 1020 struct dma_slave_config cfg; 1021 1022 cfg.src_addr = host->phys_base + OMAP_MMC_REG(host, DATA); 1023 cfg.dst_addr = host->phys_base + OMAP_MMC_REG(host, DATA); 1024 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 1025 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 1026 cfg.src_maxburst = burst; 1027 cfg.dst_maxburst = burst; 1028 1029 if (dmaengine_slave_config(c, &cfg)) 1030 goto use_pio; 1031 1032 *bp = burst; 1033 } 1034 1035 host->sg_len = dma_map_sg(c->device->dev, data->sg, sg_len, 1036 dma_data_dir); 1037 if (host->sg_len == 0) 1038 goto use_pio; 1039 1040 tx = dmaengine_prep_slave_sg(c, data->sg, host->sg_len, 1041 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 1042 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1043 if (!tx) 1044 goto use_pio; 1045 1046 OMAP_MMC_WRITE(host, BUF, buf); 1047 1048 tx->callback = mmc_omap_dma_callback; 1049 tx->callback_param = host; 1050 dmaengine_submit(tx); 1051 host->brs_received = 0; 1052 host->dma_done = 0; 1053 host->dma_in_use = 1; 1054 return; 1055 } 1056 use_pio: 1057 1058 /* Revert to PIO? */ 1059 OMAP_MMC_WRITE(host, BUF, 0x1f1f); 1060 host->total_bytes_left = data->blocks * block_size; 1061 host->sg_len = sg_len; 1062 mmc_omap_sg_to_buf(host); 1063 host->dma_in_use = 0; 1064 } 1065 1066 static void mmc_omap_start_request(struct mmc_omap_host *host, 1067 struct mmc_request *req) 1068 { 1069 BUG_ON(host->mrq != NULL); 1070 1071 host->mrq = req; 1072 1073 /* only touch fifo AFTER the controller readies it */ 1074 mmc_omap_prepare_data(host, req); 1075 mmc_omap_start_command(host, req->cmd); 1076 if (host->dma_in_use) { 1077 struct dma_chan *c = host->data->flags & MMC_DATA_WRITE ? 1078 host->dma_tx : host->dma_rx; 1079 1080 dma_async_issue_pending(c); 1081 } 1082 } 1083 1084 static void mmc_omap_request(struct mmc_host *mmc, struct mmc_request *req) 1085 { 1086 struct mmc_omap_slot *slot = mmc_priv(mmc); 1087 struct mmc_omap_host *host = slot->host; 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&host->slot_lock, flags); 1091 if (host->mmc != NULL) { 1092 BUG_ON(slot->mrq != NULL); 1093 slot->mrq = req; 1094 spin_unlock_irqrestore(&host->slot_lock, flags); 1095 return; 1096 } else 1097 host->mmc = mmc; 1098 spin_unlock_irqrestore(&host->slot_lock, flags); 1099 mmc_omap_select_slot(slot, 1); 1100 mmc_omap_start_request(host, req); 1101 } 1102 1103 static void mmc_omap_set_power(struct mmc_omap_slot *slot, int power_on, 1104 int vdd) 1105 { 1106 struct mmc_omap_host *host; 1107 1108 host = slot->host; 1109 1110 if (slot->pdata->set_power != NULL) 1111 slot->pdata->set_power(mmc_dev(slot->mmc), slot->id, power_on, 1112 vdd); 1113 if (mmc_omap2()) { 1114 u16 w; 1115 1116 if (power_on) { 1117 w = OMAP_MMC_READ(host, CON); 1118 OMAP_MMC_WRITE(host, CON, w | (1 << 11)); 1119 } else { 1120 w = OMAP_MMC_READ(host, CON); 1121 OMAP_MMC_WRITE(host, CON, w & ~(1 << 11)); 1122 } 1123 } 1124 } 1125 1126 static int mmc_omap_calc_divisor(struct mmc_host *mmc, struct mmc_ios *ios) 1127 { 1128 struct mmc_omap_slot *slot = mmc_priv(mmc); 1129 struct mmc_omap_host *host = slot->host; 1130 int func_clk_rate = clk_get_rate(host->fclk); 1131 int dsor; 1132 1133 if (ios->clock == 0) 1134 return 0; 1135 1136 dsor = func_clk_rate / ios->clock; 1137 if (dsor < 1) 1138 dsor = 1; 1139 1140 if (func_clk_rate / dsor > ios->clock) 1141 dsor++; 1142 1143 if (dsor > 250) 1144 dsor = 250; 1145 1146 slot->fclk_freq = func_clk_rate / dsor; 1147 1148 if (ios->bus_width == MMC_BUS_WIDTH_4) 1149 dsor |= 1 << 15; 1150 1151 return dsor; 1152 } 1153 1154 static void mmc_omap_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1155 { 1156 struct mmc_omap_slot *slot = mmc_priv(mmc); 1157 struct mmc_omap_host *host = slot->host; 1158 int i, dsor; 1159 int clk_enabled; 1160 1161 mmc_omap_select_slot(slot, 0); 1162 1163 dsor = mmc_omap_calc_divisor(mmc, ios); 1164 1165 if (ios->vdd != slot->vdd) 1166 slot->vdd = ios->vdd; 1167 1168 clk_enabled = 0; 1169 switch (ios->power_mode) { 1170 case MMC_POWER_OFF: 1171 mmc_omap_set_power(slot, 0, ios->vdd); 1172 break; 1173 case MMC_POWER_UP: 1174 /* Cannot touch dsor yet, just power up MMC */ 1175 mmc_omap_set_power(slot, 1, ios->vdd); 1176 goto exit; 1177 case MMC_POWER_ON: 1178 mmc_omap_fclk_enable(host, 1); 1179 clk_enabled = 1; 1180 dsor |= 1 << 11; 1181 break; 1182 } 1183 1184 if (slot->bus_mode != ios->bus_mode) { 1185 if (slot->pdata->set_bus_mode != NULL) 1186 slot->pdata->set_bus_mode(mmc_dev(mmc), slot->id, 1187 ios->bus_mode); 1188 slot->bus_mode = ios->bus_mode; 1189 } 1190 1191 /* On insanely high arm_per frequencies something sometimes 1192 * goes somehow out of sync, and the POW bit is not being set, 1193 * which results in the while loop below getting stuck. 1194 * Writing to the CON register twice seems to do the trick. */ 1195 for (i = 0; i < 2; i++) 1196 OMAP_MMC_WRITE(host, CON, dsor); 1197 slot->saved_con = dsor; 1198 if (ios->power_mode == MMC_POWER_ON) { 1199 /* worst case at 400kHz, 80 cycles makes 200 microsecs */ 1200 int usecs = 250; 1201 1202 /* Send clock cycles, poll completion */ 1203 OMAP_MMC_WRITE(host, IE, 0); 1204 OMAP_MMC_WRITE(host, STAT, 0xffff); 1205 OMAP_MMC_WRITE(host, CMD, 1 << 7); 1206 while (usecs > 0 && (OMAP_MMC_READ(host, STAT) & 1) == 0) { 1207 udelay(1); 1208 usecs--; 1209 } 1210 OMAP_MMC_WRITE(host, STAT, 1); 1211 } 1212 1213 exit: 1214 mmc_omap_release_slot(slot, clk_enabled); 1215 } 1216 1217 static const struct mmc_host_ops mmc_omap_ops = { 1218 .request = mmc_omap_request, 1219 .set_ios = mmc_omap_set_ios, 1220 }; 1221 1222 static int mmc_omap_new_slot(struct mmc_omap_host *host, int id) 1223 { 1224 struct mmc_omap_slot *slot = NULL; 1225 struct mmc_host *mmc; 1226 int r; 1227 1228 mmc = mmc_alloc_host(sizeof(struct mmc_omap_slot), host->dev); 1229 if (mmc == NULL) 1230 return -ENOMEM; 1231 1232 slot = mmc_priv(mmc); 1233 slot->host = host; 1234 slot->mmc = mmc; 1235 slot->id = id; 1236 slot->pdata = &host->pdata->slots[id]; 1237 1238 host->slots[id] = slot; 1239 1240 mmc->caps = 0; 1241 if (host->pdata->slots[id].wires >= 4) 1242 mmc->caps |= MMC_CAP_4_BIT_DATA; 1243 1244 mmc->ops = &mmc_omap_ops; 1245 mmc->f_min = 400000; 1246 1247 if (mmc_omap2()) 1248 mmc->f_max = 48000000; 1249 else 1250 mmc->f_max = 24000000; 1251 if (host->pdata->max_freq) 1252 mmc->f_max = min(host->pdata->max_freq, mmc->f_max); 1253 mmc->ocr_avail = slot->pdata->ocr_mask; 1254 1255 /* Use scatterlist DMA to reduce per-transfer costs. 1256 * NOTE max_seg_size assumption that small blocks aren't 1257 * normally used (except e.g. for reading SD registers). 1258 */ 1259 mmc->max_segs = 32; 1260 mmc->max_blk_size = 2048; /* BLEN is 11 bits (+1) */ 1261 mmc->max_blk_count = 2048; /* NBLK is 11 bits (+1) */ 1262 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; 1263 mmc->max_seg_size = mmc->max_req_size; 1264 1265 r = mmc_add_host(mmc); 1266 if (r < 0) 1267 goto err_remove_host; 1268 1269 if (slot->pdata->name != NULL) { 1270 r = device_create_file(&mmc->class_dev, 1271 &dev_attr_slot_name); 1272 if (r < 0) 1273 goto err_remove_host; 1274 } 1275 1276 if (slot->pdata->get_cover_state != NULL) { 1277 r = device_create_file(&mmc->class_dev, 1278 &dev_attr_cover_switch); 1279 if (r < 0) 1280 goto err_remove_slot_name; 1281 1282 setup_timer(&slot->cover_timer, mmc_omap_cover_timer, 1283 (unsigned long)slot); 1284 tasklet_init(&slot->cover_tasklet, mmc_omap_cover_handler, 1285 (unsigned long)slot); 1286 tasklet_schedule(&slot->cover_tasklet); 1287 } 1288 1289 return 0; 1290 1291 err_remove_slot_name: 1292 if (slot->pdata->name != NULL) 1293 device_remove_file(&mmc->class_dev, &dev_attr_slot_name); 1294 err_remove_host: 1295 mmc_remove_host(mmc); 1296 mmc_free_host(mmc); 1297 return r; 1298 } 1299 1300 static void mmc_omap_remove_slot(struct mmc_omap_slot *slot) 1301 { 1302 struct mmc_host *mmc = slot->mmc; 1303 1304 if (slot->pdata->name != NULL) 1305 device_remove_file(&mmc->class_dev, &dev_attr_slot_name); 1306 if (slot->pdata->get_cover_state != NULL) 1307 device_remove_file(&mmc->class_dev, &dev_attr_cover_switch); 1308 1309 tasklet_kill(&slot->cover_tasklet); 1310 del_timer_sync(&slot->cover_timer); 1311 flush_workqueue(slot->host->mmc_omap_wq); 1312 1313 mmc_remove_host(mmc); 1314 mmc_free_host(mmc); 1315 } 1316 1317 static int mmc_omap_probe(struct platform_device *pdev) 1318 { 1319 struct omap_mmc_platform_data *pdata = pdev->dev.platform_data; 1320 struct mmc_omap_host *host = NULL; 1321 struct resource *res; 1322 dma_cap_mask_t mask; 1323 unsigned sig = 0; 1324 int i, ret = 0; 1325 int irq; 1326 1327 if (pdata == NULL) { 1328 dev_err(&pdev->dev, "platform data missing\n"); 1329 return -ENXIO; 1330 } 1331 if (pdata->nr_slots == 0) { 1332 dev_err(&pdev->dev, "no slots\n"); 1333 return -EPROBE_DEFER; 1334 } 1335 1336 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1337 irq = platform_get_irq(pdev, 0); 1338 if (res == NULL || irq < 0) 1339 return -ENXIO; 1340 1341 res = request_mem_region(res->start, resource_size(res), 1342 pdev->name); 1343 if (res == NULL) 1344 return -EBUSY; 1345 1346 host = kzalloc(sizeof(struct mmc_omap_host), GFP_KERNEL); 1347 if (host == NULL) { 1348 ret = -ENOMEM; 1349 goto err_free_mem_region; 1350 } 1351 1352 INIT_WORK(&host->slot_release_work, mmc_omap_slot_release_work); 1353 INIT_WORK(&host->send_stop_work, mmc_omap_send_stop_work); 1354 1355 INIT_WORK(&host->cmd_abort_work, mmc_omap_abort_command); 1356 setup_timer(&host->cmd_abort_timer, mmc_omap_cmd_timer, 1357 (unsigned long) host); 1358 1359 spin_lock_init(&host->clk_lock); 1360 setup_timer(&host->clk_timer, mmc_omap_clk_timer, (unsigned long) host); 1361 1362 spin_lock_init(&host->dma_lock); 1363 spin_lock_init(&host->slot_lock); 1364 init_waitqueue_head(&host->slot_wq); 1365 1366 host->pdata = pdata; 1367 host->features = host->pdata->slots[0].features; 1368 host->dev = &pdev->dev; 1369 platform_set_drvdata(pdev, host); 1370 1371 host->id = pdev->id; 1372 host->mem_res = res; 1373 host->irq = irq; 1374 host->use_dma = 1; 1375 host->irq = irq; 1376 host->phys_base = host->mem_res->start; 1377 host->virt_base = ioremap(res->start, resource_size(res)); 1378 if (!host->virt_base) 1379 goto err_ioremap; 1380 1381 host->iclk = clk_get(&pdev->dev, "ick"); 1382 if (IS_ERR(host->iclk)) { 1383 ret = PTR_ERR(host->iclk); 1384 goto err_free_mmc_host; 1385 } 1386 clk_enable(host->iclk); 1387 1388 host->fclk = clk_get(&pdev->dev, "fck"); 1389 if (IS_ERR(host->fclk)) { 1390 ret = PTR_ERR(host->fclk); 1391 goto err_free_iclk; 1392 } 1393 1394 dma_cap_zero(mask); 1395 dma_cap_set(DMA_SLAVE, mask); 1396 1397 host->dma_tx_burst = -1; 1398 host->dma_rx_burst = -1; 1399 1400 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); 1401 if (res) 1402 sig = res->start; 1403 host->dma_tx = dma_request_slave_channel_compat(mask, 1404 omap_dma_filter_fn, &sig, &pdev->dev, "tx"); 1405 if (!host->dma_tx) 1406 dev_warn(host->dev, "unable to obtain TX DMA engine channel %u\n", 1407 sig); 1408 1409 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); 1410 if (res) 1411 sig = res->start; 1412 host->dma_rx = dma_request_slave_channel_compat(mask, 1413 omap_dma_filter_fn, &sig, &pdev->dev, "rx"); 1414 if (!host->dma_rx) 1415 dev_warn(host->dev, "unable to obtain RX DMA engine channel %u\n", 1416 sig); 1417 1418 ret = request_irq(host->irq, mmc_omap_irq, 0, DRIVER_NAME, host); 1419 if (ret) 1420 goto err_free_dma; 1421 1422 if (pdata->init != NULL) { 1423 ret = pdata->init(&pdev->dev); 1424 if (ret < 0) 1425 goto err_free_irq; 1426 } 1427 1428 host->nr_slots = pdata->nr_slots; 1429 host->reg_shift = (mmc_omap7xx() ? 1 : 2); 1430 1431 host->mmc_omap_wq = alloc_workqueue("mmc_omap", 0, 0); 1432 if (!host->mmc_omap_wq) 1433 goto err_plat_cleanup; 1434 1435 for (i = 0; i < pdata->nr_slots; i++) { 1436 ret = mmc_omap_new_slot(host, i); 1437 if (ret < 0) { 1438 while (--i >= 0) 1439 mmc_omap_remove_slot(host->slots[i]); 1440 1441 goto err_destroy_wq; 1442 } 1443 } 1444 1445 return 0; 1446 1447 err_destroy_wq: 1448 destroy_workqueue(host->mmc_omap_wq); 1449 err_plat_cleanup: 1450 if (pdata->cleanup) 1451 pdata->cleanup(&pdev->dev); 1452 err_free_irq: 1453 free_irq(host->irq, host); 1454 err_free_dma: 1455 if (host->dma_tx) 1456 dma_release_channel(host->dma_tx); 1457 if (host->dma_rx) 1458 dma_release_channel(host->dma_rx); 1459 clk_put(host->fclk); 1460 err_free_iclk: 1461 clk_disable(host->iclk); 1462 clk_put(host->iclk); 1463 err_free_mmc_host: 1464 iounmap(host->virt_base); 1465 err_ioremap: 1466 kfree(host); 1467 err_free_mem_region: 1468 release_mem_region(res->start, resource_size(res)); 1469 return ret; 1470 } 1471 1472 static int mmc_omap_remove(struct platform_device *pdev) 1473 { 1474 struct mmc_omap_host *host = platform_get_drvdata(pdev); 1475 int i; 1476 1477 BUG_ON(host == NULL); 1478 1479 for (i = 0; i < host->nr_slots; i++) 1480 mmc_omap_remove_slot(host->slots[i]); 1481 1482 if (host->pdata->cleanup) 1483 host->pdata->cleanup(&pdev->dev); 1484 1485 mmc_omap_fclk_enable(host, 0); 1486 free_irq(host->irq, host); 1487 clk_put(host->fclk); 1488 clk_disable(host->iclk); 1489 clk_put(host->iclk); 1490 1491 if (host->dma_tx) 1492 dma_release_channel(host->dma_tx); 1493 if (host->dma_rx) 1494 dma_release_channel(host->dma_rx); 1495 1496 iounmap(host->virt_base); 1497 release_mem_region(pdev->resource[0].start, 1498 pdev->resource[0].end - pdev->resource[0].start + 1); 1499 destroy_workqueue(host->mmc_omap_wq); 1500 1501 kfree(host); 1502 1503 return 0; 1504 } 1505 1506 #if IS_BUILTIN(CONFIG_OF) 1507 static const struct of_device_id mmc_omap_match[] = { 1508 { .compatible = "ti,omap2420-mmc", }, 1509 { }, 1510 }; 1511 #endif 1512 1513 static struct platform_driver mmc_omap_driver = { 1514 .probe = mmc_omap_probe, 1515 .remove = mmc_omap_remove, 1516 .driver = { 1517 .name = DRIVER_NAME, 1518 .owner = THIS_MODULE, 1519 .of_match_table = of_match_ptr(mmc_omap_match), 1520 }, 1521 }; 1522 1523 module_platform_driver(mmc_omap_driver); 1524 MODULE_DESCRIPTION("OMAP Multimedia Card driver"); 1525 MODULE_LICENSE("GPL"); 1526 MODULE_ALIAS("platform:" DRIVER_NAME); 1527 MODULE_AUTHOR("Juha Yrjölä"); 1528