1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: Ludovic.barre@st.com for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16 
17 #define SDMMC_LLI_BUF_LEN	PAGE_SIZE
18 
19 #define DLYB_CR			0x0
20 #define DLYB_CR_DEN		BIT(0)
21 #define DLYB_CR_SEN		BIT(1)
22 
23 #define DLYB_CFGR		0x4
24 #define DLYB_CFGR_SEL_MASK	GENMASK(3, 0)
25 #define DLYB_CFGR_UNIT_MASK	GENMASK(14, 8)
26 #define DLYB_CFGR_LNG_MASK	GENMASK(27, 16)
27 #define DLYB_CFGR_LNGF		BIT(31)
28 
29 #define DLYB_NB_DELAY		11
30 #define DLYB_CFGR_SEL_MAX	(DLYB_NB_DELAY + 1)
31 #define DLYB_CFGR_UNIT_MAX	127
32 
33 #define DLYB_LNG_TIMEOUT_US	1000
34 #define SDMMC_VSWEND_TIMEOUT_US 10000
35 
36 struct sdmmc_lli_desc {
37 	u32 idmalar;
38 	u32 idmabase;
39 	u32 idmasize;
40 };
41 
42 struct sdmmc_idma {
43 	dma_addr_t sg_dma;
44 	void *sg_cpu;
45 	dma_addr_t bounce_dma_addr;
46 	void *bounce_buf;
47 	bool use_bounce_buffer;
48 };
49 
50 struct sdmmc_dlyb;
51 
52 struct sdmmc_tuning_ops {
53 	int (*dlyb_enable)(struct sdmmc_dlyb *dlyb);
54 	void (*set_input_ck)(struct sdmmc_dlyb *dlyb);
55 	int (*tuning_prepare)(struct mmci_host *host);
56 	int (*set_cfg)(struct sdmmc_dlyb *dlyb, int unit __maybe_unused,
57 		       int phase, bool sampler __maybe_unused);
58 };
59 
60 struct sdmmc_dlyb {
61 	void __iomem *base;
62 	u32 unit;
63 	u32 max;
64 	struct sdmmc_tuning_ops *ops;
65 };
66 
67 static int sdmmc_idma_validate_data(struct mmci_host *host,
68 				    struct mmc_data *data)
69 {
70 	struct sdmmc_idma *idma = host->dma_priv;
71 	struct device *dev = mmc_dev(host->mmc);
72 	struct scatterlist *sg;
73 	int i;
74 
75 	/*
76 	 * idma has constraints on idmabase & idmasize for each element
77 	 * excepted the last element which has no constraint on idmasize
78 	 */
79 	idma->use_bounce_buffer = false;
80 	for_each_sg(data->sg, sg, data->sg_len - 1, i) {
81 		if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
82 		    !IS_ALIGNED(sg->length,
83 				host->variant->stm32_idmabsize_align)) {
84 			dev_dbg(mmc_dev(host->mmc),
85 				"unaligned scatterlist: ofst:%x length:%d\n",
86 				data->sg->offset, data->sg->length);
87 			goto use_bounce_buffer;
88 		}
89 	}
90 
91 	if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
92 		dev_dbg(mmc_dev(host->mmc),
93 			"unaligned last scatterlist: ofst:%x length:%d\n",
94 			data->sg->offset, data->sg->length);
95 		goto use_bounce_buffer;
96 	}
97 
98 	return 0;
99 
100 use_bounce_buffer:
101 	if (!idma->bounce_buf) {
102 		idma->bounce_buf = dmam_alloc_coherent(dev,
103 						       host->mmc->max_req_size,
104 						       &idma->bounce_dma_addr,
105 						       GFP_KERNEL);
106 		if (!idma->bounce_buf) {
107 			dev_err(dev, "Unable to map allocate DMA bounce buffer.\n");
108 			return -ENOMEM;
109 		}
110 	}
111 
112 	idma->use_bounce_buffer = true;
113 
114 	return 0;
115 }
116 
117 static int _sdmmc_idma_prep_data(struct mmci_host *host,
118 				 struct mmc_data *data)
119 {
120 	struct sdmmc_idma *idma = host->dma_priv;
121 
122 	if (idma->use_bounce_buffer) {
123 		if (data->flags & MMC_DATA_WRITE) {
124 			unsigned int xfer_bytes = data->blksz * data->blocks;
125 
126 			sg_copy_to_buffer(data->sg, data->sg_len,
127 					  idma->bounce_buf, xfer_bytes);
128 			dma_wmb();
129 		}
130 	} else {
131 		int n_elem;
132 
133 		n_elem = dma_map_sg(mmc_dev(host->mmc),
134 				    data->sg,
135 				    data->sg_len,
136 				    mmc_get_dma_dir(data));
137 
138 		if (!n_elem) {
139 			dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
140 			return -EINVAL;
141 		}
142 	}
143 	return 0;
144 }
145 
146 static int sdmmc_idma_prep_data(struct mmci_host *host,
147 				struct mmc_data *data, bool next)
148 {
149 	/* Check if job is already prepared. */
150 	if (!next && data->host_cookie == host->next_cookie)
151 		return 0;
152 
153 	return _sdmmc_idma_prep_data(host, data);
154 }
155 
156 static void sdmmc_idma_unprep_data(struct mmci_host *host,
157 				   struct mmc_data *data, int err)
158 {
159 	struct sdmmc_idma *idma = host->dma_priv;
160 
161 	if (idma->use_bounce_buffer) {
162 		if (data->flags & MMC_DATA_READ) {
163 			unsigned int xfer_bytes = data->blksz * data->blocks;
164 
165 			sg_copy_from_buffer(data->sg, data->sg_len,
166 					    idma->bounce_buf, xfer_bytes);
167 		}
168 	} else {
169 		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
170 			     mmc_get_dma_dir(data));
171 	}
172 }
173 
174 static int sdmmc_idma_setup(struct mmci_host *host)
175 {
176 	struct sdmmc_idma *idma;
177 	struct device *dev = mmc_dev(host->mmc);
178 
179 	idma = devm_kzalloc(dev, sizeof(*idma), GFP_KERNEL);
180 	if (!idma)
181 		return -ENOMEM;
182 
183 	host->dma_priv = idma;
184 
185 	if (host->variant->dma_lli) {
186 		idma->sg_cpu = dmam_alloc_coherent(dev, SDMMC_LLI_BUF_LEN,
187 						   &idma->sg_dma, GFP_KERNEL);
188 		if (!idma->sg_cpu) {
189 			dev_err(dev, "Failed to alloc IDMA descriptor\n");
190 			return -ENOMEM;
191 		}
192 		host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
193 			sizeof(struct sdmmc_lli_desc);
194 		host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
195 
196 		host->mmc->max_req_size = SZ_1M;
197 	} else {
198 		host->mmc->max_segs = 1;
199 		host->mmc->max_seg_size = host->mmc->max_req_size;
200 	}
201 
202 	return dma_set_max_seg_size(dev, host->mmc->max_seg_size);
203 }
204 
205 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
206 
207 {
208 	struct sdmmc_idma *idma = host->dma_priv;
209 	struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
210 	struct mmc_data *data = host->data;
211 	struct scatterlist *sg;
212 	int i;
213 
214 	if (!host->variant->dma_lli || data->sg_len == 1 ||
215 	    idma->use_bounce_buffer) {
216 		u32 dma_addr;
217 
218 		if (idma->use_bounce_buffer)
219 			dma_addr = idma->bounce_dma_addr;
220 		else
221 			dma_addr = sg_dma_address(data->sg);
222 
223 		writel_relaxed(dma_addr,
224 			       host->base + MMCI_STM32_IDMABASE0R);
225 		writel_relaxed(MMCI_STM32_IDMAEN,
226 			       host->base + MMCI_STM32_IDMACTRLR);
227 		return 0;
228 	}
229 
230 	for_each_sg(data->sg, sg, data->sg_len, i) {
231 		desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
232 		desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
233 			| MMCI_STM32_ABR;
234 		desc[i].idmabase = sg_dma_address(sg);
235 		desc[i].idmasize = sg_dma_len(sg);
236 	}
237 
238 	/* notice the end of link list */
239 	desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
240 
241 	dma_wmb();
242 	writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
243 	writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
244 	writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
245 	writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
246 	writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
247 		       host->base + MMCI_STM32_IDMACTRLR);
248 
249 	return 0;
250 }
251 
252 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
253 {
254 	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
255 
256 	if (!data->host_cookie)
257 		sdmmc_idma_unprep_data(host, data, 0);
258 }
259 
260 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
261 {
262 	unsigned int clk = 0, ddr = 0;
263 
264 	if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
265 	    host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
266 		ddr = MCI_STM32_CLK_DDR;
267 
268 	/*
269 	 * cclk = mclk / (2 * clkdiv)
270 	 * clkdiv 0 => bypass
271 	 * in ddr mode bypass is not possible
272 	 */
273 	if (desired) {
274 		if (desired >= host->mclk && !ddr) {
275 			host->cclk = host->mclk;
276 		} else {
277 			clk = DIV_ROUND_UP(host->mclk, 2 * desired);
278 			if (clk > MCI_STM32_CLK_CLKDIV_MSK)
279 				clk = MCI_STM32_CLK_CLKDIV_MSK;
280 			host->cclk = host->mclk / (2 * clk);
281 		}
282 	} else {
283 		/*
284 		 * while power-on phase the clock can't be define to 0,
285 		 * Only power-off and power-cyc deactivate the clock.
286 		 * if desired clock is 0, set max divider
287 		 */
288 		clk = MCI_STM32_CLK_CLKDIV_MSK;
289 		host->cclk = host->mclk / (2 * clk);
290 	}
291 
292 	/* Set actual clock for debug */
293 	if (host->mmc->ios.power_mode == MMC_POWER_ON)
294 		host->mmc->actual_clock = host->cclk;
295 	else
296 		host->mmc->actual_clock = 0;
297 
298 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
299 		clk |= MCI_STM32_CLK_WIDEBUS_4;
300 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
301 		clk |= MCI_STM32_CLK_WIDEBUS_8;
302 
303 	clk |= MCI_STM32_CLK_HWFCEN;
304 	clk |= host->clk_reg_add;
305 	clk |= ddr;
306 
307 	if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50)
308 		clk |= MCI_STM32_CLK_BUSSPEED;
309 
310 	mmci_write_clkreg(host, clk);
311 }
312 
313 static void sdmmc_dlyb_mp15_input_ck(struct sdmmc_dlyb *dlyb)
314 {
315 	if (!dlyb || !dlyb->base)
316 		return;
317 
318 	/* Output clock = Input clock */
319 	writel_relaxed(0, dlyb->base + DLYB_CR);
320 }
321 
322 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
323 {
324 	struct mmc_ios ios = host->mmc->ios;
325 	struct sdmmc_dlyb *dlyb = host->variant_priv;
326 
327 	/* adds OF options */
328 	pwr = host->pwr_reg_add;
329 
330 	if (dlyb && dlyb->ops->set_input_ck)
331 		dlyb->ops->set_input_ck(dlyb);
332 
333 	if (ios.power_mode == MMC_POWER_OFF) {
334 		/* Only a reset could power-off sdmmc */
335 		reset_control_assert(host->rst);
336 		udelay(2);
337 		reset_control_deassert(host->rst);
338 
339 		/*
340 		 * Set the SDMMC in Power-cycle state.
341 		 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
342 		 * are driven low, to prevent the Card from being supplied
343 		 * through the signal lines.
344 		 */
345 		mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
346 	} else if (ios.power_mode == MMC_POWER_ON) {
347 		/*
348 		 * After power-off (reset): the irq mask defined in probe
349 		 * functionis lost
350 		 * ault irq mask (probe) must be activated
351 		 */
352 		writel(MCI_IRQENABLE | host->variant->start_err,
353 		       host->base + MMCIMASK0);
354 
355 		/* preserves voltage switch bits */
356 		pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
357 					MCI_STM32_VSWITCH);
358 
359 		/*
360 		 * After a power-cycle state, we must set the SDMMC in
361 		 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
362 		 * driven high. Then we can set the SDMMC to Power-on state
363 		 */
364 		mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
365 		mdelay(1);
366 		mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
367 	}
368 }
369 
370 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
371 {
372 	u32 datactrl;
373 
374 	datactrl = mmci_dctrl_blksz(host);
375 
376 	if (host->hw_revision >= 3) {
377 		u32 thr = 0;
378 
379 		if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104 ||
380 		    host->mmc->ios.timing == MMC_TIMING_MMC_HS200) {
381 			thr = ffs(min_t(unsigned int, host->data->blksz,
382 					host->variant->fifosize));
383 			thr = min_t(u32, thr, MMCI_STM32_THR_MASK);
384 		}
385 
386 		writel_relaxed(thr, host->base + MMCI_STM32_FIFOTHRR);
387 	}
388 
389 	if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
390 	    host->data->blocks == 1)
391 		datactrl |= MCI_DPSM_STM32_MODE_SDIO;
392 	else if (host->data->stop && !host->mrq->sbc)
393 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
394 	else
395 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
396 
397 	return datactrl;
398 }
399 
400 static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
401 {
402 	void __iomem *base = host->base;
403 	u32 busy_d0, busy_d0end, mask, sdmmc_status;
404 
405 	mask = readl_relaxed(base + MMCIMASK0);
406 	sdmmc_status = readl_relaxed(base + MMCISTATUS);
407 	busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
408 	busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
409 
410 	/* complete if there is an error or busy_d0end */
411 	if ((status & err_msk) || busy_d0end)
412 		goto complete;
413 
414 	/*
415 	 * On response the busy signaling is reflected in the BUSYD0 flag.
416 	 * if busy_d0 is in-progress we must activate busyd0end interrupt
417 	 * to wait this completion. Else this request has no busy step.
418 	 */
419 	if (busy_d0) {
420 		if (!host->busy_status) {
421 			writel_relaxed(mask | host->variant->busy_detect_mask,
422 				       base + MMCIMASK0);
423 			host->busy_status = status &
424 				(MCI_CMDSENT | MCI_CMDRESPEND);
425 		}
426 		return false;
427 	}
428 
429 complete:
430 	if (host->busy_status) {
431 		writel_relaxed(mask & ~host->variant->busy_detect_mask,
432 			       base + MMCIMASK0);
433 		host->busy_status = 0;
434 	}
435 
436 	writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
437 
438 	return true;
439 }
440 
441 static int sdmmc_dlyb_mp15_enable(struct sdmmc_dlyb *dlyb)
442 {
443 	writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
444 
445 	return 0;
446 }
447 
448 static int sdmmc_dlyb_mp15_set_cfg(struct sdmmc_dlyb *dlyb,
449 				   int unit, int phase, bool sampler)
450 {
451 	u32 cfgr;
452 
453 	writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
454 
455 	cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
456 	       FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
457 	writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
458 
459 	if (!sampler)
460 		writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
461 
462 	return 0;
463 }
464 
465 static int sdmmc_dlyb_mp15_prepare(struct mmci_host *host)
466 {
467 	struct sdmmc_dlyb *dlyb = host->variant_priv;
468 	u32 cfgr;
469 	int i, lng, ret;
470 
471 	for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
472 		dlyb->ops->set_cfg(dlyb, i, DLYB_CFGR_SEL_MAX, true);
473 
474 		ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
475 						 (cfgr & DLYB_CFGR_LNGF),
476 						 1, DLYB_LNG_TIMEOUT_US);
477 		if (ret) {
478 			dev_warn(mmc_dev(host->mmc),
479 				 "delay line cfg timeout unit:%d cfgr:%d\n",
480 				 i, cfgr);
481 			continue;
482 		}
483 
484 		lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
485 		if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
486 			break;
487 	}
488 
489 	if (i > DLYB_CFGR_UNIT_MAX)
490 		return -EINVAL;
491 
492 	dlyb->unit = i;
493 	dlyb->max = __fls(lng);
494 
495 	return 0;
496 }
497 
498 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
499 {
500 	struct sdmmc_dlyb *dlyb = host->variant_priv;
501 	int cur_len = 0, max_len = 0, end_of_len = 0;
502 	int phase, ret;
503 
504 	for (phase = 0; phase <= dlyb->max; phase++) {
505 		ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
506 		if (ret) {
507 			dev_err(mmc_dev(host->mmc), "tuning config failed\n");
508 			return ret;
509 		}
510 
511 		if (mmc_send_tuning(host->mmc, opcode, NULL)) {
512 			cur_len = 0;
513 		} else {
514 			cur_len++;
515 			if (cur_len > max_len) {
516 				max_len = cur_len;
517 				end_of_len = phase;
518 			}
519 		}
520 	}
521 
522 	if (!max_len) {
523 		dev_err(mmc_dev(host->mmc), "no tuning point found\n");
524 		return -EINVAL;
525 	}
526 
527 	if (dlyb->ops->set_input_ck)
528 		dlyb->ops->set_input_ck(dlyb);
529 
530 	phase = end_of_len - max_len / 2;
531 	ret = dlyb->ops->set_cfg(dlyb, dlyb->unit, phase, false);
532 	if (ret) {
533 		dev_err(mmc_dev(host->mmc), "tuning reconfig failed\n");
534 		return ret;
535 	}
536 
537 	dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
538 		dlyb->unit, dlyb->max, phase);
539 
540 	return 0;
541 }
542 
543 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
544 {
545 	struct mmci_host *host = mmc_priv(mmc);
546 	struct sdmmc_dlyb *dlyb = host->variant_priv;
547 	u32 clk;
548 	int ret;
549 
550 	if ((host->mmc->ios.timing != MMC_TIMING_UHS_SDR104 &&
551 	     host->mmc->ios.timing != MMC_TIMING_MMC_HS200) ||
552 	    host->mmc->actual_clock <= 50000000)
553 		return 0;
554 
555 	if (!dlyb || !dlyb->base)
556 		return -EINVAL;
557 
558 	ret = dlyb->ops->dlyb_enable(dlyb);
559 	if (ret)
560 		return ret;
561 
562 	/*
563 	 * SDMMC_FBCK is selected when an external Delay Block is needed
564 	 * with SDR104 or HS200.
565 	 */
566 	clk = host->clk_reg;
567 	clk &= ~MCI_STM32_CLK_SEL_MSK;
568 	clk |= MCI_STM32_CLK_SELFBCK;
569 	mmci_write_clkreg(host, clk);
570 
571 	ret = dlyb->ops->tuning_prepare(host);
572 	if (ret)
573 		return ret;
574 
575 	return sdmmc_dlyb_phase_tuning(host, opcode);
576 }
577 
578 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
579 {
580 	/* clear the voltage switch completion flag */
581 	writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
582 	/* enable Voltage switch procedure */
583 	mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
584 }
585 
586 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
587 				      struct mmc_ios *ios)
588 {
589 	unsigned long flags;
590 	u32 status;
591 	int ret = 0;
592 
593 	spin_lock_irqsave(&host->lock, flags);
594 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180 &&
595 	    host->pwr_reg & MCI_STM32_VSWITCHEN) {
596 		mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
597 		spin_unlock_irqrestore(&host->lock, flags);
598 
599 		/* wait voltage switch completion while 10ms */
600 		ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
601 						 status,
602 						 (status & MCI_STM32_VSWEND),
603 						 10, SDMMC_VSWEND_TIMEOUT_US);
604 
605 		writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
606 			       host->base + MMCICLEAR);
607 		spin_lock_irqsave(&host->lock, flags);
608 		mmci_write_pwrreg(host, host->pwr_reg &
609 				  ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
610 	}
611 	spin_unlock_irqrestore(&host->lock, flags);
612 
613 	return ret;
614 }
615 
616 static struct mmci_host_ops sdmmc_variant_ops = {
617 	.validate_data = sdmmc_idma_validate_data,
618 	.prep_data = sdmmc_idma_prep_data,
619 	.unprep_data = sdmmc_idma_unprep_data,
620 	.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
621 	.dma_setup = sdmmc_idma_setup,
622 	.dma_start = sdmmc_idma_start,
623 	.dma_finalize = sdmmc_idma_finalize,
624 	.set_clkreg = mmci_sdmmc_set_clkreg,
625 	.set_pwrreg = mmci_sdmmc_set_pwrreg,
626 	.busy_complete = sdmmc_busy_complete,
627 	.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
628 	.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
629 };
630 
631 static struct sdmmc_tuning_ops dlyb_tuning_mp15_ops = {
632 	.dlyb_enable = sdmmc_dlyb_mp15_enable,
633 	.set_input_ck = sdmmc_dlyb_mp15_input_ck,
634 	.tuning_prepare = sdmmc_dlyb_mp15_prepare,
635 	.set_cfg = sdmmc_dlyb_mp15_set_cfg,
636 };
637 
638 void sdmmc_variant_init(struct mmci_host *host)
639 {
640 	struct device_node *np = host->mmc->parent->of_node;
641 	void __iomem *base_dlyb;
642 	struct sdmmc_dlyb *dlyb;
643 
644 	host->ops = &sdmmc_variant_ops;
645 	host->pwr_reg = readl_relaxed(host->base + MMCIPOWER);
646 
647 	base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
648 	if (IS_ERR(base_dlyb))
649 		return;
650 
651 	dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
652 	if (!dlyb)
653 		return;
654 
655 	dlyb->base = base_dlyb;
656 	dlyb->ops = &dlyb_tuning_mp15_ops;
657 	host->variant_priv = dlyb;
658 	host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
659 }
660