xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision e5c86679)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static unsigned int fmax = 515633;
50 
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57  * @datalength_bits: number of bits in the MMCIDATALENGTH register
58  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59  *	      is asserted (likewise for RX)
60  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61  *		  is asserted (likewise for RX)
62  * @data_cmd_enable: enable value for data commands.
63  * @st_sdio: enable ST specific SDIO logic
64  * @st_clkdiv: true if using a ST-specific clock divider algorithm
65  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68  *		     register
69  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70  * @pwrreg_powerup: power up value for MMCIPOWER register
71  * @f_max: maximum clk frequency supported by the controller.
72  * @signal_direction: input/out direction of bus signals can be indicated
73  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74  * @busy_detect: true if the variant supports busy detection on DAT0.
75  * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76  * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77  *		      indicating that the card is busy
78  * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79  *		      getting busy end detection interrupts
80  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81  * @explicit_mclk_control: enable explicit mclk control in driver.
82  * @qcom_fifo: enables qcom specific fifo pio read logic.
83  * @qcom_dml: enables qcom specific dma glue for dma transfers.
84  * @reversed_irq_handling: handle data irq before cmd irq.
85  */
86 struct variant_data {
87 	unsigned int		clkreg;
88 	unsigned int		clkreg_enable;
89 	unsigned int		clkreg_8bit_bus_enable;
90 	unsigned int		clkreg_neg_edge_enable;
91 	unsigned int		datalength_bits;
92 	unsigned int		fifosize;
93 	unsigned int		fifohalfsize;
94 	unsigned int		data_cmd_enable;
95 	unsigned int		datactrl_mask_ddrmode;
96 	unsigned int		datactrl_mask_sdio;
97 	bool			st_sdio;
98 	bool			st_clkdiv;
99 	bool			blksz_datactrl16;
100 	bool			blksz_datactrl4;
101 	u32			pwrreg_powerup;
102 	u32			f_max;
103 	bool			signal_direction;
104 	bool			pwrreg_clkgate;
105 	bool			busy_detect;
106 	u32			busy_dpsm_flag;
107 	u32			busy_detect_flag;
108 	u32			busy_detect_mask;
109 	bool			pwrreg_nopower;
110 	bool			explicit_mclk_control;
111 	bool			qcom_fifo;
112 	bool			qcom_dml;
113 	bool			reversed_irq_handling;
114 };
115 
116 static struct variant_data variant_arm = {
117 	.fifosize		= 16 * 4,
118 	.fifohalfsize		= 8 * 4,
119 	.datalength_bits	= 16,
120 	.pwrreg_powerup		= MCI_PWR_UP,
121 	.f_max			= 100000000,
122 	.reversed_irq_handling	= true,
123 };
124 
125 static struct variant_data variant_arm_extended_fifo = {
126 	.fifosize		= 128 * 4,
127 	.fifohalfsize		= 64 * 4,
128 	.datalength_bits	= 16,
129 	.pwrreg_powerup		= MCI_PWR_UP,
130 	.f_max			= 100000000,
131 };
132 
133 static struct variant_data variant_arm_extended_fifo_hwfc = {
134 	.fifosize		= 128 * 4,
135 	.fifohalfsize		= 64 * 4,
136 	.clkreg_enable		= MCI_ARM_HWFCEN,
137 	.datalength_bits	= 16,
138 	.pwrreg_powerup		= MCI_PWR_UP,
139 	.f_max			= 100000000,
140 };
141 
142 static struct variant_data variant_u300 = {
143 	.fifosize		= 16 * 4,
144 	.fifohalfsize		= 8 * 4,
145 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
146 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
147 	.datalength_bits	= 16,
148 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
149 	.st_sdio			= true,
150 	.pwrreg_powerup		= MCI_PWR_ON,
151 	.f_max			= 100000000,
152 	.signal_direction	= true,
153 	.pwrreg_clkgate		= true,
154 	.pwrreg_nopower		= true,
155 };
156 
157 static struct variant_data variant_nomadik = {
158 	.fifosize		= 16 * 4,
159 	.fifohalfsize		= 8 * 4,
160 	.clkreg			= MCI_CLK_ENABLE,
161 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
162 	.datalength_bits	= 24,
163 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
164 	.st_sdio		= true,
165 	.st_clkdiv		= true,
166 	.pwrreg_powerup		= MCI_PWR_ON,
167 	.f_max			= 100000000,
168 	.signal_direction	= true,
169 	.pwrreg_clkgate		= true,
170 	.pwrreg_nopower		= true,
171 };
172 
173 static struct variant_data variant_ux500 = {
174 	.fifosize		= 30 * 4,
175 	.fifohalfsize		= 8 * 4,
176 	.clkreg			= MCI_CLK_ENABLE,
177 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
178 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
179 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
180 	.datalength_bits	= 24,
181 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
182 	.st_sdio		= true,
183 	.st_clkdiv		= true,
184 	.pwrreg_powerup		= MCI_PWR_ON,
185 	.f_max			= 100000000,
186 	.signal_direction	= true,
187 	.pwrreg_clkgate		= true,
188 	.busy_detect		= true,
189 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
190 	.busy_detect_flag	= MCI_ST_CARDBUSY,
191 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
192 	.pwrreg_nopower		= true,
193 };
194 
195 static struct variant_data variant_ux500v2 = {
196 	.fifosize		= 30 * 4,
197 	.fifohalfsize		= 8 * 4,
198 	.clkreg			= MCI_CLK_ENABLE,
199 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
200 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
202 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
203 	.datalength_bits	= 24,
204 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
205 	.st_sdio		= true,
206 	.st_clkdiv		= true,
207 	.blksz_datactrl16	= true,
208 	.pwrreg_powerup		= MCI_PWR_ON,
209 	.f_max			= 100000000,
210 	.signal_direction	= true,
211 	.pwrreg_clkgate		= true,
212 	.busy_detect		= true,
213 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
214 	.busy_detect_flag	= MCI_ST_CARDBUSY,
215 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
216 	.pwrreg_nopower		= true,
217 };
218 
219 static struct variant_data variant_qcom = {
220 	.fifosize		= 16 * 4,
221 	.fifohalfsize		= 8 * 4,
222 	.clkreg			= MCI_CLK_ENABLE,
223 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
224 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
225 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
226 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
227 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
228 	.blksz_datactrl4	= true,
229 	.datalength_bits	= 24,
230 	.pwrreg_powerup		= MCI_PWR_UP,
231 	.f_max			= 208000000,
232 	.explicit_mclk_control	= true,
233 	.qcom_fifo		= true,
234 	.qcom_dml		= true,
235 };
236 
237 /* Busy detection for the ST Micro variant */
238 static int mmci_card_busy(struct mmc_host *mmc)
239 {
240 	struct mmci_host *host = mmc_priv(mmc);
241 	unsigned long flags;
242 	int busy = 0;
243 
244 	spin_lock_irqsave(&host->lock, flags);
245 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
246 		busy = 1;
247 	spin_unlock_irqrestore(&host->lock, flags);
248 
249 	return busy;
250 }
251 
252 /*
253  * Validate mmc prerequisites
254  */
255 static int mmci_validate_data(struct mmci_host *host,
256 			      struct mmc_data *data)
257 {
258 	if (!data)
259 		return 0;
260 
261 	if (!is_power_of_2(data->blksz)) {
262 		dev_err(mmc_dev(host->mmc),
263 			"unsupported block size (%d bytes)\n", data->blksz);
264 		return -EINVAL;
265 	}
266 
267 	return 0;
268 }
269 
270 static void mmci_reg_delay(struct mmci_host *host)
271 {
272 	/*
273 	 * According to the spec, at least three feedback clock cycles
274 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
275 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
276 	 * Worst delay time during card init is at 100 kHz => 30 us.
277 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
278 	 */
279 	if (host->cclk < 25000000)
280 		udelay(30);
281 	else
282 		ndelay(120);
283 }
284 
285 /*
286  * This must be called with host->lock held
287  */
288 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
289 {
290 	if (host->clk_reg != clk) {
291 		host->clk_reg = clk;
292 		writel(clk, host->base + MMCICLOCK);
293 	}
294 }
295 
296 /*
297  * This must be called with host->lock held
298  */
299 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
300 {
301 	if (host->pwr_reg != pwr) {
302 		host->pwr_reg = pwr;
303 		writel(pwr, host->base + MMCIPOWER);
304 	}
305 }
306 
307 /*
308  * This must be called with host->lock held
309  */
310 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
311 {
312 	/* Keep busy mode in DPSM if enabled */
313 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
314 
315 	if (host->datactrl_reg != datactrl) {
316 		host->datactrl_reg = datactrl;
317 		writel(datactrl, host->base + MMCIDATACTRL);
318 	}
319 }
320 
321 /*
322  * This must be called with host->lock held
323  */
324 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
325 {
326 	struct variant_data *variant = host->variant;
327 	u32 clk = variant->clkreg;
328 
329 	/* Make sure cclk reflects the current calculated clock */
330 	host->cclk = 0;
331 
332 	if (desired) {
333 		if (variant->explicit_mclk_control) {
334 			host->cclk = host->mclk;
335 		} else if (desired >= host->mclk) {
336 			clk = MCI_CLK_BYPASS;
337 			if (variant->st_clkdiv)
338 				clk |= MCI_ST_UX500_NEG_EDGE;
339 			host->cclk = host->mclk;
340 		} else if (variant->st_clkdiv) {
341 			/*
342 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
343 			 * => clkdiv = (mclk / f) - 2
344 			 * Round the divider up so we don't exceed the max
345 			 * frequency
346 			 */
347 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
348 			if (clk >= 256)
349 				clk = 255;
350 			host->cclk = host->mclk / (clk + 2);
351 		} else {
352 			/*
353 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
354 			 * => clkdiv = mclk / (2 * f) - 1
355 			 */
356 			clk = host->mclk / (2 * desired) - 1;
357 			if (clk >= 256)
358 				clk = 255;
359 			host->cclk = host->mclk / (2 * (clk + 1));
360 		}
361 
362 		clk |= variant->clkreg_enable;
363 		clk |= MCI_CLK_ENABLE;
364 		/* This hasn't proven to be worthwhile */
365 		/* clk |= MCI_CLK_PWRSAVE; */
366 	}
367 
368 	/* Set actual clock for debug */
369 	host->mmc->actual_clock = host->cclk;
370 
371 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
372 		clk |= MCI_4BIT_BUS;
373 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
374 		clk |= variant->clkreg_8bit_bus_enable;
375 
376 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
377 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
378 		clk |= variant->clkreg_neg_edge_enable;
379 
380 	mmci_write_clkreg(host, clk);
381 }
382 
383 static void
384 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
385 {
386 	writel(0, host->base + MMCICOMMAND);
387 
388 	BUG_ON(host->data);
389 
390 	host->mrq = NULL;
391 	host->cmd = NULL;
392 
393 	mmc_request_done(host->mmc, mrq);
394 }
395 
396 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
397 {
398 	void __iomem *base = host->base;
399 
400 	if (host->singleirq) {
401 		unsigned int mask0 = readl(base + MMCIMASK0);
402 
403 		mask0 &= ~MCI_IRQ1MASK;
404 		mask0 |= mask;
405 
406 		writel(mask0, base + MMCIMASK0);
407 	}
408 
409 	writel(mask, base + MMCIMASK1);
410 }
411 
412 static void mmci_stop_data(struct mmci_host *host)
413 {
414 	mmci_write_datactrlreg(host, 0);
415 	mmci_set_mask1(host, 0);
416 	host->data = NULL;
417 }
418 
419 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
420 {
421 	unsigned int flags = SG_MITER_ATOMIC;
422 
423 	if (data->flags & MMC_DATA_READ)
424 		flags |= SG_MITER_TO_SG;
425 	else
426 		flags |= SG_MITER_FROM_SG;
427 
428 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
429 }
430 
431 /*
432  * All the DMA operation mode stuff goes inside this ifdef.
433  * This assumes that you have a generic DMA device interface,
434  * no custom DMA interfaces are supported.
435  */
436 #ifdef CONFIG_DMA_ENGINE
437 static void mmci_dma_setup(struct mmci_host *host)
438 {
439 	const char *rxname, *txname;
440 	struct variant_data *variant = host->variant;
441 
442 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
443 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
444 
445 	/* initialize pre request cookie */
446 	host->next_data.cookie = 1;
447 
448 	/*
449 	 * If only an RX channel is specified, the driver will
450 	 * attempt to use it bidirectionally, however if it is
451 	 * is specified but cannot be located, DMA will be disabled.
452 	 */
453 	if (host->dma_rx_channel && !host->dma_tx_channel)
454 		host->dma_tx_channel = host->dma_rx_channel;
455 
456 	if (host->dma_rx_channel)
457 		rxname = dma_chan_name(host->dma_rx_channel);
458 	else
459 		rxname = "none";
460 
461 	if (host->dma_tx_channel)
462 		txname = dma_chan_name(host->dma_tx_channel);
463 	else
464 		txname = "none";
465 
466 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
467 		 rxname, txname);
468 
469 	/*
470 	 * Limit the maximum segment size in any SG entry according to
471 	 * the parameters of the DMA engine device.
472 	 */
473 	if (host->dma_tx_channel) {
474 		struct device *dev = host->dma_tx_channel->device->dev;
475 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
476 
477 		if (max_seg_size < host->mmc->max_seg_size)
478 			host->mmc->max_seg_size = max_seg_size;
479 	}
480 	if (host->dma_rx_channel) {
481 		struct device *dev = host->dma_rx_channel->device->dev;
482 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
483 
484 		if (max_seg_size < host->mmc->max_seg_size)
485 			host->mmc->max_seg_size = max_seg_size;
486 	}
487 
488 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
489 		if (dml_hw_init(host, host->mmc->parent->of_node))
490 			variant->qcom_dml = false;
491 }
492 
493 /*
494  * This is used in or so inline it
495  * so it can be discarded.
496  */
497 static inline void mmci_dma_release(struct mmci_host *host)
498 {
499 	if (host->dma_rx_channel)
500 		dma_release_channel(host->dma_rx_channel);
501 	if (host->dma_tx_channel)
502 		dma_release_channel(host->dma_tx_channel);
503 	host->dma_rx_channel = host->dma_tx_channel = NULL;
504 }
505 
506 static void mmci_dma_data_error(struct mmci_host *host)
507 {
508 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
509 	dmaengine_terminate_all(host->dma_current);
510 	host->dma_in_progress = false;
511 	host->dma_current = NULL;
512 	host->dma_desc_current = NULL;
513 	host->data->host_cookie = 0;
514 }
515 
516 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
517 {
518 	struct dma_chan *chan;
519 	enum dma_data_direction dir;
520 
521 	if (data->flags & MMC_DATA_READ) {
522 		dir = DMA_FROM_DEVICE;
523 		chan = host->dma_rx_channel;
524 	} else {
525 		dir = DMA_TO_DEVICE;
526 		chan = host->dma_tx_channel;
527 	}
528 
529 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
530 }
531 
532 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
533 {
534 	u32 status;
535 	int i;
536 
537 	/* Wait up to 1ms for the DMA to complete */
538 	for (i = 0; ; i++) {
539 		status = readl(host->base + MMCISTATUS);
540 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
541 			break;
542 		udelay(10);
543 	}
544 
545 	/*
546 	 * Check to see whether we still have some data left in the FIFO -
547 	 * this catches DMA controllers which are unable to monitor the
548 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
549 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
550 	 */
551 	if (status & MCI_RXDATAAVLBLMASK) {
552 		mmci_dma_data_error(host);
553 		if (!data->error)
554 			data->error = -EIO;
555 	}
556 
557 	if (!data->host_cookie)
558 		mmci_dma_unmap(host, data);
559 
560 	/*
561 	 * Use of DMA with scatter-gather is impossible.
562 	 * Give up with DMA and switch back to PIO mode.
563 	 */
564 	if (status & MCI_RXDATAAVLBLMASK) {
565 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
566 		mmci_dma_release(host);
567 	}
568 
569 	host->dma_in_progress = false;
570 	host->dma_current = NULL;
571 	host->dma_desc_current = NULL;
572 }
573 
574 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
575 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
576 				struct dma_chan **dma_chan,
577 				struct dma_async_tx_descriptor **dma_desc)
578 {
579 	struct variant_data *variant = host->variant;
580 	struct dma_slave_config conf = {
581 		.src_addr = host->phybase + MMCIFIFO,
582 		.dst_addr = host->phybase + MMCIFIFO,
583 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
584 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
585 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
586 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
587 		.device_fc = false,
588 	};
589 	struct dma_chan *chan;
590 	struct dma_device *device;
591 	struct dma_async_tx_descriptor *desc;
592 	enum dma_data_direction buffer_dirn;
593 	int nr_sg;
594 	unsigned long flags = DMA_CTRL_ACK;
595 
596 	if (data->flags & MMC_DATA_READ) {
597 		conf.direction = DMA_DEV_TO_MEM;
598 		buffer_dirn = DMA_FROM_DEVICE;
599 		chan = host->dma_rx_channel;
600 	} else {
601 		conf.direction = DMA_MEM_TO_DEV;
602 		buffer_dirn = DMA_TO_DEVICE;
603 		chan = host->dma_tx_channel;
604 	}
605 
606 	/* If there's no DMA channel, fall back to PIO */
607 	if (!chan)
608 		return -EINVAL;
609 
610 	/* If less than or equal to the fifo size, don't bother with DMA */
611 	if (data->blksz * data->blocks <= variant->fifosize)
612 		return -EINVAL;
613 
614 	device = chan->device;
615 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
616 	if (nr_sg == 0)
617 		return -EINVAL;
618 
619 	if (host->variant->qcom_dml)
620 		flags |= DMA_PREP_INTERRUPT;
621 
622 	dmaengine_slave_config(chan, &conf);
623 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
624 					    conf.direction, flags);
625 	if (!desc)
626 		goto unmap_exit;
627 
628 	*dma_chan = chan;
629 	*dma_desc = desc;
630 
631 	return 0;
632 
633  unmap_exit:
634 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
635 	return -ENOMEM;
636 }
637 
638 static inline int mmci_dma_prep_data(struct mmci_host *host,
639 				     struct mmc_data *data)
640 {
641 	/* Check if next job is already prepared. */
642 	if (host->dma_current && host->dma_desc_current)
643 		return 0;
644 
645 	/* No job were prepared thus do it now. */
646 	return __mmci_dma_prep_data(host, data, &host->dma_current,
647 				    &host->dma_desc_current);
648 }
649 
650 static inline int mmci_dma_prep_next(struct mmci_host *host,
651 				     struct mmc_data *data)
652 {
653 	struct mmci_host_next *nd = &host->next_data;
654 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
655 }
656 
657 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
658 {
659 	int ret;
660 	struct mmc_data *data = host->data;
661 
662 	ret = mmci_dma_prep_data(host, host->data);
663 	if (ret)
664 		return ret;
665 
666 	/* Okay, go for it. */
667 	dev_vdbg(mmc_dev(host->mmc),
668 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
669 		 data->sg_len, data->blksz, data->blocks, data->flags);
670 	host->dma_in_progress = true;
671 	dmaengine_submit(host->dma_desc_current);
672 	dma_async_issue_pending(host->dma_current);
673 
674 	if (host->variant->qcom_dml)
675 		dml_start_xfer(host, data);
676 
677 	datactrl |= MCI_DPSM_DMAENABLE;
678 
679 	/* Trigger the DMA transfer */
680 	mmci_write_datactrlreg(host, datactrl);
681 
682 	/*
683 	 * Let the MMCI say when the data is ended and it's time
684 	 * to fire next DMA request. When that happens, MMCI will
685 	 * call mmci_data_end()
686 	 */
687 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
688 	       host->base + MMCIMASK0);
689 	return 0;
690 }
691 
692 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
693 {
694 	struct mmci_host_next *next = &host->next_data;
695 
696 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
697 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
698 
699 	host->dma_desc_current = next->dma_desc;
700 	host->dma_current = next->dma_chan;
701 	next->dma_desc = NULL;
702 	next->dma_chan = NULL;
703 }
704 
705 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
706 {
707 	struct mmci_host *host = mmc_priv(mmc);
708 	struct mmc_data *data = mrq->data;
709 	struct mmci_host_next *nd = &host->next_data;
710 
711 	if (!data)
712 		return;
713 
714 	BUG_ON(data->host_cookie);
715 
716 	if (mmci_validate_data(host, data))
717 		return;
718 
719 	if (!mmci_dma_prep_next(host, data))
720 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
721 }
722 
723 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
724 			      int err)
725 {
726 	struct mmci_host *host = mmc_priv(mmc);
727 	struct mmc_data *data = mrq->data;
728 
729 	if (!data || !data->host_cookie)
730 		return;
731 
732 	mmci_dma_unmap(host, data);
733 
734 	if (err) {
735 		struct mmci_host_next *next = &host->next_data;
736 		struct dma_chan *chan;
737 		if (data->flags & MMC_DATA_READ)
738 			chan = host->dma_rx_channel;
739 		else
740 			chan = host->dma_tx_channel;
741 		dmaengine_terminate_all(chan);
742 
743 		if (host->dma_desc_current == next->dma_desc)
744 			host->dma_desc_current = NULL;
745 
746 		if (host->dma_current == next->dma_chan) {
747 			host->dma_in_progress = false;
748 			host->dma_current = NULL;
749 		}
750 
751 		next->dma_desc = NULL;
752 		next->dma_chan = NULL;
753 		data->host_cookie = 0;
754 	}
755 }
756 
757 #else
758 /* Blank functions if the DMA engine is not available */
759 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
760 {
761 }
762 static inline void mmci_dma_setup(struct mmci_host *host)
763 {
764 }
765 
766 static inline void mmci_dma_release(struct mmci_host *host)
767 {
768 }
769 
770 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
771 {
772 }
773 
774 static inline void mmci_dma_finalize(struct mmci_host *host,
775 				     struct mmc_data *data)
776 {
777 }
778 
779 static inline void mmci_dma_data_error(struct mmci_host *host)
780 {
781 }
782 
783 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
784 {
785 	return -ENOSYS;
786 }
787 
788 #define mmci_pre_request NULL
789 #define mmci_post_request NULL
790 
791 #endif
792 
793 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
794 {
795 	struct variant_data *variant = host->variant;
796 	unsigned int datactrl, timeout, irqmask;
797 	unsigned long long clks;
798 	void __iomem *base;
799 	int blksz_bits;
800 
801 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
802 		data->blksz, data->blocks, data->flags);
803 
804 	host->data = data;
805 	host->size = data->blksz * data->blocks;
806 	data->bytes_xfered = 0;
807 
808 	clks = (unsigned long long)data->timeout_ns * host->cclk;
809 	do_div(clks, NSEC_PER_SEC);
810 
811 	timeout = data->timeout_clks + (unsigned int)clks;
812 
813 	base = host->base;
814 	writel(timeout, base + MMCIDATATIMER);
815 	writel(host->size, base + MMCIDATALENGTH);
816 
817 	blksz_bits = ffs(data->blksz) - 1;
818 	BUG_ON(1 << blksz_bits != data->blksz);
819 
820 	if (variant->blksz_datactrl16)
821 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
822 	else if (variant->blksz_datactrl4)
823 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
824 	else
825 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
826 
827 	if (data->flags & MMC_DATA_READ)
828 		datactrl |= MCI_DPSM_DIRECTION;
829 
830 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
831 		u32 clk;
832 
833 		datactrl |= variant->datactrl_mask_sdio;
834 
835 		/*
836 		 * The ST Micro variant for SDIO small write transfers
837 		 * needs to have clock H/W flow control disabled,
838 		 * otherwise the transfer will not start. The threshold
839 		 * depends on the rate of MCLK.
840 		 */
841 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
842 		    (host->size < 8 ||
843 		     (host->size <= 8 && host->mclk > 50000000)))
844 			clk = host->clk_reg & ~variant->clkreg_enable;
845 		else
846 			clk = host->clk_reg | variant->clkreg_enable;
847 
848 		mmci_write_clkreg(host, clk);
849 	}
850 
851 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
852 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
853 		datactrl |= variant->datactrl_mask_ddrmode;
854 
855 	/*
856 	 * Attempt to use DMA operation mode, if this
857 	 * should fail, fall back to PIO mode
858 	 */
859 	if (!mmci_dma_start_data(host, datactrl))
860 		return;
861 
862 	/* IRQ mode, map the SG list for CPU reading/writing */
863 	mmci_init_sg(host, data);
864 
865 	if (data->flags & MMC_DATA_READ) {
866 		irqmask = MCI_RXFIFOHALFFULLMASK;
867 
868 		/*
869 		 * If we have less than the fifo 'half-full' threshold to
870 		 * transfer, trigger a PIO interrupt as soon as any data
871 		 * is available.
872 		 */
873 		if (host->size < variant->fifohalfsize)
874 			irqmask |= MCI_RXDATAAVLBLMASK;
875 	} else {
876 		/*
877 		 * We don't actually need to include "FIFO empty" here
878 		 * since its implicit in "FIFO half empty".
879 		 */
880 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
881 	}
882 
883 	mmci_write_datactrlreg(host, datactrl);
884 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
885 	mmci_set_mask1(host, irqmask);
886 }
887 
888 static void
889 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
890 {
891 	void __iomem *base = host->base;
892 
893 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
894 	    cmd->opcode, cmd->arg, cmd->flags);
895 
896 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
897 		writel(0, base + MMCICOMMAND);
898 		mmci_reg_delay(host);
899 	}
900 
901 	c |= cmd->opcode | MCI_CPSM_ENABLE;
902 	if (cmd->flags & MMC_RSP_PRESENT) {
903 		if (cmd->flags & MMC_RSP_136)
904 			c |= MCI_CPSM_LONGRSP;
905 		c |= MCI_CPSM_RESPONSE;
906 	}
907 	if (/*interrupt*/0)
908 		c |= MCI_CPSM_INTERRUPT;
909 
910 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
911 		c |= host->variant->data_cmd_enable;
912 
913 	host->cmd = cmd;
914 
915 	writel(cmd->arg, base + MMCIARGUMENT);
916 	writel(c, base + MMCICOMMAND);
917 }
918 
919 static void
920 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
921 	      unsigned int status)
922 {
923 	/* Make sure we have data to handle */
924 	if (!data)
925 		return;
926 
927 	/* First check for errors */
928 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
929 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
930 		u32 remain, success;
931 
932 		/* Terminate the DMA transfer */
933 		if (dma_inprogress(host)) {
934 			mmci_dma_data_error(host);
935 			mmci_dma_unmap(host, data);
936 		}
937 
938 		/*
939 		 * Calculate how far we are into the transfer.  Note that
940 		 * the data counter gives the number of bytes transferred
941 		 * on the MMC bus, not on the host side.  On reads, this
942 		 * can be as much as a FIFO-worth of data ahead.  This
943 		 * matters for FIFO overruns only.
944 		 */
945 		remain = readl(host->base + MMCIDATACNT);
946 		success = data->blksz * data->blocks - remain;
947 
948 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
949 			status, success);
950 		if (status & MCI_DATACRCFAIL) {
951 			/* Last block was not successful */
952 			success -= 1;
953 			data->error = -EILSEQ;
954 		} else if (status & MCI_DATATIMEOUT) {
955 			data->error = -ETIMEDOUT;
956 		} else if (status & MCI_STARTBITERR) {
957 			data->error = -ECOMM;
958 		} else if (status & MCI_TXUNDERRUN) {
959 			data->error = -EIO;
960 		} else if (status & MCI_RXOVERRUN) {
961 			if (success > host->variant->fifosize)
962 				success -= host->variant->fifosize;
963 			else
964 				success = 0;
965 			data->error = -EIO;
966 		}
967 		data->bytes_xfered = round_down(success, data->blksz);
968 	}
969 
970 	if (status & MCI_DATABLOCKEND)
971 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
972 
973 	if (status & MCI_DATAEND || data->error) {
974 		if (dma_inprogress(host))
975 			mmci_dma_finalize(host, data);
976 		mmci_stop_data(host);
977 
978 		if (!data->error)
979 			/* The error clause is handled above, success! */
980 			data->bytes_xfered = data->blksz * data->blocks;
981 
982 		if (!data->stop || host->mrq->sbc) {
983 			mmci_request_end(host, data->mrq);
984 		} else {
985 			mmci_start_command(host, data->stop, 0);
986 		}
987 	}
988 }
989 
990 static void
991 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
992 	     unsigned int status)
993 {
994 	void __iomem *base = host->base;
995 	bool sbc;
996 
997 	if (!cmd)
998 		return;
999 
1000 	sbc = (cmd == host->mrq->sbc);
1001 
1002 	/*
1003 	 * We need to be one of these interrupts to be considered worth
1004 	 * handling. Note that we tag on any latent IRQs postponed
1005 	 * due to waiting for busy status.
1006 	 */
1007 	if (!((status|host->busy_status) &
1008 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1009 		return;
1010 
1011 	/*
1012 	 * ST Micro variant: handle busy detection.
1013 	 */
1014 	if (host->variant->busy_detect) {
1015 		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1016 
1017 		/* We are busy with a command, return */
1018 		if (host->busy_status &&
1019 		    (status & host->variant->busy_detect_flag))
1020 			return;
1021 
1022 		/*
1023 		 * We were not busy, but we now got a busy response on
1024 		 * something that was not an error, and we double-check
1025 		 * that the special busy status bit is still set before
1026 		 * proceeding.
1027 		 */
1028 		if (!host->busy_status && busy_resp &&
1029 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1030 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1031 
1032 			/* Clear the busy start IRQ */
1033 			writel(host->variant->busy_detect_mask,
1034 			       host->base + MMCICLEAR);
1035 
1036 			/* Unmask the busy end IRQ */
1037 			writel(readl(base + MMCIMASK0) |
1038 			       host->variant->busy_detect_mask,
1039 			       base + MMCIMASK0);
1040 			/*
1041 			 * Now cache the last response status code (until
1042 			 * the busy bit goes low), and return.
1043 			 */
1044 			host->busy_status =
1045 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1046 			return;
1047 		}
1048 
1049 		/*
1050 		 * At this point we are not busy with a command, we have
1051 		 * not received a new busy request, clear and mask the busy
1052 		 * end IRQ and fall through to process the IRQ.
1053 		 */
1054 		if (host->busy_status) {
1055 
1056 			writel(host->variant->busy_detect_mask,
1057 			       host->base + MMCICLEAR);
1058 
1059 			writel(readl(base + MMCIMASK0) &
1060 			       ~host->variant->busy_detect_mask,
1061 			       base + MMCIMASK0);
1062 			host->busy_status = 0;
1063 		}
1064 	}
1065 
1066 	host->cmd = NULL;
1067 
1068 	if (status & MCI_CMDTIMEOUT) {
1069 		cmd->error = -ETIMEDOUT;
1070 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1071 		cmd->error = -EILSEQ;
1072 	} else {
1073 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1074 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1075 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1076 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1077 	}
1078 
1079 	if ((!sbc && !cmd->data) || cmd->error) {
1080 		if (host->data) {
1081 			/* Terminate the DMA transfer */
1082 			if (dma_inprogress(host)) {
1083 				mmci_dma_data_error(host);
1084 				mmci_dma_unmap(host, host->data);
1085 			}
1086 			mmci_stop_data(host);
1087 		}
1088 		mmci_request_end(host, host->mrq);
1089 	} else if (sbc) {
1090 		mmci_start_command(host, host->mrq->cmd, 0);
1091 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1092 		mmci_start_data(host, cmd->data);
1093 	}
1094 }
1095 
1096 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1097 {
1098 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1099 }
1100 
1101 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1102 {
1103 	/*
1104 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1105 	 * from the fifo range should be used
1106 	 */
1107 	if (status & MCI_RXFIFOHALFFULL)
1108 		return host->variant->fifohalfsize;
1109 	else if (status & MCI_RXDATAAVLBL)
1110 		return 4;
1111 
1112 	return 0;
1113 }
1114 
1115 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1116 {
1117 	void __iomem *base = host->base;
1118 	char *ptr = buffer;
1119 	u32 status = readl(host->base + MMCISTATUS);
1120 	int host_remain = host->size;
1121 
1122 	do {
1123 		int count = host->get_rx_fifocnt(host, status, host_remain);
1124 
1125 		if (count > remain)
1126 			count = remain;
1127 
1128 		if (count <= 0)
1129 			break;
1130 
1131 		/*
1132 		 * SDIO especially may want to send something that is
1133 		 * not divisible by 4 (as opposed to card sectors
1134 		 * etc). Therefore make sure to always read the last bytes
1135 		 * while only doing full 32-bit reads towards the FIFO.
1136 		 */
1137 		if (unlikely(count & 0x3)) {
1138 			if (count < 4) {
1139 				unsigned char buf[4];
1140 				ioread32_rep(base + MMCIFIFO, buf, 1);
1141 				memcpy(ptr, buf, count);
1142 			} else {
1143 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1144 				count &= ~0x3;
1145 			}
1146 		} else {
1147 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1148 		}
1149 
1150 		ptr += count;
1151 		remain -= count;
1152 		host_remain -= count;
1153 
1154 		if (remain == 0)
1155 			break;
1156 
1157 		status = readl(base + MMCISTATUS);
1158 	} while (status & MCI_RXDATAAVLBL);
1159 
1160 	return ptr - buffer;
1161 }
1162 
1163 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1164 {
1165 	struct variant_data *variant = host->variant;
1166 	void __iomem *base = host->base;
1167 	char *ptr = buffer;
1168 
1169 	do {
1170 		unsigned int count, maxcnt;
1171 
1172 		maxcnt = status & MCI_TXFIFOEMPTY ?
1173 			 variant->fifosize : variant->fifohalfsize;
1174 		count = min(remain, maxcnt);
1175 
1176 		/*
1177 		 * SDIO especially may want to send something that is
1178 		 * not divisible by 4 (as opposed to card sectors
1179 		 * etc), and the FIFO only accept full 32-bit writes.
1180 		 * So compensate by adding +3 on the count, a single
1181 		 * byte become a 32bit write, 7 bytes will be two
1182 		 * 32bit writes etc.
1183 		 */
1184 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1185 
1186 		ptr += count;
1187 		remain -= count;
1188 
1189 		if (remain == 0)
1190 			break;
1191 
1192 		status = readl(base + MMCISTATUS);
1193 	} while (status & MCI_TXFIFOHALFEMPTY);
1194 
1195 	return ptr - buffer;
1196 }
1197 
1198 /*
1199  * PIO data transfer IRQ handler.
1200  */
1201 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1202 {
1203 	struct mmci_host *host = dev_id;
1204 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1205 	struct variant_data *variant = host->variant;
1206 	void __iomem *base = host->base;
1207 	unsigned long flags;
1208 	u32 status;
1209 
1210 	status = readl(base + MMCISTATUS);
1211 
1212 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1213 
1214 	local_irq_save(flags);
1215 
1216 	do {
1217 		unsigned int remain, len;
1218 		char *buffer;
1219 
1220 		/*
1221 		 * For write, we only need to test the half-empty flag
1222 		 * here - if the FIFO is completely empty, then by
1223 		 * definition it is more than half empty.
1224 		 *
1225 		 * For read, check for data available.
1226 		 */
1227 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1228 			break;
1229 
1230 		if (!sg_miter_next(sg_miter))
1231 			break;
1232 
1233 		buffer = sg_miter->addr;
1234 		remain = sg_miter->length;
1235 
1236 		len = 0;
1237 		if (status & MCI_RXACTIVE)
1238 			len = mmci_pio_read(host, buffer, remain);
1239 		if (status & MCI_TXACTIVE)
1240 			len = mmci_pio_write(host, buffer, remain, status);
1241 
1242 		sg_miter->consumed = len;
1243 
1244 		host->size -= len;
1245 		remain -= len;
1246 
1247 		if (remain)
1248 			break;
1249 
1250 		status = readl(base + MMCISTATUS);
1251 	} while (1);
1252 
1253 	sg_miter_stop(sg_miter);
1254 
1255 	local_irq_restore(flags);
1256 
1257 	/*
1258 	 * If we have less than the fifo 'half-full' threshold to transfer,
1259 	 * trigger a PIO interrupt as soon as any data is available.
1260 	 */
1261 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1262 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1263 
1264 	/*
1265 	 * If we run out of data, disable the data IRQs; this
1266 	 * prevents a race where the FIFO becomes empty before
1267 	 * the chip itself has disabled the data path, and
1268 	 * stops us racing with our data end IRQ.
1269 	 */
1270 	if (host->size == 0) {
1271 		mmci_set_mask1(host, 0);
1272 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1273 	}
1274 
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 /*
1279  * Handle completion of command and data transfers.
1280  */
1281 static irqreturn_t mmci_irq(int irq, void *dev_id)
1282 {
1283 	struct mmci_host *host = dev_id;
1284 	u32 status;
1285 	int ret = 0;
1286 
1287 	spin_lock(&host->lock);
1288 
1289 	do {
1290 		status = readl(host->base + MMCISTATUS);
1291 
1292 		if (host->singleirq) {
1293 			if (status & readl(host->base + MMCIMASK1))
1294 				mmci_pio_irq(irq, dev_id);
1295 
1296 			status &= ~MCI_IRQ1MASK;
1297 		}
1298 
1299 		/*
1300 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1301 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1302 		 * detection variant is handled. Considering the HW seems to be
1303 		 * triggering the IRQ on both edges while monitoring DAT0 for
1304 		 * busy completion and that same status bit is used to monitor
1305 		 * start and end of busy detection, special care must be taken
1306 		 * to make sure that both start and end interrupts are always
1307 		 * cleared one after the other.
1308 		 */
1309 		status &= readl(host->base + MMCIMASK0);
1310 		if (host->variant->busy_detect)
1311 			writel(status & ~host->variant->busy_detect_mask,
1312 			       host->base + MMCICLEAR);
1313 		else
1314 			writel(status, host->base + MMCICLEAR);
1315 
1316 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1317 
1318 		if (host->variant->reversed_irq_handling) {
1319 			mmci_data_irq(host, host->data, status);
1320 			mmci_cmd_irq(host, host->cmd, status);
1321 		} else {
1322 			mmci_cmd_irq(host, host->cmd, status);
1323 			mmci_data_irq(host, host->data, status);
1324 		}
1325 
1326 		/*
1327 		 * Don't poll for busy completion in irq context.
1328 		 */
1329 		if (host->variant->busy_detect && host->busy_status)
1330 			status &= ~host->variant->busy_detect_flag;
1331 
1332 		ret = 1;
1333 	} while (status);
1334 
1335 	spin_unlock(&host->lock);
1336 
1337 	return IRQ_RETVAL(ret);
1338 }
1339 
1340 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1341 {
1342 	struct mmci_host *host = mmc_priv(mmc);
1343 	unsigned long flags;
1344 
1345 	WARN_ON(host->mrq != NULL);
1346 
1347 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1348 	if (mrq->cmd->error) {
1349 		mmc_request_done(mmc, mrq);
1350 		return;
1351 	}
1352 
1353 	spin_lock_irqsave(&host->lock, flags);
1354 
1355 	host->mrq = mrq;
1356 
1357 	if (mrq->data)
1358 		mmci_get_next_data(host, mrq->data);
1359 
1360 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1361 		mmci_start_data(host, mrq->data);
1362 
1363 	if (mrq->sbc)
1364 		mmci_start_command(host, mrq->sbc, 0);
1365 	else
1366 		mmci_start_command(host, mrq->cmd, 0);
1367 
1368 	spin_unlock_irqrestore(&host->lock, flags);
1369 }
1370 
1371 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1372 {
1373 	struct mmci_host *host = mmc_priv(mmc);
1374 	struct variant_data *variant = host->variant;
1375 	u32 pwr = 0;
1376 	unsigned long flags;
1377 	int ret;
1378 
1379 	if (host->plat->ios_handler &&
1380 		host->plat->ios_handler(mmc_dev(mmc), ios))
1381 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1382 
1383 	switch (ios->power_mode) {
1384 	case MMC_POWER_OFF:
1385 		if (!IS_ERR(mmc->supply.vmmc))
1386 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1387 
1388 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1389 			regulator_disable(mmc->supply.vqmmc);
1390 			host->vqmmc_enabled = false;
1391 		}
1392 
1393 		break;
1394 	case MMC_POWER_UP:
1395 		if (!IS_ERR(mmc->supply.vmmc))
1396 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1397 
1398 		/*
1399 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1400 		 * and instead uses MCI_PWR_ON so apply whatever value is
1401 		 * configured in the variant data.
1402 		 */
1403 		pwr |= variant->pwrreg_powerup;
1404 
1405 		break;
1406 	case MMC_POWER_ON:
1407 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1408 			ret = regulator_enable(mmc->supply.vqmmc);
1409 			if (ret < 0)
1410 				dev_err(mmc_dev(mmc),
1411 					"failed to enable vqmmc regulator\n");
1412 			else
1413 				host->vqmmc_enabled = true;
1414 		}
1415 
1416 		pwr |= MCI_PWR_ON;
1417 		break;
1418 	}
1419 
1420 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1421 		/*
1422 		 * The ST Micro variant has some additional bits
1423 		 * indicating signal direction for the signals in
1424 		 * the SD/MMC bus and feedback-clock usage.
1425 		 */
1426 		pwr |= host->pwr_reg_add;
1427 
1428 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1429 			pwr &= ~MCI_ST_DATA74DIREN;
1430 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1431 			pwr &= (~MCI_ST_DATA74DIREN &
1432 				~MCI_ST_DATA31DIREN &
1433 				~MCI_ST_DATA2DIREN);
1434 	}
1435 
1436 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1437 		if (host->hw_designer != AMBA_VENDOR_ST)
1438 			pwr |= MCI_ROD;
1439 		else {
1440 			/*
1441 			 * The ST Micro variant use the ROD bit for something
1442 			 * else and only has OD (Open Drain).
1443 			 */
1444 			pwr |= MCI_OD;
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1450 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1451 	 */
1452 	if (!ios->clock && variant->pwrreg_clkgate)
1453 		pwr &= ~MCI_PWR_ON;
1454 
1455 	if (host->variant->explicit_mclk_control &&
1456 	    ios->clock != host->clock_cache) {
1457 		ret = clk_set_rate(host->clk, ios->clock);
1458 		if (ret < 0)
1459 			dev_err(mmc_dev(host->mmc),
1460 				"Error setting clock rate (%d)\n", ret);
1461 		else
1462 			host->mclk = clk_get_rate(host->clk);
1463 	}
1464 	host->clock_cache = ios->clock;
1465 
1466 	spin_lock_irqsave(&host->lock, flags);
1467 
1468 	mmci_set_clkreg(host, ios->clock);
1469 	mmci_write_pwrreg(host, pwr);
1470 	mmci_reg_delay(host);
1471 
1472 	spin_unlock_irqrestore(&host->lock, flags);
1473 }
1474 
1475 static int mmci_get_cd(struct mmc_host *mmc)
1476 {
1477 	struct mmci_host *host = mmc_priv(mmc);
1478 	struct mmci_platform_data *plat = host->plat;
1479 	unsigned int status = mmc_gpio_get_cd(mmc);
1480 
1481 	if (status == -ENOSYS) {
1482 		if (!plat->status)
1483 			return 1; /* Assume always present */
1484 
1485 		status = plat->status(mmc_dev(host->mmc));
1486 	}
1487 	return status;
1488 }
1489 
1490 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1491 {
1492 	int ret = 0;
1493 
1494 	if (!IS_ERR(mmc->supply.vqmmc)) {
1495 
1496 		switch (ios->signal_voltage) {
1497 		case MMC_SIGNAL_VOLTAGE_330:
1498 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1499 						2700000, 3600000);
1500 			break;
1501 		case MMC_SIGNAL_VOLTAGE_180:
1502 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1503 						1700000, 1950000);
1504 			break;
1505 		case MMC_SIGNAL_VOLTAGE_120:
1506 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1507 						1100000, 1300000);
1508 			break;
1509 		}
1510 
1511 		if (ret)
1512 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1513 	}
1514 
1515 	return ret;
1516 }
1517 
1518 static struct mmc_host_ops mmci_ops = {
1519 	.request	= mmci_request,
1520 	.pre_req	= mmci_pre_request,
1521 	.post_req	= mmci_post_request,
1522 	.set_ios	= mmci_set_ios,
1523 	.get_ro		= mmc_gpio_get_ro,
1524 	.get_cd		= mmci_get_cd,
1525 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1526 };
1527 
1528 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1529 {
1530 	struct mmci_host *host = mmc_priv(mmc);
1531 	int ret = mmc_of_parse(mmc);
1532 
1533 	if (ret)
1534 		return ret;
1535 
1536 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1537 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1538 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1539 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1540 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1541 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1542 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1543 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1544 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1545 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1546 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1547 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1548 
1549 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1550 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1551 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1552 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1553 
1554 	return 0;
1555 }
1556 
1557 static int mmci_probe(struct amba_device *dev,
1558 	const struct amba_id *id)
1559 {
1560 	struct mmci_platform_data *plat = dev->dev.platform_data;
1561 	struct device_node *np = dev->dev.of_node;
1562 	struct variant_data *variant = id->data;
1563 	struct mmci_host *host;
1564 	struct mmc_host *mmc;
1565 	int ret;
1566 
1567 	/* Must have platform data or Device Tree. */
1568 	if (!plat && !np) {
1569 		dev_err(&dev->dev, "No plat data or DT found\n");
1570 		return -EINVAL;
1571 	}
1572 
1573 	if (!plat) {
1574 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1575 		if (!plat)
1576 			return -ENOMEM;
1577 	}
1578 
1579 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1580 	if (!mmc)
1581 		return -ENOMEM;
1582 
1583 	ret = mmci_of_parse(np, mmc);
1584 	if (ret)
1585 		goto host_free;
1586 
1587 	host = mmc_priv(mmc);
1588 	host->mmc = mmc;
1589 
1590 	host->hw_designer = amba_manf(dev);
1591 	host->hw_revision = amba_rev(dev);
1592 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1593 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1594 
1595 	host->clk = devm_clk_get(&dev->dev, NULL);
1596 	if (IS_ERR(host->clk)) {
1597 		ret = PTR_ERR(host->clk);
1598 		goto host_free;
1599 	}
1600 
1601 	ret = clk_prepare_enable(host->clk);
1602 	if (ret)
1603 		goto host_free;
1604 
1605 	if (variant->qcom_fifo)
1606 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1607 	else
1608 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1609 
1610 	host->plat = plat;
1611 	host->variant = variant;
1612 	host->mclk = clk_get_rate(host->clk);
1613 	/*
1614 	 * According to the spec, mclk is max 100 MHz,
1615 	 * so we try to adjust the clock down to this,
1616 	 * (if possible).
1617 	 */
1618 	if (host->mclk > variant->f_max) {
1619 		ret = clk_set_rate(host->clk, variant->f_max);
1620 		if (ret < 0)
1621 			goto clk_disable;
1622 		host->mclk = clk_get_rate(host->clk);
1623 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1624 			host->mclk);
1625 	}
1626 
1627 	host->phybase = dev->res.start;
1628 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1629 	if (IS_ERR(host->base)) {
1630 		ret = PTR_ERR(host->base);
1631 		goto clk_disable;
1632 	}
1633 
1634 	/*
1635 	 * The ARM and ST versions of the block have slightly different
1636 	 * clock divider equations which means that the minimum divider
1637 	 * differs too.
1638 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1639 	 */
1640 	if (variant->st_clkdiv)
1641 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1642 	else if (variant->explicit_mclk_control)
1643 		mmc->f_min = clk_round_rate(host->clk, 100000);
1644 	else
1645 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1646 	/*
1647 	 * If no maximum operating frequency is supplied, fall back to use
1648 	 * the module parameter, which has a (low) default value in case it
1649 	 * is not specified. Either value must not exceed the clock rate into
1650 	 * the block, of course.
1651 	 */
1652 	if (mmc->f_max)
1653 		mmc->f_max = variant->explicit_mclk_control ?
1654 				min(variant->f_max, mmc->f_max) :
1655 				min(host->mclk, mmc->f_max);
1656 	else
1657 		mmc->f_max = variant->explicit_mclk_control ?
1658 				fmax : min(host->mclk, fmax);
1659 
1660 
1661 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1662 
1663 	/* Get regulators and the supported OCR mask */
1664 	ret = mmc_regulator_get_supply(mmc);
1665 	if (ret == -EPROBE_DEFER)
1666 		goto clk_disable;
1667 
1668 	if (!mmc->ocr_avail)
1669 		mmc->ocr_avail = plat->ocr_mask;
1670 	else if (plat->ocr_mask)
1671 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1672 
1673 	/* DT takes precedence over platform data. */
1674 	if (!np) {
1675 		if (!plat->cd_invert)
1676 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1677 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1678 	}
1679 
1680 	/* We support these capabilities. */
1681 	mmc->caps |= MMC_CAP_CMD23;
1682 
1683 	/*
1684 	 * Enable busy detection.
1685 	 */
1686 	if (variant->busy_detect) {
1687 		mmci_ops.card_busy = mmci_card_busy;
1688 		/*
1689 		 * Not all variants have a flag to enable busy detection
1690 		 * in the DPSM, but if they do, set it here.
1691 		 */
1692 		if (variant->busy_dpsm_flag)
1693 			mmci_write_datactrlreg(host,
1694 					       host->variant->busy_dpsm_flag);
1695 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1696 		mmc->max_busy_timeout = 0;
1697 	}
1698 
1699 	mmc->ops = &mmci_ops;
1700 
1701 	/* We support these PM capabilities. */
1702 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1703 
1704 	/*
1705 	 * We can do SGIO
1706 	 */
1707 	mmc->max_segs = NR_SG;
1708 
1709 	/*
1710 	 * Since only a certain number of bits are valid in the data length
1711 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1712 	 * single request.
1713 	 */
1714 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1715 
1716 	/*
1717 	 * Set the maximum segment size.  Since we aren't doing DMA
1718 	 * (yet) we are only limited by the data length register.
1719 	 */
1720 	mmc->max_seg_size = mmc->max_req_size;
1721 
1722 	/*
1723 	 * Block size can be up to 2048 bytes, but must be a power of two.
1724 	 */
1725 	mmc->max_blk_size = 1 << 11;
1726 
1727 	/*
1728 	 * Limit the number of blocks transferred so that we don't overflow
1729 	 * the maximum request size.
1730 	 */
1731 	mmc->max_blk_count = mmc->max_req_size >> 11;
1732 
1733 	spin_lock_init(&host->lock);
1734 
1735 	writel(0, host->base + MMCIMASK0);
1736 	writel(0, host->base + MMCIMASK1);
1737 	writel(0xfff, host->base + MMCICLEAR);
1738 
1739 	/*
1740 	 * If:
1741 	 * - not using DT but using a descriptor table, or
1742 	 * - using a table of descriptors ALONGSIDE DT, or
1743 	 * look up these descriptors named "cd" and "wp" right here, fail
1744 	 * silently of these do not exist and proceed to try platform data
1745 	 */
1746 	if (!np) {
1747 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1748 		if (ret < 0) {
1749 			if (ret == -EPROBE_DEFER)
1750 				goto clk_disable;
1751 			else if (gpio_is_valid(plat->gpio_cd)) {
1752 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1753 				if (ret)
1754 					goto clk_disable;
1755 			}
1756 		}
1757 
1758 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1759 		if (ret < 0) {
1760 			if (ret == -EPROBE_DEFER)
1761 				goto clk_disable;
1762 			else if (gpio_is_valid(plat->gpio_wp)) {
1763 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1764 				if (ret)
1765 					goto clk_disable;
1766 			}
1767 		}
1768 	}
1769 
1770 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1771 			DRIVER_NAME " (cmd)", host);
1772 	if (ret)
1773 		goto clk_disable;
1774 
1775 	if (!dev->irq[1])
1776 		host->singleirq = true;
1777 	else {
1778 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1779 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1780 		if (ret)
1781 			goto clk_disable;
1782 	}
1783 
1784 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785 
1786 	amba_set_drvdata(dev, mmc);
1787 
1788 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1789 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1790 		 amba_rev(dev), (unsigned long long)dev->res.start,
1791 		 dev->irq[0], dev->irq[1]);
1792 
1793 	mmci_dma_setup(host);
1794 
1795 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1796 	pm_runtime_use_autosuspend(&dev->dev);
1797 
1798 	mmc_add_host(mmc);
1799 
1800 	pm_runtime_put(&dev->dev);
1801 	return 0;
1802 
1803  clk_disable:
1804 	clk_disable_unprepare(host->clk);
1805  host_free:
1806 	mmc_free_host(mmc);
1807 	return ret;
1808 }
1809 
1810 static int mmci_remove(struct amba_device *dev)
1811 {
1812 	struct mmc_host *mmc = amba_get_drvdata(dev);
1813 
1814 	if (mmc) {
1815 		struct mmci_host *host = mmc_priv(mmc);
1816 
1817 		/*
1818 		 * Undo pm_runtime_put() in probe.  We use the _sync
1819 		 * version here so that we can access the primecell.
1820 		 */
1821 		pm_runtime_get_sync(&dev->dev);
1822 
1823 		mmc_remove_host(mmc);
1824 
1825 		writel(0, host->base + MMCIMASK0);
1826 		writel(0, host->base + MMCIMASK1);
1827 
1828 		writel(0, host->base + MMCICOMMAND);
1829 		writel(0, host->base + MMCIDATACTRL);
1830 
1831 		mmci_dma_release(host);
1832 		clk_disable_unprepare(host->clk);
1833 		mmc_free_host(mmc);
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 #ifdef CONFIG_PM
1840 static void mmci_save(struct mmci_host *host)
1841 {
1842 	unsigned long flags;
1843 
1844 	spin_lock_irqsave(&host->lock, flags);
1845 
1846 	writel(0, host->base + MMCIMASK0);
1847 	if (host->variant->pwrreg_nopower) {
1848 		writel(0, host->base + MMCIDATACTRL);
1849 		writel(0, host->base + MMCIPOWER);
1850 		writel(0, host->base + MMCICLOCK);
1851 	}
1852 	mmci_reg_delay(host);
1853 
1854 	spin_unlock_irqrestore(&host->lock, flags);
1855 }
1856 
1857 static void mmci_restore(struct mmci_host *host)
1858 {
1859 	unsigned long flags;
1860 
1861 	spin_lock_irqsave(&host->lock, flags);
1862 
1863 	if (host->variant->pwrreg_nopower) {
1864 		writel(host->clk_reg, host->base + MMCICLOCK);
1865 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1866 		writel(host->pwr_reg, host->base + MMCIPOWER);
1867 	}
1868 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1869 	mmci_reg_delay(host);
1870 
1871 	spin_unlock_irqrestore(&host->lock, flags);
1872 }
1873 
1874 static int mmci_runtime_suspend(struct device *dev)
1875 {
1876 	struct amba_device *adev = to_amba_device(dev);
1877 	struct mmc_host *mmc = amba_get_drvdata(adev);
1878 
1879 	if (mmc) {
1880 		struct mmci_host *host = mmc_priv(mmc);
1881 		pinctrl_pm_select_sleep_state(dev);
1882 		mmci_save(host);
1883 		clk_disable_unprepare(host->clk);
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 static int mmci_runtime_resume(struct device *dev)
1890 {
1891 	struct amba_device *adev = to_amba_device(dev);
1892 	struct mmc_host *mmc = amba_get_drvdata(adev);
1893 
1894 	if (mmc) {
1895 		struct mmci_host *host = mmc_priv(mmc);
1896 		clk_prepare_enable(host->clk);
1897 		mmci_restore(host);
1898 		pinctrl_pm_select_default_state(dev);
1899 	}
1900 
1901 	return 0;
1902 }
1903 #endif
1904 
1905 static const struct dev_pm_ops mmci_dev_pm_ops = {
1906 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1907 				pm_runtime_force_resume)
1908 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1909 };
1910 
1911 static struct amba_id mmci_ids[] = {
1912 	{
1913 		.id	= 0x00041180,
1914 		.mask	= 0xff0fffff,
1915 		.data	= &variant_arm,
1916 	},
1917 	{
1918 		.id	= 0x01041180,
1919 		.mask	= 0xff0fffff,
1920 		.data	= &variant_arm_extended_fifo,
1921 	},
1922 	{
1923 		.id	= 0x02041180,
1924 		.mask	= 0xff0fffff,
1925 		.data	= &variant_arm_extended_fifo_hwfc,
1926 	},
1927 	{
1928 		.id	= 0x00041181,
1929 		.mask	= 0x000fffff,
1930 		.data	= &variant_arm,
1931 	},
1932 	/* ST Micro variants */
1933 	{
1934 		.id     = 0x00180180,
1935 		.mask   = 0x00ffffff,
1936 		.data	= &variant_u300,
1937 	},
1938 	{
1939 		.id     = 0x10180180,
1940 		.mask   = 0xf0ffffff,
1941 		.data	= &variant_nomadik,
1942 	},
1943 	{
1944 		.id     = 0x00280180,
1945 		.mask   = 0x00ffffff,
1946 		.data	= &variant_nomadik,
1947 	},
1948 	{
1949 		.id     = 0x00480180,
1950 		.mask   = 0xf0ffffff,
1951 		.data	= &variant_ux500,
1952 	},
1953 	{
1954 		.id     = 0x10480180,
1955 		.mask   = 0xf0ffffff,
1956 		.data	= &variant_ux500v2,
1957 	},
1958 	/* Qualcomm variants */
1959 	{
1960 		.id     = 0x00051180,
1961 		.mask	= 0x000fffff,
1962 		.data	= &variant_qcom,
1963 	},
1964 	{ 0, 0 },
1965 };
1966 
1967 MODULE_DEVICE_TABLE(amba, mmci_ids);
1968 
1969 static struct amba_driver mmci_driver = {
1970 	.drv		= {
1971 		.name	= DRIVER_NAME,
1972 		.pm	= &mmci_dev_pm_ops,
1973 	},
1974 	.probe		= mmci_probe,
1975 	.remove		= mmci_remove,
1976 	.id_table	= mmci_ids,
1977 };
1978 
1979 module_amba_driver(mmci_driver);
1980 
1981 module_param(fmax, uint, 0444);
1982 
1983 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1984 MODULE_LICENSE("GPL");
1985