xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision c819e2cf)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44 
45 #include "mmci.h"
46 #include "mmci_qcom_dml.h"
47 
48 #define DRIVER_NAME "mmci-pl18x"
49 
50 static unsigned int fmax = 515633;
51 
52 /**
53  * struct variant_data - MMCI variant-specific quirks
54  * @clkreg: default value for MCICLOCK register
55  * @clkreg_enable: enable value for MMCICLOCK register
56  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58  * @datalength_bits: number of bits in the MMCIDATALENGTH register
59  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60  *	      is asserted (likewise for RX)
61  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62  *		  is asserted (likewise for RX)
63  * @data_cmd_enable: enable value for data commands.
64  * @st_sdio: enable ST specific SDIO logic
65  * @st_clkdiv: true if using a ST-specific clock divider algorithm
66  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69  *		     register
70  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71  * @pwrreg_powerup: power up value for MMCIPOWER register
72  * @f_max: maximum clk frequency supported by the controller.
73  * @signal_direction: input/out direction of bus signals can be indicated
74  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75  * @busy_detect: true if busy detection on dat0 is supported
76  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77  * @explicit_mclk_control: enable explicit mclk control in driver.
78  * @qcom_fifo: enables qcom specific fifo pio read logic.
79  * @qcom_dml: enables qcom specific dma glue for dma transfers.
80  * @reversed_irq_handling: handle data irq before cmd irq.
81  */
82 struct variant_data {
83 	unsigned int		clkreg;
84 	unsigned int		clkreg_enable;
85 	unsigned int		clkreg_8bit_bus_enable;
86 	unsigned int		clkreg_neg_edge_enable;
87 	unsigned int		datalength_bits;
88 	unsigned int		fifosize;
89 	unsigned int		fifohalfsize;
90 	unsigned int		data_cmd_enable;
91 	unsigned int		datactrl_mask_ddrmode;
92 	unsigned int		datactrl_mask_sdio;
93 	bool			st_sdio;
94 	bool			st_clkdiv;
95 	bool			blksz_datactrl16;
96 	bool			blksz_datactrl4;
97 	u32			pwrreg_powerup;
98 	u32			f_max;
99 	bool			signal_direction;
100 	bool			pwrreg_clkgate;
101 	bool			busy_detect;
102 	bool			pwrreg_nopower;
103 	bool			explicit_mclk_control;
104 	bool			qcom_fifo;
105 	bool			qcom_dml;
106 	bool			reversed_irq_handling;
107 };
108 
109 static struct variant_data variant_arm = {
110 	.fifosize		= 16 * 4,
111 	.fifohalfsize		= 8 * 4,
112 	.datalength_bits	= 16,
113 	.pwrreg_powerup		= MCI_PWR_UP,
114 	.f_max			= 100000000,
115 	.reversed_irq_handling	= true,
116 };
117 
118 static struct variant_data variant_arm_extended_fifo = {
119 	.fifosize		= 128 * 4,
120 	.fifohalfsize		= 64 * 4,
121 	.datalength_bits	= 16,
122 	.pwrreg_powerup		= MCI_PWR_UP,
123 	.f_max			= 100000000,
124 };
125 
126 static struct variant_data variant_arm_extended_fifo_hwfc = {
127 	.fifosize		= 128 * 4,
128 	.fifohalfsize		= 64 * 4,
129 	.clkreg_enable		= MCI_ARM_HWFCEN,
130 	.datalength_bits	= 16,
131 	.pwrreg_powerup		= MCI_PWR_UP,
132 	.f_max			= 100000000,
133 };
134 
135 static struct variant_data variant_u300 = {
136 	.fifosize		= 16 * 4,
137 	.fifohalfsize		= 8 * 4,
138 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
139 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 	.datalength_bits	= 16,
141 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
142 	.st_sdio			= true,
143 	.pwrreg_powerup		= MCI_PWR_ON,
144 	.f_max			= 100000000,
145 	.signal_direction	= true,
146 	.pwrreg_clkgate		= true,
147 	.pwrreg_nopower		= true,
148 };
149 
150 static struct variant_data variant_nomadik = {
151 	.fifosize		= 16 * 4,
152 	.fifohalfsize		= 8 * 4,
153 	.clkreg			= MCI_CLK_ENABLE,
154 	.datalength_bits	= 24,
155 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
156 	.st_sdio		= true,
157 	.st_clkdiv		= true,
158 	.pwrreg_powerup		= MCI_PWR_ON,
159 	.f_max			= 100000000,
160 	.signal_direction	= true,
161 	.pwrreg_clkgate		= true,
162 	.pwrreg_nopower		= true,
163 };
164 
165 static struct variant_data variant_ux500 = {
166 	.fifosize		= 30 * 4,
167 	.fifohalfsize		= 8 * 4,
168 	.clkreg			= MCI_CLK_ENABLE,
169 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
170 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
172 	.datalength_bits	= 24,
173 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
174 	.st_sdio		= true,
175 	.st_clkdiv		= true,
176 	.pwrreg_powerup		= MCI_PWR_ON,
177 	.f_max			= 100000000,
178 	.signal_direction	= true,
179 	.pwrreg_clkgate		= true,
180 	.busy_detect		= true,
181 	.pwrreg_nopower		= true,
182 };
183 
184 static struct variant_data variant_ux500v2 = {
185 	.fifosize		= 30 * 4,
186 	.fifohalfsize		= 8 * 4,
187 	.clkreg			= MCI_CLK_ENABLE,
188 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
189 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
191 	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
192 	.datalength_bits	= 24,
193 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
194 	.st_sdio		= true,
195 	.st_clkdiv		= true,
196 	.blksz_datactrl16	= true,
197 	.pwrreg_powerup		= MCI_PWR_ON,
198 	.f_max			= 100000000,
199 	.signal_direction	= true,
200 	.pwrreg_clkgate		= true,
201 	.busy_detect		= true,
202 	.pwrreg_nopower		= true,
203 };
204 
205 static struct variant_data variant_qcom = {
206 	.fifosize		= 16 * 4,
207 	.fifohalfsize		= 8 * 4,
208 	.clkreg			= MCI_CLK_ENABLE,
209 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
210 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 	.data_cmd_enable	= MCI_QCOM_CSPM_DATCMD,
214 	.blksz_datactrl4	= true,
215 	.datalength_bits	= 24,
216 	.pwrreg_powerup		= MCI_PWR_UP,
217 	.f_max			= 208000000,
218 	.explicit_mclk_control	= true,
219 	.qcom_fifo		= true,
220 	.qcom_dml		= true,
221 };
222 
223 static int mmci_card_busy(struct mmc_host *mmc)
224 {
225 	struct mmci_host *host = mmc_priv(mmc);
226 	unsigned long flags;
227 	int busy = 0;
228 
229 	pm_runtime_get_sync(mmc_dev(mmc));
230 
231 	spin_lock_irqsave(&host->lock, flags);
232 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
233 		busy = 1;
234 	spin_unlock_irqrestore(&host->lock, flags);
235 
236 	pm_runtime_mark_last_busy(mmc_dev(mmc));
237 	pm_runtime_put_autosuspend(mmc_dev(mmc));
238 
239 	return busy;
240 }
241 
242 /*
243  * Validate mmc prerequisites
244  */
245 static int mmci_validate_data(struct mmci_host *host,
246 			      struct mmc_data *data)
247 {
248 	if (!data)
249 		return 0;
250 
251 	if (!is_power_of_2(data->blksz)) {
252 		dev_err(mmc_dev(host->mmc),
253 			"unsupported block size (%d bytes)\n", data->blksz);
254 		return -EINVAL;
255 	}
256 
257 	return 0;
258 }
259 
260 static void mmci_reg_delay(struct mmci_host *host)
261 {
262 	/*
263 	 * According to the spec, at least three feedback clock cycles
264 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 	 * Worst delay time during card init is at 100 kHz => 30 us.
267 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
268 	 */
269 	if (host->cclk < 25000000)
270 		udelay(30);
271 	else
272 		ndelay(120);
273 }
274 
275 /*
276  * This must be called with host->lock held
277  */
278 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279 {
280 	if (host->clk_reg != clk) {
281 		host->clk_reg = clk;
282 		writel(clk, host->base + MMCICLOCK);
283 	}
284 }
285 
286 /*
287  * This must be called with host->lock held
288  */
289 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290 {
291 	if (host->pwr_reg != pwr) {
292 		host->pwr_reg = pwr;
293 		writel(pwr, host->base + MMCIPOWER);
294 	}
295 }
296 
297 /*
298  * This must be called with host->lock held
299  */
300 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301 {
302 	/* Keep ST Micro busy mode if enabled */
303 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
304 
305 	if (host->datactrl_reg != datactrl) {
306 		host->datactrl_reg = datactrl;
307 		writel(datactrl, host->base + MMCIDATACTRL);
308 	}
309 }
310 
311 /*
312  * This must be called with host->lock held
313  */
314 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315 {
316 	struct variant_data *variant = host->variant;
317 	u32 clk = variant->clkreg;
318 
319 	/* Make sure cclk reflects the current calculated clock */
320 	host->cclk = 0;
321 
322 	if (desired) {
323 		if (variant->explicit_mclk_control) {
324 			host->cclk = host->mclk;
325 		} else if (desired >= host->mclk) {
326 			clk = MCI_CLK_BYPASS;
327 			if (variant->st_clkdiv)
328 				clk |= MCI_ST_UX500_NEG_EDGE;
329 			host->cclk = host->mclk;
330 		} else if (variant->st_clkdiv) {
331 			/*
332 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 			 * => clkdiv = (mclk / f) - 2
334 			 * Round the divider up so we don't exceed the max
335 			 * frequency
336 			 */
337 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338 			if (clk >= 256)
339 				clk = 255;
340 			host->cclk = host->mclk / (clk + 2);
341 		} else {
342 			/*
343 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 			 * => clkdiv = mclk / (2 * f) - 1
345 			 */
346 			clk = host->mclk / (2 * desired) - 1;
347 			if (clk >= 256)
348 				clk = 255;
349 			host->cclk = host->mclk / (2 * (clk + 1));
350 		}
351 
352 		clk |= variant->clkreg_enable;
353 		clk |= MCI_CLK_ENABLE;
354 		/* This hasn't proven to be worthwhile */
355 		/* clk |= MCI_CLK_PWRSAVE; */
356 	}
357 
358 	/* Set actual clock for debug */
359 	host->mmc->actual_clock = host->cclk;
360 
361 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362 		clk |= MCI_4BIT_BUS;
363 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364 		clk |= variant->clkreg_8bit_bus_enable;
365 
366 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368 		clk |= variant->clkreg_neg_edge_enable;
369 
370 	mmci_write_clkreg(host, clk);
371 }
372 
373 static void
374 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
375 {
376 	writel(0, host->base + MMCICOMMAND);
377 
378 	BUG_ON(host->data);
379 
380 	host->mrq = NULL;
381 	host->cmd = NULL;
382 
383 	mmc_request_done(host->mmc, mrq);
384 
385 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
386 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
387 }
388 
389 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
390 {
391 	void __iomem *base = host->base;
392 
393 	if (host->singleirq) {
394 		unsigned int mask0 = readl(base + MMCIMASK0);
395 
396 		mask0 &= ~MCI_IRQ1MASK;
397 		mask0 |= mask;
398 
399 		writel(mask0, base + MMCIMASK0);
400 	}
401 
402 	writel(mask, base + MMCIMASK1);
403 }
404 
405 static void mmci_stop_data(struct mmci_host *host)
406 {
407 	mmci_write_datactrlreg(host, 0);
408 	mmci_set_mask1(host, 0);
409 	host->data = NULL;
410 }
411 
412 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
413 {
414 	unsigned int flags = SG_MITER_ATOMIC;
415 
416 	if (data->flags & MMC_DATA_READ)
417 		flags |= SG_MITER_TO_SG;
418 	else
419 		flags |= SG_MITER_FROM_SG;
420 
421 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
422 }
423 
424 /*
425  * All the DMA operation mode stuff goes inside this ifdef.
426  * This assumes that you have a generic DMA device interface,
427  * no custom DMA interfaces are supported.
428  */
429 #ifdef CONFIG_DMA_ENGINE
430 static void mmci_dma_setup(struct mmci_host *host)
431 {
432 	const char *rxname, *txname;
433 	dma_cap_mask_t mask;
434 	struct variant_data *variant = host->variant;
435 
436 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
437 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
438 
439 	/* initialize pre request cookie */
440 	host->next_data.cookie = 1;
441 
442 	/* Try to acquire a generic DMA engine slave channel */
443 	dma_cap_zero(mask);
444 	dma_cap_set(DMA_SLAVE, mask);
445 
446 	/*
447 	 * If only an RX channel is specified, the driver will
448 	 * attempt to use it bidirectionally, however if it is
449 	 * is specified but cannot be located, DMA will be disabled.
450 	 */
451 	if (host->dma_rx_channel && !host->dma_tx_channel)
452 		host->dma_tx_channel = host->dma_rx_channel;
453 
454 	if (host->dma_rx_channel)
455 		rxname = dma_chan_name(host->dma_rx_channel);
456 	else
457 		rxname = "none";
458 
459 	if (host->dma_tx_channel)
460 		txname = dma_chan_name(host->dma_tx_channel);
461 	else
462 		txname = "none";
463 
464 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
465 		 rxname, txname);
466 
467 	/*
468 	 * Limit the maximum segment size in any SG entry according to
469 	 * the parameters of the DMA engine device.
470 	 */
471 	if (host->dma_tx_channel) {
472 		struct device *dev = host->dma_tx_channel->device->dev;
473 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
474 
475 		if (max_seg_size < host->mmc->max_seg_size)
476 			host->mmc->max_seg_size = max_seg_size;
477 	}
478 	if (host->dma_rx_channel) {
479 		struct device *dev = host->dma_rx_channel->device->dev;
480 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
481 
482 		if (max_seg_size < host->mmc->max_seg_size)
483 			host->mmc->max_seg_size = max_seg_size;
484 	}
485 
486 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
487 		if (dml_hw_init(host, host->mmc->parent->of_node))
488 			variant->qcom_dml = false;
489 }
490 
491 /*
492  * This is used in or so inline it
493  * so it can be discarded.
494  */
495 static inline void mmci_dma_release(struct mmci_host *host)
496 {
497 	if (host->dma_rx_channel)
498 		dma_release_channel(host->dma_rx_channel);
499 	if (host->dma_tx_channel)
500 		dma_release_channel(host->dma_tx_channel);
501 	host->dma_rx_channel = host->dma_tx_channel = NULL;
502 }
503 
504 static void mmci_dma_data_error(struct mmci_host *host)
505 {
506 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
507 	dmaengine_terminate_all(host->dma_current);
508 	host->dma_current = NULL;
509 	host->dma_desc_current = NULL;
510 	host->data->host_cookie = 0;
511 }
512 
513 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
514 {
515 	struct dma_chan *chan;
516 	enum dma_data_direction dir;
517 
518 	if (data->flags & MMC_DATA_READ) {
519 		dir = DMA_FROM_DEVICE;
520 		chan = host->dma_rx_channel;
521 	} else {
522 		dir = DMA_TO_DEVICE;
523 		chan = host->dma_tx_channel;
524 	}
525 
526 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
527 }
528 
529 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
530 {
531 	u32 status;
532 	int i;
533 
534 	/* Wait up to 1ms for the DMA to complete */
535 	for (i = 0; ; i++) {
536 		status = readl(host->base + MMCISTATUS);
537 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
538 			break;
539 		udelay(10);
540 	}
541 
542 	/*
543 	 * Check to see whether we still have some data left in the FIFO -
544 	 * this catches DMA controllers which are unable to monitor the
545 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
546 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
547 	 */
548 	if (status & MCI_RXDATAAVLBLMASK) {
549 		mmci_dma_data_error(host);
550 		if (!data->error)
551 			data->error = -EIO;
552 	}
553 
554 	if (!data->host_cookie)
555 		mmci_dma_unmap(host, data);
556 
557 	/*
558 	 * Use of DMA with scatter-gather is impossible.
559 	 * Give up with DMA and switch back to PIO mode.
560 	 */
561 	if (status & MCI_RXDATAAVLBLMASK) {
562 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
563 		mmci_dma_release(host);
564 	}
565 
566 	host->dma_current = NULL;
567 	host->dma_desc_current = NULL;
568 }
569 
570 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
571 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
572 				struct dma_chan **dma_chan,
573 				struct dma_async_tx_descriptor **dma_desc)
574 {
575 	struct variant_data *variant = host->variant;
576 	struct dma_slave_config conf = {
577 		.src_addr = host->phybase + MMCIFIFO,
578 		.dst_addr = host->phybase + MMCIFIFO,
579 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
580 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
581 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
582 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
583 		.device_fc = false,
584 	};
585 	struct dma_chan *chan;
586 	struct dma_device *device;
587 	struct dma_async_tx_descriptor *desc;
588 	enum dma_data_direction buffer_dirn;
589 	int nr_sg;
590 	unsigned long flags = DMA_CTRL_ACK;
591 
592 	if (data->flags & MMC_DATA_READ) {
593 		conf.direction = DMA_DEV_TO_MEM;
594 		buffer_dirn = DMA_FROM_DEVICE;
595 		chan = host->dma_rx_channel;
596 	} else {
597 		conf.direction = DMA_MEM_TO_DEV;
598 		buffer_dirn = DMA_TO_DEVICE;
599 		chan = host->dma_tx_channel;
600 	}
601 
602 	/* If there's no DMA channel, fall back to PIO */
603 	if (!chan)
604 		return -EINVAL;
605 
606 	/* If less than or equal to the fifo size, don't bother with DMA */
607 	if (data->blksz * data->blocks <= variant->fifosize)
608 		return -EINVAL;
609 
610 	device = chan->device;
611 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
612 	if (nr_sg == 0)
613 		return -EINVAL;
614 
615 	if (host->variant->qcom_dml)
616 		flags |= DMA_PREP_INTERRUPT;
617 
618 	dmaengine_slave_config(chan, &conf);
619 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
620 					    conf.direction, flags);
621 	if (!desc)
622 		goto unmap_exit;
623 
624 	*dma_chan = chan;
625 	*dma_desc = desc;
626 
627 	return 0;
628 
629  unmap_exit:
630 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
631 	return -ENOMEM;
632 }
633 
634 static inline int mmci_dma_prep_data(struct mmci_host *host,
635 				     struct mmc_data *data)
636 {
637 	/* Check if next job is already prepared. */
638 	if (host->dma_current && host->dma_desc_current)
639 		return 0;
640 
641 	/* No job were prepared thus do it now. */
642 	return __mmci_dma_prep_data(host, data, &host->dma_current,
643 				    &host->dma_desc_current);
644 }
645 
646 static inline int mmci_dma_prep_next(struct mmci_host *host,
647 				     struct mmc_data *data)
648 {
649 	struct mmci_host_next *nd = &host->next_data;
650 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
651 }
652 
653 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
654 {
655 	int ret;
656 	struct mmc_data *data = host->data;
657 
658 	ret = mmci_dma_prep_data(host, host->data);
659 	if (ret)
660 		return ret;
661 
662 	/* Okay, go for it. */
663 	dev_vdbg(mmc_dev(host->mmc),
664 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
665 		 data->sg_len, data->blksz, data->blocks, data->flags);
666 	dmaengine_submit(host->dma_desc_current);
667 	dma_async_issue_pending(host->dma_current);
668 
669 	if (host->variant->qcom_dml)
670 		dml_start_xfer(host, data);
671 
672 	datactrl |= MCI_DPSM_DMAENABLE;
673 
674 	/* Trigger the DMA transfer */
675 	mmci_write_datactrlreg(host, datactrl);
676 
677 	/*
678 	 * Let the MMCI say when the data is ended and it's time
679 	 * to fire next DMA request. When that happens, MMCI will
680 	 * call mmci_data_end()
681 	 */
682 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
683 	       host->base + MMCIMASK0);
684 	return 0;
685 }
686 
687 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
688 {
689 	struct mmci_host_next *next = &host->next_data;
690 
691 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
692 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
693 
694 	host->dma_desc_current = next->dma_desc;
695 	host->dma_current = next->dma_chan;
696 	next->dma_desc = NULL;
697 	next->dma_chan = NULL;
698 }
699 
700 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
701 			     bool is_first_req)
702 {
703 	struct mmci_host *host = mmc_priv(mmc);
704 	struct mmc_data *data = mrq->data;
705 	struct mmci_host_next *nd = &host->next_data;
706 
707 	if (!data)
708 		return;
709 
710 	BUG_ON(data->host_cookie);
711 
712 	if (mmci_validate_data(host, data))
713 		return;
714 
715 	if (!mmci_dma_prep_next(host, data))
716 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
717 }
718 
719 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
720 			      int err)
721 {
722 	struct mmci_host *host = mmc_priv(mmc);
723 	struct mmc_data *data = mrq->data;
724 
725 	if (!data || !data->host_cookie)
726 		return;
727 
728 	mmci_dma_unmap(host, data);
729 
730 	if (err) {
731 		struct mmci_host_next *next = &host->next_data;
732 		struct dma_chan *chan;
733 		if (data->flags & MMC_DATA_READ)
734 			chan = host->dma_rx_channel;
735 		else
736 			chan = host->dma_tx_channel;
737 		dmaengine_terminate_all(chan);
738 
739 		if (host->dma_desc_current == next->dma_desc)
740 			host->dma_desc_current = NULL;
741 
742 		if (host->dma_current == next->dma_chan)
743 			host->dma_current = NULL;
744 
745 		next->dma_desc = NULL;
746 		next->dma_chan = NULL;
747 		data->host_cookie = 0;
748 	}
749 }
750 
751 #else
752 /* Blank functions if the DMA engine is not available */
753 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
754 {
755 }
756 static inline void mmci_dma_setup(struct mmci_host *host)
757 {
758 }
759 
760 static inline void mmci_dma_release(struct mmci_host *host)
761 {
762 }
763 
764 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
765 {
766 }
767 
768 static inline void mmci_dma_finalize(struct mmci_host *host,
769 				     struct mmc_data *data)
770 {
771 }
772 
773 static inline void mmci_dma_data_error(struct mmci_host *host)
774 {
775 }
776 
777 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
778 {
779 	return -ENOSYS;
780 }
781 
782 #define mmci_pre_request NULL
783 #define mmci_post_request NULL
784 
785 #endif
786 
787 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
788 {
789 	struct variant_data *variant = host->variant;
790 	unsigned int datactrl, timeout, irqmask;
791 	unsigned long long clks;
792 	void __iomem *base;
793 	int blksz_bits;
794 
795 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
796 		data->blksz, data->blocks, data->flags);
797 
798 	host->data = data;
799 	host->size = data->blksz * data->blocks;
800 	data->bytes_xfered = 0;
801 
802 	clks = (unsigned long long)data->timeout_ns * host->cclk;
803 	do_div(clks, NSEC_PER_SEC);
804 
805 	timeout = data->timeout_clks + (unsigned int)clks;
806 
807 	base = host->base;
808 	writel(timeout, base + MMCIDATATIMER);
809 	writel(host->size, base + MMCIDATALENGTH);
810 
811 	blksz_bits = ffs(data->blksz) - 1;
812 	BUG_ON(1 << blksz_bits != data->blksz);
813 
814 	if (variant->blksz_datactrl16)
815 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
816 	else if (variant->blksz_datactrl4)
817 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
818 	else
819 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
820 
821 	if (data->flags & MMC_DATA_READ)
822 		datactrl |= MCI_DPSM_DIRECTION;
823 
824 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
825 		u32 clk;
826 
827 		datactrl |= variant->datactrl_mask_sdio;
828 
829 		/*
830 		 * The ST Micro variant for SDIO small write transfers
831 		 * needs to have clock H/W flow control disabled,
832 		 * otherwise the transfer will not start. The threshold
833 		 * depends on the rate of MCLK.
834 		 */
835 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
836 		    (host->size < 8 ||
837 		     (host->size <= 8 && host->mclk > 50000000)))
838 			clk = host->clk_reg & ~variant->clkreg_enable;
839 		else
840 			clk = host->clk_reg | variant->clkreg_enable;
841 
842 		mmci_write_clkreg(host, clk);
843 	}
844 
845 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
846 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
847 		datactrl |= variant->datactrl_mask_ddrmode;
848 
849 	/*
850 	 * Attempt to use DMA operation mode, if this
851 	 * should fail, fall back to PIO mode
852 	 */
853 	if (!mmci_dma_start_data(host, datactrl))
854 		return;
855 
856 	/* IRQ mode, map the SG list for CPU reading/writing */
857 	mmci_init_sg(host, data);
858 
859 	if (data->flags & MMC_DATA_READ) {
860 		irqmask = MCI_RXFIFOHALFFULLMASK;
861 
862 		/*
863 		 * If we have less than the fifo 'half-full' threshold to
864 		 * transfer, trigger a PIO interrupt as soon as any data
865 		 * is available.
866 		 */
867 		if (host->size < variant->fifohalfsize)
868 			irqmask |= MCI_RXDATAAVLBLMASK;
869 	} else {
870 		/*
871 		 * We don't actually need to include "FIFO empty" here
872 		 * since its implicit in "FIFO half empty".
873 		 */
874 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
875 	}
876 
877 	mmci_write_datactrlreg(host, datactrl);
878 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
879 	mmci_set_mask1(host, irqmask);
880 }
881 
882 static void
883 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
884 {
885 	void __iomem *base = host->base;
886 
887 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
888 	    cmd->opcode, cmd->arg, cmd->flags);
889 
890 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
891 		writel(0, base + MMCICOMMAND);
892 		mmci_reg_delay(host);
893 	}
894 
895 	c |= cmd->opcode | MCI_CPSM_ENABLE;
896 	if (cmd->flags & MMC_RSP_PRESENT) {
897 		if (cmd->flags & MMC_RSP_136)
898 			c |= MCI_CPSM_LONGRSP;
899 		c |= MCI_CPSM_RESPONSE;
900 	}
901 	if (/*interrupt*/0)
902 		c |= MCI_CPSM_INTERRUPT;
903 
904 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
905 		c |= host->variant->data_cmd_enable;
906 
907 	host->cmd = cmd;
908 
909 	writel(cmd->arg, base + MMCIARGUMENT);
910 	writel(c, base + MMCICOMMAND);
911 }
912 
913 static void
914 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
915 	      unsigned int status)
916 {
917 	/* Make sure we have data to handle */
918 	if (!data)
919 		return;
920 
921 	/* First check for errors */
922 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
923 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
924 		u32 remain, success;
925 
926 		/* Terminate the DMA transfer */
927 		if (dma_inprogress(host)) {
928 			mmci_dma_data_error(host);
929 			mmci_dma_unmap(host, data);
930 		}
931 
932 		/*
933 		 * Calculate how far we are into the transfer.  Note that
934 		 * the data counter gives the number of bytes transferred
935 		 * on the MMC bus, not on the host side.  On reads, this
936 		 * can be as much as a FIFO-worth of data ahead.  This
937 		 * matters for FIFO overruns only.
938 		 */
939 		remain = readl(host->base + MMCIDATACNT);
940 		success = data->blksz * data->blocks - remain;
941 
942 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
943 			status, success);
944 		if (status & MCI_DATACRCFAIL) {
945 			/* Last block was not successful */
946 			success -= 1;
947 			data->error = -EILSEQ;
948 		} else if (status & MCI_DATATIMEOUT) {
949 			data->error = -ETIMEDOUT;
950 		} else if (status & MCI_STARTBITERR) {
951 			data->error = -ECOMM;
952 		} else if (status & MCI_TXUNDERRUN) {
953 			data->error = -EIO;
954 		} else if (status & MCI_RXOVERRUN) {
955 			if (success > host->variant->fifosize)
956 				success -= host->variant->fifosize;
957 			else
958 				success = 0;
959 			data->error = -EIO;
960 		}
961 		data->bytes_xfered = round_down(success, data->blksz);
962 	}
963 
964 	if (status & MCI_DATABLOCKEND)
965 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
966 
967 	if (status & MCI_DATAEND || data->error) {
968 		if (dma_inprogress(host))
969 			mmci_dma_finalize(host, data);
970 		mmci_stop_data(host);
971 
972 		if (!data->error)
973 			/* The error clause is handled above, success! */
974 			data->bytes_xfered = data->blksz * data->blocks;
975 
976 		if (!data->stop || host->mrq->sbc) {
977 			mmci_request_end(host, data->mrq);
978 		} else {
979 			mmci_start_command(host, data->stop, 0);
980 		}
981 	}
982 }
983 
984 static void
985 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
986 	     unsigned int status)
987 {
988 	void __iomem *base = host->base;
989 	bool sbc, busy_resp;
990 
991 	if (!cmd)
992 		return;
993 
994 	sbc = (cmd == host->mrq->sbc);
995 	busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
996 
997 	if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
998 		MCI_CMDSENT|MCI_CMDRESPEND)))
999 		return;
1000 
1001 	/* Check if we need to wait for busy completion. */
1002 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
1003 		return;
1004 
1005 	/* Enable busy completion if needed and supported. */
1006 	if (!host->busy_status && busy_resp &&
1007 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1008 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1009 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1010 			base + MMCIMASK0);
1011 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1012 		return;
1013 	}
1014 
1015 	/* At busy completion, mask the IRQ and complete the request. */
1016 	if (host->busy_status) {
1017 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1018 			base + MMCIMASK0);
1019 		host->busy_status = 0;
1020 	}
1021 
1022 	host->cmd = NULL;
1023 
1024 	if (status & MCI_CMDTIMEOUT) {
1025 		cmd->error = -ETIMEDOUT;
1026 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1027 		cmd->error = -EILSEQ;
1028 	} else {
1029 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1030 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1031 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1032 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1033 	}
1034 
1035 	if ((!sbc && !cmd->data) || cmd->error) {
1036 		if (host->data) {
1037 			/* Terminate the DMA transfer */
1038 			if (dma_inprogress(host)) {
1039 				mmci_dma_data_error(host);
1040 				mmci_dma_unmap(host, host->data);
1041 			}
1042 			mmci_stop_data(host);
1043 		}
1044 		mmci_request_end(host, host->mrq);
1045 	} else if (sbc) {
1046 		mmci_start_command(host, host->mrq->cmd, 0);
1047 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1048 		mmci_start_data(host, cmd->data);
1049 	}
1050 }
1051 
1052 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1053 {
1054 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1055 }
1056 
1057 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1058 {
1059 	/*
1060 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1061 	 * from the fifo range should be used
1062 	 */
1063 	if (status & MCI_RXFIFOHALFFULL)
1064 		return host->variant->fifohalfsize;
1065 	else if (status & MCI_RXDATAAVLBL)
1066 		return 4;
1067 
1068 	return 0;
1069 }
1070 
1071 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1072 {
1073 	void __iomem *base = host->base;
1074 	char *ptr = buffer;
1075 	u32 status = readl(host->base + MMCISTATUS);
1076 	int host_remain = host->size;
1077 
1078 	do {
1079 		int count = host->get_rx_fifocnt(host, status, host_remain);
1080 
1081 		if (count > remain)
1082 			count = remain;
1083 
1084 		if (count <= 0)
1085 			break;
1086 
1087 		/*
1088 		 * SDIO especially may want to send something that is
1089 		 * not divisible by 4 (as opposed to card sectors
1090 		 * etc). Therefore make sure to always read the last bytes
1091 		 * while only doing full 32-bit reads towards the FIFO.
1092 		 */
1093 		if (unlikely(count & 0x3)) {
1094 			if (count < 4) {
1095 				unsigned char buf[4];
1096 				ioread32_rep(base + MMCIFIFO, buf, 1);
1097 				memcpy(ptr, buf, count);
1098 			} else {
1099 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1100 				count &= ~0x3;
1101 			}
1102 		} else {
1103 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1104 		}
1105 
1106 		ptr += count;
1107 		remain -= count;
1108 		host_remain -= count;
1109 
1110 		if (remain == 0)
1111 			break;
1112 
1113 		status = readl(base + MMCISTATUS);
1114 	} while (status & MCI_RXDATAAVLBL);
1115 
1116 	return ptr - buffer;
1117 }
1118 
1119 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1120 {
1121 	struct variant_data *variant = host->variant;
1122 	void __iomem *base = host->base;
1123 	char *ptr = buffer;
1124 
1125 	do {
1126 		unsigned int count, maxcnt;
1127 
1128 		maxcnt = status & MCI_TXFIFOEMPTY ?
1129 			 variant->fifosize : variant->fifohalfsize;
1130 		count = min(remain, maxcnt);
1131 
1132 		/*
1133 		 * SDIO especially may want to send something that is
1134 		 * not divisible by 4 (as opposed to card sectors
1135 		 * etc), and the FIFO only accept full 32-bit writes.
1136 		 * So compensate by adding +3 on the count, a single
1137 		 * byte become a 32bit write, 7 bytes will be two
1138 		 * 32bit writes etc.
1139 		 */
1140 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1141 
1142 		ptr += count;
1143 		remain -= count;
1144 
1145 		if (remain == 0)
1146 			break;
1147 
1148 		status = readl(base + MMCISTATUS);
1149 	} while (status & MCI_TXFIFOHALFEMPTY);
1150 
1151 	return ptr - buffer;
1152 }
1153 
1154 /*
1155  * PIO data transfer IRQ handler.
1156  */
1157 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1158 {
1159 	struct mmci_host *host = dev_id;
1160 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1161 	struct variant_data *variant = host->variant;
1162 	void __iomem *base = host->base;
1163 	unsigned long flags;
1164 	u32 status;
1165 
1166 	status = readl(base + MMCISTATUS);
1167 
1168 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1169 
1170 	local_irq_save(flags);
1171 
1172 	do {
1173 		unsigned int remain, len;
1174 		char *buffer;
1175 
1176 		/*
1177 		 * For write, we only need to test the half-empty flag
1178 		 * here - if the FIFO is completely empty, then by
1179 		 * definition it is more than half empty.
1180 		 *
1181 		 * For read, check for data available.
1182 		 */
1183 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1184 			break;
1185 
1186 		if (!sg_miter_next(sg_miter))
1187 			break;
1188 
1189 		buffer = sg_miter->addr;
1190 		remain = sg_miter->length;
1191 
1192 		len = 0;
1193 		if (status & MCI_RXACTIVE)
1194 			len = mmci_pio_read(host, buffer, remain);
1195 		if (status & MCI_TXACTIVE)
1196 			len = mmci_pio_write(host, buffer, remain, status);
1197 
1198 		sg_miter->consumed = len;
1199 
1200 		host->size -= len;
1201 		remain -= len;
1202 
1203 		if (remain)
1204 			break;
1205 
1206 		status = readl(base + MMCISTATUS);
1207 	} while (1);
1208 
1209 	sg_miter_stop(sg_miter);
1210 
1211 	local_irq_restore(flags);
1212 
1213 	/*
1214 	 * If we have less than the fifo 'half-full' threshold to transfer,
1215 	 * trigger a PIO interrupt as soon as any data is available.
1216 	 */
1217 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1218 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1219 
1220 	/*
1221 	 * If we run out of data, disable the data IRQs; this
1222 	 * prevents a race where the FIFO becomes empty before
1223 	 * the chip itself has disabled the data path, and
1224 	 * stops us racing with our data end IRQ.
1225 	 */
1226 	if (host->size == 0) {
1227 		mmci_set_mask1(host, 0);
1228 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1229 	}
1230 
1231 	return IRQ_HANDLED;
1232 }
1233 
1234 /*
1235  * Handle completion of command and data transfers.
1236  */
1237 static irqreturn_t mmci_irq(int irq, void *dev_id)
1238 {
1239 	struct mmci_host *host = dev_id;
1240 	u32 status;
1241 	int ret = 0;
1242 
1243 	spin_lock(&host->lock);
1244 
1245 	do {
1246 		status = readl(host->base + MMCISTATUS);
1247 
1248 		if (host->singleirq) {
1249 			if (status & readl(host->base + MMCIMASK1))
1250 				mmci_pio_irq(irq, dev_id);
1251 
1252 			status &= ~MCI_IRQ1MASK;
1253 		}
1254 
1255 		/*
1256 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1257 		 * enabled) since the HW seems to be triggering the IRQ on both
1258 		 * edges while monitoring DAT0 for busy completion.
1259 		 */
1260 		status &= readl(host->base + MMCIMASK0);
1261 		writel(status, host->base + MMCICLEAR);
1262 
1263 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1264 
1265 		if (host->variant->reversed_irq_handling) {
1266 			mmci_data_irq(host, host->data, status);
1267 			mmci_cmd_irq(host, host->cmd, status);
1268 		} else {
1269 			mmci_cmd_irq(host, host->cmd, status);
1270 			mmci_data_irq(host, host->data, status);
1271 		}
1272 
1273 		/* Don't poll for busy completion in irq context. */
1274 		if (host->busy_status)
1275 			status &= ~MCI_ST_CARDBUSY;
1276 
1277 		ret = 1;
1278 	} while (status);
1279 
1280 	spin_unlock(&host->lock);
1281 
1282 	return IRQ_RETVAL(ret);
1283 }
1284 
1285 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1286 {
1287 	struct mmci_host *host = mmc_priv(mmc);
1288 	unsigned long flags;
1289 
1290 	WARN_ON(host->mrq != NULL);
1291 
1292 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1293 	if (mrq->cmd->error) {
1294 		mmc_request_done(mmc, mrq);
1295 		return;
1296 	}
1297 
1298 	pm_runtime_get_sync(mmc_dev(mmc));
1299 
1300 	spin_lock_irqsave(&host->lock, flags);
1301 
1302 	host->mrq = mrq;
1303 
1304 	if (mrq->data)
1305 		mmci_get_next_data(host, mrq->data);
1306 
1307 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1308 		mmci_start_data(host, mrq->data);
1309 
1310 	if (mrq->sbc)
1311 		mmci_start_command(host, mrq->sbc, 0);
1312 	else
1313 		mmci_start_command(host, mrq->cmd, 0);
1314 
1315 	spin_unlock_irqrestore(&host->lock, flags);
1316 }
1317 
1318 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1319 {
1320 	struct mmci_host *host = mmc_priv(mmc);
1321 	struct variant_data *variant = host->variant;
1322 	u32 pwr = 0;
1323 	unsigned long flags;
1324 	int ret;
1325 
1326 	pm_runtime_get_sync(mmc_dev(mmc));
1327 
1328 	if (host->plat->ios_handler &&
1329 		host->plat->ios_handler(mmc_dev(mmc), ios))
1330 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1331 
1332 	switch (ios->power_mode) {
1333 	case MMC_POWER_OFF:
1334 		if (!IS_ERR(mmc->supply.vmmc))
1335 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1336 
1337 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1338 			regulator_disable(mmc->supply.vqmmc);
1339 			host->vqmmc_enabled = false;
1340 		}
1341 
1342 		break;
1343 	case MMC_POWER_UP:
1344 		if (!IS_ERR(mmc->supply.vmmc))
1345 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1346 
1347 		/*
1348 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1349 		 * and instead uses MCI_PWR_ON so apply whatever value is
1350 		 * configured in the variant data.
1351 		 */
1352 		pwr |= variant->pwrreg_powerup;
1353 
1354 		break;
1355 	case MMC_POWER_ON:
1356 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1357 			ret = regulator_enable(mmc->supply.vqmmc);
1358 			if (ret < 0)
1359 				dev_err(mmc_dev(mmc),
1360 					"failed to enable vqmmc regulator\n");
1361 			else
1362 				host->vqmmc_enabled = true;
1363 		}
1364 
1365 		pwr |= MCI_PWR_ON;
1366 		break;
1367 	}
1368 
1369 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1370 		/*
1371 		 * The ST Micro variant has some additional bits
1372 		 * indicating signal direction for the signals in
1373 		 * the SD/MMC bus and feedback-clock usage.
1374 		 */
1375 		pwr |= host->pwr_reg_add;
1376 
1377 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1378 			pwr &= ~MCI_ST_DATA74DIREN;
1379 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1380 			pwr &= (~MCI_ST_DATA74DIREN &
1381 				~MCI_ST_DATA31DIREN &
1382 				~MCI_ST_DATA2DIREN);
1383 	}
1384 
1385 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1386 		if (host->hw_designer != AMBA_VENDOR_ST)
1387 			pwr |= MCI_ROD;
1388 		else {
1389 			/*
1390 			 * The ST Micro variant use the ROD bit for something
1391 			 * else and only has OD (Open Drain).
1392 			 */
1393 			pwr |= MCI_OD;
1394 		}
1395 	}
1396 
1397 	/*
1398 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1399 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1400 	 */
1401 	if (!ios->clock && variant->pwrreg_clkgate)
1402 		pwr &= ~MCI_PWR_ON;
1403 
1404 	if (host->variant->explicit_mclk_control &&
1405 	    ios->clock != host->clock_cache) {
1406 		ret = clk_set_rate(host->clk, ios->clock);
1407 		if (ret < 0)
1408 			dev_err(mmc_dev(host->mmc),
1409 				"Error setting clock rate (%d)\n", ret);
1410 		else
1411 			host->mclk = clk_get_rate(host->clk);
1412 	}
1413 	host->clock_cache = ios->clock;
1414 
1415 	spin_lock_irqsave(&host->lock, flags);
1416 
1417 	mmci_set_clkreg(host, ios->clock);
1418 	mmci_write_pwrreg(host, pwr);
1419 	mmci_reg_delay(host);
1420 
1421 	spin_unlock_irqrestore(&host->lock, flags);
1422 
1423 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1424 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1425 }
1426 
1427 static int mmci_get_cd(struct mmc_host *mmc)
1428 {
1429 	struct mmci_host *host = mmc_priv(mmc);
1430 	struct mmci_platform_data *plat = host->plat;
1431 	unsigned int status = mmc_gpio_get_cd(mmc);
1432 
1433 	if (status == -ENOSYS) {
1434 		if (!plat->status)
1435 			return 1; /* Assume always present */
1436 
1437 		status = plat->status(mmc_dev(host->mmc));
1438 	}
1439 	return status;
1440 }
1441 
1442 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1443 {
1444 	int ret = 0;
1445 
1446 	if (!IS_ERR(mmc->supply.vqmmc)) {
1447 
1448 		pm_runtime_get_sync(mmc_dev(mmc));
1449 
1450 		switch (ios->signal_voltage) {
1451 		case MMC_SIGNAL_VOLTAGE_330:
1452 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1453 						2700000, 3600000);
1454 			break;
1455 		case MMC_SIGNAL_VOLTAGE_180:
1456 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1457 						1700000, 1950000);
1458 			break;
1459 		case MMC_SIGNAL_VOLTAGE_120:
1460 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1461 						1100000, 1300000);
1462 			break;
1463 		}
1464 
1465 		if (ret)
1466 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1467 
1468 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1469 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1470 	}
1471 
1472 	return ret;
1473 }
1474 
1475 static struct mmc_host_ops mmci_ops = {
1476 	.request	= mmci_request,
1477 	.pre_req	= mmci_pre_request,
1478 	.post_req	= mmci_post_request,
1479 	.set_ios	= mmci_set_ios,
1480 	.get_ro		= mmc_gpio_get_ro,
1481 	.get_cd		= mmci_get_cd,
1482 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1483 };
1484 
1485 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1486 {
1487 	struct mmci_host *host = mmc_priv(mmc);
1488 	int ret = mmc_of_parse(mmc);
1489 
1490 	if (ret)
1491 		return ret;
1492 
1493 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1494 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1495 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1496 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1497 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1498 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1499 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1500 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1501 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1502 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1503 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1504 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1505 
1506 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1507 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1508 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1509 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1510 
1511 	return 0;
1512 }
1513 
1514 static int mmci_probe(struct amba_device *dev,
1515 	const struct amba_id *id)
1516 {
1517 	struct mmci_platform_data *plat = dev->dev.platform_data;
1518 	struct device_node *np = dev->dev.of_node;
1519 	struct variant_data *variant = id->data;
1520 	struct mmci_host *host;
1521 	struct mmc_host *mmc;
1522 	int ret;
1523 
1524 	/* Must have platform data or Device Tree. */
1525 	if (!plat && !np) {
1526 		dev_err(&dev->dev, "No plat data or DT found\n");
1527 		return -EINVAL;
1528 	}
1529 
1530 	if (!plat) {
1531 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1532 		if (!plat)
1533 			return -ENOMEM;
1534 	}
1535 
1536 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1537 	if (!mmc)
1538 		return -ENOMEM;
1539 
1540 	ret = mmci_of_parse(np, mmc);
1541 	if (ret)
1542 		goto host_free;
1543 
1544 	host = mmc_priv(mmc);
1545 	host->mmc = mmc;
1546 
1547 	host->hw_designer = amba_manf(dev);
1548 	host->hw_revision = amba_rev(dev);
1549 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1550 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1551 
1552 	host->clk = devm_clk_get(&dev->dev, NULL);
1553 	if (IS_ERR(host->clk)) {
1554 		ret = PTR_ERR(host->clk);
1555 		goto host_free;
1556 	}
1557 
1558 	ret = clk_prepare_enable(host->clk);
1559 	if (ret)
1560 		goto host_free;
1561 
1562 	if (variant->qcom_fifo)
1563 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1564 	else
1565 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1566 
1567 	host->plat = plat;
1568 	host->variant = variant;
1569 	host->mclk = clk_get_rate(host->clk);
1570 	/*
1571 	 * According to the spec, mclk is max 100 MHz,
1572 	 * so we try to adjust the clock down to this,
1573 	 * (if possible).
1574 	 */
1575 	if (host->mclk > variant->f_max) {
1576 		ret = clk_set_rate(host->clk, variant->f_max);
1577 		if (ret < 0)
1578 			goto clk_disable;
1579 		host->mclk = clk_get_rate(host->clk);
1580 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1581 			host->mclk);
1582 	}
1583 
1584 	host->phybase = dev->res.start;
1585 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1586 	if (IS_ERR(host->base)) {
1587 		ret = PTR_ERR(host->base);
1588 		goto clk_disable;
1589 	}
1590 
1591 	/*
1592 	 * The ARM and ST versions of the block have slightly different
1593 	 * clock divider equations which means that the minimum divider
1594 	 * differs too.
1595 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1596 	 */
1597 	if (variant->st_clkdiv)
1598 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1599 	else if (variant->explicit_mclk_control)
1600 		mmc->f_min = clk_round_rate(host->clk, 100000);
1601 	else
1602 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1603 	/*
1604 	 * If no maximum operating frequency is supplied, fall back to use
1605 	 * the module parameter, which has a (low) default value in case it
1606 	 * is not specified. Either value must not exceed the clock rate into
1607 	 * the block, of course.
1608 	 */
1609 	if (mmc->f_max)
1610 		mmc->f_max = variant->explicit_mclk_control ?
1611 				min(variant->f_max, mmc->f_max) :
1612 				min(host->mclk, mmc->f_max);
1613 	else
1614 		mmc->f_max = variant->explicit_mclk_control ?
1615 				fmax : min(host->mclk, fmax);
1616 
1617 
1618 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1619 
1620 	/* Get regulators and the supported OCR mask */
1621 	mmc_regulator_get_supply(mmc);
1622 	if (!mmc->ocr_avail)
1623 		mmc->ocr_avail = plat->ocr_mask;
1624 	else if (plat->ocr_mask)
1625 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1626 
1627 	/* DT takes precedence over platform data. */
1628 	if (!np) {
1629 		if (!plat->cd_invert)
1630 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1631 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1632 	}
1633 
1634 	/* We support these capabilities. */
1635 	mmc->caps |= MMC_CAP_CMD23;
1636 
1637 	if (variant->busy_detect) {
1638 		mmci_ops.card_busy = mmci_card_busy;
1639 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1640 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1641 		mmc->max_busy_timeout = 0;
1642 	}
1643 
1644 	mmc->ops = &mmci_ops;
1645 
1646 	/* We support these PM capabilities. */
1647 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1648 
1649 	/*
1650 	 * We can do SGIO
1651 	 */
1652 	mmc->max_segs = NR_SG;
1653 
1654 	/*
1655 	 * Since only a certain number of bits are valid in the data length
1656 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1657 	 * single request.
1658 	 */
1659 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1660 
1661 	/*
1662 	 * Set the maximum segment size.  Since we aren't doing DMA
1663 	 * (yet) we are only limited by the data length register.
1664 	 */
1665 	mmc->max_seg_size = mmc->max_req_size;
1666 
1667 	/*
1668 	 * Block size can be up to 2048 bytes, but must be a power of two.
1669 	 */
1670 	mmc->max_blk_size = 1 << 11;
1671 
1672 	/*
1673 	 * Limit the number of blocks transferred so that we don't overflow
1674 	 * the maximum request size.
1675 	 */
1676 	mmc->max_blk_count = mmc->max_req_size >> 11;
1677 
1678 	spin_lock_init(&host->lock);
1679 
1680 	writel(0, host->base + MMCIMASK0);
1681 	writel(0, host->base + MMCIMASK1);
1682 	writel(0xfff, host->base + MMCICLEAR);
1683 
1684 	/*
1685 	 * If:
1686 	 * - not using DT but using a descriptor table, or
1687 	 * - using a table of descriptors ALONGSIDE DT, or
1688 	 * look up these descriptors named "cd" and "wp" right here, fail
1689 	 * silently of these do not exist and proceed to try platform data
1690 	 */
1691 	if (!np) {
1692 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1693 		if (ret < 0) {
1694 			if (ret == -EPROBE_DEFER)
1695 				goto clk_disable;
1696 			else if (gpio_is_valid(plat->gpio_cd)) {
1697 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1698 				if (ret)
1699 					goto clk_disable;
1700 			}
1701 		}
1702 
1703 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1704 		if (ret < 0) {
1705 			if (ret == -EPROBE_DEFER)
1706 				goto clk_disable;
1707 			else if (gpio_is_valid(plat->gpio_wp)) {
1708 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1709 				if (ret)
1710 					goto clk_disable;
1711 			}
1712 		}
1713 	}
1714 
1715 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1716 			DRIVER_NAME " (cmd)", host);
1717 	if (ret)
1718 		goto clk_disable;
1719 
1720 	if (!dev->irq[1])
1721 		host->singleirq = true;
1722 	else {
1723 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1724 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1725 		if (ret)
1726 			goto clk_disable;
1727 	}
1728 
1729 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1730 
1731 	amba_set_drvdata(dev, mmc);
1732 
1733 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1734 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1735 		 amba_rev(dev), (unsigned long long)dev->res.start,
1736 		 dev->irq[0], dev->irq[1]);
1737 
1738 	mmci_dma_setup(host);
1739 
1740 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1741 	pm_runtime_use_autosuspend(&dev->dev);
1742 	pm_runtime_put(&dev->dev);
1743 
1744 	mmc_add_host(mmc);
1745 
1746 	return 0;
1747 
1748  clk_disable:
1749 	clk_disable_unprepare(host->clk);
1750  host_free:
1751 	mmc_free_host(mmc);
1752 	return ret;
1753 }
1754 
1755 static int mmci_remove(struct amba_device *dev)
1756 {
1757 	struct mmc_host *mmc = amba_get_drvdata(dev);
1758 
1759 	if (mmc) {
1760 		struct mmci_host *host = mmc_priv(mmc);
1761 
1762 		/*
1763 		 * Undo pm_runtime_put() in probe.  We use the _sync
1764 		 * version here so that we can access the primecell.
1765 		 */
1766 		pm_runtime_get_sync(&dev->dev);
1767 
1768 		mmc_remove_host(mmc);
1769 
1770 		writel(0, host->base + MMCIMASK0);
1771 		writel(0, host->base + MMCIMASK1);
1772 
1773 		writel(0, host->base + MMCICOMMAND);
1774 		writel(0, host->base + MMCIDATACTRL);
1775 
1776 		mmci_dma_release(host);
1777 		clk_disable_unprepare(host->clk);
1778 		mmc_free_host(mmc);
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 #ifdef CONFIG_PM
1785 static void mmci_save(struct mmci_host *host)
1786 {
1787 	unsigned long flags;
1788 
1789 	spin_lock_irqsave(&host->lock, flags);
1790 
1791 	writel(0, host->base + MMCIMASK0);
1792 	if (host->variant->pwrreg_nopower) {
1793 		writel(0, host->base + MMCIDATACTRL);
1794 		writel(0, host->base + MMCIPOWER);
1795 		writel(0, host->base + MMCICLOCK);
1796 	}
1797 	mmci_reg_delay(host);
1798 
1799 	spin_unlock_irqrestore(&host->lock, flags);
1800 }
1801 
1802 static void mmci_restore(struct mmci_host *host)
1803 {
1804 	unsigned long flags;
1805 
1806 	spin_lock_irqsave(&host->lock, flags);
1807 
1808 	if (host->variant->pwrreg_nopower) {
1809 		writel(host->clk_reg, host->base + MMCICLOCK);
1810 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1811 		writel(host->pwr_reg, host->base + MMCIPOWER);
1812 	}
1813 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1814 	mmci_reg_delay(host);
1815 
1816 	spin_unlock_irqrestore(&host->lock, flags);
1817 }
1818 
1819 static int mmci_runtime_suspend(struct device *dev)
1820 {
1821 	struct amba_device *adev = to_amba_device(dev);
1822 	struct mmc_host *mmc = amba_get_drvdata(adev);
1823 
1824 	if (mmc) {
1825 		struct mmci_host *host = mmc_priv(mmc);
1826 		pinctrl_pm_select_sleep_state(dev);
1827 		mmci_save(host);
1828 		clk_disable_unprepare(host->clk);
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 static int mmci_runtime_resume(struct device *dev)
1835 {
1836 	struct amba_device *adev = to_amba_device(dev);
1837 	struct mmc_host *mmc = amba_get_drvdata(adev);
1838 
1839 	if (mmc) {
1840 		struct mmci_host *host = mmc_priv(mmc);
1841 		clk_prepare_enable(host->clk);
1842 		mmci_restore(host);
1843 		pinctrl_pm_select_default_state(dev);
1844 	}
1845 
1846 	return 0;
1847 }
1848 #endif
1849 
1850 static const struct dev_pm_ops mmci_dev_pm_ops = {
1851 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1852 				pm_runtime_force_resume)
1853 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1854 };
1855 
1856 static struct amba_id mmci_ids[] = {
1857 	{
1858 		.id	= 0x00041180,
1859 		.mask	= 0xff0fffff,
1860 		.data	= &variant_arm,
1861 	},
1862 	{
1863 		.id	= 0x01041180,
1864 		.mask	= 0xff0fffff,
1865 		.data	= &variant_arm_extended_fifo,
1866 	},
1867 	{
1868 		.id	= 0x02041180,
1869 		.mask	= 0xff0fffff,
1870 		.data	= &variant_arm_extended_fifo_hwfc,
1871 	},
1872 	{
1873 		.id	= 0x00041181,
1874 		.mask	= 0x000fffff,
1875 		.data	= &variant_arm,
1876 	},
1877 	/* ST Micro variants */
1878 	{
1879 		.id     = 0x00180180,
1880 		.mask   = 0x00ffffff,
1881 		.data	= &variant_u300,
1882 	},
1883 	{
1884 		.id     = 0x10180180,
1885 		.mask   = 0xf0ffffff,
1886 		.data	= &variant_nomadik,
1887 	},
1888 	{
1889 		.id     = 0x00280180,
1890 		.mask   = 0x00ffffff,
1891 		.data	= &variant_u300,
1892 	},
1893 	{
1894 		.id     = 0x00480180,
1895 		.mask   = 0xf0ffffff,
1896 		.data	= &variant_ux500,
1897 	},
1898 	{
1899 		.id     = 0x10480180,
1900 		.mask   = 0xf0ffffff,
1901 		.data	= &variant_ux500v2,
1902 	},
1903 	/* Qualcomm variants */
1904 	{
1905 		.id     = 0x00051180,
1906 		.mask	= 0x000fffff,
1907 		.data	= &variant_qcom,
1908 	},
1909 	{ 0, 0 },
1910 };
1911 
1912 MODULE_DEVICE_TABLE(amba, mmci_ids);
1913 
1914 static struct amba_driver mmci_driver = {
1915 	.drv		= {
1916 		.name	= DRIVER_NAME,
1917 		.pm	= &mmci_dev_pm_ops,
1918 	},
1919 	.probe		= mmci_probe,
1920 	.remove		= mmci_remove,
1921 	.id_table	= mmci_ids,
1922 };
1923 
1924 module_amba_driver(mmci_driver);
1925 
1926 module_param(fmax, uint, 0444);
1927 
1928 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1929 MODULE_LICENSE("GPL");
1930