1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 4 * 5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 6 * Copyright (C) 2010 ST-Ericsson SA 7 */ 8 #include <linux/module.h> 9 #include <linux/moduleparam.h> 10 #include <linux/init.h> 11 #include <linux/ioport.h> 12 #include <linux/device.h> 13 #include <linux/io.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/highmem.h> 20 #include <linux/log2.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/pm.h> 23 #include <linux/mmc/host.h> 24 #include <linux/mmc/card.h> 25 #include <linux/mmc/sd.h> 26 #include <linux/mmc/slot-gpio.h> 27 #include <linux/amba/bus.h> 28 #include <linux/clk.h> 29 #include <linux/scatterlist.h> 30 #include <linux/of.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/dmaengine.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/amba/mmci.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/types.h> 37 #include <linux/pinctrl/consumer.h> 38 #include <linux/reset.h> 39 #include <linux/gpio/consumer.h> 40 41 #include <asm/div64.h> 42 #include <asm/io.h> 43 44 #include "mmci.h" 45 46 #define DRIVER_NAME "mmci-pl18x" 47 48 static void mmci_variant_init(struct mmci_host *host); 49 static void ux500_variant_init(struct mmci_host *host); 50 static void ux500v2_variant_init(struct mmci_host *host); 51 52 static unsigned int fmax = 515633; 53 54 static struct variant_data variant_arm = { 55 .fifosize = 16 * 4, 56 .fifohalfsize = 8 * 4, 57 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 58 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 59 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 60 .cmdreg_srsp = MCI_CPSM_RESPONSE, 61 .datalength_bits = 16, 62 .datactrl_blocksz = 11, 63 .pwrreg_powerup = MCI_PWR_UP, 64 .f_max = 100000000, 65 .reversed_irq_handling = true, 66 .mmcimask1 = true, 67 .irq_pio_mask = MCI_IRQ_PIO_MASK, 68 .start_err = MCI_STARTBITERR, 69 .opendrain = MCI_ROD, 70 .init = mmci_variant_init, 71 }; 72 73 static struct variant_data variant_arm_extended_fifo = { 74 .fifosize = 128 * 4, 75 .fifohalfsize = 64 * 4, 76 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 77 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 78 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 79 .cmdreg_srsp = MCI_CPSM_RESPONSE, 80 .datalength_bits = 16, 81 .datactrl_blocksz = 11, 82 .pwrreg_powerup = MCI_PWR_UP, 83 .f_max = 100000000, 84 .mmcimask1 = true, 85 .irq_pio_mask = MCI_IRQ_PIO_MASK, 86 .start_err = MCI_STARTBITERR, 87 .opendrain = MCI_ROD, 88 .init = mmci_variant_init, 89 }; 90 91 static struct variant_data variant_arm_extended_fifo_hwfc = { 92 .fifosize = 128 * 4, 93 .fifohalfsize = 64 * 4, 94 .clkreg_enable = MCI_ARM_HWFCEN, 95 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 96 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 97 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 98 .cmdreg_srsp = MCI_CPSM_RESPONSE, 99 .datalength_bits = 16, 100 .datactrl_blocksz = 11, 101 .pwrreg_powerup = MCI_PWR_UP, 102 .f_max = 100000000, 103 .mmcimask1 = true, 104 .irq_pio_mask = MCI_IRQ_PIO_MASK, 105 .start_err = MCI_STARTBITERR, 106 .opendrain = MCI_ROD, 107 .init = mmci_variant_init, 108 }; 109 110 static struct variant_data variant_u300 = { 111 .fifosize = 16 * 4, 112 .fifohalfsize = 8 * 4, 113 .clkreg_enable = MCI_ST_U300_HWFCEN, 114 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 115 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 116 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 117 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 118 .cmdreg_srsp = MCI_CPSM_RESPONSE, 119 .datalength_bits = 16, 120 .datactrl_blocksz = 11, 121 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 122 .st_sdio = true, 123 .pwrreg_powerup = MCI_PWR_ON, 124 .f_max = 100000000, 125 .signal_direction = true, 126 .pwrreg_clkgate = true, 127 .pwrreg_nopower = true, 128 .mmcimask1 = true, 129 .irq_pio_mask = MCI_IRQ_PIO_MASK, 130 .start_err = MCI_STARTBITERR, 131 .opendrain = MCI_OD, 132 .init = mmci_variant_init, 133 }; 134 135 static struct variant_data variant_nomadik = { 136 .fifosize = 16 * 4, 137 .fifohalfsize = 8 * 4, 138 .clkreg = MCI_CLK_ENABLE, 139 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 140 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 141 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 142 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 143 .cmdreg_srsp = MCI_CPSM_RESPONSE, 144 .datalength_bits = 24, 145 .datactrl_blocksz = 11, 146 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 147 .st_sdio = true, 148 .st_clkdiv = true, 149 .pwrreg_powerup = MCI_PWR_ON, 150 .f_max = 100000000, 151 .signal_direction = true, 152 .pwrreg_clkgate = true, 153 .pwrreg_nopower = true, 154 .mmcimask1 = true, 155 .irq_pio_mask = MCI_IRQ_PIO_MASK, 156 .start_err = MCI_STARTBITERR, 157 .opendrain = MCI_OD, 158 .init = mmci_variant_init, 159 }; 160 161 static struct variant_data variant_ux500 = { 162 .fifosize = 30 * 4, 163 .fifohalfsize = 8 * 4, 164 .clkreg = MCI_CLK_ENABLE, 165 .clkreg_enable = MCI_ST_UX500_HWFCEN, 166 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 167 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 168 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 169 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 170 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 171 .cmdreg_srsp = MCI_CPSM_RESPONSE, 172 .datalength_bits = 24, 173 .datactrl_blocksz = 11, 174 .datactrl_any_blocksz = true, 175 .dma_power_of_2 = true, 176 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 177 .st_sdio = true, 178 .st_clkdiv = true, 179 .pwrreg_powerup = MCI_PWR_ON, 180 .f_max = 100000000, 181 .signal_direction = true, 182 .pwrreg_clkgate = true, 183 .busy_detect = true, 184 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 185 .busy_detect_flag = MCI_ST_CARDBUSY, 186 .busy_detect_mask = MCI_ST_BUSYENDMASK, 187 .pwrreg_nopower = true, 188 .mmcimask1 = true, 189 .irq_pio_mask = MCI_IRQ_PIO_MASK, 190 .start_err = MCI_STARTBITERR, 191 .opendrain = MCI_OD, 192 .init = ux500_variant_init, 193 }; 194 195 static struct variant_data variant_ux500v2 = { 196 .fifosize = 30 * 4, 197 .fifohalfsize = 8 * 4, 198 .clkreg = MCI_CLK_ENABLE, 199 .clkreg_enable = MCI_ST_UX500_HWFCEN, 200 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 201 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 202 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 203 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 204 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 205 .cmdreg_srsp = MCI_CPSM_RESPONSE, 206 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE, 207 .datalength_bits = 24, 208 .datactrl_blocksz = 11, 209 .datactrl_any_blocksz = true, 210 .dma_power_of_2 = true, 211 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 212 .st_sdio = true, 213 .st_clkdiv = true, 214 .pwrreg_powerup = MCI_PWR_ON, 215 .f_max = 100000000, 216 .signal_direction = true, 217 .pwrreg_clkgate = true, 218 .busy_detect = true, 219 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 220 .busy_detect_flag = MCI_ST_CARDBUSY, 221 .busy_detect_mask = MCI_ST_BUSYENDMASK, 222 .pwrreg_nopower = true, 223 .mmcimask1 = true, 224 .irq_pio_mask = MCI_IRQ_PIO_MASK, 225 .start_err = MCI_STARTBITERR, 226 .opendrain = MCI_OD, 227 .init = ux500v2_variant_init, 228 }; 229 230 static struct variant_data variant_stm32 = { 231 .fifosize = 32 * 4, 232 .fifohalfsize = 8 * 4, 233 .clkreg = MCI_CLK_ENABLE, 234 .clkreg_enable = MCI_ST_UX500_HWFCEN, 235 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 236 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 237 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 238 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 239 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 240 .cmdreg_srsp = MCI_CPSM_RESPONSE, 241 .irq_pio_mask = MCI_IRQ_PIO_MASK, 242 .datalength_bits = 24, 243 .datactrl_blocksz = 11, 244 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 245 .st_sdio = true, 246 .st_clkdiv = true, 247 .pwrreg_powerup = MCI_PWR_ON, 248 .f_max = 48000000, 249 .pwrreg_clkgate = true, 250 .pwrreg_nopower = true, 251 .init = mmci_variant_init, 252 }; 253 254 static struct variant_data variant_stm32_sdmmc = { 255 .fifosize = 16 * 4, 256 .fifohalfsize = 8 * 4, 257 .f_max = 208000000, 258 .stm32_clkdiv = true, 259 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 260 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 261 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 262 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 263 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 264 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 265 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 266 .datactrl_first = true, 267 .datacnt_useless = true, 268 .datalength_bits = 25, 269 .datactrl_blocksz = 14, 270 .datactrl_any_blocksz = true, 271 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 272 .stm32_idmabsize_mask = GENMASK(12, 5), 273 .busy_timeout = true, 274 .busy_detect = true, 275 .busy_detect_flag = MCI_STM32_BUSYD0, 276 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 277 .init = sdmmc_variant_init, 278 }; 279 280 static struct variant_data variant_stm32_sdmmcv2 = { 281 .fifosize = 16 * 4, 282 .fifohalfsize = 8 * 4, 283 .f_max = 267000000, 284 .stm32_clkdiv = true, 285 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 286 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 287 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 288 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 289 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 290 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 291 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 292 .datactrl_first = true, 293 .datacnt_useless = true, 294 .datalength_bits = 25, 295 .datactrl_blocksz = 14, 296 .datactrl_any_blocksz = true, 297 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 298 .stm32_idmabsize_mask = GENMASK(16, 5), 299 .dma_lli = true, 300 .busy_timeout = true, 301 .busy_detect = true, 302 .busy_detect_flag = MCI_STM32_BUSYD0, 303 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 304 .init = sdmmc_variant_init, 305 }; 306 307 static struct variant_data variant_qcom = { 308 .fifosize = 16 * 4, 309 .fifohalfsize = 8 * 4, 310 .clkreg = MCI_CLK_ENABLE, 311 .clkreg_enable = MCI_QCOM_CLK_FLOWENA | 312 MCI_QCOM_CLK_SELECT_IN_FBCLK, 313 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, 314 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, 315 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 316 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 317 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 318 .cmdreg_srsp = MCI_CPSM_RESPONSE, 319 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD, 320 .datalength_bits = 24, 321 .datactrl_blocksz = 11, 322 .datactrl_any_blocksz = true, 323 .pwrreg_powerup = MCI_PWR_UP, 324 .f_max = 208000000, 325 .explicit_mclk_control = true, 326 .qcom_fifo = true, 327 .qcom_dml = true, 328 .mmcimask1 = true, 329 .irq_pio_mask = MCI_IRQ_PIO_MASK, 330 .start_err = MCI_STARTBITERR, 331 .opendrain = MCI_ROD, 332 .init = qcom_variant_init, 333 }; 334 335 /* Busy detection for the ST Micro variant */ 336 static int mmci_card_busy(struct mmc_host *mmc) 337 { 338 struct mmci_host *host = mmc_priv(mmc); 339 unsigned long flags; 340 int busy = 0; 341 342 spin_lock_irqsave(&host->lock, flags); 343 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag) 344 busy = 1; 345 spin_unlock_irqrestore(&host->lock, flags); 346 347 return busy; 348 } 349 350 static void mmci_reg_delay(struct mmci_host *host) 351 { 352 /* 353 * According to the spec, at least three feedback clock cycles 354 * of max 52 MHz must pass between two writes to the MMCICLOCK reg. 355 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. 356 * Worst delay time during card init is at 100 kHz => 30 us. 357 * Worst delay time when up and running is at 25 MHz => 120 ns. 358 */ 359 if (host->cclk < 25000000) 360 udelay(30); 361 else 362 ndelay(120); 363 } 364 365 /* 366 * This must be called with host->lock held 367 */ 368 void mmci_write_clkreg(struct mmci_host *host, u32 clk) 369 { 370 if (host->clk_reg != clk) { 371 host->clk_reg = clk; 372 writel(clk, host->base + MMCICLOCK); 373 } 374 } 375 376 /* 377 * This must be called with host->lock held 378 */ 379 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) 380 { 381 if (host->pwr_reg != pwr) { 382 host->pwr_reg = pwr; 383 writel(pwr, host->base + MMCIPOWER); 384 } 385 } 386 387 /* 388 * This must be called with host->lock held 389 */ 390 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) 391 { 392 /* Keep busy mode in DPSM if enabled */ 393 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag; 394 395 if (host->datactrl_reg != datactrl) { 396 host->datactrl_reg = datactrl; 397 writel(datactrl, host->base + MMCIDATACTRL); 398 } 399 } 400 401 /* 402 * This must be called with host->lock held 403 */ 404 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 405 { 406 struct variant_data *variant = host->variant; 407 u32 clk = variant->clkreg; 408 409 /* Make sure cclk reflects the current calculated clock */ 410 host->cclk = 0; 411 412 if (desired) { 413 if (variant->explicit_mclk_control) { 414 host->cclk = host->mclk; 415 } else if (desired >= host->mclk) { 416 clk = MCI_CLK_BYPASS; 417 if (variant->st_clkdiv) 418 clk |= MCI_ST_UX500_NEG_EDGE; 419 host->cclk = host->mclk; 420 } else if (variant->st_clkdiv) { 421 /* 422 * DB8500 TRM says f = mclk / (clkdiv + 2) 423 * => clkdiv = (mclk / f) - 2 424 * Round the divider up so we don't exceed the max 425 * frequency 426 */ 427 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 428 if (clk >= 256) 429 clk = 255; 430 host->cclk = host->mclk / (clk + 2); 431 } else { 432 /* 433 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 434 * => clkdiv = mclk / (2 * f) - 1 435 */ 436 clk = host->mclk / (2 * desired) - 1; 437 if (clk >= 256) 438 clk = 255; 439 host->cclk = host->mclk / (2 * (clk + 1)); 440 } 441 442 clk |= variant->clkreg_enable; 443 clk |= MCI_CLK_ENABLE; 444 /* This hasn't proven to be worthwhile */ 445 /* clk |= MCI_CLK_PWRSAVE; */ 446 } 447 448 /* Set actual clock for debug */ 449 host->mmc->actual_clock = host->cclk; 450 451 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 452 clk |= MCI_4BIT_BUS; 453 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 454 clk |= variant->clkreg_8bit_bus_enable; 455 456 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 457 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 458 clk |= variant->clkreg_neg_edge_enable; 459 460 mmci_write_clkreg(host, clk); 461 } 462 463 static void mmci_dma_release(struct mmci_host *host) 464 { 465 if (host->ops && host->ops->dma_release) 466 host->ops->dma_release(host); 467 468 host->use_dma = false; 469 } 470 471 static void mmci_dma_setup(struct mmci_host *host) 472 { 473 if (!host->ops || !host->ops->dma_setup) 474 return; 475 476 if (host->ops->dma_setup(host)) 477 return; 478 479 /* initialize pre request cookie */ 480 host->next_cookie = 1; 481 482 host->use_dma = true; 483 } 484 485 /* 486 * Validate mmc prerequisites 487 */ 488 static int mmci_validate_data(struct mmci_host *host, 489 struct mmc_data *data) 490 { 491 struct variant_data *variant = host->variant; 492 493 if (!data) 494 return 0; 495 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) { 496 dev_err(mmc_dev(host->mmc), 497 "unsupported block size (%d bytes)\n", data->blksz); 498 return -EINVAL; 499 } 500 501 if (host->ops && host->ops->validate_data) 502 return host->ops->validate_data(host, data); 503 504 return 0; 505 } 506 507 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) 508 { 509 int err; 510 511 if (!host->ops || !host->ops->prep_data) 512 return 0; 513 514 err = host->ops->prep_data(host, data, next); 515 516 if (next && !err) 517 data->host_cookie = ++host->next_cookie < 0 ? 518 1 : host->next_cookie; 519 520 return err; 521 } 522 523 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data, 524 int err) 525 { 526 if (host->ops && host->ops->unprep_data) 527 host->ops->unprep_data(host, data, err); 528 529 data->host_cookie = 0; 530 } 531 532 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 533 { 534 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie); 535 536 if (host->ops && host->ops->get_next_data) 537 host->ops->get_next_data(host, data); 538 } 539 540 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl) 541 { 542 struct mmc_data *data = host->data; 543 int ret; 544 545 if (!host->use_dma) 546 return -EINVAL; 547 548 ret = mmci_prep_data(host, data, false); 549 if (ret) 550 return ret; 551 552 if (!host->ops || !host->ops->dma_start) 553 return -EINVAL; 554 555 /* Okay, go for it. */ 556 dev_vdbg(mmc_dev(host->mmc), 557 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 558 data->sg_len, data->blksz, data->blocks, data->flags); 559 560 ret = host->ops->dma_start(host, &datactrl); 561 if (ret) 562 return ret; 563 564 /* Trigger the DMA transfer */ 565 mmci_write_datactrlreg(host, datactrl); 566 567 /* 568 * Let the MMCI say when the data is ended and it's time 569 * to fire next DMA request. When that happens, MMCI will 570 * call mmci_data_end() 571 */ 572 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 573 host->base + MMCIMASK0); 574 return 0; 575 } 576 577 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) 578 { 579 if (!host->use_dma) 580 return; 581 582 if (host->ops && host->ops->dma_finalize) 583 host->ops->dma_finalize(host, data); 584 } 585 586 static void mmci_dma_error(struct mmci_host *host) 587 { 588 if (!host->use_dma) 589 return; 590 591 if (host->ops && host->ops->dma_error) 592 host->ops->dma_error(host); 593 } 594 595 static void 596 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 597 { 598 writel(0, host->base + MMCICOMMAND); 599 600 BUG_ON(host->data); 601 602 host->mrq = NULL; 603 host->cmd = NULL; 604 605 mmc_request_done(host->mmc, mrq); 606 } 607 608 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 609 { 610 void __iomem *base = host->base; 611 struct variant_data *variant = host->variant; 612 613 if (host->singleirq) { 614 unsigned int mask0 = readl(base + MMCIMASK0); 615 616 mask0 &= ~variant->irq_pio_mask; 617 mask0 |= mask; 618 619 writel(mask0, base + MMCIMASK0); 620 } 621 622 if (variant->mmcimask1) 623 writel(mask, base + MMCIMASK1); 624 625 host->mask1_reg = mask; 626 } 627 628 static void mmci_stop_data(struct mmci_host *host) 629 { 630 mmci_write_datactrlreg(host, 0); 631 mmci_set_mask1(host, 0); 632 host->data = NULL; 633 } 634 635 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 636 { 637 unsigned int flags = SG_MITER_ATOMIC; 638 639 if (data->flags & MMC_DATA_READ) 640 flags |= SG_MITER_TO_SG; 641 else 642 flags |= SG_MITER_FROM_SG; 643 644 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 645 } 646 647 static u32 mmci_get_dctrl_cfg(struct mmci_host *host) 648 { 649 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host); 650 } 651 652 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host) 653 { 654 return MCI_DPSM_ENABLE | (host->data->blksz << 16); 655 } 656 657 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk) 658 { 659 void __iomem *base = host->base; 660 661 /* 662 * Before unmasking for the busy end IRQ, confirm that the 663 * command was sent successfully. To keep track of having a 664 * command in-progress, waiting for busy signaling to end, 665 * store the status in host->busy_status. 666 * 667 * Note that, the card may need a couple of clock cycles before 668 * it starts signaling busy on DAT0, hence re-read the 669 * MMCISTATUS register here, to allow the busy bit to be set. 670 * Potentially we may even need to poll the register for a 671 * while, to allow it to be set, but tests indicates that it 672 * isn't needed. 673 */ 674 if (!host->busy_status && !(status & err_msk) && 675 (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) { 676 writel(readl(base + MMCIMASK0) | 677 host->variant->busy_detect_mask, 678 base + MMCIMASK0); 679 680 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND); 681 return false; 682 } 683 684 /* 685 * If there is a command in-progress that has been successfully 686 * sent, then bail out if busy status is set and wait for the 687 * busy end IRQ. 688 * 689 * Note that, the HW triggers an IRQ on both edges while 690 * monitoring DAT0 for busy completion, but there is only one 691 * status bit in MMCISTATUS for the busy state. Therefore 692 * both the start and the end interrupts needs to be cleared, 693 * one after the other. So, clear the busy start IRQ here. 694 */ 695 if (host->busy_status && 696 (status & host->variant->busy_detect_flag)) { 697 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 698 return false; 699 } 700 701 /* 702 * If there is a command in-progress that has been successfully 703 * sent and the busy bit isn't set, it means we have received 704 * the busy end IRQ. Clear and mask the IRQ, then continue to 705 * process the command. 706 */ 707 if (host->busy_status) { 708 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 709 710 writel(readl(base + MMCIMASK0) & 711 ~host->variant->busy_detect_mask, base + MMCIMASK0); 712 host->busy_status = 0; 713 } 714 715 return true; 716 } 717 718 /* 719 * All the DMA operation mode stuff goes inside this ifdef. 720 * This assumes that you have a generic DMA device interface, 721 * no custom DMA interfaces are supported. 722 */ 723 #ifdef CONFIG_DMA_ENGINE 724 struct mmci_dmae_next { 725 struct dma_async_tx_descriptor *desc; 726 struct dma_chan *chan; 727 }; 728 729 struct mmci_dmae_priv { 730 struct dma_chan *cur; 731 struct dma_chan *rx_channel; 732 struct dma_chan *tx_channel; 733 struct dma_async_tx_descriptor *desc_current; 734 struct mmci_dmae_next next_data; 735 }; 736 737 int mmci_dmae_setup(struct mmci_host *host) 738 { 739 const char *rxname, *txname; 740 struct mmci_dmae_priv *dmae; 741 742 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL); 743 if (!dmae) 744 return -ENOMEM; 745 746 host->dma_priv = dmae; 747 748 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx"); 749 if (IS_ERR(dmae->rx_channel)) { 750 int ret = PTR_ERR(dmae->rx_channel); 751 dmae->rx_channel = NULL; 752 return ret; 753 } 754 755 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx"); 756 if (IS_ERR(dmae->tx_channel)) { 757 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER) 758 dev_warn(mmc_dev(host->mmc), 759 "Deferred probe for TX channel ignored\n"); 760 dmae->tx_channel = NULL; 761 } 762 763 /* 764 * If only an RX channel is specified, the driver will 765 * attempt to use it bidirectionally, however if it 766 * is specified but cannot be located, DMA will be disabled. 767 */ 768 if (dmae->rx_channel && !dmae->tx_channel) 769 dmae->tx_channel = dmae->rx_channel; 770 771 if (dmae->rx_channel) 772 rxname = dma_chan_name(dmae->rx_channel); 773 else 774 rxname = "none"; 775 776 if (dmae->tx_channel) 777 txname = dma_chan_name(dmae->tx_channel); 778 else 779 txname = "none"; 780 781 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 782 rxname, txname); 783 784 /* 785 * Limit the maximum segment size in any SG entry according to 786 * the parameters of the DMA engine device. 787 */ 788 if (dmae->tx_channel) { 789 struct device *dev = dmae->tx_channel->device->dev; 790 unsigned int max_seg_size = dma_get_max_seg_size(dev); 791 792 if (max_seg_size < host->mmc->max_seg_size) 793 host->mmc->max_seg_size = max_seg_size; 794 } 795 if (dmae->rx_channel) { 796 struct device *dev = dmae->rx_channel->device->dev; 797 unsigned int max_seg_size = dma_get_max_seg_size(dev); 798 799 if (max_seg_size < host->mmc->max_seg_size) 800 host->mmc->max_seg_size = max_seg_size; 801 } 802 803 if (!dmae->tx_channel || !dmae->rx_channel) { 804 mmci_dmae_release(host); 805 return -EINVAL; 806 } 807 808 return 0; 809 } 810 811 /* 812 * This is used in or so inline it 813 * so it can be discarded. 814 */ 815 void mmci_dmae_release(struct mmci_host *host) 816 { 817 struct mmci_dmae_priv *dmae = host->dma_priv; 818 819 if (dmae->rx_channel) 820 dma_release_channel(dmae->rx_channel); 821 if (dmae->tx_channel) 822 dma_release_channel(dmae->tx_channel); 823 dmae->rx_channel = dmae->tx_channel = NULL; 824 } 825 826 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 827 { 828 struct mmci_dmae_priv *dmae = host->dma_priv; 829 struct dma_chan *chan; 830 831 if (data->flags & MMC_DATA_READ) 832 chan = dmae->rx_channel; 833 else 834 chan = dmae->tx_channel; 835 836 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, 837 mmc_get_dma_dir(data)); 838 } 839 840 void mmci_dmae_error(struct mmci_host *host) 841 { 842 struct mmci_dmae_priv *dmae = host->dma_priv; 843 844 if (!dma_inprogress(host)) 845 return; 846 847 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 848 dmaengine_terminate_all(dmae->cur); 849 host->dma_in_progress = false; 850 dmae->cur = NULL; 851 dmae->desc_current = NULL; 852 host->data->host_cookie = 0; 853 854 mmci_dma_unmap(host, host->data); 855 } 856 857 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data) 858 { 859 struct mmci_dmae_priv *dmae = host->dma_priv; 860 u32 status; 861 int i; 862 863 if (!dma_inprogress(host)) 864 return; 865 866 /* Wait up to 1ms for the DMA to complete */ 867 for (i = 0; ; i++) { 868 status = readl(host->base + MMCISTATUS); 869 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 870 break; 871 udelay(10); 872 } 873 874 /* 875 * Check to see whether we still have some data left in the FIFO - 876 * this catches DMA controllers which are unable to monitor the 877 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 878 * contiguous buffers. On TX, we'll get a FIFO underrun error. 879 */ 880 if (status & MCI_RXDATAAVLBLMASK) { 881 mmci_dma_error(host); 882 if (!data->error) 883 data->error = -EIO; 884 } else if (!data->host_cookie) { 885 mmci_dma_unmap(host, data); 886 } 887 888 /* 889 * Use of DMA with scatter-gather is impossible. 890 * Give up with DMA and switch back to PIO mode. 891 */ 892 if (status & MCI_RXDATAAVLBLMASK) { 893 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 894 mmci_dma_release(host); 895 } 896 897 host->dma_in_progress = false; 898 dmae->cur = NULL; 899 dmae->desc_current = NULL; 900 } 901 902 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ 903 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data, 904 struct dma_chan **dma_chan, 905 struct dma_async_tx_descriptor **dma_desc) 906 { 907 struct mmci_dmae_priv *dmae = host->dma_priv; 908 struct variant_data *variant = host->variant; 909 struct dma_slave_config conf = { 910 .src_addr = host->phybase + MMCIFIFO, 911 .dst_addr = host->phybase + MMCIFIFO, 912 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 913 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 914 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 915 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 916 .device_fc = false, 917 }; 918 struct dma_chan *chan; 919 struct dma_device *device; 920 struct dma_async_tx_descriptor *desc; 921 int nr_sg; 922 unsigned long flags = DMA_CTRL_ACK; 923 924 if (data->flags & MMC_DATA_READ) { 925 conf.direction = DMA_DEV_TO_MEM; 926 chan = dmae->rx_channel; 927 } else { 928 conf.direction = DMA_MEM_TO_DEV; 929 chan = dmae->tx_channel; 930 } 931 932 /* If there's no DMA channel, fall back to PIO */ 933 if (!chan) 934 return -EINVAL; 935 936 /* If less than or equal to the fifo size, don't bother with DMA */ 937 if (data->blksz * data->blocks <= variant->fifosize) 938 return -EINVAL; 939 940 /* 941 * This is necessary to get SDIO working on the Ux500. We do not yet 942 * know if this is a bug in: 943 * - The Ux500 DMA controller (DMA40) 944 * - The MMCI DMA interface on the Ux500 945 * some power of two blocks (such as 64 bytes) are sent regularly 946 * during SDIO traffic and those work fine so for these we enable DMA 947 * transfers. 948 */ 949 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz)) 950 return -EINVAL; 951 952 device = chan->device; 953 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, 954 mmc_get_dma_dir(data)); 955 if (nr_sg == 0) 956 return -EINVAL; 957 958 if (host->variant->qcom_dml) 959 flags |= DMA_PREP_INTERRUPT; 960 961 dmaengine_slave_config(chan, &conf); 962 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, 963 conf.direction, flags); 964 if (!desc) 965 goto unmap_exit; 966 967 *dma_chan = chan; 968 *dma_desc = desc; 969 970 return 0; 971 972 unmap_exit: 973 dma_unmap_sg(device->dev, data->sg, data->sg_len, 974 mmc_get_dma_dir(data)); 975 return -ENOMEM; 976 } 977 978 int mmci_dmae_prep_data(struct mmci_host *host, 979 struct mmc_data *data, 980 bool next) 981 { 982 struct mmci_dmae_priv *dmae = host->dma_priv; 983 struct mmci_dmae_next *nd = &dmae->next_data; 984 985 if (!host->use_dma) 986 return -EINVAL; 987 988 if (next) 989 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc); 990 /* Check if next job is already prepared. */ 991 if (dmae->cur && dmae->desc_current) 992 return 0; 993 994 /* No job were prepared thus do it now. */ 995 return _mmci_dmae_prep_data(host, data, &dmae->cur, 996 &dmae->desc_current); 997 } 998 999 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl) 1000 { 1001 struct mmci_dmae_priv *dmae = host->dma_priv; 1002 int ret; 1003 1004 host->dma_in_progress = true; 1005 ret = dma_submit_error(dmaengine_submit(dmae->desc_current)); 1006 if (ret < 0) { 1007 host->dma_in_progress = false; 1008 return ret; 1009 } 1010 dma_async_issue_pending(dmae->cur); 1011 1012 *datactrl |= MCI_DPSM_DMAENABLE; 1013 1014 return 0; 1015 } 1016 1017 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data) 1018 { 1019 struct mmci_dmae_priv *dmae = host->dma_priv; 1020 struct mmci_dmae_next *next = &dmae->next_data; 1021 1022 if (!host->use_dma) 1023 return; 1024 1025 WARN_ON(!data->host_cookie && (next->desc || next->chan)); 1026 1027 dmae->desc_current = next->desc; 1028 dmae->cur = next->chan; 1029 next->desc = NULL; 1030 next->chan = NULL; 1031 } 1032 1033 void mmci_dmae_unprep_data(struct mmci_host *host, 1034 struct mmc_data *data, int err) 1035 1036 { 1037 struct mmci_dmae_priv *dmae = host->dma_priv; 1038 1039 if (!host->use_dma) 1040 return; 1041 1042 mmci_dma_unmap(host, data); 1043 1044 if (err) { 1045 struct mmci_dmae_next *next = &dmae->next_data; 1046 struct dma_chan *chan; 1047 if (data->flags & MMC_DATA_READ) 1048 chan = dmae->rx_channel; 1049 else 1050 chan = dmae->tx_channel; 1051 dmaengine_terminate_all(chan); 1052 1053 if (dmae->desc_current == next->desc) 1054 dmae->desc_current = NULL; 1055 1056 if (dmae->cur == next->chan) { 1057 host->dma_in_progress = false; 1058 dmae->cur = NULL; 1059 } 1060 1061 next->desc = NULL; 1062 next->chan = NULL; 1063 } 1064 } 1065 1066 static struct mmci_host_ops mmci_variant_ops = { 1067 .prep_data = mmci_dmae_prep_data, 1068 .unprep_data = mmci_dmae_unprep_data, 1069 .get_datactrl_cfg = mmci_get_dctrl_cfg, 1070 .get_next_data = mmci_dmae_get_next_data, 1071 .dma_setup = mmci_dmae_setup, 1072 .dma_release = mmci_dmae_release, 1073 .dma_start = mmci_dmae_start, 1074 .dma_finalize = mmci_dmae_finalize, 1075 .dma_error = mmci_dmae_error, 1076 }; 1077 #else 1078 static struct mmci_host_ops mmci_variant_ops = { 1079 .get_datactrl_cfg = mmci_get_dctrl_cfg, 1080 }; 1081 #endif 1082 1083 static void mmci_variant_init(struct mmci_host *host) 1084 { 1085 host->ops = &mmci_variant_ops; 1086 } 1087 1088 static void ux500_variant_init(struct mmci_host *host) 1089 { 1090 host->ops = &mmci_variant_ops; 1091 host->ops->busy_complete = ux500_busy_complete; 1092 } 1093 1094 static void ux500v2_variant_init(struct mmci_host *host) 1095 { 1096 host->ops = &mmci_variant_ops; 1097 host->ops->busy_complete = ux500_busy_complete; 1098 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg; 1099 } 1100 1101 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq) 1102 { 1103 struct mmci_host *host = mmc_priv(mmc); 1104 struct mmc_data *data = mrq->data; 1105 1106 if (!data) 1107 return; 1108 1109 WARN_ON(data->host_cookie); 1110 1111 if (mmci_validate_data(host, data)) 1112 return; 1113 1114 mmci_prep_data(host, data, true); 1115 } 1116 1117 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 1118 int err) 1119 { 1120 struct mmci_host *host = mmc_priv(mmc); 1121 struct mmc_data *data = mrq->data; 1122 1123 if (!data || !data->host_cookie) 1124 return; 1125 1126 mmci_unprep_data(host, data, err); 1127 } 1128 1129 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 1130 { 1131 struct variant_data *variant = host->variant; 1132 unsigned int datactrl, timeout, irqmask; 1133 unsigned long long clks; 1134 void __iomem *base; 1135 1136 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 1137 data->blksz, data->blocks, data->flags); 1138 1139 host->data = data; 1140 host->size = data->blksz * data->blocks; 1141 data->bytes_xfered = 0; 1142 1143 clks = (unsigned long long)data->timeout_ns * host->cclk; 1144 do_div(clks, NSEC_PER_SEC); 1145 1146 timeout = data->timeout_clks + (unsigned int)clks; 1147 1148 base = host->base; 1149 writel(timeout, base + MMCIDATATIMER); 1150 writel(host->size, base + MMCIDATALENGTH); 1151 1152 datactrl = host->ops->get_datactrl_cfg(host); 1153 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0; 1154 1155 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { 1156 u32 clk; 1157 1158 datactrl |= variant->datactrl_mask_sdio; 1159 1160 /* 1161 * The ST Micro variant for SDIO small write transfers 1162 * needs to have clock H/W flow control disabled, 1163 * otherwise the transfer will not start. The threshold 1164 * depends on the rate of MCLK. 1165 */ 1166 if (variant->st_sdio && data->flags & MMC_DATA_WRITE && 1167 (host->size < 8 || 1168 (host->size <= 8 && host->mclk > 50000000))) 1169 clk = host->clk_reg & ~variant->clkreg_enable; 1170 else 1171 clk = host->clk_reg | variant->clkreg_enable; 1172 1173 mmci_write_clkreg(host, clk); 1174 } 1175 1176 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 1177 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 1178 datactrl |= variant->datactrl_mask_ddrmode; 1179 1180 /* 1181 * Attempt to use DMA operation mode, if this 1182 * should fail, fall back to PIO mode 1183 */ 1184 if (!mmci_dma_start(host, datactrl)) 1185 return; 1186 1187 /* IRQ mode, map the SG list for CPU reading/writing */ 1188 mmci_init_sg(host, data); 1189 1190 if (data->flags & MMC_DATA_READ) { 1191 irqmask = MCI_RXFIFOHALFFULLMASK; 1192 1193 /* 1194 * If we have less than the fifo 'half-full' threshold to 1195 * transfer, trigger a PIO interrupt as soon as any data 1196 * is available. 1197 */ 1198 if (host->size < variant->fifohalfsize) 1199 irqmask |= MCI_RXDATAAVLBLMASK; 1200 } else { 1201 /* 1202 * We don't actually need to include "FIFO empty" here 1203 * since its implicit in "FIFO half empty". 1204 */ 1205 irqmask = MCI_TXFIFOHALFEMPTYMASK; 1206 } 1207 1208 mmci_write_datactrlreg(host, datactrl); 1209 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 1210 mmci_set_mask1(host, irqmask); 1211 } 1212 1213 static void 1214 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 1215 { 1216 void __iomem *base = host->base; 1217 unsigned long long clks; 1218 1219 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 1220 cmd->opcode, cmd->arg, cmd->flags); 1221 1222 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) { 1223 writel(0, base + MMCICOMMAND); 1224 mmci_reg_delay(host); 1225 } 1226 1227 if (host->variant->cmdreg_stop && 1228 cmd->opcode == MMC_STOP_TRANSMISSION) 1229 c |= host->variant->cmdreg_stop; 1230 1231 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable; 1232 if (cmd->flags & MMC_RSP_PRESENT) { 1233 if (cmd->flags & MMC_RSP_136) 1234 c |= host->variant->cmdreg_lrsp_crc; 1235 else if (cmd->flags & MMC_RSP_CRC) 1236 c |= host->variant->cmdreg_srsp_crc; 1237 else 1238 c |= host->variant->cmdreg_srsp; 1239 } 1240 1241 if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) { 1242 if (!cmd->busy_timeout) 1243 cmd->busy_timeout = 10 * MSEC_PER_SEC; 1244 1245 if (cmd->busy_timeout > host->mmc->max_busy_timeout) 1246 clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk; 1247 else 1248 clks = (unsigned long long)cmd->busy_timeout * host->cclk; 1249 1250 do_div(clks, MSEC_PER_SEC); 1251 writel_relaxed(clks, host->base + MMCIDATATIMER); 1252 } 1253 1254 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE) 1255 host->ops->pre_sig_volt_switch(host); 1256 1257 if (/*interrupt*/0) 1258 c |= MCI_CPSM_INTERRUPT; 1259 1260 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) 1261 c |= host->variant->data_cmd_enable; 1262 1263 host->cmd = cmd; 1264 1265 writel(cmd->arg, base + MMCIARGUMENT); 1266 writel(c, base + MMCICOMMAND); 1267 } 1268 1269 static void mmci_stop_command(struct mmci_host *host) 1270 { 1271 host->stop_abort.error = 0; 1272 mmci_start_command(host, &host->stop_abort, 0); 1273 } 1274 1275 static void 1276 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 1277 unsigned int status) 1278 { 1279 unsigned int status_err; 1280 1281 /* Make sure we have data to handle */ 1282 if (!data) 1283 return; 1284 1285 /* First check for errors */ 1286 status_err = status & (host->variant->start_err | 1287 MCI_DATACRCFAIL | MCI_DATATIMEOUT | 1288 MCI_TXUNDERRUN | MCI_RXOVERRUN); 1289 1290 if (status_err) { 1291 u32 remain, success; 1292 1293 /* Terminate the DMA transfer */ 1294 mmci_dma_error(host); 1295 1296 /* 1297 * Calculate how far we are into the transfer. Note that 1298 * the data counter gives the number of bytes transferred 1299 * on the MMC bus, not on the host side. On reads, this 1300 * can be as much as a FIFO-worth of data ahead. This 1301 * matters for FIFO overruns only. 1302 */ 1303 if (!host->variant->datacnt_useless) { 1304 remain = readl(host->base + MMCIDATACNT); 1305 success = data->blksz * data->blocks - remain; 1306 } else { 1307 success = 0; 1308 } 1309 1310 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 1311 status_err, success); 1312 if (status_err & MCI_DATACRCFAIL) { 1313 /* Last block was not successful */ 1314 success -= 1; 1315 data->error = -EILSEQ; 1316 } else if (status_err & MCI_DATATIMEOUT) { 1317 data->error = -ETIMEDOUT; 1318 } else if (status_err & MCI_STARTBITERR) { 1319 data->error = -ECOMM; 1320 } else if (status_err & MCI_TXUNDERRUN) { 1321 data->error = -EIO; 1322 } else if (status_err & MCI_RXOVERRUN) { 1323 if (success > host->variant->fifosize) 1324 success -= host->variant->fifosize; 1325 else 1326 success = 0; 1327 data->error = -EIO; 1328 } 1329 data->bytes_xfered = round_down(success, data->blksz); 1330 } 1331 1332 if (status & MCI_DATABLOCKEND) 1333 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 1334 1335 if (status & MCI_DATAEND || data->error) { 1336 mmci_dma_finalize(host, data); 1337 1338 mmci_stop_data(host); 1339 1340 if (!data->error) 1341 /* The error clause is handled above, success! */ 1342 data->bytes_xfered = data->blksz * data->blocks; 1343 1344 if (!data->stop) { 1345 if (host->variant->cmdreg_stop && data->error) 1346 mmci_stop_command(host); 1347 else 1348 mmci_request_end(host, data->mrq); 1349 } else if (host->mrq->sbc && !data->error) { 1350 mmci_request_end(host, data->mrq); 1351 } else { 1352 mmci_start_command(host, data->stop, 0); 1353 } 1354 } 1355 } 1356 1357 static void 1358 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 1359 unsigned int status) 1360 { 1361 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT; 1362 void __iomem *base = host->base; 1363 bool sbc, busy_resp; 1364 1365 if (!cmd) 1366 return; 1367 1368 sbc = (cmd == host->mrq->sbc); 1369 busy_resp = !!(cmd->flags & MMC_RSP_BUSY); 1370 1371 /* 1372 * We need to be one of these interrupts to be considered worth 1373 * handling. Note that we tag on any latent IRQs postponed 1374 * due to waiting for busy status. 1375 */ 1376 if (host->variant->busy_timeout && busy_resp) 1377 err_msk |= MCI_DATATIMEOUT; 1378 1379 if (!((status | host->busy_status) & 1380 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND))) 1381 return; 1382 1383 /* Handle busy detection on DAT0 if the variant supports it. */ 1384 if (busy_resp && host->variant->busy_detect) 1385 if (!host->ops->busy_complete(host, status, err_msk)) 1386 return; 1387 1388 host->cmd = NULL; 1389 1390 if (status & MCI_CMDTIMEOUT) { 1391 cmd->error = -ETIMEDOUT; 1392 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 1393 cmd->error = -EILSEQ; 1394 } else if (host->variant->busy_timeout && busy_resp && 1395 status & MCI_DATATIMEOUT) { 1396 cmd->error = -ETIMEDOUT; 1397 /* 1398 * This will wake up mmci_irq_thread() which will issue 1399 * a hardware reset of the MMCI block. 1400 */ 1401 host->irq_action = IRQ_WAKE_THREAD; 1402 } else { 1403 cmd->resp[0] = readl(base + MMCIRESPONSE0); 1404 cmd->resp[1] = readl(base + MMCIRESPONSE1); 1405 cmd->resp[2] = readl(base + MMCIRESPONSE2); 1406 cmd->resp[3] = readl(base + MMCIRESPONSE3); 1407 } 1408 1409 if ((!sbc && !cmd->data) || cmd->error) { 1410 if (host->data) { 1411 /* Terminate the DMA transfer */ 1412 mmci_dma_error(host); 1413 1414 mmci_stop_data(host); 1415 if (host->variant->cmdreg_stop && cmd->error) { 1416 mmci_stop_command(host); 1417 return; 1418 } 1419 } 1420 1421 if (host->irq_action != IRQ_WAKE_THREAD) 1422 mmci_request_end(host, host->mrq); 1423 1424 } else if (sbc) { 1425 mmci_start_command(host, host->mrq->cmd, 0); 1426 } else if (!host->variant->datactrl_first && 1427 !(cmd->data->flags & MMC_DATA_READ)) { 1428 mmci_start_data(host, cmd->data); 1429 } 1430 } 1431 1432 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) 1433 { 1434 return remain - (readl(host->base + MMCIFIFOCNT) << 2); 1435 } 1436 1437 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) 1438 { 1439 /* 1440 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses 1441 * from the fifo range should be used 1442 */ 1443 if (status & MCI_RXFIFOHALFFULL) 1444 return host->variant->fifohalfsize; 1445 else if (status & MCI_RXDATAAVLBL) 1446 return 4; 1447 1448 return 0; 1449 } 1450 1451 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 1452 { 1453 void __iomem *base = host->base; 1454 char *ptr = buffer; 1455 u32 status = readl(host->base + MMCISTATUS); 1456 int host_remain = host->size; 1457 1458 do { 1459 int count = host->get_rx_fifocnt(host, status, host_remain); 1460 1461 if (count > remain) 1462 count = remain; 1463 1464 if (count <= 0) 1465 break; 1466 1467 /* 1468 * SDIO especially may want to send something that is 1469 * not divisible by 4 (as opposed to card sectors 1470 * etc). Therefore make sure to always read the last bytes 1471 * while only doing full 32-bit reads towards the FIFO. 1472 */ 1473 if (unlikely(count & 0x3)) { 1474 if (count < 4) { 1475 unsigned char buf[4]; 1476 ioread32_rep(base + MMCIFIFO, buf, 1); 1477 memcpy(ptr, buf, count); 1478 } else { 1479 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1480 count &= ~0x3; 1481 } 1482 } else { 1483 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1484 } 1485 1486 ptr += count; 1487 remain -= count; 1488 host_remain -= count; 1489 1490 if (remain == 0) 1491 break; 1492 1493 status = readl(base + MMCISTATUS); 1494 } while (status & MCI_RXDATAAVLBL); 1495 1496 return ptr - buffer; 1497 } 1498 1499 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 1500 { 1501 struct variant_data *variant = host->variant; 1502 void __iomem *base = host->base; 1503 char *ptr = buffer; 1504 1505 do { 1506 unsigned int count, maxcnt; 1507 1508 maxcnt = status & MCI_TXFIFOEMPTY ? 1509 variant->fifosize : variant->fifohalfsize; 1510 count = min(remain, maxcnt); 1511 1512 /* 1513 * SDIO especially may want to send something that is 1514 * not divisible by 4 (as opposed to card sectors 1515 * etc), and the FIFO only accept full 32-bit writes. 1516 * So compensate by adding +3 on the count, a single 1517 * byte become a 32bit write, 7 bytes will be two 1518 * 32bit writes etc. 1519 */ 1520 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); 1521 1522 ptr += count; 1523 remain -= count; 1524 1525 if (remain == 0) 1526 break; 1527 1528 status = readl(base + MMCISTATUS); 1529 } while (status & MCI_TXFIFOHALFEMPTY); 1530 1531 return ptr - buffer; 1532 } 1533 1534 /* 1535 * PIO data transfer IRQ handler. 1536 */ 1537 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 1538 { 1539 struct mmci_host *host = dev_id; 1540 struct sg_mapping_iter *sg_miter = &host->sg_miter; 1541 struct variant_data *variant = host->variant; 1542 void __iomem *base = host->base; 1543 u32 status; 1544 1545 status = readl(base + MMCISTATUS); 1546 1547 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 1548 1549 do { 1550 unsigned int remain, len; 1551 char *buffer; 1552 1553 /* 1554 * For write, we only need to test the half-empty flag 1555 * here - if the FIFO is completely empty, then by 1556 * definition it is more than half empty. 1557 * 1558 * For read, check for data available. 1559 */ 1560 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 1561 break; 1562 1563 if (!sg_miter_next(sg_miter)) 1564 break; 1565 1566 buffer = sg_miter->addr; 1567 remain = sg_miter->length; 1568 1569 len = 0; 1570 if (status & MCI_RXACTIVE) 1571 len = mmci_pio_read(host, buffer, remain); 1572 if (status & MCI_TXACTIVE) 1573 len = mmci_pio_write(host, buffer, remain, status); 1574 1575 sg_miter->consumed = len; 1576 1577 host->size -= len; 1578 remain -= len; 1579 1580 if (remain) 1581 break; 1582 1583 status = readl(base + MMCISTATUS); 1584 } while (1); 1585 1586 sg_miter_stop(sg_miter); 1587 1588 /* 1589 * If we have less than the fifo 'half-full' threshold to transfer, 1590 * trigger a PIO interrupt as soon as any data is available. 1591 */ 1592 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 1593 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 1594 1595 /* 1596 * If we run out of data, disable the data IRQs; this 1597 * prevents a race where the FIFO becomes empty before 1598 * the chip itself has disabled the data path, and 1599 * stops us racing with our data end IRQ. 1600 */ 1601 if (host->size == 0) { 1602 mmci_set_mask1(host, 0); 1603 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 1604 } 1605 1606 return IRQ_HANDLED; 1607 } 1608 1609 /* 1610 * Handle completion of command and data transfers. 1611 */ 1612 static irqreturn_t mmci_irq(int irq, void *dev_id) 1613 { 1614 struct mmci_host *host = dev_id; 1615 u32 status; 1616 1617 spin_lock(&host->lock); 1618 host->irq_action = IRQ_HANDLED; 1619 1620 do { 1621 status = readl(host->base + MMCISTATUS); 1622 if (!status) 1623 break; 1624 1625 if (host->singleirq) { 1626 if (status & host->mask1_reg) 1627 mmci_pio_irq(irq, dev_id); 1628 1629 status &= ~host->variant->irq_pio_mask; 1630 } 1631 1632 /* 1633 * Busy detection is managed by mmci_cmd_irq(), including to 1634 * clear the corresponding IRQ. 1635 */ 1636 status &= readl(host->base + MMCIMASK0); 1637 if (host->variant->busy_detect) 1638 writel(status & ~host->variant->busy_detect_mask, 1639 host->base + MMCICLEAR); 1640 else 1641 writel(status, host->base + MMCICLEAR); 1642 1643 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 1644 1645 if (host->variant->reversed_irq_handling) { 1646 mmci_data_irq(host, host->data, status); 1647 mmci_cmd_irq(host, host->cmd, status); 1648 } else { 1649 mmci_cmd_irq(host, host->cmd, status); 1650 mmci_data_irq(host, host->data, status); 1651 } 1652 1653 /* 1654 * Busy detection has been handled by mmci_cmd_irq() above. 1655 * Clear the status bit to prevent polling in IRQ context. 1656 */ 1657 if (host->variant->busy_detect_flag) 1658 status &= ~host->variant->busy_detect_flag; 1659 1660 } while (status); 1661 1662 spin_unlock(&host->lock); 1663 1664 return host->irq_action; 1665 } 1666 1667 /* 1668 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW. 1669 * 1670 * A reset is needed for some variants, where a datatimeout for a R1B request 1671 * causes the DPSM to stay busy (non-functional). 1672 */ 1673 static irqreturn_t mmci_irq_thread(int irq, void *dev_id) 1674 { 1675 struct mmci_host *host = dev_id; 1676 unsigned long flags; 1677 1678 if (host->rst) { 1679 reset_control_assert(host->rst); 1680 udelay(2); 1681 reset_control_deassert(host->rst); 1682 } 1683 1684 spin_lock_irqsave(&host->lock, flags); 1685 writel(host->clk_reg, host->base + MMCICLOCK); 1686 writel(host->pwr_reg, host->base + MMCIPOWER); 1687 writel(MCI_IRQENABLE | host->variant->start_err, 1688 host->base + MMCIMASK0); 1689 1690 host->irq_action = IRQ_HANDLED; 1691 mmci_request_end(host, host->mrq); 1692 spin_unlock_irqrestore(&host->lock, flags); 1693 1694 return host->irq_action; 1695 } 1696 1697 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1698 { 1699 struct mmci_host *host = mmc_priv(mmc); 1700 unsigned long flags; 1701 1702 WARN_ON(host->mrq != NULL); 1703 1704 mrq->cmd->error = mmci_validate_data(host, mrq->data); 1705 if (mrq->cmd->error) { 1706 mmc_request_done(mmc, mrq); 1707 return; 1708 } 1709 1710 spin_lock_irqsave(&host->lock, flags); 1711 1712 host->mrq = mrq; 1713 1714 if (mrq->data) 1715 mmci_get_next_data(host, mrq->data); 1716 1717 if (mrq->data && 1718 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ)) 1719 mmci_start_data(host, mrq->data); 1720 1721 if (mrq->sbc) 1722 mmci_start_command(host, mrq->sbc, 0); 1723 else 1724 mmci_start_command(host, mrq->cmd, 0); 1725 1726 spin_unlock_irqrestore(&host->lock, flags); 1727 } 1728 1729 static void mmci_set_max_busy_timeout(struct mmc_host *mmc) 1730 { 1731 struct mmci_host *host = mmc_priv(mmc); 1732 u32 max_busy_timeout = 0; 1733 1734 if (!host->variant->busy_detect) 1735 return; 1736 1737 if (host->variant->busy_timeout && mmc->actual_clock) 1738 max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC); 1739 1740 mmc->max_busy_timeout = max_busy_timeout; 1741 } 1742 1743 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1744 { 1745 struct mmci_host *host = mmc_priv(mmc); 1746 struct variant_data *variant = host->variant; 1747 u32 pwr = 0; 1748 unsigned long flags; 1749 int ret; 1750 1751 switch (ios->power_mode) { 1752 case MMC_POWER_OFF: 1753 if (!IS_ERR(mmc->supply.vmmc)) 1754 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1755 1756 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 1757 regulator_disable(mmc->supply.vqmmc); 1758 host->vqmmc_enabled = false; 1759 } 1760 1761 break; 1762 case MMC_POWER_UP: 1763 if (!IS_ERR(mmc->supply.vmmc)) 1764 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1765 1766 /* 1767 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP 1768 * and instead uses MCI_PWR_ON so apply whatever value is 1769 * configured in the variant data. 1770 */ 1771 pwr |= variant->pwrreg_powerup; 1772 1773 break; 1774 case MMC_POWER_ON: 1775 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 1776 ret = regulator_enable(mmc->supply.vqmmc); 1777 if (ret < 0) 1778 dev_err(mmc_dev(mmc), 1779 "failed to enable vqmmc regulator\n"); 1780 else 1781 host->vqmmc_enabled = true; 1782 } 1783 1784 pwr |= MCI_PWR_ON; 1785 break; 1786 } 1787 1788 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { 1789 /* 1790 * The ST Micro variant has some additional bits 1791 * indicating signal direction for the signals in 1792 * the SD/MMC bus and feedback-clock usage. 1793 */ 1794 pwr |= host->pwr_reg_add; 1795 1796 if (ios->bus_width == MMC_BUS_WIDTH_4) 1797 pwr &= ~MCI_ST_DATA74DIREN; 1798 else if (ios->bus_width == MMC_BUS_WIDTH_1) 1799 pwr &= (~MCI_ST_DATA74DIREN & 1800 ~MCI_ST_DATA31DIREN & 1801 ~MCI_ST_DATA2DIREN); 1802 } 1803 1804 if (variant->opendrain) { 1805 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 1806 pwr |= variant->opendrain; 1807 } else { 1808 /* 1809 * If the variant cannot configure the pads by its own, then we 1810 * expect the pinctrl to be able to do that for us 1811 */ 1812 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 1813 pinctrl_select_state(host->pinctrl, host->pins_opendrain); 1814 else 1815 pinctrl_select_default_state(mmc_dev(mmc)); 1816 } 1817 1818 /* 1819 * If clock = 0 and the variant requires the MMCIPOWER to be used for 1820 * gating the clock, the MCI_PWR_ON bit is cleared. 1821 */ 1822 if (!ios->clock && variant->pwrreg_clkgate) 1823 pwr &= ~MCI_PWR_ON; 1824 1825 if (host->variant->explicit_mclk_control && 1826 ios->clock != host->clock_cache) { 1827 ret = clk_set_rate(host->clk, ios->clock); 1828 if (ret < 0) 1829 dev_err(mmc_dev(host->mmc), 1830 "Error setting clock rate (%d)\n", ret); 1831 else 1832 host->mclk = clk_get_rate(host->clk); 1833 } 1834 host->clock_cache = ios->clock; 1835 1836 spin_lock_irqsave(&host->lock, flags); 1837 1838 if (host->ops && host->ops->set_clkreg) 1839 host->ops->set_clkreg(host, ios->clock); 1840 else 1841 mmci_set_clkreg(host, ios->clock); 1842 1843 mmci_set_max_busy_timeout(mmc); 1844 1845 if (host->ops && host->ops->set_pwrreg) 1846 host->ops->set_pwrreg(host, pwr); 1847 else 1848 mmci_write_pwrreg(host, pwr); 1849 1850 mmci_reg_delay(host); 1851 1852 spin_unlock_irqrestore(&host->lock, flags); 1853 } 1854 1855 static int mmci_get_cd(struct mmc_host *mmc) 1856 { 1857 struct mmci_host *host = mmc_priv(mmc); 1858 struct mmci_platform_data *plat = host->plat; 1859 unsigned int status = mmc_gpio_get_cd(mmc); 1860 1861 if (status == -ENOSYS) { 1862 if (!plat->status) 1863 return 1; /* Assume always present */ 1864 1865 status = plat->status(mmc_dev(host->mmc)); 1866 } 1867 return status; 1868 } 1869 1870 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1871 { 1872 struct mmci_host *host = mmc_priv(mmc); 1873 int ret; 1874 1875 ret = mmc_regulator_set_vqmmc(mmc, ios); 1876 1877 if (!ret && host->ops && host->ops->post_sig_volt_switch) 1878 ret = host->ops->post_sig_volt_switch(host, ios); 1879 else if (ret) 1880 ret = 0; 1881 1882 if (ret < 0) 1883 dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); 1884 1885 return ret; 1886 } 1887 1888 static struct mmc_host_ops mmci_ops = { 1889 .request = mmci_request, 1890 .pre_req = mmci_pre_request, 1891 .post_req = mmci_post_request, 1892 .set_ios = mmci_set_ios, 1893 .get_ro = mmc_gpio_get_ro, 1894 .get_cd = mmci_get_cd, 1895 .start_signal_voltage_switch = mmci_sig_volt_switch, 1896 }; 1897 1898 static void mmci_probe_level_translator(struct mmc_host *mmc) 1899 { 1900 struct device *dev = mmc_dev(mmc); 1901 struct mmci_host *host = mmc_priv(mmc); 1902 struct gpio_desc *cmd_gpio; 1903 struct gpio_desc *ck_gpio; 1904 struct gpio_desc *ckin_gpio; 1905 int clk_hi, clk_lo; 1906 1907 /* 1908 * Assume the level translator is present if st,use-ckin is set. 1909 * This is to cater for DTs which do not implement this test. 1910 */ 1911 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN; 1912 1913 cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH); 1914 if (IS_ERR(cmd_gpio)) 1915 goto exit_cmd; 1916 1917 ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH); 1918 if (IS_ERR(ck_gpio)) 1919 goto exit_ck; 1920 1921 ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN); 1922 if (IS_ERR(ckin_gpio)) 1923 goto exit_ckin; 1924 1925 /* All GPIOs are valid, test whether level translator works */ 1926 1927 /* Sample CKIN */ 1928 clk_hi = !!gpiod_get_value(ckin_gpio); 1929 1930 /* Set CK low */ 1931 gpiod_set_value(ck_gpio, 0); 1932 1933 /* Sample CKIN */ 1934 clk_lo = !!gpiod_get_value(ckin_gpio); 1935 1936 /* Tristate all */ 1937 gpiod_direction_input(cmd_gpio); 1938 gpiod_direction_input(ck_gpio); 1939 1940 /* Level translator is present if CK signal is propagated to CKIN */ 1941 if (!clk_hi || clk_lo) { 1942 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN; 1943 dev_warn(dev, 1944 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n"); 1945 } 1946 1947 gpiod_put(ckin_gpio); 1948 1949 exit_ckin: 1950 gpiod_put(ck_gpio); 1951 exit_ck: 1952 gpiod_put(cmd_gpio); 1953 exit_cmd: 1954 pinctrl_select_default_state(dev); 1955 } 1956 1957 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) 1958 { 1959 struct mmci_host *host = mmc_priv(mmc); 1960 int ret = mmc_of_parse(mmc); 1961 1962 if (ret) 1963 return ret; 1964 1965 if (of_get_property(np, "st,sig-dir-dat0", NULL)) 1966 host->pwr_reg_add |= MCI_ST_DATA0DIREN; 1967 if (of_get_property(np, "st,sig-dir-dat2", NULL)) 1968 host->pwr_reg_add |= MCI_ST_DATA2DIREN; 1969 if (of_get_property(np, "st,sig-dir-dat31", NULL)) 1970 host->pwr_reg_add |= MCI_ST_DATA31DIREN; 1971 if (of_get_property(np, "st,sig-dir-dat74", NULL)) 1972 host->pwr_reg_add |= MCI_ST_DATA74DIREN; 1973 if (of_get_property(np, "st,sig-dir-cmd", NULL)) 1974 host->pwr_reg_add |= MCI_ST_CMDDIREN; 1975 if (of_get_property(np, "st,sig-pin-fbclk", NULL)) 1976 host->pwr_reg_add |= MCI_ST_FBCLKEN; 1977 if (of_get_property(np, "st,sig-dir", NULL)) 1978 host->pwr_reg_add |= MCI_STM32_DIRPOL; 1979 if (of_get_property(np, "st,neg-edge", NULL)) 1980 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE; 1981 if (of_get_property(np, "st,use-ckin", NULL)) 1982 mmci_probe_level_translator(mmc); 1983 1984 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) 1985 mmc->caps |= MMC_CAP_MMC_HIGHSPEED; 1986 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) 1987 mmc->caps |= MMC_CAP_SD_HIGHSPEED; 1988 1989 return 0; 1990 } 1991 1992 static int mmci_probe(struct amba_device *dev, 1993 const struct amba_id *id) 1994 { 1995 struct mmci_platform_data *plat = dev->dev.platform_data; 1996 struct device_node *np = dev->dev.of_node; 1997 struct variant_data *variant = id->data; 1998 struct mmci_host *host; 1999 struct mmc_host *mmc; 2000 int ret; 2001 2002 /* Must have platform data or Device Tree. */ 2003 if (!plat && !np) { 2004 dev_err(&dev->dev, "No plat data or DT found\n"); 2005 return -EINVAL; 2006 } 2007 2008 if (!plat) { 2009 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); 2010 if (!plat) 2011 return -ENOMEM; 2012 } 2013 2014 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 2015 if (!mmc) 2016 return -ENOMEM; 2017 2018 host = mmc_priv(mmc); 2019 host->mmc = mmc; 2020 host->mmc_ops = &mmci_ops; 2021 mmc->ops = &mmci_ops; 2022 2023 ret = mmci_of_parse(np, mmc); 2024 if (ret) 2025 goto host_free; 2026 2027 /* 2028 * Some variant (STM32) doesn't have opendrain bit, nevertheless 2029 * pins can be set accordingly using pinctrl 2030 */ 2031 if (!variant->opendrain) { 2032 host->pinctrl = devm_pinctrl_get(&dev->dev); 2033 if (IS_ERR(host->pinctrl)) { 2034 dev_err(&dev->dev, "failed to get pinctrl"); 2035 ret = PTR_ERR(host->pinctrl); 2036 goto host_free; 2037 } 2038 2039 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl, 2040 MMCI_PINCTRL_STATE_OPENDRAIN); 2041 if (IS_ERR(host->pins_opendrain)) { 2042 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n"); 2043 ret = PTR_ERR(host->pins_opendrain); 2044 goto host_free; 2045 } 2046 } 2047 2048 host->hw_designer = amba_manf(dev); 2049 host->hw_revision = amba_rev(dev); 2050 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 2051 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 2052 2053 host->clk = devm_clk_get(&dev->dev, NULL); 2054 if (IS_ERR(host->clk)) { 2055 ret = PTR_ERR(host->clk); 2056 goto host_free; 2057 } 2058 2059 ret = clk_prepare_enable(host->clk); 2060 if (ret) 2061 goto host_free; 2062 2063 if (variant->qcom_fifo) 2064 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; 2065 else 2066 host->get_rx_fifocnt = mmci_get_rx_fifocnt; 2067 2068 host->plat = plat; 2069 host->variant = variant; 2070 host->mclk = clk_get_rate(host->clk); 2071 /* 2072 * According to the spec, mclk is max 100 MHz, 2073 * so we try to adjust the clock down to this, 2074 * (if possible). 2075 */ 2076 if (host->mclk > variant->f_max) { 2077 ret = clk_set_rate(host->clk, variant->f_max); 2078 if (ret < 0) 2079 goto clk_disable; 2080 host->mclk = clk_get_rate(host->clk); 2081 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 2082 host->mclk); 2083 } 2084 2085 host->phybase = dev->res.start; 2086 host->base = devm_ioremap_resource(&dev->dev, &dev->res); 2087 if (IS_ERR(host->base)) { 2088 ret = PTR_ERR(host->base); 2089 goto clk_disable; 2090 } 2091 2092 if (variant->init) 2093 variant->init(host); 2094 2095 /* 2096 * The ARM and ST versions of the block have slightly different 2097 * clock divider equations which means that the minimum divider 2098 * differs too. 2099 * on Qualcomm like controllers get the nearest minimum clock to 100Khz 2100 */ 2101 if (variant->st_clkdiv) 2102 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 2103 else if (variant->stm32_clkdiv) 2104 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046); 2105 else if (variant->explicit_mclk_control) 2106 mmc->f_min = clk_round_rate(host->clk, 100000); 2107 else 2108 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 2109 /* 2110 * If no maximum operating frequency is supplied, fall back to use 2111 * the module parameter, which has a (low) default value in case it 2112 * is not specified. Either value must not exceed the clock rate into 2113 * the block, of course. 2114 */ 2115 if (mmc->f_max) 2116 mmc->f_max = variant->explicit_mclk_control ? 2117 min(variant->f_max, mmc->f_max) : 2118 min(host->mclk, mmc->f_max); 2119 else 2120 mmc->f_max = variant->explicit_mclk_control ? 2121 fmax : min(host->mclk, fmax); 2122 2123 2124 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 2125 2126 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL); 2127 if (IS_ERR(host->rst)) { 2128 ret = PTR_ERR(host->rst); 2129 goto clk_disable; 2130 } 2131 ret = reset_control_deassert(host->rst); 2132 if (ret) 2133 dev_err(mmc_dev(mmc), "failed to de-assert reset\n"); 2134 2135 /* Get regulators and the supported OCR mask */ 2136 ret = mmc_regulator_get_supply(mmc); 2137 if (ret) 2138 goto clk_disable; 2139 2140 if (!mmc->ocr_avail) 2141 mmc->ocr_avail = plat->ocr_mask; 2142 else if (plat->ocr_mask) 2143 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 2144 2145 /* We support these capabilities. */ 2146 mmc->caps |= MMC_CAP_CMD23; 2147 2148 /* 2149 * Enable busy detection. 2150 */ 2151 if (variant->busy_detect) { 2152 mmci_ops.card_busy = mmci_card_busy; 2153 /* 2154 * Not all variants have a flag to enable busy detection 2155 * in the DPSM, but if they do, set it here. 2156 */ 2157 if (variant->busy_dpsm_flag) 2158 mmci_write_datactrlreg(host, 2159 host->variant->busy_dpsm_flag); 2160 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; 2161 } 2162 2163 /* Variants with mandatory busy timeout in HW needs R1B responses. */ 2164 if (variant->busy_timeout) 2165 mmc->caps |= MMC_CAP_NEED_RSP_BUSY; 2166 2167 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */ 2168 host->stop_abort.opcode = MMC_STOP_TRANSMISSION; 2169 host->stop_abort.arg = 0; 2170 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC; 2171 2172 /* We support these PM capabilities. */ 2173 mmc->pm_caps |= MMC_PM_KEEP_POWER; 2174 2175 /* 2176 * We can do SGIO 2177 */ 2178 mmc->max_segs = NR_SG; 2179 2180 /* 2181 * Since only a certain number of bits are valid in the data length 2182 * register, we must ensure that we don't exceed 2^num-1 bytes in a 2183 * single request. 2184 */ 2185 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 2186 2187 /* 2188 * Set the maximum segment size. Since we aren't doing DMA 2189 * (yet) we are only limited by the data length register. 2190 */ 2191 mmc->max_seg_size = mmc->max_req_size; 2192 2193 /* 2194 * Block size can be up to 2048 bytes, but must be a power of two. 2195 */ 2196 mmc->max_blk_size = 1 << variant->datactrl_blocksz; 2197 2198 /* 2199 * Limit the number of blocks transferred so that we don't overflow 2200 * the maximum request size. 2201 */ 2202 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz; 2203 2204 spin_lock_init(&host->lock); 2205 2206 writel(0, host->base + MMCIMASK0); 2207 2208 if (variant->mmcimask1) 2209 writel(0, host->base + MMCIMASK1); 2210 2211 writel(0xfff, host->base + MMCICLEAR); 2212 2213 /* 2214 * If: 2215 * - not using DT but using a descriptor table, or 2216 * - using a table of descriptors ALONGSIDE DT, or 2217 * look up these descriptors named "cd" and "wp" right here, fail 2218 * silently of these do not exist 2219 */ 2220 if (!np) { 2221 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0); 2222 if (ret == -EPROBE_DEFER) 2223 goto clk_disable; 2224 2225 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0); 2226 if (ret == -EPROBE_DEFER) 2227 goto clk_disable; 2228 } 2229 2230 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq, 2231 mmci_irq_thread, IRQF_SHARED, 2232 DRIVER_NAME " (cmd)", host); 2233 if (ret) 2234 goto clk_disable; 2235 2236 if (!dev->irq[1]) 2237 host->singleirq = true; 2238 else { 2239 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, 2240 IRQF_SHARED, DRIVER_NAME " (pio)", host); 2241 if (ret) 2242 goto clk_disable; 2243 } 2244 2245 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0); 2246 2247 amba_set_drvdata(dev, mmc); 2248 2249 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 2250 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 2251 amba_rev(dev), (unsigned long long)dev->res.start, 2252 dev->irq[0], dev->irq[1]); 2253 2254 mmci_dma_setup(host); 2255 2256 pm_runtime_set_autosuspend_delay(&dev->dev, 50); 2257 pm_runtime_use_autosuspend(&dev->dev); 2258 2259 mmc_add_host(mmc); 2260 2261 pm_runtime_put(&dev->dev); 2262 return 0; 2263 2264 clk_disable: 2265 clk_disable_unprepare(host->clk); 2266 host_free: 2267 mmc_free_host(mmc); 2268 return ret; 2269 } 2270 2271 static void mmci_remove(struct amba_device *dev) 2272 { 2273 struct mmc_host *mmc = amba_get_drvdata(dev); 2274 2275 if (mmc) { 2276 struct mmci_host *host = mmc_priv(mmc); 2277 struct variant_data *variant = host->variant; 2278 2279 /* 2280 * Undo pm_runtime_put() in probe. We use the _sync 2281 * version here so that we can access the primecell. 2282 */ 2283 pm_runtime_get_sync(&dev->dev); 2284 2285 mmc_remove_host(mmc); 2286 2287 writel(0, host->base + MMCIMASK0); 2288 2289 if (variant->mmcimask1) 2290 writel(0, host->base + MMCIMASK1); 2291 2292 writel(0, host->base + MMCICOMMAND); 2293 writel(0, host->base + MMCIDATACTRL); 2294 2295 mmci_dma_release(host); 2296 clk_disable_unprepare(host->clk); 2297 mmc_free_host(mmc); 2298 } 2299 } 2300 2301 #ifdef CONFIG_PM 2302 static void mmci_save(struct mmci_host *host) 2303 { 2304 unsigned long flags; 2305 2306 spin_lock_irqsave(&host->lock, flags); 2307 2308 writel(0, host->base + MMCIMASK0); 2309 if (host->variant->pwrreg_nopower) { 2310 writel(0, host->base + MMCIDATACTRL); 2311 writel(0, host->base + MMCIPOWER); 2312 writel(0, host->base + MMCICLOCK); 2313 } 2314 mmci_reg_delay(host); 2315 2316 spin_unlock_irqrestore(&host->lock, flags); 2317 } 2318 2319 static void mmci_restore(struct mmci_host *host) 2320 { 2321 unsigned long flags; 2322 2323 spin_lock_irqsave(&host->lock, flags); 2324 2325 if (host->variant->pwrreg_nopower) { 2326 writel(host->clk_reg, host->base + MMCICLOCK); 2327 writel(host->datactrl_reg, host->base + MMCIDATACTRL); 2328 writel(host->pwr_reg, host->base + MMCIPOWER); 2329 } 2330 writel(MCI_IRQENABLE | host->variant->start_err, 2331 host->base + MMCIMASK0); 2332 mmci_reg_delay(host); 2333 2334 spin_unlock_irqrestore(&host->lock, flags); 2335 } 2336 2337 static int mmci_runtime_suspend(struct device *dev) 2338 { 2339 struct amba_device *adev = to_amba_device(dev); 2340 struct mmc_host *mmc = amba_get_drvdata(adev); 2341 2342 if (mmc) { 2343 struct mmci_host *host = mmc_priv(mmc); 2344 pinctrl_pm_select_sleep_state(dev); 2345 mmci_save(host); 2346 clk_disable_unprepare(host->clk); 2347 } 2348 2349 return 0; 2350 } 2351 2352 static int mmci_runtime_resume(struct device *dev) 2353 { 2354 struct amba_device *adev = to_amba_device(dev); 2355 struct mmc_host *mmc = amba_get_drvdata(adev); 2356 2357 if (mmc) { 2358 struct mmci_host *host = mmc_priv(mmc); 2359 clk_prepare_enable(host->clk); 2360 mmci_restore(host); 2361 pinctrl_select_default_state(dev); 2362 } 2363 2364 return 0; 2365 } 2366 #endif 2367 2368 static const struct dev_pm_ops mmci_dev_pm_ops = { 2369 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2370 pm_runtime_force_resume) 2371 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) 2372 }; 2373 2374 static const struct amba_id mmci_ids[] = { 2375 { 2376 .id = 0x00041180, 2377 .mask = 0xff0fffff, 2378 .data = &variant_arm, 2379 }, 2380 { 2381 .id = 0x01041180, 2382 .mask = 0xff0fffff, 2383 .data = &variant_arm_extended_fifo, 2384 }, 2385 { 2386 .id = 0x02041180, 2387 .mask = 0xff0fffff, 2388 .data = &variant_arm_extended_fifo_hwfc, 2389 }, 2390 { 2391 .id = 0x00041181, 2392 .mask = 0x000fffff, 2393 .data = &variant_arm, 2394 }, 2395 /* ST Micro variants */ 2396 { 2397 .id = 0x00180180, 2398 .mask = 0x00ffffff, 2399 .data = &variant_u300, 2400 }, 2401 { 2402 .id = 0x10180180, 2403 .mask = 0xf0ffffff, 2404 .data = &variant_nomadik, 2405 }, 2406 { 2407 .id = 0x00280180, 2408 .mask = 0x00ffffff, 2409 .data = &variant_nomadik, 2410 }, 2411 { 2412 .id = 0x00480180, 2413 .mask = 0xf0ffffff, 2414 .data = &variant_ux500, 2415 }, 2416 { 2417 .id = 0x10480180, 2418 .mask = 0xf0ffffff, 2419 .data = &variant_ux500v2, 2420 }, 2421 { 2422 .id = 0x00880180, 2423 .mask = 0x00ffffff, 2424 .data = &variant_stm32, 2425 }, 2426 { 2427 .id = 0x10153180, 2428 .mask = 0xf0ffffff, 2429 .data = &variant_stm32_sdmmc, 2430 }, 2431 { 2432 .id = 0x00253180, 2433 .mask = 0xf0ffffff, 2434 .data = &variant_stm32_sdmmcv2, 2435 }, 2436 { 2437 .id = 0x20253180, 2438 .mask = 0xf0ffffff, 2439 .data = &variant_stm32_sdmmcv2, 2440 }, 2441 /* Qualcomm variants */ 2442 { 2443 .id = 0x00051180, 2444 .mask = 0x000fffff, 2445 .data = &variant_qcom, 2446 }, 2447 { 0, 0 }, 2448 }; 2449 2450 MODULE_DEVICE_TABLE(amba, mmci_ids); 2451 2452 static struct amba_driver mmci_driver = { 2453 .drv = { 2454 .name = DRIVER_NAME, 2455 .pm = &mmci_dev_pm_ops, 2456 }, 2457 .probe = mmci_probe, 2458 .remove = mmci_remove, 2459 .id_table = mmci_ids, 2460 }; 2461 2462 module_amba_driver(mmci_driver); 2463 2464 module_param(fmax, uint, 0444); 2465 2466 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 2467 MODULE_LICENSE("GPL"); 2468