xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static unsigned int fmax = 515633;
50 
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57  * @datalength_bits: number of bits in the MMCIDATALENGTH register
58  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59  *	      is asserted (likewise for RX)
60  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61  *		  is asserted (likewise for RX)
62  * @data_cmd_enable: enable value for data commands.
63  * @st_sdio: enable ST specific SDIO logic
64  * @st_clkdiv: true if using a ST-specific clock divider algorithm
65  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68  *		     register
69  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70  * @pwrreg_powerup: power up value for MMCIPOWER register
71  * @f_max: maximum clk frequency supported by the controller.
72  * @signal_direction: input/out direction of bus signals can be indicated
73  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74  * @busy_detect: true if busy detection on dat0 is supported
75  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
76  * @explicit_mclk_control: enable explicit mclk control in driver.
77  * @qcom_fifo: enables qcom specific fifo pio read logic.
78  * @qcom_dml: enables qcom specific dma glue for dma transfers.
79  * @reversed_irq_handling: handle data irq before cmd irq.
80  */
81 struct variant_data {
82 	unsigned int		clkreg;
83 	unsigned int		clkreg_enable;
84 	unsigned int		clkreg_8bit_bus_enable;
85 	unsigned int		clkreg_neg_edge_enable;
86 	unsigned int		datalength_bits;
87 	unsigned int		fifosize;
88 	unsigned int		fifohalfsize;
89 	unsigned int		data_cmd_enable;
90 	unsigned int		datactrl_mask_ddrmode;
91 	unsigned int		datactrl_mask_sdio;
92 	bool			st_sdio;
93 	bool			st_clkdiv;
94 	bool			blksz_datactrl16;
95 	bool			blksz_datactrl4;
96 	u32			pwrreg_powerup;
97 	u32			f_max;
98 	bool			signal_direction;
99 	bool			pwrreg_clkgate;
100 	bool			busy_detect;
101 	bool			pwrreg_nopower;
102 	bool			explicit_mclk_control;
103 	bool			qcom_fifo;
104 	bool			qcom_dml;
105 	bool			reversed_irq_handling;
106 };
107 
108 static struct variant_data variant_arm = {
109 	.fifosize		= 16 * 4,
110 	.fifohalfsize		= 8 * 4,
111 	.datalength_bits	= 16,
112 	.pwrreg_powerup		= MCI_PWR_UP,
113 	.f_max			= 100000000,
114 	.reversed_irq_handling	= true,
115 };
116 
117 static struct variant_data variant_arm_extended_fifo = {
118 	.fifosize		= 128 * 4,
119 	.fifohalfsize		= 64 * 4,
120 	.datalength_bits	= 16,
121 	.pwrreg_powerup		= MCI_PWR_UP,
122 	.f_max			= 100000000,
123 };
124 
125 static struct variant_data variant_arm_extended_fifo_hwfc = {
126 	.fifosize		= 128 * 4,
127 	.fifohalfsize		= 64 * 4,
128 	.clkreg_enable		= MCI_ARM_HWFCEN,
129 	.datalength_bits	= 16,
130 	.pwrreg_powerup		= MCI_PWR_UP,
131 	.f_max			= 100000000,
132 };
133 
134 static struct variant_data variant_u300 = {
135 	.fifosize		= 16 * 4,
136 	.fifohalfsize		= 8 * 4,
137 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
138 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 	.datalength_bits	= 16,
140 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
141 	.st_sdio			= true,
142 	.pwrreg_powerup		= MCI_PWR_ON,
143 	.f_max			= 100000000,
144 	.signal_direction	= true,
145 	.pwrreg_clkgate		= true,
146 	.pwrreg_nopower		= true,
147 };
148 
149 static struct variant_data variant_nomadik = {
150 	.fifosize		= 16 * 4,
151 	.fifohalfsize		= 8 * 4,
152 	.clkreg			= MCI_CLK_ENABLE,
153 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
154 	.datalength_bits	= 24,
155 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
156 	.st_sdio		= true,
157 	.st_clkdiv		= true,
158 	.pwrreg_powerup		= MCI_PWR_ON,
159 	.f_max			= 100000000,
160 	.signal_direction	= true,
161 	.pwrreg_clkgate		= true,
162 	.pwrreg_nopower		= true,
163 };
164 
165 static struct variant_data variant_ux500 = {
166 	.fifosize		= 30 * 4,
167 	.fifohalfsize		= 8 * 4,
168 	.clkreg			= MCI_CLK_ENABLE,
169 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
170 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
172 	.datalength_bits	= 24,
173 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
174 	.st_sdio		= true,
175 	.st_clkdiv		= true,
176 	.pwrreg_powerup		= MCI_PWR_ON,
177 	.f_max			= 100000000,
178 	.signal_direction	= true,
179 	.pwrreg_clkgate		= true,
180 	.busy_detect		= true,
181 	.pwrreg_nopower		= true,
182 };
183 
184 static struct variant_data variant_ux500v2 = {
185 	.fifosize		= 30 * 4,
186 	.fifohalfsize		= 8 * 4,
187 	.clkreg			= MCI_CLK_ENABLE,
188 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
189 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
191 	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
192 	.datalength_bits	= 24,
193 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
194 	.st_sdio		= true,
195 	.st_clkdiv		= true,
196 	.blksz_datactrl16	= true,
197 	.pwrreg_powerup		= MCI_PWR_ON,
198 	.f_max			= 100000000,
199 	.signal_direction	= true,
200 	.pwrreg_clkgate		= true,
201 	.busy_detect		= true,
202 	.pwrreg_nopower		= true,
203 };
204 
205 static struct variant_data variant_qcom = {
206 	.fifosize		= 16 * 4,
207 	.fifohalfsize		= 8 * 4,
208 	.clkreg			= MCI_CLK_ENABLE,
209 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
210 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 	.data_cmd_enable	= MCI_QCOM_CSPM_DATCMD,
214 	.blksz_datactrl4	= true,
215 	.datalength_bits	= 24,
216 	.pwrreg_powerup		= MCI_PWR_UP,
217 	.f_max			= 208000000,
218 	.explicit_mclk_control	= true,
219 	.qcom_fifo		= true,
220 	.qcom_dml		= true,
221 };
222 
223 static int mmci_card_busy(struct mmc_host *mmc)
224 {
225 	struct mmci_host *host = mmc_priv(mmc);
226 	unsigned long flags;
227 	int busy = 0;
228 
229 	spin_lock_irqsave(&host->lock, flags);
230 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
231 		busy = 1;
232 	spin_unlock_irqrestore(&host->lock, flags);
233 
234 	return busy;
235 }
236 
237 /*
238  * Validate mmc prerequisites
239  */
240 static int mmci_validate_data(struct mmci_host *host,
241 			      struct mmc_data *data)
242 {
243 	if (!data)
244 		return 0;
245 
246 	if (!is_power_of_2(data->blksz)) {
247 		dev_err(mmc_dev(host->mmc),
248 			"unsupported block size (%d bytes)\n", data->blksz);
249 		return -EINVAL;
250 	}
251 
252 	return 0;
253 }
254 
255 static void mmci_reg_delay(struct mmci_host *host)
256 {
257 	/*
258 	 * According to the spec, at least three feedback clock cycles
259 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
260 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
261 	 * Worst delay time during card init is at 100 kHz => 30 us.
262 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
263 	 */
264 	if (host->cclk < 25000000)
265 		udelay(30);
266 	else
267 		ndelay(120);
268 }
269 
270 /*
271  * This must be called with host->lock held
272  */
273 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
274 {
275 	if (host->clk_reg != clk) {
276 		host->clk_reg = clk;
277 		writel(clk, host->base + MMCICLOCK);
278 	}
279 }
280 
281 /*
282  * This must be called with host->lock held
283  */
284 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
285 {
286 	if (host->pwr_reg != pwr) {
287 		host->pwr_reg = pwr;
288 		writel(pwr, host->base + MMCIPOWER);
289 	}
290 }
291 
292 /*
293  * This must be called with host->lock held
294  */
295 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
296 {
297 	/* Keep ST Micro busy mode if enabled */
298 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
299 
300 	if (host->datactrl_reg != datactrl) {
301 		host->datactrl_reg = datactrl;
302 		writel(datactrl, host->base + MMCIDATACTRL);
303 	}
304 }
305 
306 /*
307  * This must be called with host->lock held
308  */
309 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
310 {
311 	struct variant_data *variant = host->variant;
312 	u32 clk = variant->clkreg;
313 
314 	/* Make sure cclk reflects the current calculated clock */
315 	host->cclk = 0;
316 
317 	if (desired) {
318 		if (variant->explicit_mclk_control) {
319 			host->cclk = host->mclk;
320 		} else if (desired >= host->mclk) {
321 			clk = MCI_CLK_BYPASS;
322 			if (variant->st_clkdiv)
323 				clk |= MCI_ST_UX500_NEG_EDGE;
324 			host->cclk = host->mclk;
325 		} else if (variant->st_clkdiv) {
326 			/*
327 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
328 			 * => clkdiv = (mclk / f) - 2
329 			 * Round the divider up so we don't exceed the max
330 			 * frequency
331 			 */
332 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
333 			if (clk >= 256)
334 				clk = 255;
335 			host->cclk = host->mclk / (clk + 2);
336 		} else {
337 			/*
338 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
339 			 * => clkdiv = mclk / (2 * f) - 1
340 			 */
341 			clk = host->mclk / (2 * desired) - 1;
342 			if (clk >= 256)
343 				clk = 255;
344 			host->cclk = host->mclk / (2 * (clk + 1));
345 		}
346 
347 		clk |= variant->clkreg_enable;
348 		clk |= MCI_CLK_ENABLE;
349 		/* This hasn't proven to be worthwhile */
350 		/* clk |= MCI_CLK_PWRSAVE; */
351 	}
352 
353 	/* Set actual clock for debug */
354 	host->mmc->actual_clock = host->cclk;
355 
356 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
357 		clk |= MCI_4BIT_BUS;
358 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
359 		clk |= variant->clkreg_8bit_bus_enable;
360 
361 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
362 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
363 		clk |= variant->clkreg_neg_edge_enable;
364 
365 	mmci_write_clkreg(host, clk);
366 }
367 
368 static void
369 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
370 {
371 	writel(0, host->base + MMCICOMMAND);
372 
373 	BUG_ON(host->data);
374 
375 	host->mrq = NULL;
376 	host->cmd = NULL;
377 
378 	mmc_request_done(host->mmc, mrq);
379 }
380 
381 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
382 {
383 	void __iomem *base = host->base;
384 
385 	if (host->singleirq) {
386 		unsigned int mask0 = readl(base + MMCIMASK0);
387 
388 		mask0 &= ~MCI_IRQ1MASK;
389 		mask0 |= mask;
390 
391 		writel(mask0, base + MMCIMASK0);
392 	}
393 
394 	writel(mask, base + MMCIMASK1);
395 }
396 
397 static void mmci_stop_data(struct mmci_host *host)
398 {
399 	mmci_write_datactrlreg(host, 0);
400 	mmci_set_mask1(host, 0);
401 	host->data = NULL;
402 }
403 
404 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
405 {
406 	unsigned int flags = SG_MITER_ATOMIC;
407 
408 	if (data->flags & MMC_DATA_READ)
409 		flags |= SG_MITER_TO_SG;
410 	else
411 		flags |= SG_MITER_FROM_SG;
412 
413 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
414 }
415 
416 /*
417  * All the DMA operation mode stuff goes inside this ifdef.
418  * This assumes that you have a generic DMA device interface,
419  * no custom DMA interfaces are supported.
420  */
421 #ifdef CONFIG_DMA_ENGINE
422 static void mmci_dma_setup(struct mmci_host *host)
423 {
424 	const char *rxname, *txname;
425 	struct variant_data *variant = host->variant;
426 
427 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
428 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
429 
430 	/* initialize pre request cookie */
431 	host->next_data.cookie = 1;
432 
433 	/*
434 	 * If only an RX channel is specified, the driver will
435 	 * attempt to use it bidirectionally, however if it is
436 	 * is specified but cannot be located, DMA will be disabled.
437 	 */
438 	if (host->dma_rx_channel && !host->dma_tx_channel)
439 		host->dma_tx_channel = host->dma_rx_channel;
440 
441 	if (host->dma_rx_channel)
442 		rxname = dma_chan_name(host->dma_rx_channel);
443 	else
444 		rxname = "none";
445 
446 	if (host->dma_tx_channel)
447 		txname = dma_chan_name(host->dma_tx_channel);
448 	else
449 		txname = "none";
450 
451 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
452 		 rxname, txname);
453 
454 	/*
455 	 * Limit the maximum segment size in any SG entry according to
456 	 * the parameters of the DMA engine device.
457 	 */
458 	if (host->dma_tx_channel) {
459 		struct device *dev = host->dma_tx_channel->device->dev;
460 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
461 
462 		if (max_seg_size < host->mmc->max_seg_size)
463 			host->mmc->max_seg_size = max_seg_size;
464 	}
465 	if (host->dma_rx_channel) {
466 		struct device *dev = host->dma_rx_channel->device->dev;
467 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
468 
469 		if (max_seg_size < host->mmc->max_seg_size)
470 			host->mmc->max_seg_size = max_seg_size;
471 	}
472 
473 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
474 		if (dml_hw_init(host, host->mmc->parent->of_node))
475 			variant->qcom_dml = false;
476 }
477 
478 /*
479  * This is used in or so inline it
480  * so it can be discarded.
481  */
482 static inline void mmci_dma_release(struct mmci_host *host)
483 {
484 	if (host->dma_rx_channel)
485 		dma_release_channel(host->dma_rx_channel);
486 	if (host->dma_tx_channel)
487 		dma_release_channel(host->dma_tx_channel);
488 	host->dma_rx_channel = host->dma_tx_channel = NULL;
489 }
490 
491 static void mmci_dma_data_error(struct mmci_host *host)
492 {
493 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
494 	dmaengine_terminate_all(host->dma_current);
495 	host->dma_current = NULL;
496 	host->dma_desc_current = NULL;
497 	host->data->host_cookie = 0;
498 }
499 
500 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
501 {
502 	struct dma_chan *chan;
503 	enum dma_data_direction dir;
504 
505 	if (data->flags & MMC_DATA_READ) {
506 		dir = DMA_FROM_DEVICE;
507 		chan = host->dma_rx_channel;
508 	} else {
509 		dir = DMA_TO_DEVICE;
510 		chan = host->dma_tx_channel;
511 	}
512 
513 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
514 }
515 
516 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
517 {
518 	u32 status;
519 	int i;
520 
521 	/* Wait up to 1ms for the DMA to complete */
522 	for (i = 0; ; i++) {
523 		status = readl(host->base + MMCISTATUS);
524 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
525 			break;
526 		udelay(10);
527 	}
528 
529 	/*
530 	 * Check to see whether we still have some data left in the FIFO -
531 	 * this catches DMA controllers which are unable to monitor the
532 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
533 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
534 	 */
535 	if (status & MCI_RXDATAAVLBLMASK) {
536 		mmci_dma_data_error(host);
537 		if (!data->error)
538 			data->error = -EIO;
539 	}
540 
541 	if (!data->host_cookie)
542 		mmci_dma_unmap(host, data);
543 
544 	/*
545 	 * Use of DMA with scatter-gather is impossible.
546 	 * Give up with DMA and switch back to PIO mode.
547 	 */
548 	if (status & MCI_RXDATAAVLBLMASK) {
549 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
550 		mmci_dma_release(host);
551 	}
552 
553 	host->dma_current = NULL;
554 	host->dma_desc_current = NULL;
555 }
556 
557 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
558 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
559 				struct dma_chan **dma_chan,
560 				struct dma_async_tx_descriptor **dma_desc)
561 {
562 	struct variant_data *variant = host->variant;
563 	struct dma_slave_config conf = {
564 		.src_addr = host->phybase + MMCIFIFO,
565 		.dst_addr = host->phybase + MMCIFIFO,
566 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
567 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
568 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
569 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
570 		.device_fc = false,
571 	};
572 	struct dma_chan *chan;
573 	struct dma_device *device;
574 	struct dma_async_tx_descriptor *desc;
575 	enum dma_data_direction buffer_dirn;
576 	int nr_sg;
577 	unsigned long flags = DMA_CTRL_ACK;
578 
579 	if (data->flags & MMC_DATA_READ) {
580 		conf.direction = DMA_DEV_TO_MEM;
581 		buffer_dirn = DMA_FROM_DEVICE;
582 		chan = host->dma_rx_channel;
583 	} else {
584 		conf.direction = DMA_MEM_TO_DEV;
585 		buffer_dirn = DMA_TO_DEVICE;
586 		chan = host->dma_tx_channel;
587 	}
588 
589 	/* If there's no DMA channel, fall back to PIO */
590 	if (!chan)
591 		return -EINVAL;
592 
593 	/* If less than or equal to the fifo size, don't bother with DMA */
594 	if (data->blksz * data->blocks <= variant->fifosize)
595 		return -EINVAL;
596 
597 	device = chan->device;
598 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
599 	if (nr_sg == 0)
600 		return -EINVAL;
601 
602 	if (host->variant->qcom_dml)
603 		flags |= DMA_PREP_INTERRUPT;
604 
605 	dmaengine_slave_config(chan, &conf);
606 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
607 					    conf.direction, flags);
608 	if (!desc)
609 		goto unmap_exit;
610 
611 	*dma_chan = chan;
612 	*dma_desc = desc;
613 
614 	return 0;
615 
616  unmap_exit:
617 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
618 	return -ENOMEM;
619 }
620 
621 static inline int mmci_dma_prep_data(struct mmci_host *host,
622 				     struct mmc_data *data)
623 {
624 	/* Check if next job is already prepared. */
625 	if (host->dma_current && host->dma_desc_current)
626 		return 0;
627 
628 	/* No job were prepared thus do it now. */
629 	return __mmci_dma_prep_data(host, data, &host->dma_current,
630 				    &host->dma_desc_current);
631 }
632 
633 static inline int mmci_dma_prep_next(struct mmci_host *host,
634 				     struct mmc_data *data)
635 {
636 	struct mmci_host_next *nd = &host->next_data;
637 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
638 }
639 
640 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
641 {
642 	int ret;
643 	struct mmc_data *data = host->data;
644 
645 	ret = mmci_dma_prep_data(host, host->data);
646 	if (ret)
647 		return ret;
648 
649 	/* Okay, go for it. */
650 	dev_vdbg(mmc_dev(host->mmc),
651 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
652 		 data->sg_len, data->blksz, data->blocks, data->flags);
653 	dmaengine_submit(host->dma_desc_current);
654 	dma_async_issue_pending(host->dma_current);
655 
656 	if (host->variant->qcom_dml)
657 		dml_start_xfer(host, data);
658 
659 	datactrl |= MCI_DPSM_DMAENABLE;
660 
661 	/* Trigger the DMA transfer */
662 	mmci_write_datactrlreg(host, datactrl);
663 
664 	/*
665 	 * Let the MMCI say when the data is ended and it's time
666 	 * to fire next DMA request. When that happens, MMCI will
667 	 * call mmci_data_end()
668 	 */
669 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
670 	       host->base + MMCIMASK0);
671 	return 0;
672 }
673 
674 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
675 {
676 	struct mmci_host_next *next = &host->next_data;
677 
678 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
679 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
680 
681 	host->dma_desc_current = next->dma_desc;
682 	host->dma_current = next->dma_chan;
683 	next->dma_desc = NULL;
684 	next->dma_chan = NULL;
685 }
686 
687 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
688 			     bool is_first_req)
689 {
690 	struct mmci_host *host = mmc_priv(mmc);
691 	struct mmc_data *data = mrq->data;
692 	struct mmci_host_next *nd = &host->next_data;
693 
694 	if (!data)
695 		return;
696 
697 	BUG_ON(data->host_cookie);
698 
699 	if (mmci_validate_data(host, data))
700 		return;
701 
702 	if (!mmci_dma_prep_next(host, data))
703 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
704 }
705 
706 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
707 			      int err)
708 {
709 	struct mmci_host *host = mmc_priv(mmc);
710 	struct mmc_data *data = mrq->data;
711 
712 	if (!data || !data->host_cookie)
713 		return;
714 
715 	mmci_dma_unmap(host, data);
716 
717 	if (err) {
718 		struct mmci_host_next *next = &host->next_data;
719 		struct dma_chan *chan;
720 		if (data->flags & MMC_DATA_READ)
721 			chan = host->dma_rx_channel;
722 		else
723 			chan = host->dma_tx_channel;
724 		dmaengine_terminate_all(chan);
725 
726 		if (host->dma_desc_current == next->dma_desc)
727 			host->dma_desc_current = NULL;
728 
729 		if (host->dma_current == next->dma_chan)
730 			host->dma_current = NULL;
731 
732 		next->dma_desc = NULL;
733 		next->dma_chan = NULL;
734 		data->host_cookie = 0;
735 	}
736 }
737 
738 #else
739 /* Blank functions if the DMA engine is not available */
740 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741 {
742 }
743 static inline void mmci_dma_setup(struct mmci_host *host)
744 {
745 }
746 
747 static inline void mmci_dma_release(struct mmci_host *host)
748 {
749 }
750 
751 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
752 {
753 }
754 
755 static inline void mmci_dma_finalize(struct mmci_host *host,
756 				     struct mmc_data *data)
757 {
758 }
759 
760 static inline void mmci_dma_data_error(struct mmci_host *host)
761 {
762 }
763 
764 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
765 {
766 	return -ENOSYS;
767 }
768 
769 #define mmci_pre_request NULL
770 #define mmci_post_request NULL
771 
772 #endif
773 
774 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
775 {
776 	struct variant_data *variant = host->variant;
777 	unsigned int datactrl, timeout, irqmask;
778 	unsigned long long clks;
779 	void __iomem *base;
780 	int blksz_bits;
781 
782 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
783 		data->blksz, data->blocks, data->flags);
784 
785 	host->data = data;
786 	host->size = data->blksz * data->blocks;
787 	data->bytes_xfered = 0;
788 
789 	clks = (unsigned long long)data->timeout_ns * host->cclk;
790 	do_div(clks, NSEC_PER_SEC);
791 
792 	timeout = data->timeout_clks + (unsigned int)clks;
793 
794 	base = host->base;
795 	writel(timeout, base + MMCIDATATIMER);
796 	writel(host->size, base + MMCIDATALENGTH);
797 
798 	blksz_bits = ffs(data->blksz) - 1;
799 	BUG_ON(1 << blksz_bits != data->blksz);
800 
801 	if (variant->blksz_datactrl16)
802 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
803 	else if (variant->blksz_datactrl4)
804 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
805 	else
806 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
807 
808 	if (data->flags & MMC_DATA_READ)
809 		datactrl |= MCI_DPSM_DIRECTION;
810 
811 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
812 		u32 clk;
813 
814 		datactrl |= variant->datactrl_mask_sdio;
815 
816 		/*
817 		 * The ST Micro variant for SDIO small write transfers
818 		 * needs to have clock H/W flow control disabled,
819 		 * otherwise the transfer will not start. The threshold
820 		 * depends on the rate of MCLK.
821 		 */
822 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
823 		    (host->size < 8 ||
824 		     (host->size <= 8 && host->mclk > 50000000)))
825 			clk = host->clk_reg & ~variant->clkreg_enable;
826 		else
827 			clk = host->clk_reg | variant->clkreg_enable;
828 
829 		mmci_write_clkreg(host, clk);
830 	}
831 
832 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
833 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
834 		datactrl |= variant->datactrl_mask_ddrmode;
835 
836 	/*
837 	 * Attempt to use DMA operation mode, if this
838 	 * should fail, fall back to PIO mode
839 	 */
840 	if (!mmci_dma_start_data(host, datactrl))
841 		return;
842 
843 	/* IRQ mode, map the SG list for CPU reading/writing */
844 	mmci_init_sg(host, data);
845 
846 	if (data->flags & MMC_DATA_READ) {
847 		irqmask = MCI_RXFIFOHALFFULLMASK;
848 
849 		/*
850 		 * If we have less than the fifo 'half-full' threshold to
851 		 * transfer, trigger a PIO interrupt as soon as any data
852 		 * is available.
853 		 */
854 		if (host->size < variant->fifohalfsize)
855 			irqmask |= MCI_RXDATAAVLBLMASK;
856 	} else {
857 		/*
858 		 * We don't actually need to include "FIFO empty" here
859 		 * since its implicit in "FIFO half empty".
860 		 */
861 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
862 	}
863 
864 	mmci_write_datactrlreg(host, datactrl);
865 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
866 	mmci_set_mask1(host, irqmask);
867 }
868 
869 static void
870 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
871 {
872 	void __iomem *base = host->base;
873 
874 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
875 	    cmd->opcode, cmd->arg, cmd->flags);
876 
877 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
878 		writel(0, base + MMCICOMMAND);
879 		mmci_reg_delay(host);
880 	}
881 
882 	c |= cmd->opcode | MCI_CPSM_ENABLE;
883 	if (cmd->flags & MMC_RSP_PRESENT) {
884 		if (cmd->flags & MMC_RSP_136)
885 			c |= MCI_CPSM_LONGRSP;
886 		c |= MCI_CPSM_RESPONSE;
887 	}
888 	if (/*interrupt*/0)
889 		c |= MCI_CPSM_INTERRUPT;
890 
891 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
892 		c |= host->variant->data_cmd_enable;
893 
894 	host->cmd = cmd;
895 
896 	writel(cmd->arg, base + MMCIARGUMENT);
897 	writel(c, base + MMCICOMMAND);
898 }
899 
900 static void
901 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
902 	      unsigned int status)
903 {
904 	/* Make sure we have data to handle */
905 	if (!data)
906 		return;
907 
908 	/* First check for errors */
909 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
910 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
911 		u32 remain, success;
912 
913 		/* Terminate the DMA transfer */
914 		if (dma_inprogress(host)) {
915 			mmci_dma_data_error(host);
916 			mmci_dma_unmap(host, data);
917 		}
918 
919 		/*
920 		 * Calculate how far we are into the transfer.  Note that
921 		 * the data counter gives the number of bytes transferred
922 		 * on the MMC bus, not on the host side.  On reads, this
923 		 * can be as much as a FIFO-worth of data ahead.  This
924 		 * matters for FIFO overruns only.
925 		 */
926 		remain = readl(host->base + MMCIDATACNT);
927 		success = data->blksz * data->blocks - remain;
928 
929 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
930 			status, success);
931 		if (status & MCI_DATACRCFAIL) {
932 			/* Last block was not successful */
933 			success -= 1;
934 			data->error = -EILSEQ;
935 		} else if (status & MCI_DATATIMEOUT) {
936 			data->error = -ETIMEDOUT;
937 		} else if (status & MCI_STARTBITERR) {
938 			data->error = -ECOMM;
939 		} else if (status & MCI_TXUNDERRUN) {
940 			data->error = -EIO;
941 		} else if (status & MCI_RXOVERRUN) {
942 			if (success > host->variant->fifosize)
943 				success -= host->variant->fifosize;
944 			else
945 				success = 0;
946 			data->error = -EIO;
947 		}
948 		data->bytes_xfered = round_down(success, data->blksz);
949 	}
950 
951 	if (status & MCI_DATABLOCKEND)
952 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
953 
954 	if (status & MCI_DATAEND || data->error) {
955 		if (dma_inprogress(host))
956 			mmci_dma_finalize(host, data);
957 		mmci_stop_data(host);
958 
959 		if (!data->error)
960 			/* The error clause is handled above, success! */
961 			data->bytes_xfered = data->blksz * data->blocks;
962 
963 		if (!data->stop || host->mrq->sbc) {
964 			mmci_request_end(host, data->mrq);
965 		} else {
966 			mmci_start_command(host, data->stop, 0);
967 		}
968 	}
969 }
970 
971 static void
972 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
973 	     unsigned int status)
974 {
975 	void __iomem *base = host->base;
976 	bool sbc, busy_resp;
977 
978 	if (!cmd)
979 		return;
980 
981 	sbc = (cmd == host->mrq->sbc);
982 	busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
983 
984 	if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
985 		MCI_CMDSENT|MCI_CMDRESPEND)))
986 		return;
987 
988 	/* Check if we need to wait for busy completion. */
989 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
990 		return;
991 
992 	/* Enable busy completion if needed and supported. */
993 	if (!host->busy_status && busy_resp &&
994 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
995 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
996 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
997 			base + MMCIMASK0);
998 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
999 		return;
1000 	}
1001 
1002 	/* At busy completion, mask the IRQ and complete the request. */
1003 	if (host->busy_status) {
1004 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1005 			base + MMCIMASK0);
1006 		host->busy_status = 0;
1007 	}
1008 
1009 	host->cmd = NULL;
1010 
1011 	if (status & MCI_CMDTIMEOUT) {
1012 		cmd->error = -ETIMEDOUT;
1013 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1014 		cmd->error = -EILSEQ;
1015 	} else {
1016 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1017 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1018 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1019 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1020 	}
1021 
1022 	if ((!sbc && !cmd->data) || cmd->error) {
1023 		if (host->data) {
1024 			/* Terminate the DMA transfer */
1025 			if (dma_inprogress(host)) {
1026 				mmci_dma_data_error(host);
1027 				mmci_dma_unmap(host, host->data);
1028 			}
1029 			mmci_stop_data(host);
1030 		}
1031 		mmci_request_end(host, host->mrq);
1032 	} else if (sbc) {
1033 		mmci_start_command(host, host->mrq->cmd, 0);
1034 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1035 		mmci_start_data(host, cmd->data);
1036 	}
1037 }
1038 
1039 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1040 {
1041 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1042 }
1043 
1044 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1045 {
1046 	/*
1047 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1048 	 * from the fifo range should be used
1049 	 */
1050 	if (status & MCI_RXFIFOHALFFULL)
1051 		return host->variant->fifohalfsize;
1052 	else if (status & MCI_RXDATAAVLBL)
1053 		return 4;
1054 
1055 	return 0;
1056 }
1057 
1058 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1059 {
1060 	void __iomem *base = host->base;
1061 	char *ptr = buffer;
1062 	u32 status = readl(host->base + MMCISTATUS);
1063 	int host_remain = host->size;
1064 
1065 	do {
1066 		int count = host->get_rx_fifocnt(host, status, host_remain);
1067 
1068 		if (count > remain)
1069 			count = remain;
1070 
1071 		if (count <= 0)
1072 			break;
1073 
1074 		/*
1075 		 * SDIO especially may want to send something that is
1076 		 * not divisible by 4 (as opposed to card sectors
1077 		 * etc). Therefore make sure to always read the last bytes
1078 		 * while only doing full 32-bit reads towards the FIFO.
1079 		 */
1080 		if (unlikely(count & 0x3)) {
1081 			if (count < 4) {
1082 				unsigned char buf[4];
1083 				ioread32_rep(base + MMCIFIFO, buf, 1);
1084 				memcpy(ptr, buf, count);
1085 			} else {
1086 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1087 				count &= ~0x3;
1088 			}
1089 		} else {
1090 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1091 		}
1092 
1093 		ptr += count;
1094 		remain -= count;
1095 		host_remain -= count;
1096 
1097 		if (remain == 0)
1098 			break;
1099 
1100 		status = readl(base + MMCISTATUS);
1101 	} while (status & MCI_RXDATAAVLBL);
1102 
1103 	return ptr - buffer;
1104 }
1105 
1106 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1107 {
1108 	struct variant_data *variant = host->variant;
1109 	void __iomem *base = host->base;
1110 	char *ptr = buffer;
1111 
1112 	do {
1113 		unsigned int count, maxcnt;
1114 
1115 		maxcnt = status & MCI_TXFIFOEMPTY ?
1116 			 variant->fifosize : variant->fifohalfsize;
1117 		count = min(remain, maxcnt);
1118 
1119 		/*
1120 		 * SDIO especially may want to send something that is
1121 		 * not divisible by 4 (as opposed to card sectors
1122 		 * etc), and the FIFO only accept full 32-bit writes.
1123 		 * So compensate by adding +3 on the count, a single
1124 		 * byte become a 32bit write, 7 bytes will be two
1125 		 * 32bit writes etc.
1126 		 */
1127 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1128 
1129 		ptr += count;
1130 		remain -= count;
1131 
1132 		if (remain == 0)
1133 			break;
1134 
1135 		status = readl(base + MMCISTATUS);
1136 	} while (status & MCI_TXFIFOHALFEMPTY);
1137 
1138 	return ptr - buffer;
1139 }
1140 
1141 /*
1142  * PIO data transfer IRQ handler.
1143  */
1144 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1145 {
1146 	struct mmci_host *host = dev_id;
1147 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1148 	struct variant_data *variant = host->variant;
1149 	void __iomem *base = host->base;
1150 	unsigned long flags;
1151 	u32 status;
1152 
1153 	status = readl(base + MMCISTATUS);
1154 
1155 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1156 
1157 	local_irq_save(flags);
1158 
1159 	do {
1160 		unsigned int remain, len;
1161 		char *buffer;
1162 
1163 		/*
1164 		 * For write, we only need to test the half-empty flag
1165 		 * here - if the FIFO is completely empty, then by
1166 		 * definition it is more than half empty.
1167 		 *
1168 		 * For read, check for data available.
1169 		 */
1170 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1171 			break;
1172 
1173 		if (!sg_miter_next(sg_miter))
1174 			break;
1175 
1176 		buffer = sg_miter->addr;
1177 		remain = sg_miter->length;
1178 
1179 		len = 0;
1180 		if (status & MCI_RXACTIVE)
1181 			len = mmci_pio_read(host, buffer, remain);
1182 		if (status & MCI_TXACTIVE)
1183 			len = mmci_pio_write(host, buffer, remain, status);
1184 
1185 		sg_miter->consumed = len;
1186 
1187 		host->size -= len;
1188 		remain -= len;
1189 
1190 		if (remain)
1191 			break;
1192 
1193 		status = readl(base + MMCISTATUS);
1194 	} while (1);
1195 
1196 	sg_miter_stop(sg_miter);
1197 
1198 	local_irq_restore(flags);
1199 
1200 	/*
1201 	 * If we have less than the fifo 'half-full' threshold to transfer,
1202 	 * trigger a PIO interrupt as soon as any data is available.
1203 	 */
1204 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1205 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1206 
1207 	/*
1208 	 * If we run out of data, disable the data IRQs; this
1209 	 * prevents a race where the FIFO becomes empty before
1210 	 * the chip itself has disabled the data path, and
1211 	 * stops us racing with our data end IRQ.
1212 	 */
1213 	if (host->size == 0) {
1214 		mmci_set_mask1(host, 0);
1215 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1216 	}
1217 
1218 	return IRQ_HANDLED;
1219 }
1220 
1221 /*
1222  * Handle completion of command and data transfers.
1223  */
1224 static irqreturn_t mmci_irq(int irq, void *dev_id)
1225 {
1226 	struct mmci_host *host = dev_id;
1227 	u32 status;
1228 	int ret = 0;
1229 
1230 	spin_lock(&host->lock);
1231 
1232 	do {
1233 		status = readl(host->base + MMCISTATUS);
1234 
1235 		if (host->singleirq) {
1236 			if (status & readl(host->base + MMCIMASK1))
1237 				mmci_pio_irq(irq, dev_id);
1238 
1239 			status &= ~MCI_IRQ1MASK;
1240 		}
1241 
1242 		/*
1243 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1244 		 * enabled) since the HW seems to be triggering the IRQ on both
1245 		 * edges while monitoring DAT0 for busy completion.
1246 		 */
1247 		status &= readl(host->base + MMCIMASK0);
1248 		writel(status, host->base + MMCICLEAR);
1249 
1250 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1251 
1252 		if (host->variant->reversed_irq_handling) {
1253 			mmci_data_irq(host, host->data, status);
1254 			mmci_cmd_irq(host, host->cmd, status);
1255 		} else {
1256 			mmci_cmd_irq(host, host->cmd, status);
1257 			mmci_data_irq(host, host->data, status);
1258 		}
1259 
1260 		/* Don't poll for busy completion in irq context. */
1261 		if (host->busy_status)
1262 			status &= ~MCI_ST_CARDBUSY;
1263 
1264 		ret = 1;
1265 	} while (status);
1266 
1267 	spin_unlock(&host->lock);
1268 
1269 	return IRQ_RETVAL(ret);
1270 }
1271 
1272 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1273 {
1274 	struct mmci_host *host = mmc_priv(mmc);
1275 	unsigned long flags;
1276 
1277 	WARN_ON(host->mrq != NULL);
1278 
1279 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1280 	if (mrq->cmd->error) {
1281 		mmc_request_done(mmc, mrq);
1282 		return;
1283 	}
1284 
1285 	spin_lock_irqsave(&host->lock, flags);
1286 
1287 	host->mrq = mrq;
1288 
1289 	if (mrq->data)
1290 		mmci_get_next_data(host, mrq->data);
1291 
1292 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1293 		mmci_start_data(host, mrq->data);
1294 
1295 	if (mrq->sbc)
1296 		mmci_start_command(host, mrq->sbc, 0);
1297 	else
1298 		mmci_start_command(host, mrq->cmd, 0);
1299 
1300 	spin_unlock_irqrestore(&host->lock, flags);
1301 }
1302 
1303 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1304 {
1305 	struct mmci_host *host = mmc_priv(mmc);
1306 	struct variant_data *variant = host->variant;
1307 	u32 pwr = 0;
1308 	unsigned long flags;
1309 	int ret;
1310 
1311 	if (host->plat->ios_handler &&
1312 		host->plat->ios_handler(mmc_dev(mmc), ios))
1313 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1314 
1315 	switch (ios->power_mode) {
1316 	case MMC_POWER_OFF:
1317 		if (!IS_ERR(mmc->supply.vmmc))
1318 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1319 
1320 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1321 			regulator_disable(mmc->supply.vqmmc);
1322 			host->vqmmc_enabled = false;
1323 		}
1324 
1325 		break;
1326 	case MMC_POWER_UP:
1327 		if (!IS_ERR(mmc->supply.vmmc))
1328 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1329 
1330 		/*
1331 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1332 		 * and instead uses MCI_PWR_ON so apply whatever value is
1333 		 * configured in the variant data.
1334 		 */
1335 		pwr |= variant->pwrreg_powerup;
1336 
1337 		break;
1338 	case MMC_POWER_ON:
1339 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1340 			ret = regulator_enable(mmc->supply.vqmmc);
1341 			if (ret < 0)
1342 				dev_err(mmc_dev(mmc),
1343 					"failed to enable vqmmc regulator\n");
1344 			else
1345 				host->vqmmc_enabled = true;
1346 		}
1347 
1348 		pwr |= MCI_PWR_ON;
1349 		break;
1350 	}
1351 
1352 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1353 		/*
1354 		 * The ST Micro variant has some additional bits
1355 		 * indicating signal direction for the signals in
1356 		 * the SD/MMC bus and feedback-clock usage.
1357 		 */
1358 		pwr |= host->pwr_reg_add;
1359 
1360 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1361 			pwr &= ~MCI_ST_DATA74DIREN;
1362 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1363 			pwr &= (~MCI_ST_DATA74DIREN &
1364 				~MCI_ST_DATA31DIREN &
1365 				~MCI_ST_DATA2DIREN);
1366 	}
1367 
1368 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1369 		if (host->hw_designer != AMBA_VENDOR_ST)
1370 			pwr |= MCI_ROD;
1371 		else {
1372 			/*
1373 			 * The ST Micro variant use the ROD bit for something
1374 			 * else and only has OD (Open Drain).
1375 			 */
1376 			pwr |= MCI_OD;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1382 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1383 	 */
1384 	if (!ios->clock && variant->pwrreg_clkgate)
1385 		pwr &= ~MCI_PWR_ON;
1386 
1387 	if (host->variant->explicit_mclk_control &&
1388 	    ios->clock != host->clock_cache) {
1389 		ret = clk_set_rate(host->clk, ios->clock);
1390 		if (ret < 0)
1391 			dev_err(mmc_dev(host->mmc),
1392 				"Error setting clock rate (%d)\n", ret);
1393 		else
1394 			host->mclk = clk_get_rate(host->clk);
1395 	}
1396 	host->clock_cache = ios->clock;
1397 
1398 	spin_lock_irqsave(&host->lock, flags);
1399 
1400 	mmci_set_clkreg(host, ios->clock);
1401 	mmci_write_pwrreg(host, pwr);
1402 	mmci_reg_delay(host);
1403 
1404 	spin_unlock_irqrestore(&host->lock, flags);
1405 }
1406 
1407 static int mmci_get_cd(struct mmc_host *mmc)
1408 {
1409 	struct mmci_host *host = mmc_priv(mmc);
1410 	struct mmci_platform_data *plat = host->plat;
1411 	unsigned int status = mmc_gpio_get_cd(mmc);
1412 
1413 	if (status == -ENOSYS) {
1414 		if (!plat->status)
1415 			return 1; /* Assume always present */
1416 
1417 		status = plat->status(mmc_dev(host->mmc));
1418 	}
1419 	return status;
1420 }
1421 
1422 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1423 {
1424 	int ret = 0;
1425 
1426 	if (!IS_ERR(mmc->supply.vqmmc)) {
1427 
1428 		switch (ios->signal_voltage) {
1429 		case MMC_SIGNAL_VOLTAGE_330:
1430 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1431 						2700000, 3600000);
1432 			break;
1433 		case MMC_SIGNAL_VOLTAGE_180:
1434 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1435 						1700000, 1950000);
1436 			break;
1437 		case MMC_SIGNAL_VOLTAGE_120:
1438 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1439 						1100000, 1300000);
1440 			break;
1441 		}
1442 
1443 		if (ret)
1444 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1445 	}
1446 
1447 	return ret;
1448 }
1449 
1450 static struct mmc_host_ops mmci_ops = {
1451 	.request	= mmci_request,
1452 	.pre_req	= mmci_pre_request,
1453 	.post_req	= mmci_post_request,
1454 	.set_ios	= mmci_set_ios,
1455 	.get_ro		= mmc_gpio_get_ro,
1456 	.get_cd		= mmci_get_cd,
1457 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1458 };
1459 
1460 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1461 {
1462 	struct mmci_host *host = mmc_priv(mmc);
1463 	int ret = mmc_of_parse(mmc);
1464 
1465 	if (ret)
1466 		return ret;
1467 
1468 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1469 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1470 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1471 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1472 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1473 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1474 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1475 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1476 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1477 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1478 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1479 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1480 
1481 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1482 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1483 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1484 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1485 
1486 	return 0;
1487 }
1488 
1489 static int mmci_probe(struct amba_device *dev,
1490 	const struct amba_id *id)
1491 {
1492 	struct mmci_platform_data *plat = dev->dev.platform_data;
1493 	struct device_node *np = dev->dev.of_node;
1494 	struct variant_data *variant = id->data;
1495 	struct mmci_host *host;
1496 	struct mmc_host *mmc;
1497 	int ret;
1498 
1499 	/* Must have platform data or Device Tree. */
1500 	if (!plat && !np) {
1501 		dev_err(&dev->dev, "No plat data or DT found\n");
1502 		return -EINVAL;
1503 	}
1504 
1505 	if (!plat) {
1506 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1507 		if (!plat)
1508 			return -ENOMEM;
1509 	}
1510 
1511 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1512 	if (!mmc)
1513 		return -ENOMEM;
1514 
1515 	ret = mmci_of_parse(np, mmc);
1516 	if (ret)
1517 		goto host_free;
1518 
1519 	host = mmc_priv(mmc);
1520 	host->mmc = mmc;
1521 
1522 	host->hw_designer = amba_manf(dev);
1523 	host->hw_revision = amba_rev(dev);
1524 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1525 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1526 
1527 	host->clk = devm_clk_get(&dev->dev, NULL);
1528 	if (IS_ERR(host->clk)) {
1529 		ret = PTR_ERR(host->clk);
1530 		goto host_free;
1531 	}
1532 
1533 	ret = clk_prepare_enable(host->clk);
1534 	if (ret)
1535 		goto host_free;
1536 
1537 	if (variant->qcom_fifo)
1538 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1539 	else
1540 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1541 
1542 	host->plat = plat;
1543 	host->variant = variant;
1544 	host->mclk = clk_get_rate(host->clk);
1545 	/*
1546 	 * According to the spec, mclk is max 100 MHz,
1547 	 * so we try to adjust the clock down to this,
1548 	 * (if possible).
1549 	 */
1550 	if (host->mclk > variant->f_max) {
1551 		ret = clk_set_rate(host->clk, variant->f_max);
1552 		if (ret < 0)
1553 			goto clk_disable;
1554 		host->mclk = clk_get_rate(host->clk);
1555 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1556 			host->mclk);
1557 	}
1558 
1559 	host->phybase = dev->res.start;
1560 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1561 	if (IS_ERR(host->base)) {
1562 		ret = PTR_ERR(host->base);
1563 		goto clk_disable;
1564 	}
1565 
1566 	/*
1567 	 * The ARM and ST versions of the block have slightly different
1568 	 * clock divider equations which means that the minimum divider
1569 	 * differs too.
1570 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1571 	 */
1572 	if (variant->st_clkdiv)
1573 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1574 	else if (variant->explicit_mclk_control)
1575 		mmc->f_min = clk_round_rate(host->clk, 100000);
1576 	else
1577 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1578 	/*
1579 	 * If no maximum operating frequency is supplied, fall back to use
1580 	 * the module parameter, which has a (low) default value in case it
1581 	 * is not specified. Either value must not exceed the clock rate into
1582 	 * the block, of course.
1583 	 */
1584 	if (mmc->f_max)
1585 		mmc->f_max = variant->explicit_mclk_control ?
1586 				min(variant->f_max, mmc->f_max) :
1587 				min(host->mclk, mmc->f_max);
1588 	else
1589 		mmc->f_max = variant->explicit_mclk_control ?
1590 				fmax : min(host->mclk, fmax);
1591 
1592 
1593 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1594 
1595 	/* Get regulators and the supported OCR mask */
1596 	ret = mmc_regulator_get_supply(mmc);
1597 	if (ret == -EPROBE_DEFER)
1598 		goto clk_disable;
1599 
1600 	if (!mmc->ocr_avail)
1601 		mmc->ocr_avail = plat->ocr_mask;
1602 	else if (plat->ocr_mask)
1603 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1604 
1605 	/* DT takes precedence over platform data. */
1606 	if (!np) {
1607 		if (!plat->cd_invert)
1608 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1609 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1610 	}
1611 
1612 	/* We support these capabilities. */
1613 	mmc->caps |= MMC_CAP_CMD23;
1614 
1615 	if (variant->busy_detect) {
1616 		mmci_ops.card_busy = mmci_card_busy;
1617 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1618 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1619 		mmc->max_busy_timeout = 0;
1620 	}
1621 
1622 	mmc->ops = &mmci_ops;
1623 
1624 	/* We support these PM capabilities. */
1625 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1626 
1627 	/*
1628 	 * We can do SGIO
1629 	 */
1630 	mmc->max_segs = NR_SG;
1631 
1632 	/*
1633 	 * Since only a certain number of bits are valid in the data length
1634 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1635 	 * single request.
1636 	 */
1637 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1638 
1639 	/*
1640 	 * Set the maximum segment size.  Since we aren't doing DMA
1641 	 * (yet) we are only limited by the data length register.
1642 	 */
1643 	mmc->max_seg_size = mmc->max_req_size;
1644 
1645 	/*
1646 	 * Block size can be up to 2048 bytes, but must be a power of two.
1647 	 */
1648 	mmc->max_blk_size = 1 << 11;
1649 
1650 	/*
1651 	 * Limit the number of blocks transferred so that we don't overflow
1652 	 * the maximum request size.
1653 	 */
1654 	mmc->max_blk_count = mmc->max_req_size >> 11;
1655 
1656 	spin_lock_init(&host->lock);
1657 
1658 	writel(0, host->base + MMCIMASK0);
1659 	writel(0, host->base + MMCIMASK1);
1660 	writel(0xfff, host->base + MMCICLEAR);
1661 
1662 	/*
1663 	 * If:
1664 	 * - not using DT but using a descriptor table, or
1665 	 * - using a table of descriptors ALONGSIDE DT, or
1666 	 * look up these descriptors named "cd" and "wp" right here, fail
1667 	 * silently of these do not exist and proceed to try platform data
1668 	 */
1669 	if (!np) {
1670 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1671 		if (ret < 0) {
1672 			if (ret == -EPROBE_DEFER)
1673 				goto clk_disable;
1674 			else if (gpio_is_valid(plat->gpio_cd)) {
1675 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1676 				if (ret)
1677 					goto clk_disable;
1678 			}
1679 		}
1680 
1681 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1682 		if (ret < 0) {
1683 			if (ret == -EPROBE_DEFER)
1684 				goto clk_disable;
1685 			else if (gpio_is_valid(plat->gpio_wp)) {
1686 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1687 				if (ret)
1688 					goto clk_disable;
1689 			}
1690 		}
1691 	}
1692 
1693 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1694 			DRIVER_NAME " (cmd)", host);
1695 	if (ret)
1696 		goto clk_disable;
1697 
1698 	if (!dev->irq[1])
1699 		host->singleirq = true;
1700 	else {
1701 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1702 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1703 		if (ret)
1704 			goto clk_disable;
1705 	}
1706 
1707 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1708 
1709 	amba_set_drvdata(dev, mmc);
1710 
1711 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1712 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1713 		 amba_rev(dev), (unsigned long long)dev->res.start,
1714 		 dev->irq[0], dev->irq[1]);
1715 
1716 	mmci_dma_setup(host);
1717 
1718 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1719 	pm_runtime_use_autosuspend(&dev->dev);
1720 
1721 	mmc_add_host(mmc);
1722 
1723 	pm_runtime_put(&dev->dev);
1724 	return 0;
1725 
1726  clk_disable:
1727 	clk_disable_unprepare(host->clk);
1728  host_free:
1729 	mmc_free_host(mmc);
1730 	return ret;
1731 }
1732 
1733 static int mmci_remove(struct amba_device *dev)
1734 {
1735 	struct mmc_host *mmc = amba_get_drvdata(dev);
1736 
1737 	if (mmc) {
1738 		struct mmci_host *host = mmc_priv(mmc);
1739 
1740 		/*
1741 		 * Undo pm_runtime_put() in probe.  We use the _sync
1742 		 * version here so that we can access the primecell.
1743 		 */
1744 		pm_runtime_get_sync(&dev->dev);
1745 
1746 		mmc_remove_host(mmc);
1747 
1748 		writel(0, host->base + MMCIMASK0);
1749 		writel(0, host->base + MMCIMASK1);
1750 
1751 		writel(0, host->base + MMCICOMMAND);
1752 		writel(0, host->base + MMCIDATACTRL);
1753 
1754 		mmci_dma_release(host);
1755 		clk_disable_unprepare(host->clk);
1756 		mmc_free_host(mmc);
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 #ifdef CONFIG_PM
1763 static void mmci_save(struct mmci_host *host)
1764 {
1765 	unsigned long flags;
1766 
1767 	spin_lock_irqsave(&host->lock, flags);
1768 
1769 	writel(0, host->base + MMCIMASK0);
1770 	if (host->variant->pwrreg_nopower) {
1771 		writel(0, host->base + MMCIDATACTRL);
1772 		writel(0, host->base + MMCIPOWER);
1773 		writel(0, host->base + MMCICLOCK);
1774 	}
1775 	mmci_reg_delay(host);
1776 
1777 	spin_unlock_irqrestore(&host->lock, flags);
1778 }
1779 
1780 static void mmci_restore(struct mmci_host *host)
1781 {
1782 	unsigned long flags;
1783 
1784 	spin_lock_irqsave(&host->lock, flags);
1785 
1786 	if (host->variant->pwrreg_nopower) {
1787 		writel(host->clk_reg, host->base + MMCICLOCK);
1788 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1789 		writel(host->pwr_reg, host->base + MMCIPOWER);
1790 	}
1791 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1792 	mmci_reg_delay(host);
1793 
1794 	spin_unlock_irqrestore(&host->lock, flags);
1795 }
1796 
1797 static int mmci_runtime_suspend(struct device *dev)
1798 {
1799 	struct amba_device *adev = to_amba_device(dev);
1800 	struct mmc_host *mmc = amba_get_drvdata(adev);
1801 
1802 	if (mmc) {
1803 		struct mmci_host *host = mmc_priv(mmc);
1804 		pinctrl_pm_select_sleep_state(dev);
1805 		mmci_save(host);
1806 		clk_disable_unprepare(host->clk);
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 static int mmci_runtime_resume(struct device *dev)
1813 {
1814 	struct amba_device *adev = to_amba_device(dev);
1815 	struct mmc_host *mmc = amba_get_drvdata(adev);
1816 
1817 	if (mmc) {
1818 		struct mmci_host *host = mmc_priv(mmc);
1819 		clk_prepare_enable(host->clk);
1820 		mmci_restore(host);
1821 		pinctrl_pm_select_default_state(dev);
1822 	}
1823 
1824 	return 0;
1825 }
1826 #endif
1827 
1828 static const struct dev_pm_ops mmci_dev_pm_ops = {
1829 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1830 				pm_runtime_force_resume)
1831 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1832 };
1833 
1834 static struct amba_id mmci_ids[] = {
1835 	{
1836 		.id	= 0x00041180,
1837 		.mask	= 0xff0fffff,
1838 		.data	= &variant_arm,
1839 	},
1840 	{
1841 		.id	= 0x01041180,
1842 		.mask	= 0xff0fffff,
1843 		.data	= &variant_arm_extended_fifo,
1844 	},
1845 	{
1846 		.id	= 0x02041180,
1847 		.mask	= 0xff0fffff,
1848 		.data	= &variant_arm_extended_fifo_hwfc,
1849 	},
1850 	{
1851 		.id	= 0x00041181,
1852 		.mask	= 0x000fffff,
1853 		.data	= &variant_arm,
1854 	},
1855 	/* ST Micro variants */
1856 	{
1857 		.id     = 0x00180180,
1858 		.mask   = 0x00ffffff,
1859 		.data	= &variant_u300,
1860 	},
1861 	{
1862 		.id     = 0x10180180,
1863 		.mask   = 0xf0ffffff,
1864 		.data	= &variant_nomadik,
1865 	},
1866 	{
1867 		.id     = 0x00280180,
1868 		.mask   = 0x00ffffff,
1869 		.data	= &variant_nomadik,
1870 	},
1871 	{
1872 		.id     = 0x00480180,
1873 		.mask   = 0xf0ffffff,
1874 		.data	= &variant_ux500,
1875 	},
1876 	{
1877 		.id     = 0x10480180,
1878 		.mask   = 0xf0ffffff,
1879 		.data	= &variant_ux500v2,
1880 	},
1881 	/* Qualcomm variants */
1882 	{
1883 		.id     = 0x00051180,
1884 		.mask	= 0x000fffff,
1885 		.data	= &variant_qcom,
1886 	},
1887 	{ 0, 0 },
1888 };
1889 
1890 MODULE_DEVICE_TABLE(amba, mmci_ids);
1891 
1892 static struct amba_driver mmci_driver = {
1893 	.drv		= {
1894 		.name	= DRIVER_NAME,
1895 		.pm	= &mmci_dev_pm_ops,
1896 	},
1897 	.probe		= mmci_probe,
1898 	.remove		= mmci_remove,
1899 	.id_table	= mmci_ids,
1900 };
1901 
1902 module_amba_driver(mmci_driver);
1903 
1904 module_param(fmax, uint, 0444);
1905 
1906 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1907 MODULE_LICENSE("GPL");
1908