xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/slot-gpio.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/reset.h>
38 
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 
42 #include "mmci.h"
43 
44 #define DRIVER_NAME "mmci-pl18x"
45 
46 static void mmci_variant_init(struct mmci_host *host);
47 static void ux500_variant_init(struct mmci_host *host);
48 static void ux500v2_variant_init(struct mmci_host *host);
49 
50 static unsigned int fmax = 515633;
51 
52 static struct variant_data variant_arm = {
53 	.fifosize		= 16 * 4,
54 	.fifohalfsize		= 8 * 4,
55 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
56 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
57 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
58 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
59 	.datalength_bits	= 16,
60 	.datactrl_blocksz	= 11,
61 	.pwrreg_powerup		= MCI_PWR_UP,
62 	.f_max			= 100000000,
63 	.reversed_irq_handling	= true,
64 	.mmcimask1		= true,
65 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
66 	.start_err		= MCI_STARTBITERR,
67 	.opendrain		= MCI_ROD,
68 	.init			= mmci_variant_init,
69 };
70 
71 static struct variant_data variant_arm_extended_fifo = {
72 	.fifosize		= 128 * 4,
73 	.fifohalfsize		= 64 * 4,
74 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
75 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
76 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
77 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
78 	.datalength_bits	= 16,
79 	.datactrl_blocksz	= 11,
80 	.pwrreg_powerup		= MCI_PWR_UP,
81 	.f_max			= 100000000,
82 	.mmcimask1		= true,
83 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
84 	.start_err		= MCI_STARTBITERR,
85 	.opendrain		= MCI_ROD,
86 	.init			= mmci_variant_init,
87 };
88 
89 static struct variant_data variant_arm_extended_fifo_hwfc = {
90 	.fifosize		= 128 * 4,
91 	.fifohalfsize		= 64 * 4,
92 	.clkreg_enable		= MCI_ARM_HWFCEN,
93 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
94 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
95 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
96 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
97 	.datalength_bits	= 16,
98 	.datactrl_blocksz	= 11,
99 	.pwrreg_powerup		= MCI_PWR_UP,
100 	.f_max			= 100000000,
101 	.mmcimask1		= true,
102 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
103 	.start_err		= MCI_STARTBITERR,
104 	.opendrain		= MCI_ROD,
105 	.init			= mmci_variant_init,
106 };
107 
108 static struct variant_data variant_u300 = {
109 	.fifosize		= 16 * 4,
110 	.fifohalfsize		= 8 * 4,
111 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
112 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
113 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
114 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
115 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
116 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
117 	.datalength_bits	= 16,
118 	.datactrl_blocksz	= 11,
119 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
120 	.st_sdio			= true,
121 	.pwrreg_powerup		= MCI_PWR_ON,
122 	.f_max			= 100000000,
123 	.signal_direction	= true,
124 	.pwrreg_clkgate		= true,
125 	.pwrreg_nopower		= true,
126 	.mmcimask1		= true,
127 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
128 	.start_err		= MCI_STARTBITERR,
129 	.opendrain		= MCI_OD,
130 	.init			= mmci_variant_init,
131 };
132 
133 static struct variant_data variant_nomadik = {
134 	.fifosize		= 16 * 4,
135 	.fifohalfsize		= 8 * 4,
136 	.clkreg			= MCI_CLK_ENABLE,
137 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
138 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
139 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
140 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
141 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
142 	.datalength_bits	= 24,
143 	.datactrl_blocksz	= 11,
144 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
145 	.st_sdio		= true,
146 	.st_clkdiv		= true,
147 	.pwrreg_powerup		= MCI_PWR_ON,
148 	.f_max			= 100000000,
149 	.signal_direction	= true,
150 	.pwrreg_clkgate		= true,
151 	.pwrreg_nopower		= true,
152 	.mmcimask1		= true,
153 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
154 	.start_err		= MCI_STARTBITERR,
155 	.opendrain		= MCI_OD,
156 	.init			= mmci_variant_init,
157 };
158 
159 static struct variant_data variant_ux500 = {
160 	.fifosize		= 30 * 4,
161 	.fifohalfsize		= 8 * 4,
162 	.clkreg			= MCI_CLK_ENABLE,
163 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
164 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
165 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
166 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
167 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
168 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
169 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
170 	.datalength_bits	= 24,
171 	.datactrl_blocksz	= 11,
172 	.datactrl_any_blocksz	= true,
173 	.dma_power_of_2		= true,
174 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
175 	.st_sdio		= true,
176 	.st_clkdiv		= true,
177 	.pwrreg_powerup		= MCI_PWR_ON,
178 	.f_max			= 100000000,
179 	.signal_direction	= true,
180 	.pwrreg_clkgate		= true,
181 	.busy_detect		= true,
182 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
183 	.busy_detect_flag	= MCI_ST_CARDBUSY,
184 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
185 	.pwrreg_nopower		= true,
186 	.mmcimask1		= true,
187 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
188 	.start_err		= MCI_STARTBITERR,
189 	.opendrain		= MCI_OD,
190 	.init			= ux500_variant_init,
191 };
192 
193 static struct variant_data variant_ux500v2 = {
194 	.fifosize		= 30 * 4,
195 	.fifohalfsize		= 8 * 4,
196 	.clkreg			= MCI_CLK_ENABLE,
197 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
198 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
199 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
200 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
201 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
202 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
203 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
204 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
205 	.datalength_bits	= 24,
206 	.datactrl_blocksz	= 11,
207 	.datactrl_any_blocksz	= true,
208 	.dma_power_of_2		= true,
209 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
210 	.st_sdio		= true,
211 	.st_clkdiv		= true,
212 	.pwrreg_powerup		= MCI_PWR_ON,
213 	.f_max			= 100000000,
214 	.signal_direction	= true,
215 	.pwrreg_clkgate		= true,
216 	.busy_detect		= true,
217 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
218 	.busy_detect_flag	= MCI_ST_CARDBUSY,
219 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
220 	.pwrreg_nopower		= true,
221 	.mmcimask1		= true,
222 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
223 	.start_err		= MCI_STARTBITERR,
224 	.opendrain		= MCI_OD,
225 	.init			= ux500v2_variant_init,
226 };
227 
228 static struct variant_data variant_stm32 = {
229 	.fifosize		= 32 * 4,
230 	.fifohalfsize		= 8 * 4,
231 	.clkreg			= MCI_CLK_ENABLE,
232 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
233 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
234 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
235 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
236 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
237 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
238 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
239 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
240 	.datalength_bits	= 24,
241 	.datactrl_blocksz	= 11,
242 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
243 	.st_sdio		= true,
244 	.st_clkdiv		= true,
245 	.pwrreg_powerup		= MCI_PWR_ON,
246 	.f_max			= 48000000,
247 	.pwrreg_clkgate		= true,
248 	.pwrreg_nopower		= true,
249 	.init			= mmci_variant_init,
250 };
251 
252 static struct variant_data variant_stm32_sdmmc = {
253 	.fifosize		= 16 * 4,
254 	.fifohalfsize		= 8 * 4,
255 	.f_max			= 208000000,
256 	.stm32_clkdiv		= true,
257 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
258 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
259 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
260 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
261 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
262 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
263 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
264 	.datactrl_first		= true,
265 	.datacnt_useless	= true,
266 	.datalength_bits	= 25,
267 	.datactrl_blocksz	= 14,
268 	.datactrl_any_blocksz	= true,
269 	.stm32_idmabsize_mask	= GENMASK(12, 5),
270 	.busy_timeout		= true,
271 	.busy_detect		= true,
272 	.busy_detect_flag	= MCI_STM32_BUSYD0,
273 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
274 	.init			= sdmmc_variant_init,
275 };
276 
277 static struct variant_data variant_qcom = {
278 	.fifosize		= 16 * 4,
279 	.fifohalfsize		= 8 * 4,
280 	.clkreg			= MCI_CLK_ENABLE,
281 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
282 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
283 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
284 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
285 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
286 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
287 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
288 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
289 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
290 	.datalength_bits	= 24,
291 	.datactrl_blocksz	= 11,
292 	.datactrl_any_blocksz	= true,
293 	.pwrreg_powerup		= MCI_PWR_UP,
294 	.f_max			= 208000000,
295 	.explicit_mclk_control	= true,
296 	.qcom_fifo		= true,
297 	.qcom_dml		= true,
298 	.mmcimask1		= true,
299 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
300 	.start_err		= MCI_STARTBITERR,
301 	.opendrain		= MCI_ROD,
302 	.init			= qcom_variant_init,
303 };
304 
305 /* Busy detection for the ST Micro variant */
306 static int mmci_card_busy(struct mmc_host *mmc)
307 {
308 	struct mmci_host *host = mmc_priv(mmc);
309 	unsigned long flags;
310 	int busy = 0;
311 
312 	spin_lock_irqsave(&host->lock, flags);
313 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
314 		busy = 1;
315 	spin_unlock_irqrestore(&host->lock, flags);
316 
317 	return busy;
318 }
319 
320 static void mmci_reg_delay(struct mmci_host *host)
321 {
322 	/*
323 	 * According to the spec, at least three feedback clock cycles
324 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
325 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
326 	 * Worst delay time during card init is at 100 kHz => 30 us.
327 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
328 	 */
329 	if (host->cclk < 25000000)
330 		udelay(30);
331 	else
332 		ndelay(120);
333 }
334 
335 /*
336  * This must be called with host->lock held
337  */
338 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
339 {
340 	if (host->clk_reg != clk) {
341 		host->clk_reg = clk;
342 		writel(clk, host->base + MMCICLOCK);
343 	}
344 }
345 
346 /*
347  * This must be called with host->lock held
348  */
349 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
350 {
351 	if (host->pwr_reg != pwr) {
352 		host->pwr_reg = pwr;
353 		writel(pwr, host->base + MMCIPOWER);
354 	}
355 }
356 
357 /*
358  * This must be called with host->lock held
359  */
360 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
361 {
362 	/* Keep busy mode in DPSM if enabled */
363 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
364 
365 	if (host->datactrl_reg != datactrl) {
366 		host->datactrl_reg = datactrl;
367 		writel(datactrl, host->base + MMCIDATACTRL);
368 	}
369 }
370 
371 /*
372  * This must be called with host->lock held
373  */
374 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
375 {
376 	struct variant_data *variant = host->variant;
377 	u32 clk = variant->clkreg;
378 
379 	/* Make sure cclk reflects the current calculated clock */
380 	host->cclk = 0;
381 
382 	if (desired) {
383 		if (variant->explicit_mclk_control) {
384 			host->cclk = host->mclk;
385 		} else if (desired >= host->mclk) {
386 			clk = MCI_CLK_BYPASS;
387 			if (variant->st_clkdiv)
388 				clk |= MCI_ST_UX500_NEG_EDGE;
389 			host->cclk = host->mclk;
390 		} else if (variant->st_clkdiv) {
391 			/*
392 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
393 			 * => clkdiv = (mclk / f) - 2
394 			 * Round the divider up so we don't exceed the max
395 			 * frequency
396 			 */
397 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
398 			if (clk >= 256)
399 				clk = 255;
400 			host->cclk = host->mclk / (clk + 2);
401 		} else {
402 			/*
403 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
404 			 * => clkdiv = mclk / (2 * f) - 1
405 			 */
406 			clk = host->mclk / (2 * desired) - 1;
407 			if (clk >= 256)
408 				clk = 255;
409 			host->cclk = host->mclk / (2 * (clk + 1));
410 		}
411 
412 		clk |= variant->clkreg_enable;
413 		clk |= MCI_CLK_ENABLE;
414 		/* This hasn't proven to be worthwhile */
415 		/* clk |= MCI_CLK_PWRSAVE; */
416 	}
417 
418 	/* Set actual clock for debug */
419 	host->mmc->actual_clock = host->cclk;
420 
421 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
422 		clk |= MCI_4BIT_BUS;
423 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
424 		clk |= variant->clkreg_8bit_bus_enable;
425 
426 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
427 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
428 		clk |= variant->clkreg_neg_edge_enable;
429 
430 	mmci_write_clkreg(host, clk);
431 }
432 
433 static void mmci_dma_release(struct mmci_host *host)
434 {
435 	if (host->ops && host->ops->dma_release)
436 		host->ops->dma_release(host);
437 
438 	host->use_dma = false;
439 }
440 
441 static void mmci_dma_setup(struct mmci_host *host)
442 {
443 	if (!host->ops || !host->ops->dma_setup)
444 		return;
445 
446 	if (host->ops->dma_setup(host))
447 		return;
448 
449 	/* initialize pre request cookie */
450 	host->next_cookie = 1;
451 
452 	host->use_dma = true;
453 }
454 
455 /*
456  * Validate mmc prerequisites
457  */
458 static int mmci_validate_data(struct mmci_host *host,
459 			      struct mmc_data *data)
460 {
461 	struct variant_data *variant = host->variant;
462 
463 	if (!data)
464 		return 0;
465 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
466 		dev_err(mmc_dev(host->mmc),
467 			"unsupported block size (%d bytes)\n", data->blksz);
468 		return -EINVAL;
469 	}
470 
471 	if (host->ops && host->ops->validate_data)
472 		return host->ops->validate_data(host, data);
473 
474 	return 0;
475 }
476 
477 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
478 {
479 	int err;
480 
481 	if (!host->ops || !host->ops->prep_data)
482 		return 0;
483 
484 	err = host->ops->prep_data(host, data, next);
485 
486 	if (next && !err)
487 		data->host_cookie = ++host->next_cookie < 0 ?
488 			1 : host->next_cookie;
489 
490 	return err;
491 }
492 
493 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
494 		      int err)
495 {
496 	if (host->ops && host->ops->unprep_data)
497 		host->ops->unprep_data(host, data, err);
498 
499 	data->host_cookie = 0;
500 }
501 
502 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
503 {
504 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
505 
506 	if (host->ops && host->ops->get_next_data)
507 		host->ops->get_next_data(host, data);
508 }
509 
510 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
511 {
512 	struct mmc_data *data = host->data;
513 	int ret;
514 
515 	if (!host->use_dma)
516 		return -EINVAL;
517 
518 	ret = mmci_prep_data(host, data, false);
519 	if (ret)
520 		return ret;
521 
522 	if (!host->ops || !host->ops->dma_start)
523 		return -EINVAL;
524 
525 	/* Okay, go for it. */
526 	dev_vdbg(mmc_dev(host->mmc),
527 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
528 		 data->sg_len, data->blksz, data->blocks, data->flags);
529 
530 	ret = host->ops->dma_start(host, &datactrl);
531 	if (ret)
532 		return ret;
533 
534 	/* Trigger the DMA transfer */
535 	mmci_write_datactrlreg(host, datactrl);
536 
537 	/*
538 	 * Let the MMCI say when the data is ended and it's time
539 	 * to fire next DMA request. When that happens, MMCI will
540 	 * call mmci_data_end()
541 	 */
542 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
543 	       host->base + MMCIMASK0);
544 	return 0;
545 }
546 
547 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
548 {
549 	if (!host->use_dma)
550 		return;
551 
552 	if (host->ops && host->ops->dma_finalize)
553 		host->ops->dma_finalize(host, data);
554 }
555 
556 static void mmci_dma_error(struct mmci_host *host)
557 {
558 	if (!host->use_dma)
559 		return;
560 
561 	if (host->ops && host->ops->dma_error)
562 		host->ops->dma_error(host);
563 }
564 
565 static void
566 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
567 {
568 	writel(0, host->base + MMCICOMMAND);
569 
570 	BUG_ON(host->data);
571 
572 	host->mrq = NULL;
573 	host->cmd = NULL;
574 
575 	mmc_request_done(host->mmc, mrq);
576 }
577 
578 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
579 {
580 	void __iomem *base = host->base;
581 	struct variant_data *variant = host->variant;
582 
583 	if (host->singleirq) {
584 		unsigned int mask0 = readl(base + MMCIMASK0);
585 
586 		mask0 &= ~variant->irq_pio_mask;
587 		mask0 |= mask;
588 
589 		writel(mask0, base + MMCIMASK0);
590 	}
591 
592 	if (variant->mmcimask1)
593 		writel(mask, base + MMCIMASK1);
594 
595 	host->mask1_reg = mask;
596 }
597 
598 static void mmci_stop_data(struct mmci_host *host)
599 {
600 	mmci_write_datactrlreg(host, 0);
601 	mmci_set_mask1(host, 0);
602 	host->data = NULL;
603 }
604 
605 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
606 {
607 	unsigned int flags = SG_MITER_ATOMIC;
608 
609 	if (data->flags & MMC_DATA_READ)
610 		flags |= SG_MITER_TO_SG;
611 	else
612 		flags |= SG_MITER_FROM_SG;
613 
614 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
615 }
616 
617 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
618 {
619 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
620 }
621 
622 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
623 {
624 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
625 }
626 
627 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
628 {
629 	void __iomem *base = host->base;
630 
631 	/*
632 	 * Before unmasking for the busy end IRQ, confirm that the
633 	 * command was sent successfully. To keep track of having a
634 	 * command in-progress, waiting for busy signaling to end,
635 	 * store the status in host->busy_status.
636 	 *
637 	 * Note that, the card may need a couple of clock cycles before
638 	 * it starts signaling busy on DAT0, hence re-read the
639 	 * MMCISTATUS register here, to allow the busy bit to be set.
640 	 * Potentially we may even need to poll the register for a
641 	 * while, to allow it to be set, but tests indicates that it
642 	 * isn't needed.
643 	 */
644 	if (!host->busy_status && !(status & err_msk) &&
645 	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
646 		writel(readl(base + MMCIMASK0) |
647 		       host->variant->busy_detect_mask,
648 		       base + MMCIMASK0);
649 
650 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
651 		return false;
652 	}
653 
654 	/*
655 	 * If there is a command in-progress that has been successfully
656 	 * sent, then bail out if busy status is set and wait for the
657 	 * busy end IRQ.
658 	 *
659 	 * Note that, the HW triggers an IRQ on both edges while
660 	 * monitoring DAT0 for busy completion, but there is only one
661 	 * status bit in MMCISTATUS for the busy state. Therefore
662 	 * both the start and the end interrupts needs to be cleared,
663 	 * one after the other. So, clear the busy start IRQ here.
664 	 */
665 	if (host->busy_status &&
666 	    (status & host->variant->busy_detect_flag)) {
667 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
668 		return false;
669 	}
670 
671 	/*
672 	 * If there is a command in-progress that has been successfully
673 	 * sent and the busy bit isn't set, it means we have received
674 	 * the busy end IRQ. Clear and mask the IRQ, then continue to
675 	 * process the command.
676 	 */
677 	if (host->busy_status) {
678 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
679 
680 		writel(readl(base + MMCIMASK0) &
681 		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
682 		host->busy_status = 0;
683 	}
684 
685 	return true;
686 }
687 
688 /*
689  * All the DMA operation mode stuff goes inside this ifdef.
690  * This assumes that you have a generic DMA device interface,
691  * no custom DMA interfaces are supported.
692  */
693 #ifdef CONFIG_DMA_ENGINE
694 struct mmci_dmae_next {
695 	struct dma_async_tx_descriptor *desc;
696 	struct dma_chan	*chan;
697 };
698 
699 struct mmci_dmae_priv {
700 	struct dma_chan	*cur;
701 	struct dma_chan	*rx_channel;
702 	struct dma_chan	*tx_channel;
703 	struct dma_async_tx_descriptor	*desc_current;
704 	struct mmci_dmae_next next_data;
705 };
706 
707 int mmci_dmae_setup(struct mmci_host *host)
708 {
709 	const char *rxname, *txname;
710 	struct mmci_dmae_priv *dmae;
711 
712 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
713 	if (!dmae)
714 		return -ENOMEM;
715 
716 	host->dma_priv = dmae;
717 
718 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
719 	if (IS_ERR(dmae->rx_channel)) {
720 		int ret = PTR_ERR(dmae->rx_channel);
721 		dmae->rx_channel = NULL;
722 		return ret;
723 	}
724 
725 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
726 	if (IS_ERR(dmae->tx_channel)) {
727 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
728 			dev_warn(mmc_dev(host->mmc),
729 				 "Deferred probe for TX channel ignored\n");
730 		dmae->tx_channel = NULL;
731 	}
732 
733 	/*
734 	 * If only an RX channel is specified, the driver will
735 	 * attempt to use it bidirectionally, however if it is
736 	 * is specified but cannot be located, DMA will be disabled.
737 	 */
738 	if (dmae->rx_channel && !dmae->tx_channel)
739 		dmae->tx_channel = dmae->rx_channel;
740 
741 	if (dmae->rx_channel)
742 		rxname = dma_chan_name(dmae->rx_channel);
743 	else
744 		rxname = "none";
745 
746 	if (dmae->tx_channel)
747 		txname = dma_chan_name(dmae->tx_channel);
748 	else
749 		txname = "none";
750 
751 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
752 		 rxname, txname);
753 
754 	/*
755 	 * Limit the maximum segment size in any SG entry according to
756 	 * the parameters of the DMA engine device.
757 	 */
758 	if (dmae->tx_channel) {
759 		struct device *dev = dmae->tx_channel->device->dev;
760 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
761 
762 		if (max_seg_size < host->mmc->max_seg_size)
763 			host->mmc->max_seg_size = max_seg_size;
764 	}
765 	if (dmae->rx_channel) {
766 		struct device *dev = dmae->rx_channel->device->dev;
767 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
768 
769 		if (max_seg_size < host->mmc->max_seg_size)
770 			host->mmc->max_seg_size = max_seg_size;
771 	}
772 
773 	if (!dmae->tx_channel || !dmae->rx_channel) {
774 		mmci_dmae_release(host);
775 		return -EINVAL;
776 	}
777 
778 	return 0;
779 }
780 
781 /*
782  * This is used in or so inline it
783  * so it can be discarded.
784  */
785 void mmci_dmae_release(struct mmci_host *host)
786 {
787 	struct mmci_dmae_priv *dmae = host->dma_priv;
788 
789 	if (dmae->rx_channel)
790 		dma_release_channel(dmae->rx_channel);
791 	if (dmae->tx_channel)
792 		dma_release_channel(dmae->tx_channel);
793 	dmae->rx_channel = dmae->tx_channel = NULL;
794 }
795 
796 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
797 {
798 	struct mmci_dmae_priv *dmae = host->dma_priv;
799 	struct dma_chan *chan;
800 
801 	if (data->flags & MMC_DATA_READ)
802 		chan = dmae->rx_channel;
803 	else
804 		chan = dmae->tx_channel;
805 
806 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
807 		     mmc_get_dma_dir(data));
808 }
809 
810 void mmci_dmae_error(struct mmci_host *host)
811 {
812 	struct mmci_dmae_priv *dmae = host->dma_priv;
813 
814 	if (!dma_inprogress(host))
815 		return;
816 
817 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
818 	dmaengine_terminate_all(dmae->cur);
819 	host->dma_in_progress = false;
820 	dmae->cur = NULL;
821 	dmae->desc_current = NULL;
822 	host->data->host_cookie = 0;
823 
824 	mmci_dma_unmap(host, host->data);
825 }
826 
827 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
828 {
829 	struct mmci_dmae_priv *dmae = host->dma_priv;
830 	u32 status;
831 	int i;
832 
833 	if (!dma_inprogress(host))
834 		return;
835 
836 	/* Wait up to 1ms for the DMA to complete */
837 	for (i = 0; ; i++) {
838 		status = readl(host->base + MMCISTATUS);
839 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
840 			break;
841 		udelay(10);
842 	}
843 
844 	/*
845 	 * Check to see whether we still have some data left in the FIFO -
846 	 * this catches DMA controllers which are unable to monitor the
847 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
848 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
849 	 */
850 	if (status & MCI_RXDATAAVLBLMASK) {
851 		mmci_dma_error(host);
852 		if (!data->error)
853 			data->error = -EIO;
854 	} else if (!data->host_cookie) {
855 		mmci_dma_unmap(host, data);
856 	}
857 
858 	/*
859 	 * Use of DMA with scatter-gather is impossible.
860 	 * Give up with DMA and switch back to PIO mode.
861 	 */
862 	if (status & MCI_RXDATAAVLBLMASK) {
863 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
864 		mmci_dma_release(host);
865 	}
866 
867 	host->dma_in_progress = false;
868 	dmae->cur = NULL;
869 	dmae->desc_current = NULL;
870 }
871 
872 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
873 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
874 				struct dma_chan **dma_chan,
875 				struct dma_async_tx_descriptor **dma_desc)
876 {
877 	struct mmci_dmae_priv *dmae = host->dma_priv;
878 	struct variant_data *variant = host->variant;
879 	struct dma_slave_config conf = {
880 		.src_addr = host->phybase + MMCIFIFO,
881 		.dst_addr = host->phybase + MMCIFIFO,
882 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
883 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
884 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
885 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
886 		.device_fc = false,
887 	};
888 	struct dma_chan *chan;
889 	struct dma_device *device;
890 	struct dma_async_tx_descriptor *desc;
891 	int nr_sg;
892 	unsigned long flags = DMA_CTRL_ACK;
893 
894 	if (data->flags & MMC_DATA_READ) {
895 		conf.direction = DMA_DEV_TO_MEM;
896 		chan = dmae->rx_channel;
897 	} else {
898 		conf.direction = DMA_MEM_TO_DEV;
899 		chan = dmae->tx_channel;
900 	}
901 
902 	/* If there's no DMA channel, fall back to PIO */
903 	if (!chan)
904 		return -EINVAL;
905 
906 	/* If less than or equal to the fifo size, don't bother with DMA */
907 	if (data->blksz * data->blocks <= variant->fifosize)
908 		return -EINVAL;
909 
910 	/*
911 	 * This is necessary to get SDIO working on the Ux500. We do not yet
912 	 * know if this is a bug in:
913 	 * - The Ux500 DMA controller (DMA40)
914 	 * - The MMCI DMA interface on the Ux500
915 	 * some power of two blocks (such as 64 bytes) are sent regularly
916 	 * during SDIO traffic and those work fine so for these we enable DMA
917 	 * transfers.
918 	 */
919 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
920 		return -EINVAL;
921 
922 	device = chan->device;
923 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
924 			   mmc_get_dma_dir(data));
925 	if (nr_sg == 0)
926 		return -EINVAL;
927 
928 	if (host->variant->qcom_dml)
929 		flags |= DMA_PREP_INTERRUPT;
930 
931 	dmaengine_slave_config(chan, &conf);
932 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
933 					    conf.direction, flags);
934 	if (!desc)
935 		goto unmap_exit;
936 
937 	*dma_chan = chan;
938 	*dma_desc = desc;
939 
940 	return 0;
941 
942  unmap_exit:
943 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
944 		     mmc_get_dma_dir(data));
945 	return -ENOMEM;
946 }
947 
948 int mmci_dmae_prep_data(struct mmci_host *host,
949 			struct mmc_data *data,
950 			bool next)
951 {
952 	struct mmci_dmae_priv *dmae = host->dma_priv;
953 	struct mmci_dmae_next *nd = &dmae->next_data;
954 
955 	if (!host->use_dma)
956 		return -EINVAL;
957 
958 	if (next)
959 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
960 	/* Check if next job is already prepared. */
961 	if (dmae->cur && dmae->desc_current)
962 		return 0;
963 
964 	/* No job were prepared thus do it now. */
965 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
966 				    &dmae->desc_current);
967 }
968 
969 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
970 {
971 	struct mmci_dmae_priv *dmae = host->dma_priv;
972 	int ret;
973 
974 	host->dma_in_progress = true;
975 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
976 	if (ret < 0) {
977 		host->dma_in_progress = false;
978 		return ret;
979 	}
980 	dma_async_issue_pending(dmae->cur);
981 
982 	*datactrl |= MCI_DPSM_DMAENABLE;
983 
984 	return 0;
985 }
986 
987 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
988 {
989 	struct mmci_dmae_priv *dmae = host->dma_priv;
990 	struct mmci_dmae_next *next = &dmae->next_data;
991 
992 	if (!host->use_dma)
993 		return;
994 
995 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
996 
997 	dmae->desc_current = next->desc;
998 	dmae->cur = next->chan;
999 	next->desc = NULL;
1000 	next->chan = NULL;
1001 }
1002 
1003 void mmci_dmae_unprep_data(struct mmci_host *host,
1004 			   struct mmc_data *data, int err)
1005 
1006 {
1007 	struct mmci_dmae_priv *dmae = host->dma_priv;
1008 
1009 	if (!host->use_dma)
1010 		return;
1011 
1012 	mmci_dma_unmap(host, data);
1013 
1014 	if (err) {
1015 		struct mmci_dmae_next *next = &dmae->next_data;
1016 		struct dma_chan *chan;
1017 		if (data->flags & MMC_DATA_READ)
1018 			chan = dmae->rx_channel;
1019 		else
1020 			chan = dmae->tx_channel;
1021 		dmaengine_terminate_all(chan);
1022 
1023 		if (dmae->desc_current == next->desc)
1024 			dmae->desc_current = NULL;
1025 
1026 		if (dmae->cur == next->chan) {
1027 			host->dma_in_progress = false;
1028 			dmae->cur = NULL;
1029 		}
1030 
1031 		next->desc = NULL;
1032 		next->chan = NULL;
1033 	}
1034 }
1035 
1036 static struct mmci_host_ops mmci_variant_ops = {
1037 	.prep_data = mmci_dmae_prep_data,
1038 	.unprep_data = mmci_dmae_unprep_data,
1039 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1040 	.get_next_data = mmci_dmae_get_next_data,
1041 	.dma_setup = mmci_dmae_setup,
1042 	.dma_release = mmci_dmae_release,
1043 	.dma_start = mmci_dmae_start,
1044 	.dma_finalize = mmci_dmae_finalize,
1045 	.dma_error = mmci_dmae_error,
1046 };
1047 #else
1048 static struct mmci_host_ops mmci_variant_ops = {
1049 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1050 };
1051 #endif
1052 
1053 static void mmci_variant_init(struct mmci_host *host)
1054 {
1055 	host->ops = &mmci_variant_ops;
1056 }
1057 
1058 static void ux500_variant_init(struct mmci_host *host)
1059 {
1060 	host->ops = &mmci_variant_ops;
1061 	host->ops->busy_complete = ux500_busy_complete;
1062 }
1063 
1064 static void ux500v2_variant_init(struct mmci_host *host)
1065 {
1066 	host->ops = &mmci_variant_ops;
1067 	host->ops->busy_complete = ux500_busy_complete;
1068 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1069 }
1070 
1071 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1072 {
1073 	struct mmci_host *host = mmc_priv(mmc);
1074 	struct mmc_data *data = mrq->data;
1075 
1076 	if (!data)
1077 		return;
1078 
1079 	WARN_ON(data->host_cookie);
1080 
1081 	if (mmci_validate_data(host, data))
1082 		return;
1083 
1084 	mmci_prep_data(host, data, true);
1085 }
1086 
1087 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1088 			      int err)
1089 {
1090 	struct mmci_host *host = mmc_priv(mmc);
1091 	struct mmc_data *data = mrq->data;
1092 
1093 	if (!data || !data->host_cookie)
1094 		return;
1095 
1096 	mmci_unprep_data(host, data, err);
1097 }
1098 
1099 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1100 {
1101 	struct variant_data *variant = host->variant;
1102 	unsigned int datactrl, timeout, irqmask;
1103 	unsigned long long clks;
1104 	void __iomem *base;
1105 
1106 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1107 		data->blksz, data->blocks, data->flags);
1108 
1109 	host->data = data;
1110 	host->size = data->blksz * data->blocks;
1111 	data->bytes_xfered = 0;
1112 
1113 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1114 	do_div(clks, NSEC_PER_SEC);
1115 
1116 	timeout = data->timeout_clks + (unsigned int)clks;
1117 
1118 	base = host->base;
1119 	writel(timeout, base + MMCIDATATIMER);
1120 	writel(host->size, base + MMCIDATALENGTH);
1121 
1122 	datactrl = host->ops->get_datactrl_cfg(host);
1123 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1124 
1125 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1126 		u32 clk;
1127 
1128 		datactrl |= variant->datactrl_mask_sdio;
1129 
1130 		/*
1131 		 * The ST Micro variant for SDIO small write transfers
1132 		 * needs to have clock H/W flow control disabled,
1133 		 * otherwise the transfer will not start. The threshold
1134 		 * depends on the rate of MCLK.
1135 		 */
1136 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1137 		    (host->size < 8 ||
1138 		     (host->size <= 8 && host->mclk > 50000000)))
1139 			clk = host->clk_reg & ~variant->clkreg_enable;
1140 		else
1141 			clk = host->clk_reg | variant->clkreg_enable;
1142 
1143 		mmci_write_clkreg(host, clk);
1144 	}
1145 
1146 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1147 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1148 		datactrl |= variant->datactrl_mask_ddrmode;
1149 
1150 	/*
1151 	 * Attempt to use DMA operation mode, if this
1152 	 * should fail, fall back to PIO mode
1153 	 */
1154 	if (!mmci_dma_start(host, datactrl))
1155 		return;
1156 
1157 	/* IRQ mode, map the SG list for CPU reading/writing */
1158 	mmci_init_sg(host, data);
1159 
1160 	if (data->flags & MMC_DATA_READ) {
1161 		irqmask = MCI_RXFIFOHALFFULLMASK;
1162 
1163 		/*
1164 		 * If we have less than the fifo 'half-full' threshold to
1165 		 * transfer, trigger a PIO interrupt as soon as any data
1166 		 * is available.
1167 		 */
1168 		if (host->size < variant->fifohalfsize)
1169 			irqmask |= MCI_RXDATAAVLBLMASK;
1170 	} else {
1171 		/*
1172 		 * We don't actually need to include "FIFO empty" here
1173 		 * since its implicit in "FIFO half empty".
1174 		 */
1175 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1176 	}
1177 
1178 	mmci_write_datactrlreg(host, datactrl);
1179 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1180 	mmci_set_mask1(host, irqmask);
1181 }
1182 
1183 static void
1184 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1185 {
1186 	void __iomem *base = host->base;
1187 	unsigned long long clks;
1188 
1189 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1190 	    cmd->opcode, cmd->arg, cmd->flags);
1191 
1192 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1193 		writel(0, base + MMCICOMMAND);
1194 		mmci_reg_delay(host);
1195 	}
1196 
1197 	if (host->variant->cmdreg_stop &&
1198 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1199 		c |= host->variant->cmdreg_stop;
1200 
1201 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1202 	if (cmd->flags & MMC_RSP_PRESENT) {
1203 		if (cmd->flags & MMC_RSP_136)
1204 			c |= host->variant->cmdreg_lrsp_crc;
1205 		else if (cmd->flags & MMC_RSP_CRC)
1206 			c |= host->variant->cmdreg_srsp_crc;
1207 		else
1208 			c |= host->variant->cmdreg_srsp;
1209 	}
1210 
1211 	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1212 		if (!cmd->busy_timeout)
1213 			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1214 
1215 		clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1216 		do_div(clks, MSEC_PER_SEC);
1217 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1218 	}
1219 
1220 	if (/*interrupt*/0)
1221 		c |= MCI_CPSM_INTERRUPT;
1222 
1223 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1224 		c |= host->variant->data_cmd_enable;
1225 
1226 	host->cmd = cmd;
1227 
1228 	writel(cmd->arg, base + MMCIARGUMENT);
1229 	writel(c, base + MMCICOMMAND);
1230 }
1231 
1232 static void mmci_stop_command(struct mmci_host *host)
1233 {
1234 	host->stop_abort.error = 0;
1235 	mmci_start_command(host, &host->stop_abort, 0);
1236 }
1237 
1238 static void
1239 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1240 	      unsigned int status)
1241 {
1242 	unsigned int status_err;
1243 
1244 	/* Make sure we have data to handle */
1245 	if (!data)
1246 		return;
1247 
1248 	/* First check for errors */
1249 	status_err = status & (host->variant->start_err |
1250 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1251 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1252 
1253 	if (status_err) {
1254 		u32 remain, success;
1255 
1256 		/* Terminate the DMA transfer */
1257 		mmci_dma_error(host);
1258 
1259 		/*
1260 		 * Calculate how far we are into the transfer.  Note that
1261 		 * the data counter gives the number of bytes transferred
1262 		 * on the MMC bus, not on the host side.  On reads, this
1263 		 * can be as much as a FIFO-worth of data ahead.  This
1264 		 * matters for FIFO overruns only.
1265 		 */
1266 		if (!host->variant->datacnt_useless) {
1267 			remain = readl(host->base + MMCIDATACNT);
1268 			success = data->blksz * data->blocks - remain;
1269 		} else {
1270 			success = 0;
1271 		}
1272 
1273 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1274 			status_err, success);
1275 		if (status_err & MCI_DATACRCFAIL) {
1276 			/* Last block was not successful */
1277 			success -= 1;
1278 			data->error = -EILSEQ;
1279 		} else if (status_err & MCI_DATATIMEOUT) {
1280 			data->error = -ETIMEDOUT;
1281 		} else if (status_err & MCI_STARTBITERR) {
1282 			data->error = -ECOMM;
1283 		} else if (status_err & MCI_TXUNDERRUN) {
1284 			data->error = -EIO;
1285 		} else if (status_err & MCI_RXOVERRUN) {
1286 			if (success > host->variant->fifosize)
1287 				success -= host->variant->fifosize;
1288 			else
1289 				success = 0;
1290 			data->error = -EIO;
1291 		}
1292 		data->bytes_xfered = round_down(success, data->blksz);
1293 	}
1294 
1295 	if (status & MCI_DATABLOCKEND)
1296 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1297 
1298 	if (status & MCI_DATAEND || data->error) {
1299 		mmci_dma_finalize(host, data);
1300 
1301 		mmci_stop_data(host);
1302 
1303 		if (!data->error)
1304 			/* The error clause is handled above, success! */
1305 			data->bytes_xfered = data->blksz * data->blocks;
1306 
1307 		if (!data->stop) {
1308 			if (host->variant->cmdreg_stop && data->error)
1309 				mmci_stop_command(host);
1310 			else
1311 				mmci_request_end(host, data->mrq);
1312 		} else if (host->mrq->sbc && !data->error) {
1313 			mmci_request_end(host, data->mrq);
1314 		} else {
1315 			mmci_start_command(host, data->stop, 0);
1316 		}
1317 	}
1318 }
1319 
1320 static void
1321 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1322 	     unsigned int status)
1323 {
1324 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1325 	void __iomem *base = host->base;
1326 	bool sbc, busy_resp;
1327 
1328 	if (!cmd)
1329 		return;
1330 
1331 	sbc = (cmd == host->mrq->sbc);
1332 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1333 
1334 	/*
1335 	 * We need to be one of these interrupts to be considered worth
1336 	 * handling. Note that we tag on any latent IRQs postponed
1337 	 * due to waiting for busy status.
1338 	 */
1339 	if (host->variant->busy_timeout && busy_resp)
1340 		err_msk |= MCI_DATATIMEOUT;
1341 
1342 	if (!((status | host->busy_status) &
1343 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1344 		return;
1345 
1346 	/* Handle busy detection on DAT0 if the variant supports it. */
1347 	if (busy_resp && host->variant->busy_detect)
1348 		if (!host->ops->busy_complete(host, status, err_msk))
1349 			return;
1350 
1351 	host->cmd = NULL;
1352 
1353 	if (status & MCI_CMDTIMEOUT) {
1354 		cmd->error = -ETIMEDOUT;
1355 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1356 		cmd->error = -EILSEQ;
1357 	} else if (host->variant->busy_timeout && busy_resp &&
1358 		   status & MCI_DATATIMEOUT) {
1359 		cmd->error = -ETIMEDOUT;
1360 		host->irq_action = IRQ_WAKE_THREAD;
1361 	} else {
1362 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1363 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1364 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1365 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1366 	}
1367 
1368 	if ((!sbc && !cmd->data) || cmd->error) {
1369 		if (host->data) {
1370 			/* Terminate the DMA transfer */
1371 			mmci_dma_error(host);
1372 
1373 			mmci_stop_data(host);
1374 			if (host->variant->cmdreg_stop && cmd->error) {
1375 				mmci_stop_command(host);
1376 				return;
1377 			}
1378 		}
1379 
1380 		if (host->irq_action != IRQ_WAKE_THREAD)
1381 			mmci_request_end(host, host->mrq);
1382 
1383 	} else if (sbc) {
1384 		mmci_start_command(host, host->mrq->cmd, 0);
1385 	} else if (!host->variant->datactrl_first &&
1386 		   !(cmd->data->flags & MMC_DATA_READ)) {
1387 		mmci_start_data(host, cmd->data);
1388 	}
1389 }
1390 
1391 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1392 {
1393 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1394 }
1395 
1396 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1397 {
1398 	/*
1399 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1400 	 * from the fifo range should be used
1401 	 */
1402 	if (status & MCI_RXFIFOHALFFULL)
1403 		return host->variant->fifohalfsize;
1404 	else if (status & MCI_RXDATAAVLBL)
1405 		return 4;
1406 
1407 	return 0;
1408 }
1409 
1410 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1411 {
1412 	void __iomem *base = host->base;
1413 	char *ptr = buffer;
1414 	u32 status = readl(host->base + MMCISTATUS);
1415 	int host_remain = host->size;
1416 
1417 	do {
1418 		int count = host->get_rx_fifocnt(host, status, host_remain);
1419 
1420 		if (count > remain)
1421 			count = remain;
1422 
1423 		if (count <= 0)
1424 			break;
1425 
1426 		/*
1427 		 * SDIO especially may want to send something that is
1428 		 * not divisible by 4 (as opposed to card sectors
1429 		 * etc). Therefore make sure to always read the last bytes
1430 		 * while only doing full 32-bit reads towards the FIFO.
1431 		 */
1432 		if (unlikely(count & 0x3)) {
1433 			if (count < 4) {
1434 				unsigned char buf[4];
1435 				ioread32_rep(base + MMCIFIFO, buf, 1);
1436 				memcpy(ptr, buf, count);
1437 			} else {
1438 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1439 				count &= ~0x3;
1440 			}
1441 		} else {
1442 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1443 		}
1444 
1445 		ptr += count;
1446 		remain -= count;
1447 		host_remain -= count;
1448 
1449 		if (remain == 0)
1450 			break;
1451 
1452 		status = readl(base + MMCISTATUS);
1453 	} while (status & MCI_RXDATAAVLBL);
1454 
1455 	return ptr - buffer;
1456 }
1457 
1458 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1459 {
1460 	struct variant_data *variant = host->variant;
1461 	void __iomem *base = host->base;
1462 	char *ptr = buffer;
1463 
1464 	do {
1465 		unsigned int count, maxcnt;
1466 
1467 		maxcnt = status & MCI_TXFIFOEMPTY ?
1468 			 variant->fifosize : variant->fifohalfsize;
1469 		count = min(remain, maxcnt);
1470 
1471 		/*
1472 		 * SDIO especially may want to send something that is
1473 		 * not divisible by 4 (as opposed to card sectors
1474 		 * etc), and the FIFO only accept full 32-bit writes.
1475 		 * So compensate by adding +3 on the count, a single
1476 		 * byte become a 32bit write, 7 bytes will be two
1477 		 * 32bit writes etc.
1478 		 */
1479 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1480 
1481 		ptr += count;
1482 		remain -= count;
1483 
1484 		if (remain == 0)
1485 			break;
1486 
1487 		status = readl(base + MMCISTATUS);
1488 	} while (status & MCI_TXFIFOHALFEMPTY);
1489 
1490 	return ptr - buffer;
1491 }
1492 
1493 /*
1494  * PIO data transfer IRQ handler.
1495  */
1496 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1497 {
1498 	struct mmci_host *host = dev_id;
1499 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1500 	struct variant_data *variant = host->variant;
1501 	void __iomem *base = host->base;
1502 	u32 status;
1503 
1504 	status = readl(base + MMCISTATUS);
1505 
1506 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1507 
1508 	do {
1509 		unsigned int remain, len;
1510 		char *buffer;
1511 
1512 		/*
1513 		 * For write, we only need to test the half-empty flag
1514 		 * here - if the FIFO is completely empty, then by
1515 		 * definition it is more than half empty.
1516 		 *
1517 		 * For read, check for data available.
1518 		 */
1519 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1520 			break;
1521 
1522 		if (!sg_miter_next(sg_miter))
1523 			break;
1524 
1525 		buffer = sg_miter->addr;
1526 		remain = sg_miter->length;
1527 
1528 		len = 0;
1529 		if (status & MCI_RXACTIVE)
1530 			len = mmci_pio_read(host, buffer, remain);
1531 		if (status & MCI_TXACTIVE)
1532 			len = mmci_pio_write(host, buffer, remain, status);
1533 
1534 		sg_miter->consumed = len;
1535 
1536 		host->size -= len;
1537 		remain -= len;
1538 
1539 		if (remain)
1540 			break;
1541 
1542 		status = readl(base + MMCISTATUS);
1543 	} while (1);
1544 
1545 	sg_miter_stop(sg_miter);
1546 
1547 	/*
1548 	 * If we have less than the fifo 'half-full' threshold to transfer,
1549 	 * trigger a PIO interrupt as soon as any data is available.
1550 	 */
1551 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1552 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1553 
1554 	/*
1555 	 * If we run out of data, disable the data IRQs; this
1556 	 * prevents a race where the FIFO becomes empty before
1557 	 * the chip itself has disabled the data path, and
1558 	 * stops us racing with our data end IRQ.
1559 	 */
1560 	if (host->size == 0) {
1561 		mmci_set_mask1(host, 0);
1562 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1563 	}
1564 
1565 	return IRQ_HANDLED;
1566 }
1567 
1568 /*
1569  * Handle completion of command and data transfers.
1570  */
1571 static irqreturn_t mmci_irq(int irq, void *dev_id)
1572 {
1573 	struct mmci_host *host = dev_id;
1574 	u32 status;
1575 
1576 	spin_lock(&host->lock);
1577 	host->irq_action = IRQ_HANDLED;
1578 
1579 	do {
1580 		status = readl(host->base + MMCISTATUS);
1581 
1582 		if (host->singleirq) {
1583 			if (status & host->mask1_reg)
1584 				mmci_pio_irq(irq, dev_id);
1585 
1586 			status &= ~host->variant->irq_pio_mask;
1587 		}
1588 
1589 		/*
1590 		 * Busy detection is managed by mmci_cmd_irq(), including to
1591 		 * clear the corresponding IRQ.
1592 		 */
1593 		status &= readl(host->base + MMCIMASK0);
1594 		if (host->variant->busy_detect)
1595 			writel(status & ~host->variant->busy_detect_mask,
1596 			       host->base + MMCICLEAR);
1597 		else
1598 			writel(status, host->base + MMCICLEAR);
1599 
1600 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1601 
1602 		if (host->variant->reversed_irq_handling) {
1603 			mmci_data_irq(host, host->data, status);
1604 			mmci_cmd_irq(host, host->cmd, status);
1605 		} else {
1606 			mmci_cmd_irq(host, host->cmd, status);
1607 			mmci_data_irq(host, host->data, status);
1608 		}
1609 
1610 		/*
1611 		 * Busy detection has been handled by mmci_cmd_irq() above.
1612 		 * Clear the status bit to prevent polling in IRQ context.
1613 		 */
1614 		if (host->variant->busy_detect_flag)
1615 			status &= ~host->variant->busy_detect_flag;
1616 
1617 	} while (status);
1618 
1619 	spin_unlock(&host->lock);
1620 
1621 	return host->irq_action;
1622 }
1623 
1624 /*
1625  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1626  *
1627  * A reset is needed for some variants, where a datatimeout for a R1B request
1628  * causes the DPSM to stay busy (non-functional).
1629  */
1630 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1631 {
1632 	struct mmci_host *host = dev_id;
1633 	unsigned long flags;
1634 
1635 	if (host->rst) {
1636 		reset_control_assert(host->rst);
1637 		udelay(2);
1638 		reset_control_deassert(host->rst);
1639 	}
1640 
1641 	spin_lock_irqsave(&host->lock, flags);
1642 	writel(host->clk_reg, host->base + MMCICLOCK);
1643 	writel(host->pwr_reg, host->base + MMCIPOWER);
1644 	writel(MCI_IRQENABLE | host->variant->start_err,
1645 	       host->base + MMCIMASK0);
1646 
1647 	host->irq_action = IRQ_HANDLED;
1648 	mmci_request_end(host, host->mrq);
1649 	spin_unlock_irqrestore(&host->lock, flags);
1650 
1651 	return host->irq_action;
1652 }
1653 
1654 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1655 {
1656 	struct mmci_host *host = mmc_priv(mmc);
1657 	unsigned long flags;
1658 
1659 	WARN_ON(host->mrq != NULL);
1660 
1661 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1662 	if (mrq->cmd->error) {
1663 		mmc_request_done(mmc, mrq);
1664 		return;
1665 	}
1666 
1667 	spin_lock_irqsave(&host->lock, flags);
1668 
1669 	host->mrq = mrq;
1670 
1671 	if (mrq->data)
1672 		mmci_get_next_data(host, mrq->data);
1673 
1674 	if (mrq->data &&
1675 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1676 		mmci_start_data(host, mrq->data);
1677 
1678 	if (mrq->sbc)
1679 		mmci_start_command(host, mrq->sbc, 0);
1680 	else
1681 		mmci_start_command(host, mrq->cmd, 0);
1682 
1683 	spin_unlock_irqrestore(&host->lock, flags);
1684 }
1685 
1686 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1687 {
1688 	struct mmci_host *host = mmc_priv(mmc);
1689 	u32 max_busy_timeout = 0;
1690 
1691 	if (!host->variant->busy_detect)
1692 		return;
1693 
1694 	if (host->variant->busy_timeout && mmc->actual_clock)
1695 		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1696 
1697 	mmc->max_busy_timeout = max_busy_timeout;
1698 }
1699 
1700 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1701 {
1702 	struct mmci_host *host = mmc_priv(mmc);
1703 	struct variant_data *variant = host->variant;
1704 	u32 pwr = 0;
1705 	unsigned long flags;
1706 	int ret;
1707 
1708 	if (host->plat->ios_handler &&
1709 		host->plat->ios_handler(mmc_dev(mmc), ios))
1710 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1711 
1712 	switch (ios->power_mode) {
1713 	case MMC_POWER_OFF:
1714 		if (!IS_ERR(mmc->supply.vmmc))
1715 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1716 
1717 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1718 			regulator_disable(mmc->supply.vqmmc);
1719 			host->vqmmc_enabled = false;
1720 		}
1721 
1722 		break;
1723 	case MMC_POWER_UP:
1724 		if (!IS_ERR(mmc->supply.vmmc))
1725 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1726 
1727 		/*
1728 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1729 		 * and instead uses MCI_PWR_ON so apply whatever value is
1730 		 * configured in the variant data.
1731 		 */
1732 		pwr |= variant->pwrreg_powerup;
1733 
1734 		break;
1735 	case MMC_POWER_ON:
1736 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1737 			ret = regulator_enable(mmc->supply.vqmmc);
1738 			if (ret < 0)
1739 				dev_err(mmc_dev(mmc),
1740 					"failed to enable vqmmc regulator\n");
1741 			else
1742 				host->vqmmc_enabled = true;
1743 		}
1744 
1745 		pwr |= MCI_PWR_ON;
1746 		break;
1747 	}
1748 
1749 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1750 		/*
1751 		 * The ST Micro variant has some additional bits
1752 		 * indicating signal direction for the signals in
1753 		 * the SD/MMC bus and feedback-clock usage.
1754 		 */
1755 		pwr |= host->pwr_reg_add;
1756 
1757 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1758 			pwr &= ~MCI_ST_DATA74DIREN;
1759 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1760 			pwr &= (~MCI_ST_DATA74DIREN &
1761 				~MCI_ST_DATA31DIREN &
1762 				~MCI_ST_DATA2DIREN);
1763 	}
1764 
1765 	if (variant->opendrain) {
1766 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1767 			pwr |= variant->opendrain;
1768 	} else {
1769 		/*
1770 		 * If the variant cannot configure the pads by its own, then we
1771 		 * expect the pinctrl to be able to do that for us
1772 		 */
1773 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1774 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1775 		else
1776 			pinctrl_select_default_state(mmc_dev(mmc));
1777 	}
1778 
1779 	/*
1780 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1781 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1782 	 */
1783 	if (!ios->clock && variant->pwrreg_clkgate)
1784 		pwr &= ~MCI_PWR_ON;
1785 
1786 	if (host->variant->explicit_mclk_control &&
1787 	    ios->clock != host->clock_cache) {
1788 		ret = clk_set_rate(host->clk, ios->clock);
1789 		if (ret < 0)
1790 			dev_err(mmc_dev(host->mmc),
1791 				"Error setting clock rate (%d)\n", ret);
1792 		else
1793 			host->mclk = clk_get_rate(host->clk);
1794 	}
1795 	host->clock_cache = ios->clock;
1796 
1797 	spin_lock_irqsave(&host->lock, flags);
1798 
1799 	if (host->ops && host->ops->set_clkreg)
1800 		host->ops->set_clkreg(host, ios->clock);
1801 	else
1802 		mmci_set_clkreg(host, ios->clock);
1803 
1804 	mmci_set_max_busy_timeout(mmc);
1805 
1806 	if (host->ops && host->ops->set_pwrreg)
1807 		host->ops->set_pwrreg(host, pwr);
1808 	else
1809 		mmci_write_pwrreg(host, pwr);
1810 
1811 	mmci_reg_delay(host);
1812 
1813 	spin_unlock_irqrestore(&host->lock, flags);
1814 }
1815 
1816 static int mmci_get_cd(struct mmc_host *mmc)
1817 {
1818 	struct mmci_host *host = mmc_priv(mmc);
1819 	struct mmci_platform_data *plat = host->plat;
1820 	unsigned int status = mmc_gpio_get_cd(mmc);
1821 
1822 	if (status == -ENOSYS) {
1823 		if (!plat->status)
1824 			return 1; /* Assume always present */
1825 
1826 		status = plat->status(mmc_dev(host->mmc));
1827 	}
1828 	return status;
1829 }
1830 
1831 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1832 {
1833 	int ret = 0;
1834 
1835 	if (!IS_ERR(mmc->supply.vqmmc)) {
1836 
1837 		switch (ios->signal_voltage) {
1838 		case MMC_SIGNAL_VOLTAGE_330:
1839 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1840 						2700000, 3600000);
1841 			break;
1842 		case MMC_SIGNAL_VOLTAGE_180:
1843 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1844 						1700000, 1950000);
1845 			break;
1846 		case MMC_SIGNAL_VOLTAGE_120:
1847 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1848 						1100000, 1300000);
1849 			break;
1850 		}
1851 
1852 		if (ret)
1853 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1854 	}
1855 
1856 	return ret;
1857 }
1858 
1859 static struct mmc_host_ops mmci_ops = {
1860 	.request	= mmci_request,
1861 	.pre_req	= mmci_pre_request,
1862 	.post_req	= mmci_post_request,
1863 	.set_ios	= mmci_set_ios,
1864 	.get_ro		= mmc_gpio_get_ro,
1865 	.get_cd		= mmci_get_cd,
1866 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1867 };
1868 
1869 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1870 {
1871 	struct mmci_host *host = mmc_priv(mmc);
1872 	int ret = mmc_of_parse(mmc);
1873 
1874 	if (ret)
1875 		return ret;
1876 
1877 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1878 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1879 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1880 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1881 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1882 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1883 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1884 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1885 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1886 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1887 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1888 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1889 	if (of_get_property(np, "st,sig-dir", NULL))
1890 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1891 	if (of_get_property(np, "st,neg-edge", NULL))
1892 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1893 	if (of_get_property(np, "st,use-ckin", NULL))
1894 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1895 
1896 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1897 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1898 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1899 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1900 
1901 	return 0;
1902 }
1903 
1904 static int mmci_probe(struct amba_device *dev,
1905 	const struct amba_id *id)
1906 {
1907 	struct mmci_platform_data *plat = dev->dev.platform_data;
1908 	struct device_node *np = dev->dev.of_node;
1909 	struct variant_data *variant = id->data;
1910 	struct mmci_host *host;
1911 	struct mmc_host *mmc;
1912 	int ret;
1913 
1914 	/* Must have platform data or Device Tree. */
1915 	if (!plat && !np) {
1916 		dev_err(&dev->dev, "No plat data or DT found\n");
1917 		return -EINVAL;
1918 	}
1919 
1920 	if (!plat) {
1921 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1922 		if (!plat)
1923 			return -ENOMEM;
1924 	}
1925 
1926 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1927 	if (!mmc)
1928 		return -ENOMEM;
1929 
1930 	ret = mmci_of_parse(np, mmc);
1931 	if (ret)
1932 		goto host_free;
1933 
1934 	host = mmc_priv(mmc);
1935 	host->mmc = mmc;
1936 
1937 	/*
1938 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1939 	 * pins can be set accordingly using pinctrl
1940 	 */
1941 	if (!variant->opendrain) {
1942 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1943 		if (IS_ERR(host->pinctrl)) {
1944 			dev_err(&dev->dev, "failed to get pinctrl");
1945 			ret = PTR_ERR(host->pinctrl);
1946 			goto host_free;
1947 		}
1948 
1949 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1950 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1951 		if (IS_ERR(host->pins_opendrain)) {
1952 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1953 			ret = PTR_ERR(host->pins_opendrain);
1954 			goto host_free;
1955 		}
1956 	}
1957 
1958 	host->hw_designer = amba_manf(dev);
1959 	host->hw_revision = amba_rev(dev);
1960 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1961 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1962 
1963 	host->clk = devm_clk_get(&dev->dev, NULL);
1964 	if (IS_ERR(host->clk)) {
1965 		ret = PTR_ERR(host->clk);
1966 		goto host_free;
1967 	}
1968 
1969 	ret = clk_prepare_enable(host->clk);
1970 	if (ret)
1971 		goto host_free;
1972 
1973 	if (variant->qcom_fifo)
1974 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1975 	else
1976 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1977 
1978 	host->plat = plat;
1979 	host->variant = variant;
1980 	host->mclk = clk_get_rate(host->clk);
1981 	/*
1982 	 * According to the spec, mclk is max 100 MHz,
1983 	 * so we try to adjust the clock down to this,
1984 	 * (if possible).
1985 	 */
1986 	if (host->mclk > variant->f_max) {
1987 		ret = clk_set_rate(host->clk, variant->f_max);
1988 		if (ret < 0)
1989 			goto clk_disable;
1990 		host->mclk = clk_get_rate(host->clk);
1991 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1992 			host->mclk);
1993 	}
1994 
1995 	host->phybase = dev->res.start;
1996 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1997 	if (IS_ERR(host->base)) {
1998 		ret = PTR_ERR(host->base);
1999 		goto clk_disable;
2000 	}
2001 
2002 	if (variant->init)
2003 		variant->init(host);
2004 
2005 	/*
2006 	 * The ARM and ST versions of the block have slightly different
2007 	 * clock divider equations which means that the minimum divider
2008 	 * differs too.
2009 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2010 	 */
2011 	if (variant->st_clkdiv)
2012 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2013 	else if (variant->stm32_clkdiv)
2014 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2015 	else if (variant->explicit_mclk_control)
2016 		mmc->f_min = clk_round_rate(host->clk, 100000);
2017 	else
2018 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2019 	/*
2020 	 * If no maximum operating frequency is supplied, fall back to use
2021 	 * the module parameter, which has a (low) default value in case it
2022 	 * is not specified. Either value must not exceed the clock rate into
2023 	 * the block, of course.
2024 	 */
2025 	if (mmc->f_max)
2026 		mmc->f_max = variant->explicit_mclk_control ?
2027 				min(variant->f_max, mmc->f_max) :
2028 				min(host->mclk, mmc->f_max);
2029 	else
2030 		mmc->f_max = variant->explicit_mclk_control ?
2031 				fmax : min(host->mclk, fmax);
2032 
2033 
2034 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2035 
2036 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2037 	if (IS_ERR(host->rst)) {
2038 		ret = PTR_ERR(host->rst);
2039 		goto clk_disable;
2040 	}
2041 
2042 	/* Get regulators and the supported OCR mask */
2043 	ret = mmc_regulator_get_supply(mmc);
2044 	if (ret)
2045 		goto clk_disable;
2046 
2047 	if (!mmc->ocr_avail)
2048 		mmc->ocr_avail = plat->ocr_mask;
2049 	else if (plat->ocr_mask)
2050 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2051 
2052 	/* We support these capabilities. */
2053 	mmc->caps |= MMC_CAP_CMD23;
2054 
2055 	/*
2056 	 * Enable busy detection.
2057 	 */
2058 	if (variant->busy_detect) {
2059 		mmci_ops.card_busy = mmci_card_busy;
2060 		/*
2061 		 * Not all variants have a flag to enable busy detection
2062 		 * in the DPSM, but if they do, set it here.
2063 		 */
2064 		if (variant->busy_dpsm_flag)
2065 			mmci_write_datactrlreg(host,
2066 					       host->variant->busy_dpsm_flag);
2067 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2068 	}
2069 
2070 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2071 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2072 	host->stop_abort.arg = 0;
2073 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2074 
2075 	mmc->ops = &mmci_ops;
2076 
2077 	/* We support these PM capabilities. */
2078 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2079 
2080 	/*
2081 	 * We can do SGIO
2082 	 */
2083 	mmc->max_segs = NR_SG;
2084 
2085 	/*
2086 	 * Since only a certain number of bits are valid in the data length
2087 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2088 	 * single request.
2089 	 */
2090 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2091 
2092 	/*
2093 	 * Set the maximum segment size.  Since we aren't doing DMA
2094 	 * (yet) we are only limited by the data length register.
2095 	 */
2096 	mmc->max_seg_size = mmc->max_req_size;
2097 
2098 	/*
2099 	 * Block size can be up to 2048 bytes, but must be a power of two.
2100 	 */
2101 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2102 
2103 	/*
2104 	 * Limit the number of blocks transferred so that we don't overflow
2105 	 * the maximum request size.
2106 	 */
2107 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2108 
2109 	spin_lock_init(&host->lock);
2110 
2111 	writel(0, host->base + MMCIMASK0);
2112 
2113 	if (variant->mmcimask1)
2114 		writel(0, host->base + MMCIMASK1);
2115 
2116 	writel(0xfff, host->base + MMCICLEAR);
2117 
2118 	/*
2119 	 * If:
2120 	 * - not using DT but using a descriptor table, or
2121 	 * - using a table of descriptors ALONGSIDE DT, or
2122 	 * look up these descriptors named "cd" and "wp" right here, fail
2123 	 * silently of these do not exist
2124 	 */
2125 	if (!np) {
2126 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2127 		if (ret == -EPROBE_DEFER)
2128 			goto clk_disable;
2129 
2130 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2131 		if (ret == -EPROBE_DEFER)
2132 			goto clk_disable;
2133 	}
2134 
2135 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2136 					mmci_irq_thread, IRQF_SHARED,
2137 					DRIVER_NAME " (cmd)", host);
2138 	if (ret)
2139 		goto clk_disable;
2140 
2141 	if (!dev->irq[1])
2142 		host->singleirq = true;
2143 	else {
2144 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2145 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2146 		if (ret)
2147 			goto clk_disable;
2148 	}
2149 
2150 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2151 
2152 	amba_set_drvdata(dev, mmc);
2153 
2154 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2155 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2156 		 amba_rev(dev), (unsigned long long)dev->res.start,
2157 		 dev->irq[0], dev->irq[1]);
2158 
2159 	mmci_dma_setup(host);
2160 
2161 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2162 	pm_runtime_use_autosuspend(&dev->dev);
2163 
2164 	mmc_add_host(mmc);
2165 
2166 	pm_runtime_put(&dev->dev);
2167 	return 0;
2168 
2169  clk_disable:
2170 	clk_disable_unprepare(host->clk);
2171  host_free:
2172 	mmc_free_host(mmc);
2173 	return ret;
2174 }
2175 
2176 static int mmci_remove(struct amba_device *dev)
2177 {
2178 	struct mmc_host *mmc = amba_get_drvdata(dev);
2179 
2180 	if (mmc) {
2181 		struct mmci_host *host = mmc_priv(mmc);
2182 		struct variant_data *variant = host->variant;
2183 
2184 		/*
2185 		 * Undo pm_runtime_put() in probe.  We use the _sync
2186 		 * version here so that we can access the primecell.
2187 		 */
2188 		pm_runtime_get_sync(&dev->dev);
2189 
2190 		mmc_remove_host(mmc);
2191 
2192 		writel(0, host->base + MMCIMASK0);
2193 
2194 		if (variant->mmcimask1)
2195 			writel(0, host->base + MMCIMASK1);
2196 
2197 		writel(0, host->base + MMCICOMMAND);
2198 		writel(0, host->base + MMCIDATACTRL);
2199 
2200 		mmci_dma_release(host);
2201 		clk_disable_unprepare(host->clk);
2202 		mmc_free_host(mmc);
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 #ifdef CONFIG_PM
2209 static void mmci_save(struct mmci_host *host)
2210 {
2211 	unsigned long flags;
2212 
2213 	spin_lock_irqsave(&host->lock, flags);
2214 
2215 	writel(0, host->base + MMCIMASK0);
2216 	if (host->variant->pwrreg_nopower) {
2217 		writel(0, host->base + MMCIDATACTRL);
2218 		writel(0, host->base + MMCIPOWER);
2219 		writel(0, host->base + MMCICLOCK);
2220 	}
2221 	mmci_reg_delay(host);
2222 
2223 	spin_unlock_irqrestore(&host->lock, flags);
2224 }
2225 
2226 static void mmci_restore(struct mmci_host *host)
2227 {
2228 	unsigned long flags;
2229 
2230 	spin_lock_irqsave(&host->lock, flags);
2231 
2232 	if (host->variant->pwrreg_nopower) {
2233 		writel(host->clk_reg, host->base + MMCICLOCK);
2234 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2235 		writel(host->pwr_reg, host->base + MMCIPOWER);
2236 	}
2237 	writel(MCI_IRQENABLE | host->variant->start_err,
2238 	       host->base + MMCIMASK0);
2239 	mmci_reg_delay(host);
2240 
2241 	spin_unlock_irqrestore(&host->lock, flags);
2242 }
2243 
2244 static int mmci_runtime_suspend(struct device *dev)
2245 {
2246 	struct amba_device *adev = to_amba_device(dev);
2247 	struct mmc_host *mmc = amba_get_drvdata(adev);
2248 
2249 	if (mmc) {
2250 		struct mmci_host *host = mmc_priv(mmc);
2251 		pinctrl_pm_select_sleep_state(dev);
2252 		mmci_save(host);
2253 		clk_disable_unprepare(host->clk);
2254 	}
2255 
2256 	return 0;
2257 }
2258 
2259 static int mmci_runtime_resume(struct device *dev)
2260 {
2261 	struct amba_device *adev = to_amba_device(dev);
2262 	struct mmc_host *mmc = amba_get_drvdata(adev);
2263 
2264 	if (mmc) {
2265 		struct mmci_host *host = mmc_priv(mmc);
2266 		clk_prepare_enable(host->clk);
2267 		mmci_restore(host);
2268 		pinctrl_select_default_state(dev);
2269 	}
2270 
2271 	return 0;
2272 }
2273 #endif
2274 
2275 static const struct dev_pm_ops mmci_dev_pm_ops = {
2276 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2277 				pm_runtime_force_resume)
2278 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2279 };
2280 
2281 static const struct amba_id mmci_ids[] = {
2282 	{
2283 		.id	= 0x00041180,
2284 		.mask	= 0xff0fffff,
2285 		.data	= &variant_arm,
2286 	},
2287 	{
2288 		.id	= 0x01041180,
2289 		.mask	= 0xff0fffff,
2290 		.data	= &variant_arm_extended_fifo,
2291 	},
2292 	{
2293 		.id	= 0x02041180,
2294 		.mask	= 0xff0fffff,
2295 		.data	= &variant_arm_extended_fifo_hwfc,
2296 	},
2297 	{
2298 		.id	= 0x00041181,
2299 		.mask	= 0x000fffff,
2300 		.data	= &variant_arm,
2301 	},
2302 	/* ST Micro variants */
2303 	{
2304 		.id     = 0x00180180,
2305 		.mask   = 0x00ffffff,
2306 		.data	= &variant_u300,
2307 	},
2308 	{
2309 		.id     = 0x10180180,
2310 		.mask   = 0xf0ffffff,
2311 		.data	= &variant_nomadik,
2312 	},
2313 	{
2314 		.id     = 0x00280180,
2315 		.mask   = 0x00ffffff,
2316 		.data	= &variant_nomadik,
2317 	},
2318 	{
2319 		.id     = 0x00480180,
2320 		.mask   = 0xf0ffffff,
2321 		.data	= &variant_ux500,
2322 	},
2323 	{
2324 		.id     = 0x10480180,
2325 		.mask   = 0xf0ffffff,
2326 		.data	= &variant_ux500v2,
2327 	},
2328 	{
2329 		.id     = 0x00880180,
2330 		.mask   = 0x00ffffff,
2331 		.data	= &variant_stm32,
2332 	},
2333 	{
2334 		.id     = 0x10153180,
2335 		.mask	= 0xf0ffffff,
2336 		.data	= &variant_stm32_sdmmc,
2337 	},
2338 	/* Qualcomm variants */
2339 	{
2340 		.id     = 0x00051180,
2341 		.mask	= 0x000fffff,
2342 		.data	= &variant_qcom,
2343 	},
2344 	{ 0, 0 },
2345 };
2346 
2347 MODULE_DEVICE_TABLE(amba, mmci_ids);
2348 
2349 static struct amba_driver mmci_driver = {
2350 	.drv		= {
2351 		.name	= DRIVER_NAME,
2352 		.pm	= &mmci_dev_pm_ops,
2353 	},
2354 	.probe		= mmci_probe,
2355 	.remove		= mmci_remove,
2356 	.id_table	= mmci_ids,
2357 };
2358 
2359 module_amba_driver(mmci_driver);
2360 
2361 module_param(fmax, uint, 0444);
2362 
2363 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2364 MODULE_LICENSE("GPL");
2365