xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision f220d3eb)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static unsigned int fmax = 515633;
50 
51 static struct variant_data variant_arm = {
52 	.fifosize		= 16 * 4,
53 	.fifohalfsize		= 8 * 4,
54 	.datalength_bits	= 16,
55 	.pwrreg_powerup		= MCI_PWR_UP,
56 	.f_max			= 100000000,
57 	.reversed_irq_handling	= true,
58 	.mmcimask1		= true,
59 	.start_err		= MCI_STARTBITERR,
60 	.opendrain		= MCI_ROD,
61 };
62 
63 static struct variant_data variant_arm_extended_fifo = {
64 	.fifosize		= 128 * 4,
65 	.fifohalfsize		= 64 * 4,
66 	.datalength_bits	= 16,
67 	.pwrreg_powerup		= MCI_PWR_UP,
68 	.f_max			= 100000000,
69 	.mmcimask1		= true,
70 	.start_err		= MCI_STARTBITERR,
71 	.opendrain		= MCI_ROD,
72 };
73 
74 static struct variant_data variant_arm_extended_fifo_hwfc = {
75 	.fifosize		= 128 * 4,
76 	.fifohalfsize		= 64 * 4,
77 	.clkreg_enable		= MCI_ARM_HWFCEN,
78 	.datalength_bits	= 16,
79 	.pwrreg_powerup		= MCI_PWR_UP,
80 	.f_max			= 100000000,
81 	.mmcimask1		= true,
82 	.start_err		= MCI_STARTBITERR,
83 	.opendrain		= MCI_ROD,
84 };
85 
86 static struct variant_data variant_u300 = {
87 	.fifosize		= 16 * 4,
88 	.fifohalfsize		= 8 * 4,
89 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
90 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
91 	.datalength_bits	= 16,
92 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
93 	.st_sdio			= true,
94 	.pwrreg_powerup		= MCI_PWR_ON,
95 	.f_max			= 100000000,
96 	.signal_direction	= true,
97 	.pwrreg_clkgate		= true,
98 	.pwrreg_nopower		= true,
99 	.mmcimask1		= true,
100 	.start_err		= MCI_STARTBITERR,
101 	.opendrain		= MCI_OD,
102 };
103 
104 static struct variant_data variant_nomadik = {
105 	.fifosize		= 16 * 4,
106 	.fifohalfsize		= 8 * 4,
107 	.clkreg			= MCI_CLK_ENABLE,
108 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
109 	.datalength_bits	= 24,
110 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
111 	.st_sdio		= true,
112 	.st_clkdiv		= true,
113 	.pwrreg_powerup		= MCI_PWR_ON,
114 	.f_max			= 100000000,
115 	.signal_direction	= true,
116 	.pwrreg_clkgate		= true,
117 	.pwrreg_nopower		= true,
118 	.mmcimask1		= true,
119 	.start_err		= MCI_STARTBITERR,
120 	.opendrain		= MCI_OD,
121 };
122 
123 static struct variant_data variant_ux500 = {
124 	.fifosize		= 30 * 4,
125 	.fifohalfsize		= 8 * 4,
126 	.clkreg			= MCI_CLK_ENABLE,
127 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
128 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
129 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
130 	.datalength_bits	= 24,
131 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
132 	.st_sdio		= true,
133 	.st_clkdiv		= true,
134 	.pwrreg_powerup		= MCI_PWR_ON,
135 	.f_max			= 100000000,
136 	.signal_direction	= true,
137 	.pwrreg_clkgate		= true,
138 	.busy_detect		= true,
139 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
140 	.busy_detect_flag	= MCI_ST_CARDBUSY,
141 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
142 	.pwrreg_nopower		= true,
143 	.mmcimask1		= true,
144 	.start_err		= MCI_STARTBITERR,
145 	.opendrain		= MCI_OD,
146 };
147 
148 static struct variant_data variant_ux500v2 = {
149 	.fifosize		= 30 * 4,
150 	.fifohalfsize		= 8 * 4,
151 	.clkreg			= MCI_CLK_ENABLE,
152 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
153 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
154 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
155 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
156 	.datalength_bits	= 24,
157 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
158 	.st_sdio		= true,
159 	.st_clkdiv		= true,
160 	.blksz_datactrl16	= true,
161 	.pwrreg_powerup		= MCI_PWR_ON,
162 	.f_max			= 100000000,
163 	.signal_direction	= true,
164 	.pwrreg_clkgate		= true,
165 	.busy_detect		= true,
166 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
167 	.busy_detect_flag	= MCI_ST_CARDBUSY,
168 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
169 	.pwrreg_nopower		= true,
170 	.mmcimask1		= true,
171 	.start_err		= MCI_STARTBITERR,
172 	.opendrain		= MCI_OD,
173 };
174 
175 static struct variant_data variant_stm32 = {
176 	.fifosize		= 32 * 4,
177 	.fifohalfsize		= 8 * 4,
178 	.clkreg			= MCI_CLK_ENABLE,
179 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
180 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
182 	.datalength_bits	= 24,
183 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
184 	.st_sdio		= true,
185 	.st_clkdiv		= true,
186 	.pwrreg_powerup		= MCI_PWR_ON,
187 	.f_max			= 48000000,
188 	.pwrreg_clkgate		= true,
189 	.pwrreg_nopower		= true,
190 };
191 
192 static struct variant_data variant_qcom = {
193 	.fifosize		= 16 * 4,
194 	.fifohalfsize		= 8 * 4,
195 	.clkreg			= MCI_CLK_ENABLE,
196 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
197 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
198 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
199 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
200 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
201 	.blksz_datactrl4	= true,
202 	.datalength_bits	= 24,
203 	.pwrreg_powerup		= MCI_PWR_UP,
204 	.f_max			= 208000000,
205 	.explicit_mclk_control	= true,
206 	.qcom_fifo		= true,
207 	.qcom_dml		= true,
208 	.mmcimask1		= true,
209 	.start_err		= MCI_STARTBITERR,
210 	.opendrain		= MCI_ROD,
211 	.init			= qcom_variant_init,
212 };
213 
214 /* Busy detection for the ST Micro variant */
215 static int mmci_card_busy(struct mmc_host *mmc)
216 {
217 	struct mmci_host *host = mmc_priv(mmc);
218 	unsigned long flags;
219 	int busy = 0;
220 
221 	spin_lock_irqsave(&host->lock, flags);
222 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
223 		busy = 1;
224 	spin_unlock_irqrestore(&host->lock, flags);
225 
226 	return busy;
227 }
228 
229 /*
230  * Validate mmc prerequisites
231  */
232 static int mmci_validate_data(struct mmci_host *host,
233 			      struct mmc_data *data)
234 {
235 	if (!data)
236 		return 0;
237 
238 	if (!is_power_of_2(data->blksz)) {
239 		dev_err(mmc_dev(host->mmc),
240 			"unsupported block size (%d bytes)\n", data->blksz);
241 		return -EINVAL;
242 	}
243 
244 	return 0;
245 }
246 
247 static void mmci_reg_delay(struct mmci_host *host)
248 {
249 	/*
250 	 * According to the spec, at least three feedback clock cycles
251 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
252 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
253 	 * Worst delay time during card init is at 100 kHz => 30 us.
254 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
255 	 */
256 	if (host->cclk < 25000000)
257 		udelay(30);
258 	else
259 		ndelay(120);
260 }
261 
262 /*
263  * This must be called with host->lock held
264  */
265 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
266 {
267 	if (host->clk_reg != clk) {
268 		host->clk_reg = clk;
269 		writel(clk, host->base + MMCICLOCK);
270 	}
271 }
272 
273 /*
274  * This must be called with host->lock held
275  */
276 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
277 {
278 	if (host->pwr_reg != pwr) {
279 		host->pwr_reg = pwr;
280 		writel(pwr, host->base + MMCIPOWER);
281 	}
282 }
283 
284 /*
285  * This must be called with host->lock held
286  */
287 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
288 {
289 	/* Keep busy mode in DPSM if enabled */
290 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
291 
292 	if (host->datactrl_reg != datactrl) {
293 		host->datactrl_reg = datactrl;
294 		writel(datactrl, host->base + MMCIDATACTRL);
295 	}
296 }
297 
298 /*
299  * This must be called with host->lock held
300  */
301 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
302 {
303 	struct variant_data *variant = host->variant;
304 	u32 clk = variant->clkreg;
305 
306 	/* Make sure cclk reflects the current calculated clock */
307 	host->cclk = 0;
308 
309 	if (desired) {
310 		if (variant->explicit_mclk_control) {
311 			host->cclk = host->mclk;
312 		} else if (desired >= host->mclk) {
313 			clk = MCI_CLK_BYPASS;
314 			if (variant->st_clkdiv)
315 				clk |= MCI_ST_UX500_NEG_EDGE;
316 			host->cclk = host->mclk;
317 		} else if (variant->st_clkdiv) {
318 			/*
319 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
320 			 * => clkdiv = (mclk / f) - 2
321 			 * Round the divider up so we don't exceed the max
322 			 * frequency
323 			 */
324 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
325 			if (clk >= 256)
326 				clk = 255;
327 			host->cclk = host->mclk / (clk + 2);
328 		} else {
329 			/*
330 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
331 			 * => clkdiv = mclk / (2 * f) - 1
332 			 */
333 			clk = host->mclk / (2 * desired) - 1;
334 			if (clk >= 256)
335 				clk = 255;
336 			host->cclk = host->mclk / (2 * (clk + 1));
337 		}
338 
339 		clk |= variant->clkreg_enable;
340 		clk |= MCI_CLK_ENABLE;
341 		/* This hasn't proven to be worthwhile */
342 		/* clk |= MCI_CLK_PWRSAVE; */
343 	}
344 
345 	/* Set actual clock for debug */
346 	host->mmc->actual_clock = host->cclk;
347 
348 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
349 		clk |= MCI_4BIT_BUS;
350 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
351 		clk |= variant->clkreg_8bit_bus_enable;
352 
353 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
354 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
355 		clk |= variant->clkreg_neg_edge_enable;
356 
357 	mmci_write_clkreg(host, clk);
358 }
359 
360 static void
361 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
362 {
363 	writel(0, host->base + MMCICOMMAND);
364 
365 	BUG_ON(host->data);
366 
367 	host->mrq = NULL;
368 	host->cmd = NULL;
369 
370 	mmc_request_done(host->mmc, mrq);
371 }
372 
373 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
374 {
375 	void __iomem *base = host->base;
376 	struct variant_data *variant = host->variant;
377 
378 	if (host->singleirq) {
379 		unsigned int mask0 = readl(base + MMCIMASK0);
380 
381 		mask0 &= ~MCI_IRQ1MASK;
382 		mask0 |= mask;
383 
384 		writel(mask0, base + MMCIMASK0);
385 	}
386 
387 	if (variant->mmcimask1)
388 		writel(mask, base + MMCIMASK1);
389 
390 	host->mask1_reg = mask;
391 }
392 
393 static void mmci_stop_data(struct mmci_host *host)
394 {
395 	mmci_write_datactrlreg(host, 0);
396 	mmci_set_mask1(host, 0);
397 	host->data = NULL;
398 }
399 
400 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
401 {
402 	unsigned int flags = SG_MITER_ATOMIC;
403 
404 	if (data->flags & MMC_DATA_READ)
405 		flags |= SG_MITER_TO_SG;
406 	else
407 		flags |= SG_MITER_FROM_SG;
408 
409 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
410 }
411 
412 /*
413  * All the DMA operation mode stuff goes inside this ifdef.
414  * This assumes that you have a generic DMA device interface,
415  * no custom DMA interfaces are supported.
416  */
417 #ifdef CONFIG_DMA_ENGINE
418 static void mmci_dma_setup(struct mmci_host *host)
419 {
420 	const char *rxname, *txname;
421 
422 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
423 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
424 
425 	/* initialize pre request cookie */
426 	host->next_data.cookie = 1;
427 
428 	/*
429 	 * If only an RX channel is specified, the driver will
430 	 * attempt to use it bidirectionally, however if it is
431 	 * is specified but cannot be located, DMA will be disabled.
432 	 */
433 	if (host->dma_rx_channel && !host->dma_tx_channel)
434 		host->dma_tx_channel = host->dma_rx_channel;
435 
436 	if (host->dma_rx_channel)
437 		rxname = dma_chan_name(host->dma_rx_channel);
438 	else
439 		rxname = "none";
440 
441 	if (host->dma_tx_channel)
442 		txname = dma_chan_name(host->dma_tx_channel);
443 	else
444 		txname = "none";
445 
446 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
447 		 rxname, txname);
448 
449 	/*
450 	 * Limit the maximum segment size in any SG entry according to
451 	 * the parameters of the DMA engine device.
452 	 */
453 	if (host->dma_tx_channel) {
454 		struct device *dev = host->dma_tx_channel->device->dev;
455 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
456 
457 		if (max_seg_size < host->mmc->max_seg_size)
458 			host->mmc->max_seg_size = max_seg_size;
459 	}
460 	if (host->dma_rx_channel) {
461 		struct device *dev = host->dma_rx_channel->device->dev;
462 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
463 
464 		if (max_seg_size < host->mmc->max_seg_size)
465 			host->mmc->max_seg_size = max_seg_size;
466 	}
467 
468 	if (host->ops && host->ops->dma_setup)
469 		host->ops->dma_setup(host);
470 }
471 
472 /*
473  * This is used in or so inline it
474  * so it can be discarded.
475  */
476 static inline void mmci_dma_release(struct mmci_host *host)
477 {
478 	if (host->dma_rx_channel)
479 		dma_release_channel(host->dma_rx_channel);
480 	if (host->dma_tx_channel)
481 		dma_release_channel(host->dma_tx_channel);
482 	host->dma_rx_channel = host->dma_tx_channel = NULL;
483 }
484 
485 static void mmci_dma_data_error(struct mmci_host *host)
486 {
487 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
488 	dmaengine_terminate_all(host->dma_current);
489 	host->dma_in_progress = false;
490 	host->dma_current = NULL;
491 	host->dma_desc_current = NULL;
492 	host->data->host_cookie = 0;
493 }
494 
495 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
496 {
497 	struct dma_chan *chan;
498 
499 	if (data->flags & MMC_DATA_READ)
500 		chan = host->dma_rx_channel;
501 	else
502 		chan = host->dma_tx_channel;
503 
504 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
505 		     mmc_get_dma_dir(data));
506 }
507 
508 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
509 {
510 	u32 status;
511 	int i;
512 
513 	/* Wait up to 1ms for the DMA to complete */
514 	for (i = 0; ; i++) {
515 		status = readl(host->base + MMCISTATUS);
516 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
517 			break;
518 		udelay(10);
519 	}
520 
521 	/*
522 	 * Check to see whether we still have some data left in the FIFO -
523 	 * this catches DMA controllers which are unable to monitor the
524 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
525 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
526 	 */
527 	if (status & MCI_RXDATAAVLBLMASK) {
528 		mmci_dma_data_error(host);
529 		if (!data->error)
530 			data->error = -EIO;
531 	}
532 
533 	if (!data->host_cookie)
534 		mmci_dma_unmap(host, data);
535 
536 	/*
537 	 * Use of DMA with scatter-gather is impossible.
538 	 * Give up with DMA and switch back to PIO mode.
539 	 */
540 	if (status & MCI_RXDATAAVLBLMASK) {
541 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
542 		mmci_dma_release(host);
543 	}
544 
545 	host->dma_in_progress = false;
546 	host->dma_current = NULL;
547 	host->dma_desc_current = NULL;
548 }
549 
550 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
551 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
552 				struct dma_chan **dma_chan,
553 				struct dma_async_tx_descriptor **dma_desc)
554 {
555 	struct variant_data *variant = host->variant;
556 	struct dma_slave_config conf = {
557 		.src_addr = host->phybase + MMCIFIFO,
558 		.dst_addr = host->phybase + MMCIFIFO,
559 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
560 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
561 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
562 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
563 		.device_fc = false,
564 	};
565 	struct dma_chan *chan;
566 	struct dma_device *device;
567 	struct dma_async_tx_descriptor *desc;
568 	int nr_sg;
569 	unsigned long flags = DMA_CTRL_ACK;
570 
571 	if (data->flags & MMC_DATA_READ) {
572 		conf.direction = DMA_DEV_TO_MEM;
573 		chan = host->dma_rx_channel;
574 	} else {
575 		conf.direction = DMA_MEM_TO_DEV;
576 		chan = host->dma_tx_channel;
577 	}
578 
579 	/* If there's no DMA channel, fall back to PIO */
580 	if (!chan)
581 		return -EINVAL;
582 
583 	/* If less than or equal to the fifo size, don't bother with DMA */
584 	if (data->blksz * data->blocks <= variant->fifosize)
585 		return -EINVAL;
586 
587 	device = chan->device;
588 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
589 			   mmc_get_dma_dir(data));
590 	if (nr_sg == 0)
591 		return -EINVAL;
592 
593 	if (host->variant->qcom_dml)
594 		flags |= DMA_PREP_INTERRUPT;
595 
596 	dmaengine_slave_config(chan, &conf);
597 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
598 					    conf.direction, flags);
599 	if (!desc)
600 		goto unmap_exit;
601 
602 	*dma_chan = chan;
603 	*dma_desc = desc;
604 
605 	return 0;
606 
607  unmap_exit:
608 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
609 		     mmc_get_dma_dir(data));
610 	return -ENOMEM;
611 }
612 
613 static inline int mmci_dma_prep_data(struct mmci_host *host,
614 				     struct mmc_data *data)
615 {
616 	/* Check if next job is already prepared. */
617 	if (host->dma_current && host->dma_desc_current)
618 		return 0;
619 
620 	/* No job were prepared thus do it now. */
621 	return __mmci_dma_prep_data(host, data, &host->dma_current,
622 				    &host->dma_desc_current);
623 }
624 
625 static inline int mmci_dma_prep_next(struct mmci_host *host,
626 				     struct mmc_data *data)
627 {
628 	struct mmci_host_next *nd = &host->next_data;
629 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
630 }
631 
632 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
633 {
634 	int ret;
635 	struct mmc_data *data = host->data;
636 
637 	ret = mmci_dma_prep_data(host, host->data);
638 	if (ret)
639 		return ret;
640 
641 	/* Okay, go for it. */
642 	dev_vdbg(mmc_dev(host->mmc),
643 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
644 		 data->sg_len, data->blksz, data->blocks, data->flags);
645 	host->dma_in_progress = true;
646 	dmaengine_submit(host->dma_desc_current);
647 	dma_async_issue_pending(host->dma_current);
648 
649 	if (host->variant->qcom_dml)
650 		dml_start_xfer(host, data);
651 
652 	datactrl |= MCI_DPSM_DMAENABLE;
653 
654 	/* Trigger the DMA transfer */
655 	mmci_write_datactrlreg(host, datactrl);
656 
657 	/*
658 	 * Let the MMCI say when the data is ended and it's time
659 	 * to fire next DMA request. When that happens, MMCI will
660 	 * call mmci_data_end()
661 	 */
662 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
663 	       host->base + MMCIMASK0);
664 	return 0;
665 }
666 
667 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
668 {
669 	struct mmci_host_next *next = &host->next_data;
670 
671 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
672 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
673 
674 	host->dma_desc_current = next->dma_desc;
675 	host->dma_current = next->dma_chan;
676 	next->dma_desc = NULL;
677 	next->dma_chan = NULL;
678 }
679 
680 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
681 {
682 	struct mmci_host *host = mmc_priv(mmc);
683 	struct mmc_data *data = mrq->data;
684 	struct mmci_host_next *nd = &host->next_data;
685 
686 	if (!data)
687 		return;
688 
689 	BUG_ON(data->host_cookie);
690 
691 	if (mmci_validate_data(host, data))
692 		return;
693 
694 	if (!mmci_dma_prep_next(host, data))
695 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
696 }
697 
698 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
699 			      int err)
700 {
701 	struct mmci_host *host = mmc_priv(mmc);
702 	struct mmc_data *data = mrq->data;
703 
704 	if (!data || !data->host_cookie)
705 		return;
706 
707 	mmci_dma_unmap(host, data);
708 
709 	if (err) {
710 		struct mmci_host_next *next = &host->next_data;
711 		struct dma_chan *chan;
712 		if (data->flags & MMC_DATA_READ)
713 			chan = host->dma_rx_channel;
714 		else
715 			chan = host->dma_tx_channel;
716 		dmaengine_terminate_all(chan);
717 
718 		if (host->dma_desc_current == next->dma_desc)
719 			host->dma_desc_current = NULL;
720 
721 		if (host->dma_current == next->dma_chan) {
722 			host->dma_in_progress = false;
723 			host->dma_current = NULL;
724 		}
725 
726 		next->dma_desc = NULL;
727 		next->dma_chan = NULL;
728 		data->host_cookie = 0;
729 	}
730 }
731 
732 #else
733 /* Blank functions if the DMA engine is not available */
734 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
735 {
736 }
737 static inline void mmci_dma_setup(struct mmci_host *host)
738 {
739 }
740 
741 static inline void mmci_dma_release(struct mmci_host *host)
742 {
743 }
744 
745 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
746 {
747 }
748 
749 static inline void mmci_dma_finalize(struct mmci_host *host,
750 				     struct mmc_data *data)
751 {
752 }
753 
754 static inline void mmci_dma_data_error(struct mmci_host *host)
755 {
756 }
757 
758 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
759 {
760 	return -ENOSYS;
761 }
762 
763 #define mmci_pre_request NULL
764 #define mmci_post_request NULL
765 
766 #endif
767 
768 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
769 {
770 	struct variant_data *variant = host->variant;
771 	unsigned int datactrl, timeout, irqmask;
772 	unsigned long long clks;
773 	void __iomem *base;
774 	int blksz_bits;
775 
776 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
777 		data->blksz, data->blocks, data->flags);
778 
779 	host->data = data;
780 	host->size = data->blksz * data->blocks;
781 	data->bytes_xfered = 0;
782 
783 	clks = (unsigned long long)data->timeout_ns * host->cclk;
784 	do_div(clks, NSEC_PER_SEC);
785 
786 	timeout = data->timeout_clks + (unsigned int)clks;
787 
788 	base = host->base;
789 	writel(timeout, base + MMCIDATATIMER);
790 	writel(host->size, base + MMCIDATALENGTH);
791 
792 	blksz_bits = ffs(data->blksz) - 1;
793 	BUG_ON(1 << blksz_bits != data->blksz);
794 
795 	if (variant->blksz_datactrl16)
796 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
797 	else if (variant->blksz_datactrl4)
798 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
799 	else
800 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
801 
802 	if (data->flags & MMC_DATA_READ)
803 		datactrl |= MCI_DPSM_DIRECTION;
804 
805 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
806 		u32 clk;
807 
808 		datactrl |= variant->datactrl_mask_sdio;
809 
810 		/*
811 		 * The ST Micro variant for SDIO small write transfers
812 		 * needs to have clock H/W flow control disabled,
813 		 * otherwise the transfer will not start. The threshold
814 		 * depends on the rate of MCLK.
815 		 */
816 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
817 		    (host->size < 8 ||
818 		     (host->size <= 8 && host->mclk > 50000000)))
819 			clk = host->clk_reg & ~variant->clkreg_enable;
820 		else
821 			clk = host->clk_reg | variant->clkreg_enable;
822 
823 		mmci_write_clkreg(host, clk);
824 	}
825 
826 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
827 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
828 		datactrl |= variant->datactrl_mask_ddrmode;
829 
830 	/*
831 	 * Attempt to use DMA operation mode, if this
832 	 * should fail, fall back to PIO mode
833 	 */
834 	if (!mmci_dma_start_data(host, datactrl))
835 		return;
836 
837 	/* IRQ mode, map the SG list for CPU reading/writing */
838 	mmci_init_sg(host, data);
839 
840 	if (data->flags & MMC_DATA_READ) {
841 		irqmask = MCI_RXFIFOHALFFULLMASK;
842 
843 		/*
844 		 * If we have less than the fifo 'half-full' threshold to
845 		 * transfer, trigger a PIO interrupt as soon as any data
846 		 * is available.
847 		 */
848 		if (host->size < variant->fifohalfsize)
849 			irqmask |= MCI_RXDATAAVLBLMASK;
850 	} else {
851 		/*
852 		 * We don't actually need to include "FIFO empty" here
853 		 * since its implicit in "FIFO half empty".
854 		 */
855 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
856 	}
857 
858 	mmci_write_datactrlreg(host, datactrl);
859 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
860 	mmci_set_mask1(host, irqmask);
861 }
862 
863 static void
864 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
865 {
866 	void __iomem *base = host->base;
867 
868 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
869 	    cmd->opcode, cmd->arg, cmd->flags);
870 
871 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
872 		writel(0, base + MMCICOMMAND);
873 		mmci_reg_delay(host);
874 	}
875 
876 	c |= cmd->opcode | MCI_CPSM_ENABLE;
877 	if (cmd->flags & MMC_RSP_PRESENT) {
878 		if (cmd->flags & MMC_RSP_136)
879 			c |= MCI_CPSM_LONGRSP;
880 		c |= MCI_CPSM_RESPONSE;
881 	}
882 	if (/*interrupt*/0)
883 		c |= MCI_CPSM_INTERRUPT;
884 
885 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
886 		c |= host->variant->data_cmd_enable;
887 
888 	host->cmd = cmd;
889 
890 	writel(cmd->arg, base + MMCIARGUMENT);
891 	writel(c, base + MMCICOMMAND);
892 }
893 
894 static void
895 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
896 	      unsigned int status)
897 {
898 	/* Make sure we have data to handle */
899 	if (!data)
900 		return;
901 
902 	/* First check for errors */
903 	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
904 		      host->variant->start_err |
905 		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
906 		u32 remain, success;
907 
908 		/* Terminate the DMA transfer */
909 		if (dma_inprogress(host)) {
910 			mmci_dma_data_error(host);
911 			mmci_dma_unmap(host, data);
912 		}
913 
914 		/*
915 		 * Calculate how far we are into the transfer.  Note that
916 		 * the data counter gives the number of bytes transferred
917 		 * on the MMC bus, not on the host side.  On reads, this
918 		 * can be as much as a FIFO-worth of data ahead.  This
919 		 * matters for FIFO overruns only.
920 		 */
921 		remain = readl(host->base + MMCIDATACNT);
922 		success = data->blksz * data->blocks - remain;
923 
924 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
925 			status, success);
926 		if (status & MCI_DATACRCFAIL) {
927 			/* Last block was not successful */
928 			success -= 1;
929 			data->error = -EILSEQ;
930 		} else if (status & MCI_DATATIMEOUT) {
931 			data->error = -ETIMEDOUT;
932 		} else if (status & MCI_STARTBITERR) {
933 			data->error = -ECOMM;
934 		} else if (status & MCI_TXUNDERRUN) {
935 			data->error = -EIO;
936 		} else if (status & MCI_RXOVERRUN) {
937 			if (success > host->variant->fifosize)
938 				success -= host->variant->fifosize;
939 			else
940 				success = 0;
941 			data->error = -EIO;
942 		}
943 		data->bytes_xfered = round_down(success, data->blksz);
944 	}
945 
946 	if (status & MCI_DATABLOCKEND)
947 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
948 
949 	if (status & MCI_DATAEND || data->error) {
950 		if (dma_inprogress(host))
951 			mmci_dma_finalize(host, data);
952 		mmci_stop_data(host);
953 
954 		if (!data->error)
955 			/* The error clause is handled above, success! */
956 			data->bytes_xfered = data->blksz * data->blocks;
957 
958 		if (!data->stop || host->mrq->sbc) {
959 			mmci_request_end(host, data->mrq);
960 		} else {
961 			mmci_start_command(host, data->stop, 0);
962 		}
963 	}
964 }
965 
966 static void
967 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
968 	     unsigned int status)
969 {
970 	void __iomem *base = host->base;
971 	bool sbc;
972 
973 	if (!cmd)
974 		return;
975 
976 	sbc = (cmd == host->mrq->sbc);
977 
978 	/*
979 	 * We need to be one of these interrupts to be considered worth
980 	 * handling. Note that we tag on any latent IRQs postponed
981 	 * due to waiting for busy status.
982 	 */
983 	if (!((status|host->busy_status) &
984 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
985 		return;
986 
987 	/*
988 	 * ST Micro variant: handle busy detection.
989 	 */
990 	if (host->variant->busy_detect) {
991 		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
992 
993 		/* We are busy with a command, return */
994 		if (host->busy_status &&
995 		    (status & host->variant->busy_detect_flag))
996 			return;
997 
998 		/*
999 		 * We were not busy, but we now got a busy response on
1000 		 * something that was not an error, and we double-check
1001 		 * that the special busy status bit is still set before
1002 		 * proceeding.
1003 		 */
1004 		if (!host->busy_status && busy_resp &&
1005 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1006 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1007 
1008 			/* Clear the busy start IRQ */
1009 			writel(host->variant->busy_detect_mask,
1010 			       host->base + MMCICLEAR);
1011 
1012 			/* Unmask the busy end IRQ */
1013 			writel(readl(base + MMCIMASK0) |
1014 			       host->variant->busy_detect_mask,
1015 			       base + MMCIMASK0);
1016 			/*
1017 			 * Now cache the last response status code (until
1018 			 * the busy bit goes low), and return.
1019 			 */
1020 			host->busy_status =
1021 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1022 			return;
1023 		}
1024 
1025 		/*
1026 		 * At this point we are not busy with a command, we have
1027 		 * not received a new busy request, clear and mask the busy
1028 		 * end IRQ and fall through to process the IRQ.
1029 		 */
1030 		if (host->busy_status) {
1031 
1032 			writel(host->variant->busy_detect_mask,
1033 			       host->base + MMCICLEAR);
1034 
1035 			writel(readl(base + MMCIMASK0) &
1036 			       ~host->variant->busy_detect_mask,
1037 			       base + MMCIMASK0);
1038 			host->busy_status = 0;
1039 		}
1040 	}
1041 
1042 	host->cmd = NULL;
1043 
1044 	if (status & MCI_CMDTIMEOUT) {
1045 		cmd->error = -ETIMEDOUT;
1046 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1047 		cmd->error = -EILSEQ;
1048 	} else {
1049 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1050 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1051 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1052 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1053 	}
1054 
1055 	if ((!sbc && !cmd->data) || cmd->error) {
1056 		if (host->data) {
1057 			/* Terminate the DMA transfer */
1058 			if (dma_inprogress(host)) {
1059 				mmci_dma_data_error(host);
1060 				mmci_dma_unmap(host, host->data);
1061 			}
1062 			mmci_stop_data(host);
1063 		}
1064 		mmci_request_end(host, host->mrq);
1065 	} else if (sbc) {
1066 		mmci_start_command(host, host->mrq->cmd, 0);
1067 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1068 		mmci_start_data(host, cmd->data);
1069 	}
1070 }
1071 
1072 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1073 {
1074 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1075 }
1076 
1077 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1078 {
1079 	/*
1080 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1081 	 * from the fifo range should be used
1082 	 */
1083 	if (status & MCI_RXFIFOHALFFULL)
1084 		return host->variant->fifohalfsize;
1085 	else if (status & MCI_RXDATAAVLBL)
1086 		return 4;
1087 
1088 	return 0;
1089 }
1090 
1091 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1092 {
1093 	void __iomem *base = host->base;
1094 	char *ptr = buffer;
1095 	u32 status = readl(host->base + MMCISTATUS);
1096 	int host_remain = host->size;
1097 
1098 	do {
1099 		int count = host->get_rx_fifocnt(host, status, host_remain);
1100 
1101 		if (count > remain)
1102 			count = remain;
1103 
1104 		if (count <= 0)
1105 			break;
1106 
1107 		/*
1108 		 * SDIO especially may want to send something that is
1109 		 * not divisible by 4 (as opposed to card sectors
1110 		 * etc). Therefore make sure to always read the last bytes
1111 		 * while only doing full 32-bit reads towards the FIFO.
1112 		 */
1113 		if (unlikely(count & 0x3)) {
1114 			if (count < 4) {
1115 				unsigned char buf[4];
1116 				ioread32_rep(base + MMCIFIFO, buf, 1);
1117 				memcpy(ptr, buf, count);
1118 			} else {
1119 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1120 				count &= ~0x3;
1121 			}
1122 		} else {
1123 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1124 		}
1125 
1126 		ptr += count;
1127 		remain -= count;
1128 		host_remain -= count;
1129 
1130 		if (remain == 0)
1131 			break;
1132 
1133 		status = readl(base + MMCISTATUS);
1134 	} while (status & MCI_RXDATAAVLBL);
1135 
1136 	return ptr - buffer;
1137 }
1138 
1139 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1140 {
1141 	struct variant_data *variant = host->variant;
1142 	void __iomem *base = host->base;
1143 	char *ptr = buffer;
1144 
1145 	do {
1146 		unsigned int count, maxcnt;
1147 
1148 		maxcnt = status & MCI_TXFIFOEMPTY ?
1149 			 variant->fifosize : variant->fifohalfsize;
1150 		count = min(remain, maxcnt);
1151 
1152 		/*
1153 		 * SDIO especially may want to send something that is
1154 		 * not divisible by 4 (as opposed to card sectors
1155 		 * etc), and the FIFO only accept full 32-bit writes.
1156 		 * So compensate by adding +3 on the count, a single
1157 		 * byte become a 32bit write, 7 bytes will be two
1158 		 * 32bit writes etc.
1159 		 */
1160 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1161 
1162 		ptr += count;
1163 		remain -= count;
1164 
1165 		if (remain == 0)
1166 			break;
1167 
1168 		status = readl(base + MMCISTATUS);
1169 	} while (status & MCI_TXFIFOHALFEMPTY);
1170 
1171 	return ptr - buffer;
1172 }
1173 
1174 /*
1175  * PIO data transfer IRQ handler.
1176  */
1177 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1178 {
1179 	struct mmci_host *host = dev_id;
1180 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1181 	struct variant_data *variant = host->variant;
1182 	void __iomem *base = host->base;
1183 	u32 status;
1184 
1185 	status = readl(base + MMCISTATUS);
1186 
1187 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1188 
1189 	do {
1190 		unsigned int remain, len;
1191 		char *buffer;
1192 
1193 		/*
1194 		 * For write, we only need to test the half-empty flag
1195 		 * here - if the FIFO is completely empty, then by
1196 		 * definition it is more than half empty.
1197 		 *
1198 		 * For read, check for data available.
1199 		 */
1200 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1201 			break;
1202 
1203 		if (!sg_miter_next(sg_miter))
1204 			break;
1205 
1206 		buffer = sg_miter->addr;
1207 		remain = sg_miter->length;
1208 
1209 		len = 0;
1210 		if (status & MCI_RXACTIVE)
1211 			len = mmci_pio_read(host, buffer, remain);
1212 		if (status & MCI_TXACTIVE)
1213 			len = mmci_pio_write(host, buffer, remain, status);
1214 
1215 		sg_miter->consumed = len;
1216 
1217 		host->size -= len;
1218 		remain -= len;
1219 
1220 		if (remain)
1221 			break;
1222 
1223 		status = readl(base + MMCISTATUS);
1224 	} while (1);
1225 
1226 	sg_miter_stop(sg_miter);
1227 
1228 	/*
1229 	 * If we have less than the fifo 'half-full' threshold to transfer,
1230 	 * trigger a PIO interrupt as soon as any data is available.
1231 	 */
1232 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1233 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1234 
1235 	/*
1236 	 * If we run out of data, disable the data IRQs; this
1237 	 * prevents a race where the FIFO becomes empty before
1238 	 * the chip itself has disabled the data path, and
1239 	 * stops us racing with our data end IRQ.
1240 	 */
1241 	if (host->size == 0) {
1242 		mmci_set_mask1(host, 0);
1243 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1244 	}
1245 
1246 	return IRQ_HANDLED;
1247 }
1248 
1249 /*
1250  * Handle completion of command and data transfers.
1251  */
1252 static irqreturn_t mmci_irq(int irq, void *dev_id)
1253 {
1254 	struct mmci_host *host = dev_id;
1255 	u32 status;
1256 	int ret = 0;
1257 
1258 	spin_lock(&host->lock);
1259 
1260 	do {
1261 		status = readl(host->base + MMCISTATUS);
1262 
1263 		if (host->singleirq) {
1264 			if (status & host->mask1_reg)
1265 				mmci_pio_irq(irq, dev_id);
1266 
1267 			status &= ~MCI_IRQ1MASK;
1268 		}
1269 
1270 		/*
1271 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1272 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1273 		 * detection variant is handled. Considering the HW seems to be
1274 		 * triggering the IRQ on both edges while monitoring DAT0 for
1275 		 * busy completion and that same status bit is used to monitor
1276 		 * start and end of busy detection, special care must be taken
1277 		 * to make sure that both start and end interrupts are always
1278 		 * cleared one after the other.
1279 		 */
1280 		status &= readl(host->base + MMCIMASK0);
1281 		if (host->variant->busy_detect)
1282 			writel(status & ~host->variant->busy_detect_mask,
1283 			       host->base + MMCICLEAR);
1284 		else
1285 			writel(status, host->base + MMCICLEAR);
1286 
1287 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1288 
1289 		if (host->variant->reversed_irq_handling) {
1290 			mmci_data_irq(host, host->data, status);
1291 			mmci_cmd_irq(host, host->cmd, status);
1292 		} else {
1293 			mmci_cmd_irq(host, host->cmd, status);
1294 			mmci_data_irq(host, host->data, status);
1295 		}
1296 
1297 		/*
1298 		 * Don't poll for busy completion in irq context.
1299 		 */
1300 		if (host->variant->busy_detect && host->busy_status)
1301 			status &= ~host->variant->busy_detect_flag;
1302 
1303 		ret = 1;
1304 	} while (status);
1305 
1306 	spin_unlock(&host->lock);
1307 
1308 	return IRQ_RETVAL(ret);
1309 }
1310 
1311 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1312 {
1313 	struct mmci_host *host = mmc_priv(mmc);
1314 	unsigned long flags;
1315 
1316 	WARN_ON(host->mrq != NULL);
1317 
1318 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1319 	if (mrq->cmd->error) {
1320 		mmc_request_done(mmc, mrq);
1321 		return;
1322 	}
1323 
1324 	spin_lock_irqsave(&host->lock, flags);
1325 
1326 	host->mrq = mrq;
1327 
1328 	if (mrq->data)
1329 		mmci_get_next_data(host, mrq->data);
1330 
1331 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1332 		mmci_start_data(host, mrq->data);
1333 
1334 	if (mrq->sbc)
1335 		mmci_start_command(host, mrq->sbc, 0);
1336 	else
1337 		mmci_start_command(host, mrq->cmd, 0);
1338 
1339 	spin_unlock_irqrestore(&host->lock, flags);
1340 }
1341 
1342 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1343 {
1344 	struct mmci_host *host = mmc_priv(mmc);
1345 	struct variant_data *variant = host->variant;
1346 	u32 pwr = 0;
1347 	unsigned long flags;
1348 	int ret;
1349 
1350 	if (host->plat->ios_handler &&
1351 		host->plat->ios_handler(mmc_dev(mmc), ios))
1352 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1353 
1354 	switch (ios->power_mode) {
1355 	case MMC_POWER_OFF:
1356 		if (!IS_ERR(mmc->supply.vmmc))
1357 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1358 
1359 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1360 			regulator_disable(mmc->supply.vqmmc);
1361 			host->vqmmc_enabled = false;
1362 		}
1363 
1364 		break;
1365 	case MMC_POWER_UP:
1366 		if (!IS_ERR(mmc->supply.vmmc))
1367 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1368 
1369 		/*
1370 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1371 		 * and instead uses MCI_PWR_ON so apply whatever value is
1372 		 * configured in the variant data.
1373 		 */
1374 		pwr |= variant->pwrreg_powerup;
1375 
1376 		break;
1377 	case MMC_POWER_ON:
1378 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1379 			ret = regulator_enable(mmc->supply.vqmmc);
1380 			if (ret < 0)
1381 				dev_err(mmc_dev(mmc),
1382 					"failed to enable vqmmc regulator\n");
1383 			else
1384 				host->vqmmc_enabled = true;
1385 		}
1386 
1387 		pwr |= MCI_PWR_ON;
1388 		break;
1389 	}
1390 
1391 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1392 		/*
1393 		 * The ST Micro variant has some additional bits
1394 		 * indicating signal direction for the signals in
1395 		 * the SD/MMC bus and feedback-clock usage.
1396 		 */
1397 		pwr |= host->pwr_reg_add;
1398 
1399 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1400 			pwr &= ~MCI_ST_DATA74DIREN;
1401 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1402 			pwr &= (~MCI_ST_DATA74DIREN &
1403 				~MCI_ST_DATA31DIREN &
1404 				~MCI_ST_DATA2DIREN);
1405 	}
1406 
1407 	if (variant->opendrain) {
1408 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1409 			pwr |= variant->opendrain;
1410 	} else {
1411 		/*
1412 		 * If the variant cannot configure the pads by its own, then we
1413 		 * expect the pinctrl to be able to do that for us
1414 		 */
1415 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1416 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1417 		else
1418 			pinctrl_select_state(host->pinctrl, host->pins_default);
1419 	}
1420 
1421 	/*
1422 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1423 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1424 	 */
1425 	if (!ios->clock && variant->pwrreg_clkgate)
1426 		pwr &= ~MCI_PWR_ON;
1427 
1428 	if (host->variant->explicit_mclk_control &&
1429 	    ios->clock != host->clock_cache) {
1430 		ret = clk_set_rate(host->clk, ios->clock);
1431 		if (ret < 0)
1432 			dev_err(mmc_dev(host->mmc),
1433 				"Error setting clock rate (%d)\n", ret);
1434 		else
1435 			host->mclk = clk_get_rate(host->clk);
1436 	}
1437 	host->clock_cache = ios->clock;
1438 
1439 	spin_lock_irqsave(&host->lock, flags);
1440 
1441 	mmci_set_clkreg(host, ios->clock);
1442 	mmci_write_pwrreg(host, pwr);
1443 	mmci_reg_delay(host);
1444 
1445 	spin_unlock_irqrestore(&host->lock, flags);
1446 }
1447 
1448 static int mmci_get_cd(struct mmc_host *mmc)
1449 {
1450 	struct mmci_host *host = mmc_priv(mmc);
1451 	struct mmci_platform_data *plat = host->plat;
1452 	unsigned int status = mmc_gpio_get_cd(mmc);
1453 
1454 	if (status == -ENOSYS) {
1455 		if (!plat->status)
1456 			return 1; /* Assume always present */
1457 
1458 		status = plat->status(mmc_dev(host->mmc));
1459 	}
1460 	return status;
1461 }
1462 
1463 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1464 {
1465 	int ret = 0;
1466 
1467 	if (!IS_ERR(mmc->supply.vqmmc)) {
1468 
1469 		switch (ios->signal_voltage) {
1470 		case MMC_SIGNAL_VOLTAGE_330:
1471 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1472 						2700000, 3600000);
1473 			break;
1474 		case MMC_SIGNAL_VOLTAGE_180:
1475 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1476 						1700000, 1950000);
1477 			break;
1478 		case MMC_SIGNAL_VOLTAGE_120:
1479 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1480 						1100000, 1300000);
1481 			break;
1482 		}
1483 
1484 		if (ret)
1485 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 static struct mmc_host_ops mmci_ops = {
1492 	.request	= mmci_request,
1493 	.pre_req	= mmci_pre_request,
1494 	.post_req	= mmci_post_request,
1495 	.set_ios	= mmci_set_ios,
1496 	.get_ro		= mmc_gpio_get_ro,
1497 	.get_cd		= mmci_get_cd,
1498 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1499 };
1500 
1501 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1502 {
1503 	struct mmci_host *host = mmc_priv(mmc);
1504 	int ret = mmc_of_parse(mmc);
1505 
1506 	if (ret)
1507 		return ret;
1508 
1509 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1510 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1511 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1512 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1513 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1514 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1515 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1516 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1517 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1518 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1519 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1520 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1521 
1522 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1523 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1524 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1525 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1526 
1527 	return 0;
1528 }
1529 
1530 static int mmci_probe(struct amba_device *dev,
1531 	const struct amba_id *id)
1532 {
1533 	struct mmci_platform_data *plat = dev->dev.platform_data;
1534 	struct device_node *np = dev->dev.of_node;
1535 	struct variant_data *variant = id->data;
1536 	struct mmci_host *host;
1537 	struct mmc_host *mmc;
1538 	int ret;
1539 
1540 	/* Must have platform data or Device Tree. */
1541 	if (!plat && !np) {
1542 		dev_err(&dev->dev, "No plat data or DT found\n");
1543 		return -EINVAL;
1544 	}
1545 
1546 	if (!plat) {
1547 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1548 		if (!plat)
1549 			return -ENOMEM;
1550 	}
1551 
1552 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1553 	if (!mmc)
1554 		return -ENOMEM;
1555 
1556 	ret = mmci_of_parse(np, mmc);
1557 	if (ret)
1558 		goto host_free;
1559 
1560 	host = mmc_priv(mmc);
1561 	host->mmc = mmc;
1562 
1563 	/*
1564 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1565 	 * pins can be set accordingly using pinctrl
1566 	 */
1567 	if (!variant->opendrain) {
1568 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1569 		if (IS_ERR(host->pinctrl)) {
1570 			dev_err(&dev->dev, "failed to get pinctrl");
1571 			ret = PTR_ERR(host->pinctrl);
1572 			goto host_free;
1573 		}
1574 
1575 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1576 							  PINCTRL_STATE_DEFAULT);
1577 		if (IS_ERR(host->pins_default)) {
1578 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1579 			ret = PTR_ERR(host->pins_default);
1580 			goto host_free;
1581 		}
1582 
1583 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1584 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1585 		if (IS_ERR(host->pins_opendrain)) {
1586 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1587 			ret = PTR_ERR(host->pins_opendrain);
1588 			goto host_free;
1589 		}
1590 	}
1591 
1592 	host->hw_designer = amba_manf(dev);
1593 	host->hw_revision = amba_rev(dev);
1594 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1595 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1596 
1597 	host->clk = devm_clk_get(&dev->dev, NULL);
1598 	if (IS_ERR(host->clk)) {
1599 		ret = PTR_ERR(host->clk);
1600 		goto host_free;
1601 	}
1602 
1603 	ret = clk_prepare_enable(host->clk);
1604 	if (ret)
1605 		goto host_free;
1606 
1607 	if (variant->qcom_fifo)
1608 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1609 	else
1610 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1611 
1612 	host->plat = plat;
1613 	host->variant = variant;
1614 	host->mclk = clk_get_rate(host->clk);
1615 	/*
1616 	 * According to the spec, mclk is max 100 MHz,
1617 	 * so we try to adjust the clock down to this,
1618 	 * (if possible).
1619 	 */
1620 	if (host->mclk > variant->f_max) {
1621 		ret = clk_set_rate(host->clk, variant->f_max);
1622 		if (ret < 0)
1623 			goto clk_disable;
1624 		host->mclk = clk_get_rate(host->clk);
1625 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1626 			host->mclk);
1627 	}
1628 
1629 	host->phybase = dev->res.start;
1630 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1631 	if (IS_ERR(host->base)) {
1632 		ret = PTR_ERR(host->base);
1633 		goto clk_disable;
1634 	}
1635 
1636 	if (variant->init)
1637 		variant->init(host);
1638 
1639 	/*
1640 	 * The ARM and ST versions of the block have slightly different
1641 	 * clock divider equations which means that the minimum divider
1642 	 * differs too.
1643 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1644 	 */
1645 	if (variant->st_clkdiv)
1646 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1647 	else if (variant->explicit_mclk_control)
1648 		mmc->f_min = clk_round_rate(host->clk, 100000);
1649 	else
1650 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1651 	/*
1652 	 * If no maximum operating frequency is supplied, fall back to use
1653 	 * the module parameter, which has a (low) default value in case it
1654 	 * is not specified. Either value must not exceed the clock rate into
1655 	 * the block, of course.
1656 	 */
1657 	if (mmc->f_max)
1658 		mmc->f_max = variant->explicit_mclk_control ?
1659 				min(variant->f_max, mmc->f_max) :
1660 				min(host->mclk, mmc->f_max);
1661 	else
1662 		mmc->f_max = variant->explicit_mclk_control ?
1663 				fmax : min(host->mclk, fmax);
1664 
1665 
1666 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1667 
1668 	/* Get regulators and the supported OCR mask */
1669 	ret = mmc_regulator_get_supply(mmc);
1670 	if (ret)
1671 		goto clk_disable;
1672 
1673 	if (!mmc->ocr_avail)
1674 		mmc->ocr_avail = plat->ocr_mask;
1675 	else if (plat->ocr_mask)
1676 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1677 
1678 	/* DT takes precedence over platform data. */
1679 	if (!np) {
1680 		if (!plat->cd_invert)
1681 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1682 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1683 	}
1684 
1685 	/* We support these capabilities. */
1686 	mmc->caps |= MMC_CAP_CMD23;
1687 
1688 	/*
1689 	 * Enable busy detection.
1690 	 */
1691 	if (variant->busy_detect) {
1692 		mmci_ops.card_busy = mmci_card_busy;
1693 		/*
1694 		 * Not all variants have a flag to enable busy detection
1695 		 * in the DPSM, but if they do, set it here.
1696 		 */
1697 		if (variant->busy_dpsm_flag)
1698 			mmci_write_datactrlreg(host,
1699 					       host->variant->busy_dpsm_flag);
1700 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1701 		mmc->max_busy_timeout = 0;
1702 	}
1703 
1704 	mmc->ops = &mmci_ops;
1705 
1706 	/* We support these PM capabilities. */
1707 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1708 
1709 	/*
1710 	 * We can do SGIO
1711 	 */
1712 	mmc->max_segs = NR_SG;
1713 
1714 	/*
1715 	 * Since only a certain number of bits are valid in the data length
1716 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1717 	 * single request.
1718 	 */
1719 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1720 
1721 	/*
1722 	 * Set the maximum segment size.  Since we aren't doing DMA
1723 	 * (yet) we are only limited by the data length register.
1724 	 */
1725 	mmc->max_seg_size = mmc->max_req_size;
1726 
1727 	/*
1728 	 * Block size can be up to 2048 bytes, but must be a power of two.
1729 	 */
1730 	mmc->max_blk_size = 1 << 11;
1731 
1732 	/*
1733 	 * Limit the number of blocks transferred so that we don't overflow
1734 	 * the maximum request size.
1735 	 */
1736 	mmc->max_blk_count = mmc->max_req_size >> 11;
1737 
1738 	spin_lock_init(&host->lock);
1739 
1740 	writel(0, host->base + MMCIMASK0);
1741 
1742 	if (variant->mmcimask1)
1743 		writel(0, host->base + MMCIMASK1);
1744 
1745 	writel(0xfff, host->base + MMCICLEAR);
1746 
1747 	/*
1748 	 * If:
1749 	 * - not using DT but using a descriptor table, or
1750 	 * - using a table of descriptors ALONGSIDE DT, or
1751 	 * look up these descriptors named "cd" and "wp" right here, fail
1752 	 * silently of these do not exist and proceed to try platform data
1753 	 */
1754 	if (!np) {
1755 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1756 		if (ret < 0) {
1757 			if (ret == -EPROBE_DEFER)
1758 				goto clk_disable;
1759 			else if (gpio_is_valid(plat->gpio_cd)) {
1760 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1761 				if (ret)
1762 					goto clk_disable;
1763 			}
1764 		}
1765 
1766 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1767 		if (ret < 0) {
1768 			if (ret == -EPROBE_DEFER)
1769 				goto clk_disable;
1770 			else if (gpio_is_valid(plat->gpio_wp)) {
1771 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1772 				if (ret)
1773 					goto clk_disable;
1774 			}
1775 		}
1776 	}
1777 
1778 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1779 			DRIVER_NAME " (cmd)", host);
1780 	if (ret)
1781 		goto clk_disable;
1782 
1783 	if (!dev->irq[1])
1784 		host->singleirq = true;
1785 	else {
1786 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1787 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1788 		if (ret)
1789 			goto clk_disable;
1790 	}
1791 
1792 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1793 
1794 	amba_set_drvdata(dev, mmc);
1795 
1796 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1797 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1798 		 amba_rev(dev), (unsigned long long)dev->res.start,
1799 		 dev->irq[0], dev->irq[1]);
1800 
1801 	mmci_dma_setup(host);
1802 
1803 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1804 	pm_runtime_use_autosuspend(&dev->dev);
1805 
1806 	mmc_add_host(mmc);
1807 
1808 	pm_runtime_put(&dev->dev);
1809 	return 0;
1810 
1811  clk_disable:
1812 	clk_disable_unprepare(host->clk);
1813  host_free:
1814 	mmc_free_host(mmc);
1815 	return ret;
1816 }
1817 
1818 static int mmci_remove(struct amba_device *dev)
1819 {
1820 	struct mmc_host *mmc = amba_get_drvdata(dev);
1821 
1822 	if (mmc) {
1823 		struct mmci_host *host = mmc_priv(mmc);
1824 		struct variant_data *variant = host->variant;
1825 
1826 		/*
1827 		 * Undo pm_runtime_put() in probe.  We use the _sync
1828 		 * version here so that we can access the primecell.
1829 		 */
1830 		pm_runtime_get_sync(&dev->dev);
1831 
1832 		mmc_remove_host(mmc);
1833 
1834 		writel(0, host->base + MMCIMASK0);
1835 
1836 		if (variant->mmcimask1)
1837 			writel(0, host->base + MMCIMASK1);
1838 
1839 		writel(0, host->base + MMCICOMMAND);
1840 		writel(0, host->base + MMCIDATACTRL);
1841 
1842 		mmci_dma_release(host);
1843 		clk_disable_unprepare(host->clk);
1844 		mmc_free_host(mmc);
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 #ifdef CONFIG_PM
1851 static void mmci_save(struct mmci_host *host)
1852 {
1853 	unsigned long flags;
1854 
1855 	spin_lock_irqsave(&host->lock, flags);
1856 
1857 	writel(0, host->base + MMCIMASK0);
1858 	if (host->variant->pwrreg_nopower) {
1859 		writel(0, host->base + MMCIDATACTRL);
1860 		writel(0, host->base + MMCIPOWER);
1861 		writel(0, host->base + MMCICLOCK);
1862 	}
1863 	mmci_reg_delay(host);
1864 
1865 	spin_unlock_irqrestore(&host->lock, flags);
1866 }
1867 
1868 static void mmci_restore(struct mmci_host *host)
1869 {
1870 	unsigned long flags;
1871 
1872 	spin_lock_irqsave(&host->lock, flags);
1873 
1874 	if (host->variant->pwrreg_nopower) {
1875 		writel(host->clk_reg, host->base + MMCICLOCK);
1876 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1877 		writel(host->pwr_reg, host->base + MMCIPOWER);
1878 	}
1879 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1880 	mmci_reg_delay(host);
1881 
1882 	spin_unlock_irqrestore(&host->lock, flags);
1883 }
1884 
1885 static int mmci_runtime_suspend(struct device *dev)
1886 {
1887 	struct amba_device *adev = to_amba_device(dev);
1888 	struct mmc_host *mmc = amba_get_drvdata(adev);
1889 
1890 	if (mmc) {
1891 		struct mmci_host *host = mmc_priv(mmc);
1892 		pinctrl_pm_select_sleep_state(dev);
1893 		mmci_save(host);
1894 		clk_disable_unprepare(host->clk);
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 static int mmci_runtime_resume(struct device *dev)
1901 {
1902 	struct amba_device *adev = to_amba_device(dev);
1903 	struct mmc_host *mmc = amba_get_drvdata(adev);
1904 
1905 	if (mmc) {
1906 		struct mmci_host *host = mmc_priv(mmc);
1907 		clk_prepare_enable(host->clk);
1908 		mmci_restore(host);
1909 		pinctrl_pm_select_default_state(dev);
1910 	}
1911 
1912 	return 0;
1913 }
1914 #endif
1915 
1916 static const struct dev_pm_ops mmci_dev_pm_ops = {
1917 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1918 				pm_runtime_force_resume)
1919 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1920 };
1921 
1922 static const struct amba_id mmci_ids[] = {
1923 	{
1924 		.id	= 0x00041180,
1925 		.mask	= 0xff0fffff,
1926 		.data	= &variant_arm,
1927 	},
1928 	{
1929 		.id	= 0x01041180,
1930 		.mask	= 0xff0fffff,
1931 		.data	= &variant_arm_extended_fifo,
1932 	},
1933 	{
1934 		.id	= 0x02041180,
1935 		.mask	= 0xff0fffff,
1936 		.data	= &variant_arm_extended_fifo_hwfc,
1937 	},
1938 	{
1939 		.id	= 0x00041181,
1940 		.mask	= 0x000fffff,
1941 		.data	= &variant_arm,
1942 	},
1943 	/* ST Micro variants */
1944 	{
1945 		.id     = 0x00180180,
1946 		.mask   = 0x00ffffff,
1947 		.data	= &variant_u300,
1948 	},
1949 	{
1950 		.id     = 0x10180180,
1951 		.mask   = 0xf0ffffff,
1952 		.data	= &variant_nomadik,
1953 	},
1954 	{
1955 		.id     = 0x00280180,
1956 		.mask   = 0x00ffffff,
1957 		.data	= &variant_nomadik,
1958 	},
1959 	{
1960 		.id     = 0x00480180,
1961 		.mask   = 0xf0ffffff,
1962 		.data	= &variant_ux500,
1963 	},
1964 	{
1965 		.id     = 0x10480180,
1966 		.mask   = 0xf0ffffff,
1967 		.data	= &variant_ux500v2,
1968 	},
1969 	{
1970 		.id     = 0x00880180,
1971 		.mask   = 0x00ffffff,
1972 		.data	= &variant_stm32,
1973 	},
1974 	/* Qualcomm variants */
1975 	{
1976 		.id     = 0x00051180,
1977 		.mask	= 0x000fffff,
1978 		.data	= &variant_qcom,
1979 	},
1980 	{ 0, 0 },
1981 };
1982 
1983 MODULE_DEVICE_TABLE(amba, mmci_ids);
1984 
1985 static struct amba_driver mmci_driver = {
1986 	.drv		= {
1987 		.name	= DRIVER_NAME,
1988 		.pm	= &mmci_dev_pm_ops,
1989 	},
1990 	.probe		= mmci_probe,
1991 	.remove		= mmci_remove,
1992 	.id_table	= mmci_ids,
1993 };
1994 
1995 module_amba_driver(mmci_driver);
1996 
1997 module_param(fmax, uint, 0444);
1998 
1999 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2000 MODULE_LICENSE("GPL");
2001