xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision f35e839a)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 #include <asm/sizes.h>
42 
43 #include "mmci.h"
44 
45 #define DRIVER_NAME "mmci-pl18x"
46 
47 static unsigned int fmax = 515633;
48 
49 /**
50  * struct variant_data - MMCI variant-specific quirks
51  * @clkreg: default value for MCICLOCK register
52  * @clkreg_enable: enable value for MMCICLOCK register
53  * @datalength_bits: number of bits in the MMCIDATALENGTH register
54  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55  *	      is asserted (likewise for RX)
56  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57  *		  is asserted (likewise for RX)
58  * @sdio: variant supports SDIO
59  * @st_clkdiv: true if using a ST-specific clock divider algorithm
60  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61  * @pwrreg_powerup: power up value for MMCIPOWER register
62  * @signal_direction: input/out direction of bus signals can be indicated
63  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64  */
65 struct variant_data {
66 	unsigned int		clkreg;
67 	unsigned int		clkreg_enable;
68 	unsigned int		datalength_bits;
69 	unsigned int		fifosize;
70 	unsigned int		fifohalfsize;
71 	bool			sdio;
72 	bool			st_clkdiv;
73 	bool			blksz_datactrl16;
74 	u32			pwrreg_powerup;
75 	bool			signal_direction;
76 	bool			pwrreg_clkgate;
77 };
78 
79 static struct variant_data variant_arm = {
80 	.fifosize		= 16 * 4,
81 	.fifohalfsize		= 8 * 4,
82 	.datalength_bits	= 16,
83 	.pwrreg_powerup		= MCI_PWR_UP,
84 };
85 
86 static struct variant_data variant_arm_extended_fifo = {
87 	.fifosize		= 128 * 4,
88 	.fifohalfsize		= 64 * 4,
89 	.datalength_bits	= 16,
90 	.pwrreg_powerup		= MCI_PWR_UP,
91 };
92 
93 static struct variant_data variant_arm_extended_fifo_hwfc = {
94 	.fifosize		= 128 * 4,
95 	.fifohalfsize		= 64 * 4,
96 	.clkreg_enable		= MCI_ARM_HWFCEN,
97 	.datalength_bits	= 16,
98 	.pwrreg_powerup		= MCI_PWR_UP,
99 };
100 
101 static struct variant_data variant_u300 = {
102 	.fifosize		= 16 * 4,
103 	.fifohalfsize		= 8 * 4,
104 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
105 	.datalength_bits	= 16,
106 	.sdio			= true,
107 	.pwrreg_powerup		= MCI_PWR_ON,
108 	.signal_direction	= true,
109 	.pwrreg_clkgate		= true,
110 };
111 
112 static struct variant_data variant_nomadik = {
113 	.fifosize		= 16 * 4,
114 	.fifohalfsize		= 8 * 4,
115 	.clkreg			= MCI_CLK_ENABLE,
116 	.datalength_bits	= 24,
117 	.sdio			= true,
118 	.st_clkdiv		= true,
119 	.pwrreg_powerup		= MCI_PWR_ON,
120 	.signal_direction	= true,
121 	.pwrreg_clkgate		= true,
122 };
123 
124 static struct variant_data variant_ux500 = {
125 	.fifosize		= 30 * 4,
126 	.fifohalfsize		= 8 * 4,
127 	.clkreg			= MCI_CLK_ENABLE,
128 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
129 	.datalength_bits	= 24,
130 	.sdio			= true,
131 	.st_clkdiv		= true,
132 	.pwrreg_powerup		= MCI_PWR_ON,
133 	.signal_direction	= true,
134 	.pwrreg_clkgate		= true,
135 };
136 
137 static struct variant_data variant_ux500v2 = {
138 	.fifosize		= 30 * 4,
139 	.fifohalfsize		= 8 * 4,
140 	.clkreg			= MCI_CLK_ENABLE,
141 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
142 	.datalength_bits	= 24,
143 	.sdio			= true,
144 	.st_clkdiv		= true,
145 	.blksz_datactrl16	= true,
146 	.pwrreg_powerup		= MCI_PWR_ON,
147 	.signal_direction	= true,
148 	.pwrreg_clkgate		= true,
149 };
150 
151 /*
152  * Validate mmc prerequisites
153  */
154 static int mmci_validate_data(struct mmci_host *host,
155 			      struct mmc_data *data)
156 {
157 	if (!data)
158 		return 0;
159 
160 	if (!is_power_of_2(data->blksz)) {
161 		dev_err(mmc_dev(host->mmc),
162 			"unsupported block size (%d bytes)\n", data->blksz);
163 		return -EINVAL;
164 	}
165 
166 	return 0;
167 }
168 
169 /*
170  * This must be called with host->lock held
171  */
172 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
173 {
174 	if (host->clk_reg != clk) {
175 		host->clk_reg = clk;
176 		writel(clk, host->base + MMCICLOCK);
177 	}
178 }
179 
180 /*
181  * This must be called with host->lock held
182  */
183 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
184 {
185 	if (host->pwr_reg != pwr) {
186 		host->pwr_reg = pwr;
187 		writel(pwr, host->base + MMCIPOWER);
188 	}
189 }
190 
191 /*
192  * This must be called with host->lock held
193  */
194 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
195 {
196 	struct variant_data *variant = host->variant;
197 	u32 clk = variant->clkreg;
198 
199 	if (desired) {
200 		if (desired >= host->mclk) {
201 			clk = MCI_CLK_BYPASS;
202 			if (variant->st_clkdiv)
203 				clk |= MCI_ST_UX500_NEG_EDGE;
204 			host->cclk = host->mclk;
205 		} else if (variant->st_clkdiv) {
206 			/*
207 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
208 			 * => clkdiv = (mclk / f) - 2
209 			 * Round the divider up so we don't exceed the max
210 			 * frequency
211 			 */
212 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
213 			if (clk >= 256)
214 				clk = 255;
215 			host->cclk = host->mclk / (clk + 2);
216 		} else {
217 			/*
218 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
219 			 * => clkdiv = mclk / (2 * f) - 1
220 			 */
221 			clk = host->mclk / (2 * desired) - 1;
222 			if (clk >= 256)
223 				clk = 255;
224 			host->cclk = host->mclk / (2 * (clk + 1));
225 		}
226 
227 		clk |= variant->clkreg_enable;
228 		clk |= MCI_CLK_ENABLE;
229 		/* This hasn't proven to be worthwhile */
230 		/* clk |= MCI_CLK_PWRSAVE; */
231 	}
232 
233 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
234 		clk |= MCI_4BIT_BUS;
235 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
236 		clk |= MCI_ST_8BIT_BUS;
237 
238 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
239 		clk |= MCI_ST_UX500_NEG_EDGE;
240 
241 	mmci_write_clkreg(host, clk);
242 }
243 
244 static void
245 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
246 {
247 	writel(0, host->base + MMCICOMMAND);
248 
249 	BUG_ON(host->data);
250 
251 	host->mrq = NULL;
252 	host->cmd = NULL;
253 
254 	mmc_request_done(host->mmc, mrq);
255 
256 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
257 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
258 }
259 
260 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
261 {
262 	void __iomem *base = host->base;
263 
264 	if (host->singleirq) {
265 		unsigned int mask0 = readl(base + MMCIMASK0);
266 
267 		mask0 &= ~MCI_IRQ1MASK;
268 		mask0 |= mask;
269 
270 		writel(mask0, base + MMCIMASK0);
271 	}
272 
273 	writel(mask, base + MMCIMASK1);
274 }
275 
276 static void mmci_stop_data(struct mmci_host *host)
277 {
278 	writel(0, host->base + MMCIDATACTRL);
279 	mmci_set_mask1(host, 0);
280 	host->data = NULL;
281 }
282 
283 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
284 {
285 	unsigned int flags = SG_MITER_ATOMIC;
286 
287 	if (data->flags & MMC_DATA_READ)
288 		flags |= SG_MITER_TO_SG;
289 	else
290 		flags |= SG_MITER_FROM_SG;
291 
292 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
293 }
294 
295 /*
296  * All the DMA operation mode stuff goes inside this ifdef.
297  * This assumes that you have a generic DMA device interface,
298  * no custom DMA interfaces are supported.
299  */
300 #ifdef CONFIG_DMA_ENGINE
301 static void mmci_dma_setup(struct mmci_host *host)
302 {
303 	struct mmci_platform_data *plat = host->plat;
304 	const char *rxname, *txname;
305 	dma_cap_mask_t mask;
306 
307 	if (!plat || !plat->dma_filter) {
308 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
309 		return;
310 	}
311 
312 	/* initialize pre request cookie */
313 	host->next_data.cookie = 1;
314 
315 	/* Try to acquire a generic DMA engine slave channel */
316 	dma_cap_zero(mask);
317 	dma_cap_set(DMA_SLAVE, mask);
318 
319 	/*
320 	 * If only an RX channel is specified, the driver will
321 	 * attempt to use it bidirectionally, however if it is
322 	 * is specified but cannot be located, DMA will be disabled.
323 	 */
324 	if (plat->dma_rx_param) {
325 		host->dma_rx_channel = dma_request_channel(mask,
326 							   plat->dma_filter,
327 							   plat->dma_rx_param);
328 		/* E.g if no DMA hardware is present */
329 		if (!host->dma_rx_channel)
330 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
331 	}
332 
333 	if (plat->dma_tx_param) {
334 		host->dma_tx_channel = dma_request_channel(mask,
335 							   plat->dma_filter,
336 							   plat->dma_tx_param);
337 		if (!host->dma_tx_channel)
338 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
339 	} else {
340 		host->dma_tx_channel = host->dma_rx_channel;
341 	}
342 
343 	if (host->dma_rx_channel)
344 		rxname = dma_chan_name(host->dma_rx_channel);
345 	else
346 		rxname = "none";
347 
348 	if (host->dma_tx_channel)
349 		txname = dma_chan_name(host->dma_tx_channel);
350 	else
351 		txname = "none";
352 
353 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
354 		 rxname, txname);
355 
356 	/*
357 	 * Limit the maximum segment size in any SG entry according to
358 	 * the parameters of the DMA engine device.
359 	 */
360 	if (host->dma_tx_channel) {
361 		struct device *dev = host->dma_tx_channel->device->dev;
362 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
363 
364 		if (max_seg_size < host->mmc->max_seg_size)
365 			host->mmc->max_seg_size = max_seg_size;
366 	}
367 	if (host->dma_rx_channel) {
368 		struct device *dev = host->dma_rx_channel->device->dev;
369 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
370 
371 		if (max_seg_size < host->mmc->max_seg_size)
372 			host->mmc->max_seg_size = max_seg_size;
373 	}
374 }
375 
376 /*
377  * This is used in or so inline it
378  * so it can be discarded.
379  */
380 static inline void mmci_dma_release(struct mmci_host *host)
381 {
382 	struct mmci_platform_data *plat = host->plat;
383 
384 	if (host->dma_rx_channel)
385 		dma_release_channel(host->dma_rx_channel);
386 	if (host->dma_tx_channel && plat->dma_tx_param)
387 		dma_release_channel(host->dma_tx_channel);
388 	host->dma_rx_channel = host->dma_tx_channel = NULL;
389 }
390 
391 static void mmci_dma_data_error(struct mmci_host *host)
392 {
393 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
394 	dmaengine_terminate_all(host->dma_current);
395 	host->dma_current = NULL;
396 	host->dma_desc_current = NULL;
397 	host->data->host_cookie = 0;
398 }
399 
400 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
401 {
402 	struct dma_chan *chan;
403 	enum dma_data_direction dir;
404 
405 	if (data->flags & MMC_DATA_READ) {
406 		dir = DMA_FROM_DEVICE;
407 		chan = host->dma_rx_channel;
408 	} else {
409 		dir = DMA_TO_DEVICE;
410 		chan = host->dma_tx_channel;
411 	}
412 
413 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
414 }
415 
416 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
417 {
418 	u32 status;
419 	int i;
420 
421 	/* Wait up to 1ms for the DMA to complete */
422 	for (i = 0; ; i++) {
423 		status = readl(host->base + MMCISTATUS);
424 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
425 			break;
426 		udelay(10);
427 	}
428 
429 	/*
430 	 * Check to see whether we still have some data left in the FIFO -
431 	 * this catches DMA controllers which are unable to monitor the
432 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
433 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
434 	 */
435 	if (status & MCI_RXDATAAVLBLMASK) {
436 		mmci_dma_data_error(host);
437 		if (!data->error)
438 			data->error = -EIO;
439 	}
440 
441 	if (!data->host_cookie)
442 		mmci_dma_unmap(host, data);
443 
444 	/*
445 	 * Use of DMA with scatter-gather is impossible.
446 	 * Give up with DMA and switch back to PIO mode.
447 	 */
448 	if (status & MCI_RXDATAAVLBLMASK) {
449 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
450 		mmci_dma_release(host);
451 	}
452 
453 	host->dma_current = NULL;
454 	host->dma_desc_current = NULL;
455 }
456 
457 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
458 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
459 				struct dma_chan **dma_chan,
460 				struct dma_async_tx_descriptor **dma_desc)
461 {
462 	struct variant_data *variant = host->variant;
463 	struct dma_slave_config conf = {
464 		.src_addr = host->phybase + MMCIFIFO,
465 		.dst_addr = host->phybase + MMCIFIFO,
466 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
467 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
468 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
469 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
470 		.device_fc = false,
471 	};
472 	struct dma_chan *chan;
473 	struct dma_device *device;
474 	struct dma_async_tx_descriptor *desc;
475 	enum dma_data_direction buffer_dirn;
476 	int nr_sg;
477 
478 	if (data->flags & MMC_DATA_READ) {
479 		conf.direction = DMA_DEV_TO_MEM;
480 		buffer_dirn = DMA_FROM_DEVICE;
481 		chan = host->dma_rx_channel;
482 	} else {
483 		conf.direction = DMA_MEM_TO_DEV;
484 		buffer_dirn = DMA_TO_DEVICE;
485 		chan = host->dma_tx_channel;
486 	}
487 
488 	/* If there's no DMA channel, fall back to PIO */
489 	if (!chan)
490 		return -EINVAL;
491 
492 	/* If less than or equal to the fifo size, don't bother with DMA */
493 	if (data->blksz * data->blocks <= variant->fifosize)
494 		return -EINVAL;
495 
496 	device = chan->device;
497 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
498 	if (nr_sg == 0)
499 		return -EINVAL;
500 
501 	dmaengine_slave_config(chan, &conf);
502 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
503 					    conf.direction, DMA_CTRL_ACK);
504 	if (!desc)
505 		goto unmap_exit;
506 
507 	*dma_chan = chan;
508 	*dma_desc = desc;
509 
510 	return 0;
511 
512  unmap_exit:
513 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
514 	return -ENOMEM;
515 }
516 
517 static inline int mmci_dma_prep_data(struct mmci_host *host,
518 				     struct mmc_data *data)
519 {
520 	/* Check if next job is already prepared. */
521 	if (host->dma_current && host->dma_desc_current)
522 		return 0;
523 
524 	/* No job were prepared thus do it now. */
525 	return __mmci_dma_prep_data(host, data, &host->dma_current,
526 				    &host->dma_desc_current);
527 }
528 
529 static inline int mmci_dma_prep_next(struct mmci_host *host,
530 				     struct mmc_data *data)
531 {
532 	struct mmci_host_next *nd = &host->next_data;
533 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
534 }
535 
536 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
537 {
538 	int ret;
539 	struct mmc_data *data = host->data;
540 
541 	ret = mmci_dma_prep_data(host, host->data);
542 	if (ret)
543 		return ret;
544 
545 	/* Okay, go for it. */
546 	dev_vdbg(mmc_dev(host->mmc),
547 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
548 		 data->sg_len, data->blksz, data->blocks, data->flags);
549 	dmaengine_submit(host->dma_desc_current);
550 	dma_async_issue_pending(host->dma_current);
551 
552 	datactrl |= MCI_DPSM_DMAENABLE;
553 
554 	/* Trigger the DMA transfer */
555 	writel(datactrl, host->base + MMCIDATACTRL);
556 
557 	/*
558 	 * Let the MMCI say when the data is ended and it's time
559 	 * to fire next DMA request. When that happens, MMCI will
560 	 * call mmci_data_end()
561 	 */
562 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
563 	       host->base + MMCIMASK0);
564 	return 0;
565 }
566 
567 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
568 {
569 	struct mmci_host_next *next = &host->next_data;
570 
571 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
572 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
573 
574 	host->dma_desc_current = next->dma_desc;
575 	host->dma_current = next->dma_chan;
576 	next->dma_desc = NULL;
577 	next->dma_chan = NULL;
578 }
579 
580 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
581 			     bool is_first_req)
582 {
583 	struct mmci_host *host = mmc_priv(mmc);
584 	struct mmc_data *data = mrq->data;
585 	struct mmci_host_next *nd = &host->next_data;
586 
587 	if (!data)
588 		return;
589 
590 	BUG_ON(data->host_cookie);
591 
592 	if (mmci_validate_data(host, data))
593 		return;
594 
595 	if (!mmci_dma_prep_next(host, data))
596 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
597 }
598 
599 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
600 			      int err)
601 {
602 	struct mmci_host *host = mmc_priv(mmc);
603 	struct mmc_data *data = mrq->data;
604 
605 	if (!data || !data->host_cookie)
606 		return;
607 
608 	mmci_dma_unmap(host, data);
609 
610 	if (err) {
611 		struct mmci_host_next *next = &host->next_data;
612 		struct dma_chan *chan;
613 		if (data->flags & MMC_DATA_READ)
614 			chan = host->dma_rx_channel;
615 		else
616 			chan = host->dma_tx_channel;
617 		dmaengine_terminate_all(chan);
618 
619 		next->dma_desc = NULL;
620 		next->dma_chan = NULL;
621 	}
622 }
623 
624 #else
625 /* Blank functions if the DMA engine is not available */
626 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
627 {
628 }
629 static inline void mmci_dma_setup(struct mmci_host *host)
630 {
631 }
632 
633 static inline void mmci_dma_release(struct mmci_host *host)
634 {
635 }
636 
637 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
638 {
639 }
640 
641 static inline void mmci_dma_finalize(struct mmci_host *host,
642 				     struct mmc_data *data)
643 {
644 }
645 
646 static inline void mmci_dma_data_error(struct mmci_host *host)
647 {
648 }
649 
650 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
651 {
652 	return -ENOSYS;
653 }
654 
655 #define mmci_pre_request NULL
656 #define mmci_post_request NULL
657 
658 #endif
659 
660 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
661 {
662 	struct variant_data *variant = host->variant;
663 	unsigned int datactrl, timeout, irqmask;
664 	unsigned long long clks;
665 	void __iomem *base;
666 	int blksz_bits;
667 
668 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
669 		data->blksz, data->blocks, data->flags);
670 
671 	host->data = data;
672 	host->size = data->blksz * data->blocks;
673 	data->bytes_xfered = 0;
674 
675 	clks = (unsigned long long)data->timeout_ns * host->cclk;
676 	do_div(clks, 1000000000UL);
677 
678 	timeout = data->timeout_clks + (unsigned int)clks;
679 
680 	base = host->base;
681 	writel(timeout, base + MMCIDATATIMER);
682 	writel(host->size, base + MMCIDATALENGTH);
683 
684 	blksz_bits = ffs(data->blksz) - 1;
685 	BUG_ON(1 << blksz_bits != data->blksz);
686 
687 	if (variant->blksz_datactrl16)
688 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
689 	else
690 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
691 
692 	if (data->flags & MMC_DATA_READ)
693 		datactrl |= MCI_DPSM_DIRECTION;
694 
695 	/* The ST Micro variants has a special bit to enable SDIO */
696 	if (variant->sdio && host->mmc->card)
697 		if (mmc_card_sdio(host->mmc->card)) {
698 			/*
699 			 * The ST Micro variants has a special bit
700 			 * to enable SDIO.
701 			 */
702 			u32 clk;
703 
704 			datactrl |= MCI_ST_DPSM_SDIOEN;
705 
706 			/*
707 			 * The ST Micro variant for SDIO small write transfers
708 			 * needs to have clock H/W flow control disabled,
709 			 * otherwise the transfer will not start. The threshold
710 			 * depends on the rate of MCLK.
711 			 */
712 			if (data->flags & MMC_DATA_WRITE &&
713 			    (host->size < 8 ||
714 			     (host->size <= 8 && host->mclk > 50000000)))
715 				clk = host->clk_reg & ~variant->clkreg_enable;
716 			else
717 				clk = host->clk_reg | variant->clkreg_enable;
718 
719 			mmci_write_clkreg(host, clk);
720 		}
721 
722 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
723 		datactrl |= MCI_ST_DPSM_DDRMODE;
724 
725 	/*
726 	 * Attempt to use DMA operation mode, if this
727 	 * should fail, fall back to PIO mode
728 	 */
729 	if (!mmci_dma_start_data(host, datactrl))
730 		return;
731 
732 	/* IRQ mode, map the SG list for CPU reading/writing */
733 	mmci_init_sg(host, data);
734 
735 	if (data->flags & MMC_DATA_READ) {
736 		irqmask = MCI_RXFIFOHALFFULLMASK;
737 
738 		/*
739 		 * If we have less than the fifo 'half-full' threshold to
740 		 * transfer, trigger a PIO interrupt as soon as any data
741 		 * is available.
742 		 */
743 		if (host->size < variant->fifohalfsize)
744 			irqmask |= MCI_RXDATAAVLBLMASK;
745 	} else {
746 		/*
747 		 * We don't actually need to include "FIFO empty" here
748 		 * since its implicit in "FIFO half empty".
749 		 */
750 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
751 	}
752 
753 	writel(datactrl, base + MMCIDATACTRL);
754 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
755 	mmci_set_mask1(host, irqmask);
756 }
757 
758 static void
759 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
760 {
761 	void __iomem *base = host->base;
762 
763 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
764 	    cmd->opcode, cmd->arg, cmd->flags);
765 
766 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
767 		writel(0, base + MMCICOMMAND);
768 		udelay(1);
769 	}
770 
771 	c |= cmd->opcode | MCI_CPSM_ENABLE;
772 	if (cmd->flags & MMC_RSP_PRESENT) {
773 		if (cmd->flags & MMC_RSP_136)
774 			c |= MCI_CPSM_LONGRSP;
775 		c |= MCI_CPSM_RESPONSE;
776 	}
777 	if (/*interrupt*/0)
778 		c |= MCI_CPSM_INTERRUPT;
779 
780 	host->cmd = cmd;
781 
782 	writel(cmd->arg, base + MMCIARGUMENT);
783 	writel(c, base + MMCICOMMAND);
784 }
785 
786 static void
787 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
788 	      unsigned int status)
789 {
790 	/* First check for errors */
791 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
792 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
793 		u32 remain, success;
794 
795 		/* Terminate the DMA transfer */
796 		if (dma_inprogress(host)) {
797 			mmci_dma_data_error(host);
798 			mmci_dma_unmap(host, data);
799 		}
800 
801 		/*
802 		 * Calculate how far we are into the transfer.  Note that
803 		 * the data counter gives the number of bytes transferred
804 		 * on the MMC bus, not on the host side.  On reads, this
805 		 * can be as much as a FIFO-worth of data ahead.  This
806 		 * matters for FIFO overruns only.
807 		 */
808 		remain = readl(host->base + MMCIDATACNT);
809 		success = data->blksz * data->blocks - remain;
810 
811 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
812 			status, success);
813 		if (status & MCI_DATACRCFAIL) {
814 			/* Last block was not successful */
815 			success -= 1;
816 			data->error = -EILSEQ;
817 		} else if (status & MCI_DATATIMEOUT) {
818 			data->error = -ETIMEDOUT;
819 		} else if (status & MCI_STARTBITERR) {
820 			data->error = -ECOMM;
821 		} else if (status & MCI_TXUNDERRUN) {
822 			data->error = -EIO;
823 		} else if (status & MCI_RXOVERRUN) {
824 			if (success > host->variant->fifosize)
825 				success -= host->variant->fifosize;
826 			else
827 				success = 0;
828 			data->error = -EIO;
829 		}
830 		data->bytes_xfered = round_down(success, data->blksz);
831 	}
832 
833 	if (status & MCI_DATABLOCKEND)
834 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
835 
836 	if (status & MCI_DATAEND || data->error) {
837 		if (dma_inprogress(host))
838 			mmci_dma_finalize(host, data);
839 		mmci_stop_data(host);
840 
841 		if (!data->error)
842 			/* The error clause is handled above, success! */
843 			data->bytes_xfered = data->blksz * data->blocks;
844 
845 		if (!data->stop) {
846 			mmci_request_end(host, data->mrq);
847 		} else {
848 			mmci_start_command(host, data->stop, 0);
849 		}
850 	}
851 }
852 
853 static void
854 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
855 	     unsigned int status)
856 {
857 	void __iomem *base = host->base;
858 
859 	host->cmd = NULL;
860 
861 	if (status & MCI_CMDTIMEOUT) {
862 		cmd->error = -ETIMEDOUT;
863 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
864 		cmd->error = -EILSEQ;
865 	} else {
866 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
867 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
868 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
869 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
870 	}
871 
872 	if (!cmd->data || cmd->error) {
873 		if (host->data) {
874 			/* Terminate the DMA transfer */
875 			if (dma_inprogress(host)) {
876 				mmci_dma_data_error(host);
877 				mmci_dma_unmap(host, host->data);
878 			}
879 			mmci_stop_data(host);
880 		}
881 		mmci_request_end(host, cmd->mrq);
882 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
883 		mmci_start_data(host, cmd->data);
884 	}
885 }
886 
887 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
888 {
889 	void __iomem *base = host->base;
890 	char *ptr = buffer;
891 	u32 status;
892 	int host_remain = host->size;
893 
894 	do {
895 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
896 
897 		if (count > remain)
898 			count = remain;
899 
900 		if (count <= 0)
901 			break;
902 
903 		/*
904 		 * SDIO especially may want to send something that is
905 		 * not divisible by 4 (as opposed to card sectors
906 		 * etc). Therefore make sure to always read the last bytes
907 		 * while only doing full 32-bit reads towards the FIFO.
908 		 */
909 		if (unlikely(count & 0x3)) {
910 			if (count < 4) {
911 				unsigned char buf[4];
912 				ioread32_rep(base + MMCIFIFO, buf, 1);
913 				memcpy(ptr, buf, count);
914 			} else {
915 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
916 				count &= ~0x3;
917 			}
918 		} else {
919 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
920 		}
921 
922 		ptr += count;
923 		remain -= count;
924 		host_remain -= count;
925 
926 		if (remain == 0)
927 			break;
928 
929 		status = readl(base + MMCISTATUS);
930 	} while (status & MCI_RXDATAAVLBL);
931 
932 	return ptr - buffer;
933 }
934 
935 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
936 {
937 	struct variant_data *variant = host->variant;
938 	void __iomem *base = host->base;
939 	char *ptr = buffer;
940 
941 	do {
942 		unsigned int count, maxcnt;
943 
944 		maxcnt = status & MCI_TXFIFOEMPTY ?
945 			 variant->fifosize : variant->fifohalfsize;
946 		count = min(remain, maxcnt);
947 
948 		/*
949 		 * SDIO especially may want to send something that is
950 		 * not divisible by 4 (as opposed to card sectors
951 		 * etc), and the FIFO only accept full 32-bit writes.
952 		 * So compensate by adding +3 on the count, a single
953 		 * byte become a 32bit write, 7 bytes will be two
954 		 * 32bit writes etc.
955 		 */
956 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
957 
958 		ptr += count;
959 		remain -= count;
960 
961 		if (remain == 0)
962 			break;
963 
964 		status = readl(base + MMCISTATUS);
965 	} while (status & MCI_TXFIFOHALFEMPTY);
966 
967 	return ptr - buffer;
968 }
969 
970 /*
971  * PIO data transfer IRQ handler.
972  */
973 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
974 {
975 	struct mmci_host *host = dev_id;
976 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
977 	struct variant_data *variant = host->variant;
978 	void __iomem *base = host->base;
979 	unsigned long flags;
980 	u32 status;
981 
982 	status = readl(base + MMCISTATUS);
983 
984 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
985 
986 	local_irq_save(flags);
987 
988 	do {
989 		unsigned int remain, len;
990 		char *buffer;
991 
992 		/*
993 		 * For write, we only need to test the half-empty flag
994 		 * here - if the FIFO is completely empty, then by
995 		 * definition it is more than half empty.
996 		 *
997 		 * For read, check for data available.
998 		 */
999 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1000 			break;
1001 
1002 		if (!sg_miter_next(sg_miter))
1003 			break;
1004 
1005 		buffer = sg_miter->addr;
1006 		remain = sg_miter->length;
1007 
1008 		len = 0;
1009 		if (status & MCI_RXACTIVE)
1010 			len = mmci_pio_read(host, buffer, remain);
1011 		if (status & MCI_TXACTIVE)
1012 			len = mmci_pio_write(host, buffer, remain, status);
1013 
1014 		sg_miter->consumed = len;
1015 
1016 		host->size -= len;
1017 		remain -= len;
1018 
1019 		if (remain)
1020 			break;
1021 
1022 		status = readl(base + MMCISTATUS);
1023 	} while (1);
1024 
1025 	sg_miter_stop(sg_miter);
1026 
1027 	local_irq_restore(flags);
1028 
1029 	/*
1030 	 * If we have less than the fifo 'half-full' threshold to transfer,
1031 	 * trigger a PIO interrupt as soon as any data is available.
1032 	 */
1033 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1034 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1035 
1036 	/*
1037 	 * If we run out of data, disable the data IRQs; this
1038 	 * prevents a race where the FIFO becomes empty before
1039 	 * the chip itself has disabled the data path, and
1040 	 * stops us racing with our data end IRQ.
1041 	 */
1042 	if (host->size == 0) {
1043 		mmci_set_mask1(host, 0);
1044 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1045 	}
1046 
1047 	return IRQ_HANDLED;
1048 }
1049 
1050 /*
1051  * Handle completion of command and data transfers.
1052  */
1053 static irqreturn_t mmci_irq(int irq, void *dev_id)
1054 {
1055 	struct mmci_host *host = dev_id;
1056 	u32 status;
1057 	int ret = 0;
1058 
1059 	spin_lock(&host->lock);
1060 
1061 	do {
1062 		struct mmc_command *cmd;
1063 		struct mmc_data *data;
1064 
1065 		status = readl(host->base + MMCISTATUS);
1066 
1067 		if (host->singleirq) {
1068 			if (status & readl(host->base + MMCIMASK1))
1069 				mmci_pio_irq(irq, dev_id);
1070 
1071 			status &= ~MCI_IRQ1MASK;
1072 		}
1073 
1074 		status &= readl(host->base + MMCIMASK0);
1075 		writel(status, host->base + MMCICLEAR);
1076 
1077 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1078 
1079 		data = host->data;
1080 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1081 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1082 			      MCI_DATABLOCKEND) && data)
1083 			mmci_data_irq(host, data, status);
1084 
1085 		cmd = host->cmd;
1086 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1087 			mmci_cmd_irq(host, cmd, status);
1088 
1089 		ret = 1;
1090 	} while (status);
1091 
1092 	spin_unlock(&host->lock);
1093 
1094 	return IRQ_RETVAL(ret);
1095 }
1096 
1097 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1098 {
1099 	struct mmci_host *host = mmc_priv(mmc);
1100 	unsigned long flags;
1101 
1102 	WARN_ON(host->mrq != NULL);
1103 
1104 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1105 	if (mrq->cmd->error) {
1106 		mmc_request_done(mmc, mrq);
1107 		return;
1108 	}
1109 
1110 	pm_runtime_get_sync(mmc_dev(mmc));
1111 
1112 	spin_lock_irqsave(&host->lock, flags);
1113 
1114 	host->mrq = mrq;
1115 
1116 	if (mrq->data)
1117 		mmci_get_next_data(host, mrq->data);
1118 
1119 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1120 		mmci_start_data(host, mrq->data);
1121 
1122 	mmci_start_command(host, mrq->cmd, 0);
1123 
1124 	spin_unlock_irqrestore(&host->lock, flags);
1125 }
1126 
1127 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1128 {
1129 	struct mmci_host *host = mmc_priv(mmc);
1130 	struct variant_data *variant = host->variant;
1131 	u32 pwr = 0;
1132 	unsigned long flags;
1133 
1134 	pm_runtime_get_sync(mmc_dev(mmc));
1135 
1136 	if (host->plat->ios_handler &&
1137 		host->plat->ios_handler(mmc_dev(mmc), ios))
1138 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1139 
1140 	switch (ios->power_mode) {
1141 	case MMC_POWER_OFF:
1142 		if (!IS_ERR(mmc->supply.vmmc))
1143 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1144 
1145 		if (!IS_ERR(mmc->supply.vqmmc) &&
1146 		    regulator_is_enabled(mmc->supply.vqmmc))
1147 			regulator_disable(mmc->supply.vqmmc);
1148 
1149 		break;
1150 	case MMC_POWER_UP:
1151 		if (!IS_ERR(mmc->supply.vmmc))
1152 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1153 
1154 		/*
1155 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1156 		 * and instead uses MCI_PWR_ON so apply whatever value is
1157 		 * configured in the variant data.
1158 		 */
1159 		pwr |= variant->pwrreg_powerup;
1160 
1161 		break;
1162 	case MMC_POWER_ON:
1163 		if (!IS_ERR(mmc->supply.vqmmc) &&
1164 		    !regulator_is_enabled(mmc->supply.vqmmc))
1165 			regulator_enable(mmc->supply.vqmmc);
1166 
1167 		pwr |= MCI_PWR_ON;
1168 		break;
1169 	}
1170 
1171 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1172 		/*
1173 		 * The ST Micro variant has some additional bits
1174 		 * indicating signal direction for the signals in
1175 		 * the SD/MMC bus and feedback-clock usage.
1176 		 */
1177 		pwr |= host->plat->sigdir;
1178 
1179 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1180 			pwr &= ~MCI_ST_DATA74DIREN;
1181 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1182 			pwr &= (~MCI_ST_DATA74DIREN &
1183 				~MCI_ST_DATA31DIREN &
1184 				~MCI_ST_DATA2DIREN);
1185 	}
1186 
1187 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1188 		if (host->hw_designer != AMBA_VENDOR_ST)
1189 			pwr |= MCI_ROD;
1190 		else {
1191 			/*
1192 			 * The ST Micro variant use the ROD bit for something
1193 			 * else and only has OD (Open Drain).
1194 			 */
1195 			pwr |= MCI_OD;
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1201 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1202 	 */
1203 	if (!ios->clock && variant->pwrreg_clkgate)
1204 		pwr &= ~MCI_PWR_ON;
1205 
1206 	spin_lock_irqsave(&host->lock, flags);
1207 
1208 	mmci_set_clkreg(host, ios->clock);
1209 	mmci_write_pwrreg(host, pwr);
1210 
1211 	spin_unlock_irqrestore(&host->lock, flags);
1212 
1213 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1214 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1215 }
1216 
1217 static int mmci_get_ro(struct mmc_host *mmc)
1218 {
1219 	struct mmci_host *host = mmc_priv(mmc);
1220 
1221 	if (host->gpio_wp == -ENOSYS)
1222 		return -ENOSYS;
1223 
1224 	return gpio_get_value_cansleep(host->gpio_wp);
1225 }
1226 
1227 static int mmci_get_cd(struct mmc_host *mmc)
1228 {
1229 	struct mmci_host *host = mmc_priv(mmc);
1230 	struct mmci_platform_data *plat = host->plat;
1231 	unsigned int status;
1232 
1233 	if (host->gpio_cd == -ENOSYS) {
1234 		if (!plat->status)
1235 			return 1; /* Assume always present */
1236 
1237 		status = plat->status(mmc_dev(host->mmc));
1238 	} else
1239 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1240 			^ plat->cd_invert;
1241 
1242 	/*
1243 	 * Use positive logic throughout - status is zero for no card,
1244 	 * non-zero for card inserted.
1245 	 */
1246 	return status;
1247 }
1248 
1249 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1250 {
1251 	struct mmci_host *host = dev_id;
1252 
1253 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1254 
1255 	return IRQ_HANDLED;
1256 }
1257 
1258 static const struct mmc_host_ops mmci_ops = {
1259 	.request	= mmci_request,
1260 	.pre_req	= mmci_pre_request,
1261 	.post_req	= mmci_post_request,
1262 	.set_ios	= mmci_set_ios,
1263 	.get_ro		= mmci_get_ro,
1264 	.get_cd		= mmci_get_cd,
1265 };
1266 
1267 #ifdef CONFIG_OF
1268 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1269 					struct mmci_platform_data *pdata)
1270 {
1271 	int bus_width = 0;
1272 
1273 	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1274 	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1275 
1276 	if (of_get_property(np, "cd-inverted", NULL))
1277 		pdata->cd_invert = true;
1278 	else
1279 		pdata->cd_invert = false;
1280 
1281 	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1282 	if (!pdata->f_max)
1283 		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1284 
1285 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1286 		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1287 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1288 		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1289 
1290 	of_property_read_u32(np, "bus-width", &bus_width);
1291 	switch (bus_width) {
1292 	case 0 :
1293 		/* No bus-width supplied. */
1294 		break;
1295 	case 4 :
1296 		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1297 		break;
1298 	case 8 :
1299 		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1300 		break;
1301 	default :
1302 		pr_warn("%s: Unsupported bus width\n", np->full_name);
1303 	}
1304 }
1305 #else
1306 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1307 					struct mmci_platform_data *pdata)
1308 {
1309 	return;
1310 }
1311 #endif
1312 
1313 static int mmci_probe(struct amba_device *dev,
1314 	const struct amba_id *id)
1315 {
1316 	struct mmci_platform_data *plat = dev->dev.platform_data;
1317 	struct device_node *np = dev->dev.of_node;
1318 	struct variant_data *variant = id->data;
1319 	struct mmci_host *host;
1320 	struct mmc_host *mmc;
1321 	int ret;
1322 
1323 	/* Must have platform data or Device Tree. */
1324 	if (!plat && !np) {
1325 		dev_err(&dev->dev, "No plat data or DT found\n");
1326 		return -EINVAL;
1327 	}
1328 
1329 	if (!plat) {
1330 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1331 		if (!plat)
1332 			return -ENOMEM;
1333 	}
1334 
1335 	if (np)
1336 		mmci_dt_populate_generic_pdata(np, plat);
1337 
1338 	ret = amba_request_regions(dev, DRIVER_NAME);
1339 	if (ret)
1340 		goto out;
1341 
1342 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1343 	if (!mmc) {
1344 		ret = -ENOMEM;
1345 		goto rel_regions;
1346 	}
1347 
1348 	host = mmc_priv(mmc);
1349 	host->mmc = mmc;
1350 
1351 	host->gpio_wp = -ENOSYS;
1352 	host->gpio_cd = -ENOSYS;
1353 	host->gpio_cd_irq = -1;
1354 
1355 	host->hw_designer = amba_manf(dev);
1356 	host->hw_revision = amba_rev(dev);
1357 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1358 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1359 
1360 	host->clk = clk_get(&dev->dev, NULL);
1361 	if (IS_ERR(host->clk)) {
1362 		ret = PTR_ERR(host->clk);
1363 		host->clk = NULL;
1364 		goto host_free;
1365 	}
1366 
1367 	ret = clk_prepare_enable(host->clk);
1368 	if (ret)
1369 		goto clk_free;
1370 
1371 	host->plat = plat;
1372 	host->variant = variant;
1373 	host->mclk = clk_get_rate(host->clk);
1374 	/*
1375 	 * According to the spec, mclk is max 100 MHz,
1376 	 * so we try to adjust the clock down to this,
1377 	 * (if possible).
1378 	 */
1379 	if (host->mclk > 100000000) {
1380 		ret = clk_set_rate(host->clk, 100000000);
1381 		if (ret < 0)
1382 			goto clk_disable;
1383 		host->mclk = clk_get_rate(host->clk);
1384 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1385 			host->mclk);
1386 	}
1387 	host->phybase = dev->res.start;
1388 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1389 	if (!host->base) {
1390 		ret = -ENOMEM;
1391 		goto clk_disable;
1392 	}
1393 
1394 	mmc->ops = &mmci_ops;
1395 	/*
1396 	 * The ARM and ST versions of the block have slightly different
1397 	 * clock divider equations which means that the minimum divider
1398 	 * differs too.
1399 	 */
1400 	if (variant->st_clkdiv)
1401 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1402 	else
1403 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1404 	/*
1405 	 * If the platform data supplies a maximum operating
1406 	 * frequency, this takes precedence. Else, we fall back
1407 	 * to using the module parameter, which has a (low)
1408 	 * default value in case it is not specified. Either
1409 	 * value must not exceed the clock rate into the block,
1410 	 * of course.
1411 	 */
1412 	if (plat->f_max)
1413 		mmc->f_max = min(host->mclk, plat->f_max);
1414 	else
1415 		mmc->f_max = min(host->mclk, fmax);
1416 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1417 
1418 	host->pinctrl = devm_pinctrl_get(&dev->dev);
1419 	if (IS_ERR(host->pinctrl)) {
1420 		ret = PTR_ERR(host->pinctrl);
1421 		goto clk_disable;
1422 	}
1423 
1424 	host->pins_default = pinctrl_lookup_state(host->pinctrl,
1425 			PINCTRL_STATE_DEFAULT);
1426 
1427 	/* enable pins to be muxed in and configured */
1428 	if (!IS_ERR(host->pins_default)) {
1429 		ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1430 		if (ret)
1431 			dev_warn(&dev->dev, "could not set default pins\n");
1432 	} else
1433 		dev_warn(&dev->dev, "could not get default pinstate\n");
1434 
1435 	/* Get regulators and the supported OCR mask */
1436 	mmc_regulator_get_supply(mmc);
1437 	if (!mmc->ocr_avail)
1438 		mmc->ocr_avail = plat->ocr_mask;
1439 	else if (plat->ocr_mask)
1440 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1441 
1442 	mmc->caps = plat->capabilities;
1443 	mmc->caps2 = plat->capabilities2;
1444 
1445 	/* We support these PM capabilities. */
1446 	mmc->pm_caps = MMC_PM_KEEP_POWER;
1447 
1448 	/*
1449 	 * We can do SGIO
1450 	 */
1451 	mmc->max_segs = NR_SG;
1452 
1453 	/*
1454 	 * Since only a certain number of bits are valid in the data length
1455 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1456 	 * single request.
1457 	 */
1458 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1459 
1460 	/*
1461 	 * Set the maximum segment size.  Since we aren't doing DMA
1462 	 * (yet) we are only limited by the data length register.
1463 	 */
1464 	mmc->max_seg_size = mmc->max_req_size;
1465 
1466 	/*
1467 	 * Block size can be up to 2048 bytes, but must be a power of two.
1468 	 */
1469 	mmc->max_blk_size = 1 << 11;
1470 
1471 	/*
1472 	 * Limit the number of blocks transferred so that we don't overflow
1473 	 * the maximum request size.
1474 	 */
1475 	mmc->max_blk_count = mmc->max_req_size >> 11;
1476 
1477 	spin_lock_init(&host->lock);
1478 
1479 	writel(0, host->base + MMCIMASK0);
1480 	writel(0, host->base + MMCIMASK1);
1481 	writel(0xfff, host->base + MMCICLEAR);
1482 
1483 	if (plat->gpio_cd == -EPROBE_DEFER) {
1484 		ret = -EPROBE_DEFER;
1485 		goto err_gpio_cd;
1486 	}
1487 	if (gpio_is_valid(plat->gpio_cd)) {
1488 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1489 		if (ret == 0)
1490 			ret = gpio_direction_input(plat->gpio_cd);
1491 		if (ret == 0)
1492 			host->gpio_cd = plat->gpio_cd;
1493 		else if (ret != -ENOSYS)
1494 			goto err_gpio_cd;
1495 
1496 		/*
1497 		 * A gpio pin that will detect cards when inserted and removed
1498 		 * will most likely want to trigger on the edges if it is
1499 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1500 		 * for the inverted case) so we request triggers on both
1501 		 * edges.
1502 		 */
1503 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1504 				mmci_cd_irq,
1505 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1506 				DRIVER_NAME " (cd)", host);
1507 		if (ret >= 0)
1508 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1509 	}
1510 	if (plat->gpio_wp == -EPROBE_DEFER) {
1511 		ret = -EPROBE_DEFER;
1512 		goto err_gpio_wp;
1513 	}
1514 	if (gpio_is_valid(plat->gpio_wp)) {
1515 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1516 		if (ret == 0)
1517 			ret = gpio_direction_input(plat->gpio_wp);
1518 		if (ret == 0)
1519 			host->gpio_wp = plat->gpio_wp;
1520 		else if (ret != -ENOSYS)
1521 			goto err_gpio_wp;
1522 	}
1523 
1524 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1525 	    && host->gpio_cd_irq < 0)
1526 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1527 
1528 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1529 	if (ret)
1530 		goto unmap;
1531 
1532 	if (!dev->irq[1])
1533 		host->singleirq = true;
1534 	else {
1535 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1536 				  DRIVER_NAME " (pio)", host);
1537 		if (ret)
1538 			goto irq0_free;
1539 	}
1540 
1541 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1542 
1543 	amba_set_drvdata(dev, mmc);
1544 
1545 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1546 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1547 		 amba_rev(dev), (unsigned long long)dev->res.start,
1548 		 dev->irq[0], dev->irq[1]);
1549 
1550 	mmci_dma_setup(host);
1551 
1552 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1553 	pm_runtime_use_autosuspend(&dev->dev);
1554 	pm_runtime_put(&dev->dev);
1555 
1556 	mmc_add_host(mmc);
1557 
1558 	return 0;
1559 
1560  irq0_free:
1561 	free_irq(dev->irq[0], host);
1562  unmap:
1563 	if (host->gpio_wp != -ENOSYS)
1564 		gpio_free(host->gpio_wp);
1565  err_gpio_wp:
1566 	if (host->gpio_cd_irq >= 0)
1567 		free_irq(host->gpio_cd_irq, host);
1568 	if (host->gpio_cd != -ENOSYS)
1569 		gpio_free(host->gpio_cd);
1570  err_gpio_cd:
1571 	iounmap(host->base);
1572  clk_disable:
1573 	clk_disable_unprepare(host->clk);
1574  clk_free:
1575 	clk_put(host->clk);
1576  host_free:
1577 	mmc_free_host(mmc);
1578  rel_regions:
1579 	amba_release_regions(dev);
1580  out:
1581 	return ret;
1582 }
1583 
1584 static int mmci_remove(struct amba_device *dev)
1585 {
1586 	struct mmc_host *mmc = amba_get_drvdata(dev);
1587 
1588 	amba_set_drvdata(dev, NULL);
1589 
1590 	if (mmc) {
1591 		struct mmci_host *host = mmc_priv(mmc);
1592 
1593 		/*
1594 		 * Undo pm_runtime_put() in probe.  We use the _sync
1595 		 * version here so that we can access the primecell.
1596 		 */
1597 		pm_runtime_get_sync(&dev->dev);
1598 
1599 		mmc_remove_host(mmc);
1600 
1601 		writel(0, host->base + MMCIMASK0);
1602 		writel(0, host->base + MMCIMASK1);
1603 
1604 		writel(0, host->base + MMCICOMMAND);
1605 		writel(0, host->base + MMCIDATACTRL);
1606 
1607 		mmci_dma_release(host);
1608 		free_irq(dev->irq[0], host);
1609 		if (!host->singleirq)
1610 			free_irq(dev->irq[1], host);
1611 
1612 		if (host->gpio_wp != -ENOSYS)
1613 			gpio_free(host->gpio_wp);
1614 		if (host->gpio_cd_irq >= 0)
1615 			free_irq(host->gpio_cd_irq, host);
1616 		if (host->gpio_cd != -ENOSYS)
1617 			gpio_free(host->gpio_cd);
1618 
1619 		iounmap(host->base);
1620 		clk_disable_unprepare(host->clk);
1621 		clk_put(host->clk);
1622 
1623 		mmc_free_host(mmc);
1624 
1625 		amba_release_regions(dev);
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 #ifdef CONFIG_SUSPEND
1632 static int mmci_suspend(struct device *dev)
1633 {
1634 	struct amba_device *adev = to_amba_device(dev);
1635 	struct mmc_host *mmc = amba_get_drvdata(adev);
1636 	int ret = 0;
1637 
1638 	if (mmc) {
1639 		struct mmci_host *host = mmc_priv(mmc);
1640 
1641 		ret = mmc_suspend_host(mmc);
1642 		if (ret == 0) {
1643 			pm_runtime_get_sync(dev);
1644 			writel(0, host->base + MMCIMASK0);
1645 		}
1646 	}
1647 
1648 	return ret;
1649 }
1650 
1651 static int mmci_resume(struct device *dev)
1652 {
1653 	struct amba_device *adev = to_amba_device(dev);
1654 	struct mmc_host *mmc = amba_get_drvdata(adev);
1655 	int ret = 0;
1656 
1657 	if (mmc) {
1658 		struct mmci_host *host = mmc_priv(mmc);
1659 
1660 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1661 		pm_runtime_put(dev);
1662 
1663 		ret = mmc_resume_host(mmc);
1664 	}
1665 
1666 	return ret;
1667 }
1668 #endif
1669 
1670 #ifdef CONFIG_PM_RUNTIME
1671 static int mmci_runtime_suspend(struct device *dev)
1672 {
1673 	struct amba_device *adev = to_amba_device(dev);
1674 	struct mmc_host *mmc = amba_get_drvdata(adev);
1675 
1676 	if (mmc) {
1677 		struct mmci_host *host = mmc_priv(mmc);
1678 		clk_disable_unprepare(host->clk);
1679 	}
1680 
1681 	return 0;
1682 }
1683 
1684 static int mmci_runtime_resume(struct device *dev)
1685 {
1686 	struct amba_device *adev = to_amba_device(dev);
1687 	struct mmc_host *mmc = amba_get_drvdata(adev);
1688 
1689 	if (mmc) {
1690 		struct mmci_host *host = mmc_priv(mmc);
1691 		clk_prepare_enable(host->clk);
1692 	}
1693 
1694 	return 0;
1695 }
1696 #endif
1697 
1698 static const struct dev_pm_ops mmci_dev_pm_ops = {
1699 	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1700 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1701 };
1702 
1703 static struct amba_id mmci_ids[] = {
1704 	{
1705 		.id	= 0x00041180,
1706 		.mask	= 0xff0fffff,
1707 		.data	= &variant_arm,
1708 	},
1709 	{
1710 		.id	= 0x01041180,
1711 		.mask	= 0xff0fffff,
1712 		.data	= &variant_arm_extended_fifo,
1713 	},
1714 	{
1715 		.id	= 0x02041180,
1716 		.mask	= 0xff0fffff,
1717 		.data	= &variant_arm_extended_fifo_hwfc,
1718 	},
1719 	{
1720 		.id	= 0x00041181,
1721 		.mask	= 0x000fffff,
1722 		.data	= &variant_arm,
1723 	},
1724 	/* ST Micro variants */
1725 	{
1726 		.id     = 0x00180180,
1727 		.mask   = 0x00ffffff,
1728 		.data	= &variant_u300,
1729 	},
1730 	{
1731 		.id     = 0x10180180,
1732 		.mask   = 0xf0ffffff,
1733 		.data	= &variant_nomadik,
1734 	},
1735 	{
1736 		.id     = 0x00280180,
1737 		.mask   = 0x00ffffff,
1738 		.data	= &variant_u300,
1739 	},
1740 	{
1741 		.id     = 0x00480180,
1742 		.mask   = 0xf0ffffff,
1743 		.data	= &variant_ux500,
1744 	},
1745 	{
1746 		.id     = 0x10480180,
1747 		.mask   = 0xf0ffffff,
1748 		.data	= &variant_ux500v2,
1749 	},
1750 	{ 0, 0 },
1751 };
1752 
1753 MODULE_DEVICE_TABLE(amba, mmci_ids);
1754 
1755 static struct amba_driver mmci_driver = {
1756 	.drv		= {
1757 		.name	= DRIVER_NAME,
1758 		.pm	= &mmci_dev_pm_ops,
1759 	},
1760 	.probe		= mmci_probe,
1761 	.remove		= mmci_remove,
1762 	.id_table	= mmci_ids,
1763 };
1764 
1765 module_amba_driver(mmci_driver);
1766 
1767 module_param(fmax, uint, 0444);
1768 
1769 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1770 MODULE_LICENSE("GPL");
1771