1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: Ludovic.barre@st.com for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/iopoll.h>
10 #include <linux/mmc/host.h>
11 #include <linux/mmc/card.h>
12 #include <linux/of_address.h>
13 #include <linux/reset.h>
14 #include <linux/scatterlist.h>
15 #include "mmci.h"
16 
17 #define SDMMC_LLI_BUF_LEN	PAGE_SIZE
18 #define SDMMC_IDMA_BURST	BIT(MMCI_STM32_IDMABNDT_SHIFT)
19 
20 #define DLYB_CR			0x0
21 #define DLYB_CR_DEN		BIT(0)
22 #define DLYB_CR_SEN		BIT(1)
23 
24 #define DLYB_CFGR		0x4
25 #define DLYB_CFGR_SEL_MASK	GENMASK(3, 0)
26 #define DLYB_CFGR_UNIT_MASK	GENMASK(14, 8)
27 #define DLYB_CFGR_LNG_MASK	GENMASK(27, 16)
28 #define DLYB_CFGR_LNGF		BIT(31)
29 
30 #define DLYB_NB_DELAY		11
31 #define DLYB_CFGR_SEL_MAX	(DLYB_NB_DELAY + 1)
32 #define DLYB_CFGR_UNIT_MAX	127
33 
34 #define DLYB_LNG_TIMEOUT_US	1000
35 #define SDMMC_VSWEND_TIMEOUT_US 10000
36 
37 struct sdmmc_lli_desc {
38 	u32 idmalar;
39 	u32 idmabase;
40 	u32 idmasize;
41 };
42 
43 struct sdmmc_idma {
44 	dma_addr_t sg_dma;
45 	void *sg_cpu;
46 };
47 
48 struct sdmmc_dlyb {
49 	void __iomem *base;
50 	u32 unit;
51 	u32 max;
52 };
53 
54 static int sdmmc_idma_validate_data(struct mmci_host *host,
55 				    struct mmc_data *data)
56 {
57 	struct scatterlist *sg;
58 	int i;
59 
60 	/*
61 	 * idma has constraints on idmabase & idmasize for each element
62 	 * excepted the last element which has no constraint on idmasize
63 	 */
64 	for_each_sg(data->sg, sg, data->sg_len - 1, i) {
65 		if (!IS_ALIGNED(data->sg->offset, sizeof(u32)) ||
66 		    !IS_ALIGNED(data->sg->length, SDMMC_IDMA_BURST)) {
67 			dev_err(mmc_dev(host->mmc),
68 				"unaligned scatterlist: ofst:%x length:%d\n",
69 				data->sg->offset, data->sg->length);
70 			return -EINVAL;
71 		}
72 	}
73 
74 	if (!IS_ALIGNED(data->sg->offset, sizeof(u32))) {
75 		dev_err(mmc_dev(host->mmc),
76 			"unaligned last scatterlist: ofst:%x length:%d\n",
77 			data->sg->offset, data->sg->length);
78 		return -EINVAL;
79 	}
80 
81 	return 0;
82 }
83 
84 static int _sdmmc_idma_prep_data(struct mmci_host *host,
85 				 struct mmc_data *data)
86 {
87 	int n_elem;
88 
89 	n_elem = dma_map_sg(mmc_dev(host->mmc),
90 			    data->sg,
91 			    data->sg_len,
92 			    mmc_get_dma_dir(data));
93 
94 	if (!n_elem) {
95 		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
96 		return -EINVAL;
97 	}
98 
99 	return 0;
100 }
101 
102 static int sdmmc_idma_prep_data(struct mmci_host *host,
103 				struct mmc_data *data, bool next)
104 {
105 	/* Check if job is already prepared. */
106 	if (!next && data->host_cookie == host->next_cookie)
107 		return 0;
108 
109 	return _sdmmc_idma_prep_data(host, data);
110 }
111 
112 static void sdmmc_idma_unprep_data(struct mmci_host *host,
113 				   struct mmc_data *data, int err)
114 {
115 	dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
116 		     mmc_get_dma_dir(data));
117 }
118 
119 static int sdmmc_idma_setup(struct mmci_host *host)
120 {
121 	struct sdmmc_idma *idma;
122 
123 	idma = devm_kzalloc(mmc_dev(host->mmc), sizeof(*idma), GFP_KERNEL);
124 	if (!idma)
125 		return -ENOMEM;
126 
127 	host->dma_priv = idma;
128 
129 	if (host->variant->dma_lli) {
130 		idma->sg_cpu = dmam_alloc_coherent(mmc_dev(host->mmc),
131 						   SDMMC_LLI_BUF_LEN,
132 						   &idma->sg_dma, GFP_KERNEL);
133 		if (!idma->sg_cpu) {
134 			dev_err(mmc_dev(host->mmc),
135 				"Failed to alloc IDMA descriptor\n");
136 			return -ENOMEM;
137 		}
138 		host->mmc->max_segs = SDMMC_LLI_BUF_LEN /
139 			sizeof(struct sdmmc_lli_desc);
140 		host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask;
141 	} else {
142 		host->mmc->max_segs = 1;
143 		host->mmc->max_seg_size = host->mmc->max_req_size;
144 	}
145 
146 	return 0;
147 }
148 
149 static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl)
150 
151 {
152 	struct sdmmc_idma *idma = host->dma_priv;
153 	struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu;
154 	struct mmc_data *data = host->data;
155 	struct scatterlist *sg;
156 	int i;
157 
158 	if (!host->variant->dma_lli || data->sg_len == 1) {
159 		writel_relaxed(sg_dma_address(data->sg),
160 			       host->base + MMCI_STM32_IDMABASE0R);
161 		writel_relaxed(MMCI_STM32_IDMAEN,
162 			       host->base + MMCI_STM32_IDMACTRLR);
163 		return 0;
164 	}
165 
166 	for_each_sg(data->sg, sg, data->sg_len, i) {
167 		desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc);
168 		desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS
169 			| MMCI_STM32_ABR;
170 		desc[i].idmabase = sg_dma_address(sg);
171 		desc[i].idmasize = sg_dma_len(sg);
172 	}
173 
174 	/* notice the end of link list */
175 	desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA;
176 
177 	dma_wmb();
178 	writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR);
179 	writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR);
180 	writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R);
181 	writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER);
182 	writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN,
183 		       host->base + MMCI_STM32_IDMACTRLR);
184 
185 	return 0;
186 }
187 
188 static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data)
189 {
190 	writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR);
191 }
192 
193 static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired)
194 {
195 	unsigned int clk = 0, ddr = 0;
196 
197 	if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 ||
198 	    host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
199 		ddr = MCI_STM32_CLK_DDR;
200 
201 	/*
202 	 * cclk = mclk / (2 * clkdiv)
203 	 * clkdiv 0 => bypass
204 	 * in ddr mode bypass is not possible
205 	 */
206 	if (desired) {
207 		if (desired >= host->mclk && !ddr) {
208 			host->cclk = host->mclk;
209 		} else {
210 			clk = DIV_ROUND_UP(host->mclk, 2 * desired);
211 			if (clk > MCI_STM32_CLK_CLKDIV_MSK)
212 				clk = MCI_STM32_CLK_CLKDIV_MSK;
213 			host->cclk = host->mclk / (2 * clk);
214 		}
215 	} else {
216 		/*
217 		 * while power-on phase the clock can't be define to 0,
218 		 * Only power-off and power-cyc deactivate the clock.
219 		 * if desired clock is 0, set max divider
220 		 */
221 		clk = MCI_STM32_CLK_CLKDIV_MSK;
222 		host->cclk = host->mclk / (2 * clk);
223 	}
224 
225 	/* Set actual clock for debug */
226 	if (host->mmc->ios.power_mode == MMC_POWER_ON)
227 		host->mmc->actual_clock = host->cclk;
228 	else
229 		host->mmc->actual_clock = 0;
230 
231 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
232 		clk |= MCI_STM32_CLK_WIDEBUS_4;
233 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
234 		clk |= MCI_STM32_CLK_WIDEBUS_8;
235 
236 	clk |= MCI_STM32_CLK_HWFCEN;
237 	clk |= host->clk_reg_add;
238 	clk |= ddr;
239 
240 	/*
241 	 * SDMMC_FBCK is selected when an external Delay Block is needed
242 	 * with SDR104.
243 	 */
244 	if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) {
245 		clk |= MCI_STM32_CLK_BUSSPEED;
246 		if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104) {
247 			clk &= ~MCI_STM32_CLK_SEL_MSK;
248 			clk |= MCI_STM32_CLK_SELFBCK;
249 		}
250 	}
251 
252 	mmci_write_clkreg(host, clk);
253 }
254 
255 static void sdmmc_dlyb_input_ck(struct sdmmc_dlyb *dlyb)
256 {
257 	if (!dlyb || !dlyb->base)
258 		return;
259 
260 	/* Output clock = Input clock */
261 	writel_relaxed(0, dlyb->base + DLYB_CR);
262 }
263 
264 static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr)
265 {
266 	struct mmc_ios ios = host->mmc->ios;
267 	struct sdmmc_dlyb *dlyb = host->variant_priv;
268 
269 	/* adds OF options */
270 	pwr = host->pwr_reg_add;
271 
272 	sdmmc_dlyb_input_ck(dlyb);
273 
274 	if (ios.power_mode == MMC_POWER_OFF) {
275 		/* Only a reset could power-off sdmmc */
276 		reset_control_assert(host->rst);
277 		udelay(2);
278 		reset_control_deassert(host->rst);
279 
280 		/*
281 		 * Set the SDMMC in Power-cycle state.
282 		 * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK
283 		 * are driven low, to prevent the Card from being supplied
284 		 * through the signal lines.
285 		 */
286 		mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr);
287 	} else if (ios.power_mode == MMC_POWER_ON) {
288 		/*
289 		 * After power-off (reset): the irq mask defined in probe
290 		 * functionis lost
291 		 * ault irq mask (probe) must be activated
292 		 */
293 		writel(MCI_IRQENABLE | host->variant->start_err,
294 		       host->base + MMCIMASK0);
295 
296 		/* preserves voltage switch bits */
297 		pwr |= host->pwr_reg & (MCI_STM32_VSWITCHEN |
298 					MCI_STM32_VSWITCH);
299 
300 		/*
301 		 * After a power-cycle state, we must set the SDMMC in
302 		 * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are
303 		 * driven high. Then we can set the SDMMC to Power-on state
304 		 */
305 		mmci_write_pwrreg(host, MCI_PWR_OFF | pwr);
306 		mdelay(1);
307 		mmci_write_pwrreg(host, MCI_PWR_ON | pwr);
308 	}
309 }
310 
311 static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host)
312 {
313 	u32 datactrl;
314 
315 	datactrl = mmci_dctrl_blksz(host);
316 
317 	if (host->mmc->card && mmc_card_sdio(host->mmc->card) &&
318 	    host->data->blocks == 1)
319 		datactrl |= MCI_DPSM_STM32_MODE_SDIO;
320 	else if (host->data->stop && !host->mrq->sbc)
321 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP;
322 	else
323 		datactrl |= MCI_DPSM_STM32_MODE_BLOCK;
324 
325 	return datactrl;
326 }
327 
328 static bool sdmmc_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
329 {
330 	void __iomem *base = host->base;
331 	u32 busy_d0, busy_d0end, mask, sdmmc_status;
332 
333 	mask = readl_relaxed(base + MMCIMASK0);
334 	sdmmc_status = readl_relaxed(base + MMCISTATUS);
335 	busy_d0end = sdmmc_status & MCI_STM32_BUSYD0END;
336 	busy_d0 = sdmmc_status & MCI_STM32_BUSYD0;
337 
338 	/* complete if there is an error or busy_d0end */
339 	if ((status & err_msk) || busy_d0end)
340 		goto complete;
341 
342 	/*
343 	 * On response the busy signaling is reflected in the BUSYD0 flag.
344 	 * if busy_d0 is in-progress we must activate busyd0end interrupt
345 	 * to wait this completion. Else this request has no busy step.
346 	 */
347 	if (busy_d0) {
348 		if (!host->busy_status) {
349 			writel_relaxed(mask | host->variant->busy_detect_mask,
350 				       base + MMCIMASK0);
351 			host->busy_status = status &
352 				(MCI_CMDSENT | MCI_CMDRESPEND);
353 		}
354 		return false;
355 	}
356 
357 complete:
358 	if (host->busy_status) {
359 		writel_relaxed(mask & ~host->variant->busy_detect_mask,
360 			       base + MMCIMASK0);
361 		host->busy_status = 0;
362 	}
363 
364 	writel_relaxed(host->variant->busy_detect_mask, base + MMCICLEAR);
365 
366 	return true;
367 }
368 
369 static void sdmmc_dlyb_set_cfgr(struct sdmmc_dlyb *dlyb,
370 				int unit, int phase, bool sampler)
371 {
372 	u32 cfgr;
373 
374 	writel_relaxed(DLYB_CR_SEN | DLYB_CR_DEN, dlyb->base + DLYB_CR);
375 
376 	cfgr = FIELD_PREP(DLYB_CFGR_UNIT_MASK, unit) |
377 	       FIELD_PREP(DLYB_CFGR_SEL_MASK, phase);
378 	writel_relaxed(cfgr, dlyb->base + DLYB_CFGR);
379 
380 	if (!sampler)
381 		writel_relaxed(DLYB_CR_DEN, dlyb->base + DLYB_CR);
382 }
383 
384 static int sdmmc_dlyb_lng_tuning(struct mmci_host *host)
385 {
386 	struct sdmmc_dlyb *dlyb = host->variant_priv;
387 	u32 cfgr;
388 	int i, lng, ret;
389 
390 	for (i = 0; i <= DLYB_CFGR_UNIT_MAX; i++) {
391 		sdmmc_dlyb_set_cfgr(dlyb, i, DLYB_CFGR_SEL_MAX, true);
392 
393 		ret = readl_relaxed_poll_timeout(dlyb->base + DLYB_CFGR, cfgr,
394 						 (cfgr & DLYB_CFGR_LNGF),
395 						 1, DLYB_LNG_TIMEOUT_US);
396 		if (ret) {
397 			dev_warn(mmc_dev(host->mmc),
398 				 "delay line cfg timeout unit:%d cfgr:%d\n",
399 				 i, cfgr);
400 			continue;
401 		}
402 
403 		lng = FIELD_GET(DLYB_CFGR_LNG_MASK, cfgr);
404 		if (lng < BIT(DLYB_NB_DELAY) && lng > 0)
405 			break;
406 	}
407 
408 	if (i > DLYB_CFGR_UNIT_MAX)
409 		return -EINVAL;
410 
411 	dlyb->unit = i;
412 	dlyb->max = __fls(lng);
413 
414 	return 0;
415 }
416 
417 static int sdmmc_dlyb_phase_tuning(struct mmci_host *host, u32 opcode)
418 {
419 	struct sdmmc_dlyb *dlyb = host->variant_priv;
420 	int cur_len = 0, max_len = 0, end_of_len = 0;
421 	int phase;
422 
423 	for (phase = 0; phase <= dlyb->max; phase++) {
424 		sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
425 
426 		if (mmc_send_tuning(host->mmc, opcode, NULL)) {
427 			cur_len = 0;
428 		} else {
429 			cur_len++;
430 			if (cur_len > max_len) {
431 				max_len = cur_len;
432 				end_of_len = phase;
433 			}
434 		}
435 	}
436 
437 	if (!max_len) {
438 		dev_err(mmc_dev(host->mmc), "no tuning point found\n");
439 		return -EINVAL;
440 	}
441 
442 	phase = end_of_len - max_len / 2;
443 	sdmmc_dlyb_set_cfgr(dlyb, dlyb->unit, phase, false);
444 
445 	dev_dbg(mmc_dev(host->mmc), "unit:%d max_dly:%d phase:%d\n",
446 		dlyb->unit, dlyb->max, phase);
447 
448 	return 0;
449 }
450 
451 static int sdmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
452 {
453 	struct mmci_host *host = mmc_priv(mmc);
454 	struct sdmmc_dlyb *dlyb = host->variant_priv;
455 
456 	if (!dlyb || !dlyb->base)
457 		return -EINVAL;
458 
459 	if (sdmmc_dlyb_lng_tuning(host))
460 		return -EINVAL;
461 
462 	return sdmmc_dlyb_phase_tuning(host, opcode);
463 }
464 
465 static void sdmmc_pre_sig_volt_vswitch(struct mmci_host *host)
466 {
467 	/* clear the voltage switch completion flag */
468 	writel_relaxed(MCI_STM32_VSWENDC, host->base + MMCICLEAR);
469 	/* enable Voltage switch procedure */
470 	mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCHEN);
471 }
472 
473 static int sdmmc_post_sig_volt_switch(struct mmci_host *host,
474 				      struct mmc_ios *ios)
475 {
476 	unsigned long flags;
477 	u32 status;
478 	int ret = 0;
479 
480 	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) {
481 		spin_lock_irqsave(&host->lock, flags);
482 		mmci_write_pwrreg(host, host->pwr_reg | MCI_STM32_VSWITCH);
483 		spin_unlock_irqrestore(&host->lock, flags);
484 
485 		/* wait voltage switch completion while 10ms */
486 		ret = readl_relaxed_poll_timeout(host->base + MMCISTATUS,
487 						 status,
488 						 (status & MCI_STM32_VSWEND),
489 						 10, SDMMC_VSWEND_TIMEOUT_US);
490 
491 		writel_relaxed(MCI_STM32_VSWENDC | MCI_STM32_CKSTOPC,
492 			       host->base + MMCICLEAR);
493 		mmci_write_pwrreg(host, host->pwr_reg &
494 				  ~(MCI_STM32_VSWITCHEN | MCI_STM32_VSWITCH));
495 	}
496 
497 	return ret;
498 }
499 
500 static struct mmci_host_ops sdmmc_variant_ops = {
501 	.validate_data = sdmmc_idma_validate_data,
502 	.prep_data = sdmmc_idma_prep_data,
503 	.unprep_data = sdmmc_idma_unprep_data,
504 	.get_datactrl_cfg = sdmmc_get_dctrl_cfg,
505 	.dma_setup = sdmmc_idma_setup,
506 	.dma_start = sdmmc_idma_start,
507 	.dma_finalize = sdmmc_idma_finalize,
508 	.set_clkreg = mmci_sdmmc_set_clkreg,
509 	.set_pwrreg = mmci_sdmmc_set_pwrreg,
510 	.busy_complete = sdmmc_busy_complete,
511 	.pre_sig_volt_switch = sdmmc_pre_sig_volt_vswitch,
512 	.post_sig_volt_switch = sdmmc_post_sig_volt_switch,
513 };
514 
515 void sdmmc_variant_init(struct mmci_host *host)
516 {
517 	struct device_node *np = host->mmc->parent->of_node;
518 	void __iomem *base_dlyb;
519 	struct sdmmc_dlyb *dlyb;
520 
521 	host->ops = &sdmmc_variant_ops;
522 
523 	base_dlyb = devm_of_iomap(mmc_dev(host->mmc), np, 1, NULL);
524 	if (IS_ERR(base_dlyb))
525 		return;
526 
527 	dlyb = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dlyb), GFP_KERNEL);
528 	if (!dlyb)
529 		return;
530 
531 	dlyb->base = base_dlyb;
532 	host->variant_priv = dlyb;
533 	host->mmc_ops->execute_tuning = sdmmc_execute_tuning;
534 }
535