xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static unsigned int fmax = 515633;
50 
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57  * @datalength_bits: number of bits in the MMCIDATALENGTH register
58  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59  *	      is asserted (likewise for RX)
60  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61  *		  is asserted (likewise for RX)
62  * @data_cmd_enable: enable value for data commands.
63  * @st_sdio: enable ST specific SDIO logic
64  * @st_clkdiv: true if using a ST-specific clock divider algorithm
65  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68  *		     register
69  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70  * @pwrreg_powerup: power up value for MMCIPOWER register
71  * @f_max: maximum clk frequency supported by the controller.
72  * @signal_direction: input/out direction of bus signals can be indicated
73  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74  * @busy_detect: true if the variant supports busy detection on DAT0.
75  * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76  * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77  *		      indicating that the card is busy
78  * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79  *		      getting busy end detection interrupts
80  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81  * @explicit_mclk_control: enable explicit mclk control in driver.
82  * @qcom_fifo: enables qcom specific fifo pio read logic.
83  * @qcom_dml: enables qcom specific dma glue for dma transfers.
84  * @reversed_irq_handling: handle data irq before cmd irq.
85  * @mmcimask1: true if variant have a MMCIMASK1 register.
86  * @start_err: bitmask identifying the STARTBITERR bit inside MMCISTATUS
87  *	       register.
88  * @opendrain: bitmask identifying the OPENDRAIN bit inside MMCIPOWER register
89  */
90 struct variant_data {
91 	unsigned int		clkreg;
92 	unsigned int		clkreg_enable;
93 	unsigned int		clkreg_8bit_bus_enable;
94 	unsigned int		clkreg_neg_edge_enable;
95 	unsigned int		datalength_bits;
96 	unsigned int		fifosize;
97 	unsigned int		fifohalfsize;
98 	unsigned int		data_cmd_enable;
99 	unsigned int		datactrl_mask_ddrmode;
100 	unsigned int		datactrl_mask_sdio;
101 	bool			st_sdio;
102 	bool			st_clkdiv;
103 	bool			blksz_datactrl16;
104 	bool			blksz_datactrl4;
105 	u32			pwrreg_powerup;
106 	u32			f_max;
107 	bool			signal_direction;
108 	bool			pwrreg_clkgate;
109 	bool			busy_detect;
110 	u32			busy_dpsm_flag;
111 	u32			busy_detect_flag;
112 	u32			busy_detect_mask;
113 	bool			pwrreg_nopower;
114 	bool			explicit_mclk_control;
115 	bool			qcom_fifo;
116 	bool			qcom_dml;
117 	bool			reversed_irq_handling;
118 	bool			mmcimask1;
119 	u32			start_err;
120 	u32			opendrain;
121 };
122 
123 static struct variant_data variant_arm = {
124 	.fifosize		= 16 * 4,
125 	.fifohalfsize		= 8 * 4,
126 	.datalength_bits	= 16,
127 	.pwrreg_powerup		= MCI_PWR_UP,
128 	.f_max			= 100000000,
129 	.reversed_irq_handling	= true,
130 	.mmcimask1		= true,
131 	.start_err		= MCI_STARTBITERR,
132 	.opendrain		= MCI_ROD,
133 };
134 
135 static struct variant_data variant_arm_extended_fifo = {
136 	.fifosize		= 128 * 4,
137 	.fifohalfsize		= 64 * 4,
138 	.datalength_bits	= 16,
139 	.pwrreg_powerup		= MCI_PWR_UP,
140 	.f_max			= 100000000,
141 	.mmcimask1		= true,
142 	.start_err		= MCI_STARTBITERR,
143 	.opendrain		= MCI_ROD,
144 };
145 
146 static struct variant_data variant_arm_extended_fifo_hwfc = {
147 	.fifosize		= 128 * 4,
148 	.fifohalfsize		= 64 * 4,
149 	.clkreg_enable		= MCI_ARM_HWFCEN,
150 	.datalength_bits	= 16,
151 	.pwrreg_powerup		= MCI_PWR_UP,
152 	.f_max			= 100000000,
153 	.mmcimask1		= true,
154 	.start_err		= MCI_STARTBITERR,
155 	.opendrain		= MCI_ROD,
156 };
157 
158 static struct variant_data variant_u300 = {
159 	.fifosize		= 16 * 4,
160 	.fifohalfsize		= 8 * 4,
161 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
162 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
163 	.datalength_bits	= 16,
164 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
165 	.st_sdio			= true,
166 	.pwrreg_powerup		= MCI_PWR_ON,
167 	.f_max			= 100000000,
168 	.signal_direction	= true,
169 	.pwrreg_clkgate		= true,
170 	.pwrreg_nopower		= true,
171 	.mmcimask1		= true,
172 	.start_err		= MCI_STARTBITERR,
173 	.opendrain		= MCI_OD,
174 };
175 
176 static struct variant_data variant_nomadik = {
177 	.fifosize		= 16 * 4,
178 	.fifohalfsize		= 8 * 4,
179 	.clkreg			= MCI_CLK_ENABLE,
180 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
181 	.datalength_bits	= 24,
182 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
183 	.st_sdio		= true,
184 	.st_clkdiv		= true,
185 	.pwrreg_powerup		= MCI_PWR_ON,
186 	.f_max			= 100000000,
187 	.signal_direction	= true,
188 	.pwrreg_clkgate		= true,
189 	.pwrreg_nopower		= true,
190 	.mmcimask1		= true,
191 	.start_err		= MCI_STARTBITERR,
192 	.opendrain		= MCI_OD,
193 };
194 
195 static struct variant_data variant_ux500 = {
196 	.fifosize		= 30 * 4,
197 	.fifohalfsize		= 8 * 4,
198 	.clkreg			= MCI_CLK_ENABLE,
199 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
200 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
202 	.datalength_bits	= 24,
203 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
204 	.st_sdio		= true,
205 	.st_clkdiv		= true,
206 	.pwrreg_powerup		= MCI_PWR_ON,
207 	.f_max			= 100000000,
208 	.signal_direction	= true,
209 	.pwrreg_clkgate		= true,
210 	.busy_detect		= true,
211 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
212 	.busy_detect_flag	= MCI_ST_CARDBUSY,
213 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
214 	.pwrreg_nopower		= true,
215 	.mmcimask1		= true,
216 	.start_err		= MCI_STARTBITERR,
217 	.opendrain		= MCI_OD,
218 };
219 
220 static struct variant_data variant_ux500v2 = {
221 	.fifosize		= 30 * 4,
222 	.fifohalfsize		= 8 * 4,
223 	.clkreg			= MCI_CLK_ENABLE,
224 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
225 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
226 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
227 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
228 	.datalength_bits	= 24,
229 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
230 	.st_sdio		= true,
231 	.st_clkdiv		= true,
232 	.blksz_datactrl16	= true,
233 	.pwrreg_powerup		= MCI_PWR_ON,
234 	.f_max			= 100000000,
235 	.signal_direction	= true,
236 	.pwrreg_clkgate		= true,
237 	.busy_detect		= true,
238 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
239 	.busy_detect_flag	= MCI_ST_CARDBUSY,
240 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
241 	.pwrreg_nopower		= true,
242 	.mmcimask1		= true,
243 	.start_err		= MCI_STARTBITERR,
244 	.opendrain		= MCI_OD,
245 };
246 
247 static struct variant_data variant_stm32 = {
248 	.fifosize		= 32 * 4,
249 	.fifohalfsize		= 8 * 4,
250 	.clkreg			= MCI_CLK_ENABLE,
251 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
252 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
253 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
254 	.datalength_bits	= 24,
255 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
256 	.st_sdio		= true,
257 	.st_clkdiv		= true,
258 	.pwrreg_powerup		= MCI_PWR_ON,
259 	.f_max			= 48000000,
260 	.pwrreg_clkgate		= true,
261 	.pwrreg_nopower		= true,
262 };
263 
264 static struct variant_data variant_qcom = {
265 	.fifosize		= 16 * 4,
266 	.fifohalfsize		= 8 * 4,
267 	.clkreg			= MCI_CLK_ENABLE,
268 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
269 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
270 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
271 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
272 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
273 	.blksz_datactrl4	= true,
274 	.datalength_bits	= 24,
275 	.pwrreg_powerup		= MCI_PWR_UP,
276 	.f_max			= 208000000,
277 	.explicit_mclk_control	= true,
278 	.qcom_fifo		= true,
279 	.qcom_dml		= true,
280 	.mmcimask1		= true,
281 	.start_err		= MCI_STARTBITERR,
282 	.opendrain		= MCI_ROD,
283 };
284 
285 /* Busy detection for the ST Micro variant */
286 static int mmci_card_busy(struct mmc_host *mmc)
287 {
288 	struct mmci_host *host = mmc_priv(mmc);
289 	unsigned long flags;
290 	int busy = 0;
291 
292 	spin_lock_irqsave(&host->lock, flags);
293 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
294 		busy = 1;
295 	spin_unlock_irqrestore(&host->lock, flags);
296 
297 	return busy;
298 }
299 
300 /*
301  * Validate mmc prerequisites
302  */
303 static int mmci_validate_data(struct mmci_host *host,
304 			      struct mmc_data *data)
305 {
306 	if (!data)
307 		return 0;
308 
309 	if (!is_power_of_2(data->blksz)) {
310 		dev_err(mmc_dev(host->mmc),
311 			"unsupported block size (%d bytes)\n", data->blksz);
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void mmci_reg_delay(struct mmci_host *host)
319 {
320 	/*
321 	 * According to the spec, at least three feedback clock cycles
322 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
323 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
324 	 * Worst delay time during card init is at 100 kHz => 30 us.
325 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
326 	 */
327 	if (host->cclk < 25000000)
328 		udelay(30);
329 	else
330 		ndelay(120);
331 }
332 
333 /*
334  * This must be called with host->lock held
335  */
336 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
337 {
338 	if (host->clk_reg != clk) {
339 		host->clk_reg = clk;
340 		writel(clk, host->base + MMCICLOCK);
341 	}
342 }
343 
344 /*
345  * This must be called with host->lock held
346  */
347 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
348 {
349 	if (host->pwr_reg != pwr) {
350 		host->pwr_reg = pwr;
351 		writel(pwr, host->base + MMCIPOWER);
352 	}
353 }
354 
355 /*
356  * This must be called with host->lock held
357  */
358 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
359 {
360 	/* Keep busy mode in DPSM if enabled */
361 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
362 
363 	if (host->datactrl_reg != datactrl) {
364 		host->datactrl_reg = datactrl;
365 		writel(datactrl, host->base + MMCIDATACTRL);
366 	}
367 }
368 
369 /*
370  * This must be called with host->lock held
371  */
372 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
373 {
374 	struct variant_data *variant = host->variant;
375 	u32 clk = variant->clkreg;
376 
377 	/* Make sure cclk reflects the current calculated clock */
378 	host->cclk = 0;
379 
380 	if (desired) {
381 		if (variant->explicit_mclk_control) {
382 			host->cclk = host->mclk;
383 		} else if (desired >= host->mclk) {
384 			clk = MCI_CLK_BYPASS;
385 			if (variant->st_clkdiv)
386 				clk |= MCI_ST_UX500_NEG_EDGE;
387 			host->cclk = host->mclk;
388 		} else if (variant->st_clkdiv) {
389 			/*
390 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
391 			 * => clkdiv = (mclk / f) - 2
392 			 * Round the divider up so we don't exceed the max
393 			 * frequency
394 			 */
395 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
396 			if (clk >= 256)
397 				clk = 255;
398 			host->cclk = host->mclk / (clk + 2);
399 		} else {
400 			/*
401 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
402 			 * => clkdiv = mclk / (2 * f) - 1
403 			 */
404 			clk = host->mclk / (2 * desired) - 1;
405 			if (clk >= 256)
406 				clk = 255;
407 			host->cclk = host->mclk / (2 * (clk + 1));
408 		}
409 
410 		clk |= variant->clkreg_enable;
411 		clk |= MCI_CLK_ENABLE;
412 		/* This hasn't proven to be worthwhile */
413 		/* clk |= MCI_CLK_PWRSAVE; */
414 	}
415 
416 	/* Set actual clock for debug */
417 	host->mmc->actual_clock = host->cclk;
418 
419 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
420 		clk |= MCI_4BIT_BUS;
421 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
422 		clk |= variant->clkreg_8bit_bus_enable;
423 
424 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
425 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
426 		clk |= variant->clkreg_neg_edge_enable;
427 
428 	mmci_write_clkreg(host, clk);
429 }
430 
431 static void
432 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
433 {
434 	writel(0, host->base + MMCICOMMAND);
435 
436 	BUG_ON(host->data);
437 
438 	host->mrq = NULL;
439 	host->cmd = NULL;
440 
441 	mmc_request_done(host->mmc, mrq);
442 }
443 
444 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
445 {
446 	void __iomem *base = host->base;
447 	struct variant_data *variant = host->variant;
448 
449 	if (host->singleirq) {
450 		unsigned int mask0 = readl(base + MMCIMASK0);
451 
452 		mask0 &= ~MCI_IRQ1MASK;
453 		mask0 |= mask;
454 
455 		writel(mask0, base + MMCIMASK0);
456 	}
457 
458 	if (variant->mmcimask1)
459 		writel(mask, base + MMCIMASK1);
460 
461 	host->mask1_reg = mask;
462 }
463 
464 static void mmci_stop_data(struct mmci_host *host)
465 {
466 	mmci_write_datactrlreg(host, 0);
467 	mmci_set_mask1(host, 0);
468 	host->data = NULL;
469 }
470 
471 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
472 {
473 	unsigned int flags = SG_MITER_ATOMIC;
474 
475 	if (data->flags & MMC_DATA_READ)
476 		flags |= SG_MITER_TO_SG;
477 	else
478 		flags |= SG_MITER_FROM_SG;
479 
480 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
481 }
482 
483 /*
484  * All the DMA operation mode stuff goes inside this ifdef.
485  * This assumes that you have a generic DMA device interface,
486  * no custom DMA interfaces are supported.
487  */
488 #ifdef CONFIG_DMA_ENGINE
489 static void mmci_dma_setup(struct mmci_host *host)
490 {
491 	const char *rxname, *txname;
492 	struct variant_data *variant = host->variant;
493 
494 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
495 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
496 
497 	/* initialize pre request cookie */
498 	host->next_data.cookie = 1;
499 
500 	/*
501 	 * If only an RX channel is specified, the driver will
502 	 * attempt to use it bidirectionally, however if it is
503 	 * is specified but cannot be located, DMA will be disabled.
504 	 */
505 	if (host->dma_rx_channel && !host->dma_tx_channel)
506 		host->dma_tx_channel = host->dma_rx_channel;
507 
508 	if (host->dma_rx_channel)
509 		rxname = dma_chan_name(host->dma_rx_channel);
510 	else
511 		rxname = "none";
512 
513 	if (host->dma_tx_channel)
514 		txname = dma_chan_name(host->dma_tx_channel);
515 	else
516 		txname = "none";
517 
518 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
519 		 rxname, txname);
520 
521 	/*
522 	 * Limit the maximum segment size in any SG entry according to
523 	 * the parameters of the DMA engine device.
524 	 */
525 	if (host->dma_tx_channel) {
526 		struct device *dev = host->dma_tx_channel->device->dev;
527 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
528 
529 		if (max_seg_size < host->mmc->max_seg_size)
530 			host->mmc->max_seg_size = max_seg_size;
531 	}
532 	if (host->dma_rx_channel) {
533 		struct device *dev = host->dma_rx_channel->device->dev;
534 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
535 
536 		if (max_seg_size < host->mmc->max_seg_size)
537 			host->mmc->max_seg_size = max_seg_size;
538 	}
539 
540 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
541 		if (dml_hw_init(host, host->mmc->parent->of_node))
542 			variant->qcom_dml = false;
543 }
544 
545 /*
546  * This is used in or so inline it
547  * so it can be discarded.
548  */
549 static inline void mmci_dma_release(struct mmci_host *host)
550 {
551 	if (host->dma_rx_channel)
552 		dma_release_channel(host->dma_rx_channel);
553 	if (host->dma_tx_channel)
554 		dma_release_channel(host->dma_tx_channel);
555 	host->dma_rx_channel = host->dma_tx_channel = NULL;
556 }
557 
558 static void mmci_dma_data_error(struct mmci_host *host)
559 {
560 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
561 	dmaengine_terminate_all(host->dma_current);
562 	host->dma_in_progress = false;
563 	host->dma_current = NULL;
564 	host->dma_desc_current = NULL;
565 	host->data->host_cookie = 0;
566 }
567 
568 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
569 {
570 	struct dma_chan *chan;
571 
572 	if (data->flags & MMC_DATA_READ)
573 		chan = host->dma_rx_channel;
574 	else
575 		chan = host->dma_tx_channel;
576 
577 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
578 		     mmc_get_dma_dir(data));
579 }
580 
581 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
582 {
583 	u32 status;
584 	int i;
585 
586 	/* Wait up to 1ms for the DMA to complete */
587 	for (i = 0; ; i++) {
588 		status = readl(host->base + MMCISTATUS);
589 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
590 			break;
591 		udelay(10);
592 	}
593 
594 	/*
595 	 * Check to see whether we still have some data left in the FIFO -
596 	 * this catches DMA controllers which are unable to monitor the
597 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
598 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
599 	 */
600 	if (status & MCI_RXDATAAVLBLMASK) {
601 		mmci_dma_data_error(host);
602 		if (!data->error)
603 			data->error = -EIO;
604 	}
605 
606 	if (!data->host_cookie)
607 		mmci_dma_unmap(host, data);
608 
609 	/*
610 	 * Use of DMA with scatter-gather is impossible.
611 	 * Give up with DMA and switch back to PIO mode.
612 	 */
613 	if (status & MCI_RXDATAAVLBLMASK) {
614 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
615 		mmci_dma_release(host);
616 	}
617 
618 	host->dma_in_progress = false;
619 	host->dma_current = NULL;
620 	host->dma_desc_current = NULL;
621 }
622 
623 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
624 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
625 				struct dma_chan **dma_chan,
626 				struct dma_async_tx_descriptor **dma_desc)
627 {
628 	struct variant_data *variant = host->variant;
629 	struct dma_slave_config conf = {
630 		.src_addr = host->phybase + MMCIFIFO,
631 		.dst_addr = host->phybase + MMCIFIFO,
632 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
634 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
635 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
636 		.device_fc = false,
637 	};
638 	struct dma_chan *chan;
639 	struct dma_device *device;
640 	struct dma_async_tx_descriptor *desc;
641 	int nr_sg;
642 	unsigned long flags = DMA_CTRL_ACK;
643 
644 	if (data->flags & MMC_DATA_READ) {
645 		conf.direction = DMA_DEV_TO_MEM;
646 		chan = host->dma_rx_channel;
647 	} else {
648 		conf.direction = DMA_MEM_TO_DEV;
649 		chan = host->dma_tx_channel;
650 	}
651 
652 	/* If there's no DMA channel, fall back to PIO */
653 	if (!chan)
654 		return -EINVAL;
655 
656 	/* If less than or equal to the fifo size, don't bother with DMA */
657 	if (data->blksz * data->blocks <= variant->fifosize)
658 		return -EINVAL;
659 
660 	device = chan->device;
661 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
662 			   mmc_get_dma_dir(data));
663 	if (nr_sg == 0)
664 		return -EINVAL;
665 
666 	if (host->variant->qcom_dml)
667 		flags |= DMA_PREP_INTERRUPT;
668 
669 	dmaengine_slave_config(chan, &conf);
670 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
671 					    conf.direction, flags);
672 	if (!desc)
673 		goto unmap_exit;
674 
675 	*dma_chan = chan;
676 	*dma_desc = desc;
677 
678 	return 0;
679 
680  unmap_exit:
681 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
682 		     mmc_get_dma_dir(data));
683 	return -ENOMEM;
684 }
685 
686 static inline int mmci_dma_prep_data(struct mmci_host *host,
687 				     struct mmc_data *data)
688 {
689 	/* Check if next job is already prepared. */
690 	if (host->dma_current && host->dma_desc_current)
691 		return 0;
692 
693 	/* No job were prepared thus do it now. */
694 	return __mmci_dma_prep_data(host, data, &host->dma_current,
695 				    &host->dma_desc_current);
696 }
697 
698 static inline int mmci_dma_prep_next(struct mmci_host *host,
699 				     struct mmc_data *data)
700 {
701 	struct mmci_host_next *nd = &host->next_data;
702 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
703 }
704 
705 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
706 {
707 	int ret;
708 	struct mmc_data *data = host->data;
709 
710 	ret = mmci_dma_prep_data(host, host->data);
711 	if (ret)
712 		return ret;
713 
714 	/* Okay, go for it. */
715 	dev_vdbg(mmc_dev(host->mmc),
716 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
717 		 data->sg_len, data->blksz, data->blocks, data->flags);
718 	host->dma_in_progress = true;
719 	dmaengine_submit(host->dma_desc_current);
720 	dma_async_issue_pending(host->dma_current);
721 
722 	if (host->variant->qcom_dml)
723 		dml_start_xfer(host, data);
724 
725 	datactrl |= MCI_DPSM_DMAENABLE;
726 
727 	/* Trigger the DMA transfer */
728 	mmci_write_datactrlreg(host, datactrl);
729 
730 	/*
731 	 * Let the MMCI say when the data is ended and it's time
732 	 * to fire next DMA request. When that happens, MMCI will
733 	 * call mmci_data_end()
734 	 */
735 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
736 	       host->base + MMCIMASK0);
737 	return 0;
738 }
739 
740 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
741 {
742 	struct mmci_host_next *next = &host->next_data;
743 
744 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
745 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
746 
747 	host->dma_desc_current = next->dma_desc;
748 	host->dma_current = next->dma_chan;
749 	next->dma_desc = NULL;
750 	next->dma_chan = NULL;
751 }
752 
753 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
754 {
755 	struct mmci_host *host = mmc_priv(mmc);
756 	struct mmc_data *data = mrq->data;
757 	struct mmci_host_next *nd = &host->next_data;
758 
759 	if (!data)
760 		return;
761 
762 	BUG_ON(data->host_cookie);
763 
764 	if (mmci_validate_data(host, data))
765 		return;
766 
767 	if (!mmci_dma_prep_next(host, data))
768 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
769 }
770 
771 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
772 			      int err)
773 {
774 	struct mmci_host *host = mmc_priv(mmc);
775 	struct mmc_data *data = mrq->data;
776 
777 	if (!data || !data->host_cookie)
778 		return;
779 
780 	mmci_dma_unmap(host, data);
781 
782 	if (err) {
783 		struct mmci_host_next *next = &host->next_data;
784 		struct dma_chan *chan;
785 		if (data->flags & MMC_DATA_READ)
786 			chan = host->dma_rx_channel;
787 		else
788 			chan = host->dma_tx_channel;
789 		dmaengine_terminate_all(chan);
790 
791 		if (host->dma_desc_current == next->dma_desc)
792 			host->dma_desc_current = NULL;
793 
794 		if (host->dma_current == next->dma_chan) {
795 			host->dma_in_progress = false;
796 			host->dma_current = NULL;
797 		}
798 
799 		next->dma_desc = NULL;
800 		next->dma_chan = NULL;
801 		data->host_cookie = 0;
802 	}
803 }
804 
805 #else
806 /* Blank functions if the DMA engine is not available */
807 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
808 {
809 }
810 static inline void mmci_dma_setup(struct mmci_host *host)
811 {
812 }
813 
814 static inline void mmci_dma_release(struct mmci_host *host)
815 {
816 }
817 
818 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
819 {
820 }
821 
822 static inline void mmci_dma_finalize(struct mmci_host *host,
823 				     struct mmc_data *data)
824 {
825 }
826 
827 static inline void mmci_dma_data_error(struct mmci_host *host)
828 {
829 }
830 
831 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
832 {
833 	return -ENOSYS;
834 }
835 
836 #define mmci_pre_request NULL
837 #define mmci_post_request NULL
838 
839 #endif
840 
841 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
842 {
843 	struct variant_data *variant = host->variant;
844 	unsigned int datactrl, timeout, irqmask;
845 	unsigned long long clks;
846 	void __iomem *base;
847 	int blksz_bits;
848 
849 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
850 		data->blksz, data->blocks, data->flags);
851 
852 	host->data = data;
853 	host->size = data->blksz * data->blocks;
854 	data->bytes_xfered = 0;
855 
856 	clks = (unsigned long long)data->timeout_ns * host->cclk;
857 	do_div(clks, NSEC_PER_SEC);
858 
859 	timeout = data->timeout_clks + (unsigned int)clks;
860 
861 	base = host->base;
862 	writel(timeout, base + MMCIDATATIMER);
863 	writel(host->size, base + MMCIDATALENGTH);
864 
865 	blksz_bits = ffs(data->blksz) - 1;
866 	BUG_ON(1 << blksz_bits != data->blksz);
867 
868 	if (variant->blksz_datactrl16)
869 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
870 	else if (variant->blksz_datactrl4)
871 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
872 	else
873 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
874 
875 	if (data->flags & MMC_DATA_READ)
876 		datactrl |= MCI_DPSM_DIRECTION;
877 
878 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
879 		u32 clk;
880 
881 		datactrl |= variant->datactrl_mask_sdio;
882 
883 		/*
884 		 * The ST Micro variant for SDIO small write transfers
885 		 * needs to have clock H/W flow control disabled,
886 		 * otherwise the transfer will not start. The threshold
887 		 * depends on the rate of MCLK.
888 		 */
889 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
890 		    (host->size < 8 ||
891 		     (host->size <= 8 && host->mclk > 50000000)))
892 			clk = host->clk_reg & ~variant->clkreg_enable;
893 		else
894 			clk = host->clk_reg | variant->clkreg_enable;
895 
896 		mmci_write_clkreg(host, clk);
897 	}
898 
899 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
900 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
901 		datactrl |= variant->datactrl_mask_ddrmode;
902 
903 	/*
904 	 * Attempt to use DMA operation mode, if this
905 	 * should fail, fall back to PIO mode
906 	 */
907 	if (!mmci_dma_start_data(host, datactrl))
908 		return;
909 
910 	/* IRQ mode, map the SG list for CPU reading/writing */
911 	mmci_init_sg(host, data);
912 
913 	if (data->flags & MMC_DATA_READ) {
914 		irqmask = MCI_RXFIFOHALFFULLMASK;
915 
916 		/*
917 		 * If we have less than the fifo 'half-full' threshold to
918 		 * transfer, trigger a PIO interrupt as soon as any data
919 		 * is available.
920 		 */
921 		if (host->size < variant->fifohalfsize)
922 			irqmask |= MCI_RXDATAAVLBLMASK;
923 	} else {
924 		/*
925 		 * We don't actually need to include "FIFO empty" here
926 		 * since its implicit in "FIFO half empty".
927 		 */
928 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
929 	}
930 
931 	mmci_write_datactrlreg(host, datactrl);
932 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
933 	mmci_set_mask1(host, irqmask);
934 }
935 
936 static void
937 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
938 {
939 	void __iomem *base = host->base;
940 
941 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
942 	    cmd->opcode, cmd->arg, cmd->flags);
943 
944 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
945 		writel(0, base + MMCICOMMAND);
946 		mmci_reg_delay(host);
947 	}
948 
949 	c |= cmd->opcode | MCI_CPSM_ENABLE;
950 	if (cmd->flags & MMC_RSP_PRESENT) {
951 		if (cmd->flags & MMC_RSP_136)
952 			c |= MCI_CPSM_LONGRSP;
953 		c |= MCI_CPSM_RESPONSE;
954 	}
955 	if (/*interrupt*/0)
956 		c |= MCI_CPSM_INTERRUPT;
957 
958 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
959 		c |= host->variant->data_cmd_enable;
960 
961 	host->cmd = cmd;
962 
963 	writel(cmd->arg, base + MMCIARGUMENT);
964 	writel(c, base + MMCICOMMAND);
965 }
966 
967 static void
968 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
969 	      unsigned int status)
970 {
971 	/* Make sure we have data to handle */
972 	if (!data)
973 		return;
974 
975 	/* First check for errors */
976 	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
977 		      host->variant->start_err |
978 		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
979 		u32 remain, success;
980 
981 		/* Terminate the DMA transfer */
982 		if (dma_inprogress(host)) {
983 			mmci_dma_data_error(host);
984 			mmci_dma_unmap(host, data);
985 		}
986 
987 		/*
988 		 * Calculate how far we are into the transfer.  Note that
989 		 * the data counter gives the number of bytes transferred
990 		 * on the MMC bus, not on the host side.  On reads, this
991 		 * can be as much as a FIFO-worth of data ahead.  This
992 		 * matters for FIFO overruns only.
993 		 */
994 		remain = readl(host->base + MMCIDATACNT);
995 		success = data->blksz * data->blocks - remain;
996 
997 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
998 			status, success);
999 		if (status & MCI_DATACRCFAIL) {
1000 			/* Last block was not successful */
1001 			success -= 1;
1002 			data->error = -EILSEQ;
1003 		} else if (status & MCI_DATATIMEOUT) {
1004 			data->error = -ETIMEDOUT;
1005 		} else if (status & MCI_STARTBITERR) {
1006 			data->error = -ECOMM;
1007 		} else if (status & MCI_TXUNDERRUN) {
1008 			data->error = -EIO;
1009 		} else if (status & MCI_RXOVERRUN) {
1010 			if (success > host->variant->fifosize)
1011 				success -= host->variant->fifosize;
1012 			else
1013 				success = 0;
1014 			data->error = -EIO;
1015 		}
1016 		data->bytes_xfered = round_down(success, data->blksz);
1017 	}
1018 
1019 	if (status & MCI_DATABLOCKEND)
1020 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1021 
1022 	if (status & MCI_DATAEND || data->error) {
1023 		if (dma_inprogress(host))
1024 			mmci_dma_finalize(host, data);
1025 		mmci_stop_data(host);
1026 
1027 		if (!data->error)
1028 			/* The error clause is handled above, success! */
1029 			data->bytes_xfered = data->blksz * data->blocks;
1030 
1031 		if (!data->stop || host->mrq->sbc) {
1032 			mmci_request_end(host, data->mrq);
1033 		} else {
1034 			mmci_start_command(host, data->stop, 0);
1035 		}
1036 	}
1037 }
1038 
1039 static void
1040 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1041 	     unsigned int status)
1042 {
1043 	void __iomem *base = host->base;
1044 	bool sbc;
1045 
1046 	if (!cmd)
1047 		return;
1048 
1049 	sbc = (cmd == host->mrq->sbc);
1050 
1051 	/*
1052 	 * We need to be one of these interrupts to be considered worth
1053 	 * handling. Note that we tag on any latent IRQs postponed
1054 	 * due to waiting for busy status.
1055 	 */
1056 	if (!((status|host->busy_status) &
1057 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1058 		return;
1059 
1060 	/*
1061 	 * ST Micro variant: handle busy detection.
1062 	 */
1063 	if (host->variant->busy_detect) {
1064 		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1065 
1066 		/* We are busy with a command, return */
1067 		if (host->busy_status &&
1068 		    (status & host->variant->busy_detect_flag))
1069 			return;
1070 
1071 		/*
1072 		 * We were not busy, but we now got a busy response on
1073 		 * something that was not an error, and we double-check
1074 		 * that the special busy status bit is still set before
1075 		 * proceeding.
1076 		 */
1077 		if (!host->busy_status && busy_resp &&
1078 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1079 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1080 
1081 			/* Clear the busy start IRQ */
1082 			writel(host->variant->busy_detect_mask,
1083 			       host->base + MMCICLEAR);
1084 
1085 			/* Unmask the busy end IRQ */
1086 			writel(readl(base + MMCIMASK0) |
1087 			       host->variant->busy_detect_mask,
1088 			       base + MMCIMASK0);
1089 			/*
1090 			 * Now cache the last response status code (until
1091 			 * the busy bit goes low), and return.
1092 			 */
1093 			host->busy_status =
1094 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1095 			return;
1096 		}
1097 
1098 		/*
1099 		 * At this point we are not busy with a command, we have
1100 		 * not received a new busy request, clear and mask the busy
1101 		 * end IRQ and fall through to process the IRQ.
1102 		 */
1103 		if (host->busy_status) {
1104 
1105 			writel(host->variant->busy_detect_mask,
1106 			       host->base + MMCICLEAR);
1107 
1108 			writel(readl(base + MMCIMASK0) &
1109 			       ~host->variant->busy_detect_mask,
1110 			       base + MMCIMASK0);
1111 			host->busy_status = 0;
1112 		}
1113 	}
1114 
1115 	host->cmd = NULL;
1116 
1117 	if (status & MCI_CMDTIMEOUT) {
1118 		cmd->error = -ETIMEDOUT;
1119 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1120 		cmd->error = -EILSEQ;
1121 	} else {
1122 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1123 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1124 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1125 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1126 	}
1127 
1128 	if ((!sbc && !cmd->data) || cmd->error) {
1129 		if (host->data) {
1130 			/* Terminate the DMA transfer */
1131 			if (dma_inprogress(host)) {
1132 				mmci_dma_data_error(host);
1133 				mmci_dma_unmap(host, host->data);
1134 			}
1135 			mmci_stop_data(host);
1136 		}
1137 		mmci_request_end(host, host->mrq);
1138 	} else if (sbc) {
1139 		mmci_start_command(host, host->mrq->cmd, 0);
1140 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141 		mmci_start_data(host, cmd->data);
1142 	}
1143 }
1144 
1145 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146 {
1147 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148 }
1149 
1150 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151 {
1152 	/*
1153 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 	 * from the fifo range should be used
1155 	 */
1156 	if (status & MCI_RXFIFOHALFFULL)
1157 		return host->variant->fifohalfsize;
1158 	else if (status & MCI_RXDATAAVLBL)
1159 		return 4;
1160 
1161 	return 0;
1162 }
1163 
1164 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165 {
1166 	void __iomem *base = host->base;
1167 	char *ptr = buffer;
1168 	u32 status = readl(host->base + MMCISTATUS);
1169 	int host_remain = host->size;
1170 
1171 	do {
1172 		int count = host->get_rx_fifocnt(host, status, host_remain);
1173 
1174 		if (count > remain)
1175 			count = remain;
1176 
1177 		if (count <= 0)
1178 			break;
1179 
1180 		/*
1181 		 * SDIO especially may want to send something that is
1182 		 * not divisible by 4 (as opposed to card sectors
1183 		 * etc). Therefore make sure to always read the last bytes
1184 		 * while only doing full 32-bit reads towards the FIFO.
1185 		 */
1186 		if (unlikely(count & 0x3)) {
1187 			if (count < 4) {
1188 				unsigned char buf[4];
1189 				ioread32_rep(base + MMCIFIFO, buf, 1);
1190 				memcpy(ptr, buf, count);
1191 			} else {
1192 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193 				count &= ~0x3;
1194 			}
1195 		} else {
1196 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197 		}
1198 
1199 		ptr += count;
1200 		remain -= count;
1201 		host_remain -= count;
1202 
1203 		if (remain == 0)
1204 			break;
1205 
1206 		status = readl(base + MMCISTATUS);
1207 	} while (status & MCI_RXDATAAVLBL);
1208 
1209 	return ptr - buffer;
1210 }
1211 
1212 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213 {
1214 	struct variant_data *variant = host->variant;
1215 	void __iomem *base = host->base;
1216 	char *ptr = buffer;
1217 
1218 	do {
1219 		unsigned int count, maxcnt;
1220 
1221 		maxcnt = status & MCI_TXFIFOEMPTY ?
1222 			 variant->fifosize : variant->fifohalfsize;
1223 		count = min(remain, maxcnt);
1224 
1225 		/*
1226 		 * SDIO especially may want to send something that is
1227 		 * not divisible by 4 (as opposed to card sectors
1228 		 * etc), and the FIFO only accept full 32-bit writes.
1229 		 * So compensate by adding +3 on the count, a single
1230 		 * byte become a 32bit write, 7 bytes will be two
1231 		 * 32bit writes etc.
1232 		 */
1233 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234 
1235 		ptr += count;
1236 		remain -= count;
1237 
1238 		if (remain == 0)
1239 			break;
1240 
1241 		status = readl(base + MMCISTATUS);
1242 	} while (status & MCI_TXFIFOHALFEMPTY);
1243 
1244 	return ptr - buffer;
1245 }
1246 
1247 /*
1248  * PIO data transfer IRQ handler.
1249  */
1250 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251 {
1252 	struct mmci_host *host = dev_id;
1253 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254 	struct variant_data *variant = host->variant;
1255 	void __iomem *base = host->base;
1256 	u32 status;
1257 
1258 	status = readl(base + MMCISTATUS);
1259 
1260 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1261 
1262 	do {
1263 		unsigned int remain, len;
1264 		char *buffer;
1265 
1266 		/*
1267 		 * For write, we only need to test the half-empty flag
1268 		 * here - if the FIFO is completely empty, then by
1269 		 * definition it is more than half empty.
1270 		 *
1271 		 * For read, check for data available.
1272 		 */
1273 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1274 			break;
1275 
1276 		if (!sg_miter_next(sg_miter))
1277 			break;
1278 
1279 		buffer = sg_miter->addr;
1280 		remain = sg_miter->length;
1281 
1282 		len = 0;
1283 		if (status & MCI_RXACTIVE)
1284 			len = mmci_pio_read(host, buffer, remain);
1285 		if (status & MCI_TXACTIVE)
1286 			len = mmci_pio_write(host, buffer, remain, status);
1287 
1288 		sg_miter->consumed = len;
1289 
1290 		host->size -= len;
1291 		remain -= len;
1292 
1293 		if (remain)
1294 			break;
1295 
1296 		status = readl(base + MMCISTATUS);
1297 	} while (1);
1298 
1299 	sg_miter_stop(sg_miter);
1300 
1301 	/*
1302 	 * If we have less than the fifo 'half-full' threshold to transfer,
1303 	 * trigger a PIO interrupt as soon as any data is available.
1304 	 */
1305 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1306 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1307 
1308 	/*
1309 	 * If we run out of data, disable the data IRQs; this
1310 	 * prevents a race where the FIFO becomes empty before
1311 	 * the chip itself has disabled the data path, and
1312 	 * stops us racing with our data end IRQ.
1313 	 */
1314 	if (host->size == 0) {
1315 		mmci_set_mask1(host, 0);
1316 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1317 	}
1318 
1319 	return IRQ_HANDLED;
1320 }
1321 
1322 /*
1323  * Handle completion of command and data transfers.
1324  */
1325 static irqreturn_t mmci_irq(int irq, void *dev_id)
1326 {
1327 	struct mmci_host *host = dev_id;
1328 	u32 status;
1329 	int ret = 0;
1330 
1331 	spin_lock(&host->lock);
1332 
1333 	do {
1334 		status = readl(host->base + MMCISTATUS);
1335 
1336 		if (host->singleirq) {
1337 			if (status & host->mask1_reg)
1338 				mmci_pio_irq(irq, dev_id);
1339 
1340 			status &= ~MCI_IRQ1MASK;
1341 		}
1342 
1343 		/*
1344 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1345 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1346 		 * detection variant is handled. Considering the HW seems to be
1347 		 * triggering the IRQ on both edges while monitoring DAT0 for
1348 		 * busy completion and that same status bit is used to monitor
1349 		 * start and end of busy detection, special care must be taken
1350 		 * to make sure that both start and end interrupts are always
1351 		 * cleared one after the other.
1352 		 */
1353 		status &= readl(host->base + MMCIMASK0);
1354 		if (host->variant->busy_detect)
1355 			writel(status & ~host->variant->busy_detect_mask,
1356 			       host->base + MMCICLEAR);
1357 		else
1358 			writel(status, host->base + MMCICLEAR);
1359 
1360 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1361 
1362 		if (host->variant->reversed_irq_handling) {
1363 			mmci_data_irq(host, host->data, status);
1364 			mmci_cmd_irq(host, host->cmd, status);
1365 		} else {
1366 			mmci_cmd_irq(host, host->cmd, status);
1367 			mmci_data_irq(host, host->data, status);
1368 		}
1369 
1370 		/*
1371 		 * Don't poll for busy completion in irq context.
1372 		 */
1373 		if (host->variant->busy_detect && host->busy_status)
1374 			status &= ~host->variant->busy_detect_flag;
1375 
1376 		ret = 1;
1377 	} while (status);
1378 
1379 	spin_unlock(&host->lock);
1380 
1381 	return IRQ_RETVAL(ret);
1382 }
1383 
1384 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1385 {
1386 	struct mmci_host *host = mmc_priv(mmc);
1387 	unsigned long flags;
1388 
1389 	WARN_ON(host->mrq != NULL);
1390 
1391 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1392 	if (mrq->cmd->error) {
1393 		mmc_request_done(mmc, mrq);
1394 		return;
1395 	}
1396 
1397 	spin_lock_irqsave(&host->lock, flags);
1398 
1399 	host->mrq = mrq;
1400 
1401 	if (mrq->data)
1402 		mmci_get_next_data(host, mrq->data);
1403 
1404 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1405 		mmci_start_data(host, mrq->data);
1406 
1407 	if (mrq->sbc)
1408 		mmci_start_command(host, mrq->sbc, 0);
1409 	else
1410 		mmci_start_command(host, mrq->cmd, 0);
1411 
1412 	spin_unlock_irqrestore(&host->lock, flags);
1413 }
1414 
1415 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1416 {
1417 	struct mmci_host *host = mmc_priv(mmc);
1418 	struct variant_data *variant = host->variant;
1419 	u32 pwr = 0;
1420 	unsigned long flags;
1421 	int ret;
1422 
1423 	if (host->plat->ios_handler &&
1424 		host->plat->ios_handler(mmc_dev(mmc), ios))
1425 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1426 
1427 	switch (ios->power_mode) {
1428 	case MMC_POWER_OFF:
1429 		if (!IS_ERR(mmc->supply.vmmc))
1430 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1431 
1432 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1433 			regulator_disable(mmc->supply.vqmmc);
1434 			host->vqmmc_enabled = false;
1435 		}
1436 
1437 		break;
1438 	case MMC_POWER_UP:
1439 		if (!IS_ERR(mmc->supply.vmmc))
1440 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1441 
1442 		/*
1443 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1444 		 * and instead uses MCI_PWR_ON so apply whatever value is
1445 		 * configured in the variant data.
1446 		 */
1447 		pwr |= variant->pwrreg_powerup;
1448 
1449 		break;
1450 	case MMC_POWER_ON:
1451 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1452 			ret = regulator_enable(mmc->supply.vqmmc);
1453 			if (ret < 0)
1454 				dev_err(mmc_dev(mmc),
1455 					"failed to enable vqmmc regulator\n");
1456 			else
1457 				host->vqmmc_enabled = true;
1458 		}
1459 
1460 		pwr |= MCI_PWR_ON;
1461 		break;
1462 	}
1463 
1464 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1465 		/*
1466 		 * The ST Micro variant has some additional bits
1467 		 * indicating signal direction for the signals in
1468 		 * the SD/MMC bus and feedback-clock usage.
1469 		 */
1470 		pwr |= host->pwr_reg_add;
1471 
1472 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1473 			pwr &= ~MCI_ST_DATA74DIREN;
1474 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1475 			pwr &= (~MCI_ST_DATA74DIREN &
1476 				~MCI_ST_DATA31DIREN &
1477 				~MCI_ST_DATA2DIREN);
1478 	}
1479 
1480 	if (variant->opendrain) {
1481 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1482 			pwr |= variant->opendrain;
1483 	} else {
1484 		/*
1485 		 * If the variant cannot configure the pads by its own, then we
1486 		 * expect the pinctrl to be able to do that for us
1487 		 */
1488 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1489 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1490 		else
1491 			pinctrl_select_state(host->pinctrl, host->pins_default);
1492 	}
1493 
1494 	/*
1495 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1496 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1497 	 */
1498 	if (!ios->clock && variant->pwrreg_clkgate)
1499 		pwr &= ~MCI_PWR_ON;
1500 
1501 	if (host->variant->explicit_mclk_control &&
1502 	    ios->clock != host->clock_cache) {
1503 		ret = clk_set_rate(host->clk, ios->clock);
1504 		if (ret < 0)
1505 			dev_err(mmc_dev(host->mmc),
1506 				"Error setting clock rate (%d)\n", ret);
1507 		else
1508 			host->mclk = clk_get_rate(host->clk);
1509 	}
1510 	host->clock_cache = ios->clock;
1511 
1512 	spin_lock_irqsave(&host->lock, flags);
1513 
1514 	mmci_set_clkreg(host, ios->clock);
1515 	mmci_write_pwrreg(host, pwr);
1516 	mmci_reg_delay(host);
1517 
1518 	spin_unlock_irqrestore(&host->lock, flags);
1519 }
1520 
1521 static int mmci_get_cd(struct mmc_host *mmc)
1522 {
1523 	struct mmci_host *host = mmc_priv(mmc);
1524 	struct mmci_platform_data *plat = host->plat;
1525 	unsigned int status = mmc_gpio_get_cd(mmc);
1526 
1527 	if (status == -ENOSYS) {
1528 		if (!plat->status)
1529 			return 1; /* Assume always present */
1530 
1531 		status = plat->status(mmc_dev(host->mmc));
1532 	}
1533 	return status;
1534 }
1535 
1536 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1537 {
1538 	int ret = 0;
1539 
1540 	if (!IS_ERR(mmc->supply.vqmmc)) {
1541 
1542 		switch (ios->signal_voltage) {
1543 		case MMC_SIGNAL_VOLTAGE_330:
1544 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1545 						2700000, 3600000);
1546 			break;
1547 		case MMC_SIGNAL_VOLTAGE_180:
1548 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1549 						1700000, 1950000);
1550 			break;
1551 		case MMC_SIGNAL_VOLTAGE_120:
1552 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1553 						1100000, 1300000);
1554 			break;
1555 		}
1556 
1557 		if (ret)
1558 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1559 	}
1560 
1561 	return ret;
1562 }
1563 
1564 static struct mmc_host_ops mmci_ops = {
1565 	.request	= mmci_request,
1566 	.pre_req	= mmci_pre_request,
1567 	.post_req	= mmci_post_request,
1568 	.set_ios	= mmci_set_ios,
1569 	.get_ro		= mmc_gpio_get_ro,
1570 	.get_cd		= mmci_get_cd,
1571 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1572 };
1573 
1574 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1575 {
1576 	struct mmci_host *host = mmc_priv(mmc);
1577 	int ret = mmc_of_parse(mmc);
1578 
1579 	if (ret)
1580 		return ret;
1581 
1582 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1583 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1584 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1585 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1586 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1587 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1588 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1589 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1590 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1591 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1592 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1593 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1594 
1595 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1596 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1597 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1598 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1599 
1600 	return 0;
1601 }
1602 
1603 static int mmci_probe(struct amba_device *dev,
1604 	const struct amba_id *id)
1605 {
1606 	struct mmci_platform_data *plat = dev->dev.platform_data;
1607 	struct device_node *np = dev->dev.of_node;
1608 	struct variant_data *variant = id->data;
1609 	struct mmci_host *host;
1610 	struct mmc_host *mmc;
1611 	int ret;
1612 
1613 	/* Must have platform data or Device Tree. */
1614 	if (!plat && !np) {
1615 		dev_err(&dev->dev, "No plat data or DT found\n");
1616 		return -EINVAL;
1617 	}
1618 
1619 	if (!plat) {
1620 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1621 		if (!plat)
1622 			return -ENOMEM;
1623 	}
1624 
1625 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1626 	if (!mmc)
1627 		return -ENOMEM;
1628 
1629 	ret = mmci_of_parse(np, mmc);
1630 	if (ret)
1631 		goto host_free;
1632 
1633 	host = mmc_priv(mmc);
1634 	host->mmc = mmc;
1635 
1636 	/*
1637 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1638 	 * pins can be set accordingly using pinctrl
1639 	 */
1640 	if (!variant->opendrain) {
1641 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1642 		if (IS_ERR(host->pinctrl)) {
1643 			dev_err(&dev->dev, "failed to get pinctrl");
1644 			ret = PTR_ERR(host->pinctrl);
1645 			goto host_free;
1646 		}
1647 
1648 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1649 							  PINCTRL_STATE_DEFAULT);
1650 		if (IS_ERR(host->pins_default)) {
1651 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1652 			ret = PTR_ERR(host->pins_default);
1653 			goto host_free;
1654 		}
1655 
1656 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1657 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1658 		if (IS_ERR(host->pins_opendrain)) {
1659 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1660 			ret = PTR_ERR(host->pins_opendrain);
1661 			goto host_free;
1662 		}
1663 	}
1664 
1665 	host->hw_designer = amba_manf(dev);
1666 	host->hw_revision = amba_rev(dev);
1667 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1668 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1669 
1670 	host->clk = devm_clk_get(&dev->dev, NULL);
1671 	if (IS_ERR(host->clk)) {
1672 		ret = PTR_ERR(host->clk);
1673 		goto host_free;
1674 	}
1675 
1676 	ret = clk_prepare_enable(host->clk);
1677 	if (ret)
1678 		goto host_free;
1679 
1680 	if (variant->qcom_fifo)
1681 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1682 	else
1683 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1684 
1685 	host->plat = plat;
1686 	host->variant = variant;
1687 	host->mclk = clk_get_rate(host->clk);
1688 	/*
1689 	 * According to the spec, mclk is max 100 MHz,
1690 	 * so we try to adjust the clock down to this,
1691 	 * (if possible).
1692 	 */
1693 	if (host->mclk > variant->f_max) {
1694 		ret = clk_set_rate(host->clk, variant->f_max);
1695 		if (ret < 0)
1696 			goto clk_disable;
1697 		host->mclk = clk_get_rate(host->clk);
1698 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1699 			host->mclk);
1700 	}
1701 
1702 	host->phybase = dev->res.start;
1703 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1704 	if (IS_ERR(host->base)) {
1705 		ret = PTR_ERR(host->base);
1706 		goto clk_disable;
1707 	}
1708 
1709 	/*
1710 	 * The ARM and ST versions of the block have slightly different
1711 	 * clock divider equations which means that the minimum divider
1712 	 * differs too.
1713 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1714 	 */
1715 	if (variant->st_clkdiv)
1716 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1717 	else if (variant->explicit_mclk_control)
1718 		mmc->f_min = clk_round_rate(host->clk, 100000);
1719 	else
1720 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1721 	/*
1722 	 * If no maximum operating frequency is supplied, fall back to use
1723 	 * the module parameter, which has a (low) default value in case it
1724 	 * is not specified. Either value must not exceed the clock rate into
1725 	 * the block, of course.
1726 	 */
1727 	if (mmc->f_max)
1728 		mmc->f_max = variant->explicit_mclk_control ?
1729 				min(variant->f_max, mmc->f_max) :
1730 				min(host->mclk, mmc->f_max);
1731 	else
1732 		mmc->f_max = variant->explicit_mclk_control ?
1733 				fmax : min(host->mclk, fmax);
1734 
1735 
1736 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1737 
1738 	/* Get regulators and the supported OCR mask */
1739 	ret = mmc_regulator_get_supply(mmc);
1740 	if (ret)
1741 		goto clk_disable;
1742 
1743 	if (!mmc->ocr_avail)
1744 		mmc->ocr_avail = plat->ocr_mask;
1745 	else if (plat->ocr_mask)
1746 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1747 
1748 	/* DT takes precedence over platform data. */
1749 	if (!np) {
1750 		if (!plat->cd_invert)
1751 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1752 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1753 	}
1754 
1755 	/* We support these capabilities. */
1756 	mmc->caps |= MMC_CAP_CMD23;
1757 
1758 	/*
1759 	 * Enable busy detection.
1760 	 */
1761 	if (variant->busy_detect) {
1762 		mmci_ops.card_busy = mmci_card_busy;
1763 		/*
1764 		 * Not all variants have a flag to enable busy detection
1765 		 * in the DPSM, but if they do, set it here.
1766 		 */
1767 		if (variant->busy_dpsm_flag)
1768 			mmci_write_datactrlreg(host,
1769 					       host->variant->busy_dpsm_flag);
1770 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1771 		mmc->max_busy_timeout = 0;
1772 	}
1773 
1774 	mmc->ops = &mmci_ops;
1775 
1776 	/* We support these PM capabilities. */
1777 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1778 
1779 	/*
1780 	 * We can do SGIO
1781 	 */
1782 	mmc->max_segs = NR_SG;
1783 
1784 	/*
1785 	 * Since only a certain number of bits are valid in the data length
1786 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1787 	 * single request.
1788 	 */
1789 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1790 
1791 	/*
1792 	 * Set the maximum segment size.  Since we aren't doing DMA
1793 	 * (yet) we are only limited by the data length register.
1794 	 */
1795 	mmc->max_seg_size = mmc->max_req_size;
1796 
1797 	/*
1798 	 * Block size can be up to 2048 bytes, but must be a power of two.
1799 	 */
1800 	mmc->max_blk_size = 1 << 11;
1801 
1802 	/*
1803 	 * Limit the number of blocks transferred so that we don't overflow
1804 	 * the maximum request size.
1805 	 */
1806 	mmc->max_blk_count = mmc->max_req_size >> 11;
1807 
1808 	spin_lock_init(&host->lock);
1809 
1810 	writel(0, host->base + MMCIMASK0);
1811 
1812 	if (variant->mmcimask1)
1813 		writel(0, host->base + MMCIMASK1);
1814 
1815 	writel(0xfff, host->base + MMCICLEAR);
1816 
1817 	/*
1818 	 * If:
1819 	 * - not using DT but using a descriptor table, or
1820 	 * - using a table of descriptors ALONGSIDE DT, or
1821 	 * look up these descriptors named "cd" and "wp" right here, fail
1822 	 * silently of these do not exist and proceed to try platform data
1823 	 */
1824 	if (!np) {
1825 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1826 		if (ret < 0) {
1827 			if (ret == -EPROBE_DEFER)
1828 				goto clk_disable;
1829 			else if (gpio_is_valid(plat->gpio_cd)) {
1830 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1831 				if (ret)
1832 					goto clk_disable;
1833 			}
1834 		}
1835 
1836 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1837 		if (ret < 0) {
1838 			if (ret == -EPROBE_DEFER)
1839 				goto clk_disable;
1840 			else if (gpio_is_valid(plat->gpio_wp)) {
1841 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1842 				if (ret)
1843 					goto clk_disable;
1844 			}
1845 		}
1846 	}
1847 
1848 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1849 			DRIVER_NAME " (cmd)", host);
1850 	if (ret)
1851 		goto clk_disable;
1852 
1853 	if (!dev->irq[1])
1854 		host->singleirq = true;
1855 	else {
1856 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1857 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1858 		if (ret)
1859 			goto clk_disable;
1860 	}
1861 
1862 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1863 
1864 	amba_set_drvdata(dev, mmc);
1865 
1866 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1867 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1868 		 amba_rev(dev), (unsigned long long)dev->res.start,
1869 		 dev->irq[0], dev->irq[1]);
1870 
1871 	mmci_dma_setup(host);
1872 
1873 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1874 	pm_runtime_use_autosuspend(&dev->dev);
1875 
1876 	mmc_add_host(mmc);
1877 
1878 	pm_runtime_put(&dev->dev);
1879 	return 0;
1880 
1881  clk_disable:
1882 	clk_disable_unprepare(host->clk);
1883  host_free:
1884 	mmc_free_host(mmc);
1885 	return ret;
1886 }
1887 
1888 static int mmci_remove(struct amba_device *dev)
1889 {
1890 	struct mmc_host *mmc = amba_get_drvdata(dev);
1891 
1892 	if (mmc) {
1893 		struct mmci_host *host = mmc_priv(mmc);
1894 		struct variant_data *variant = host->variant;
1895 
1896 		/*
1897 		 * Undo pm_runtime_put() in probe.  We use the _sync
1898 		 * version here so that we can access the primecell.
1899 		 */
1900 		pm_runtime_get_sync(&dev->dev);
1901 
1902 		mmc_remove_host(mmc);
1903 
1904 		writel(0, host->base + MMCIMASK0);
1905 
1906 		if (variant->mmcimask1)
1907 			writel(0, host->base + MMCIMASK1);
1908 
1909 		writel(0, host->base + MMCICOMMAND);
1910 		writel(0, host->base + MMCIDATACTRL);
1911 
1912 		mmci_dma_release(host);
1913 		clk_disable_unprepare(host->clk);
1914 		mmc_free_host(mmc);
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 #ifdef CONFIG_PM
1921 static void mmci_save(struct mmci_host *host)
1922 {
1923 	unsigned long flags;
1924 
1925 	spin_lock_irqsave(&host->lock, flags);
1926 
1927 	writel(0, host->base + MMCIMASK0);
1928 	if (host->variant->pwrreg_nopower) {
1929 		writel(0, host->base + MMCIDATACTRL);
1930 		writel(0, host->base + MMCIPOWER);
1931 		writel(0, host->base + MMCICLOCK);
1932 	}
1933 	mmci_reg_delay(host);
1934 
1935 	spin_unlock_irqrestore(&host->lock, flags);
1936 }
1937 
1938 static void mmci_restore(struct mmci_host *host)
1939 {
1940 	unsigned long flags;
1941 
1942 	spin_lock_irqsave(&host->lock, flags);
1943 
1944 	if (host->variant->pwrreg_nopower) {
1945 		writel(host->clk_reg, host->base + MMCICLOCK);
1946 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1947 		writel(host->pwr_reg, host->base + MMCIPOWER);
1948 	}
1949 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1950 	mmci_reg_delay(host);
1951 
1952 	spin_unlock_irqrestore(&host->lock, flags);
1953 }
1954 
1955 static int mmci_runtime_suspend(struct device *dev)
1956 {
1957 	struct amba_device *adev = to_amba_device(dev);
1958 	struct mmc_host *mmc = amba_get_drvdata(adev);
1959 
1960 	if (mmc) {
1961 		struct mmci_host *host = mmc_priv(mmc);
1962 		pinctrl_pm_select_sleep_state(dev);
1963 		mmci_save(host);
1964 		clk_disable_unprepare(host->clk);
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static int mmci_runtime_resume(struct device *dev)
1971 {
1972 	struct amba_device *adev = to_amba_device(dev);
1973 	struct mmc_host *mmc = amba_get_drvdata(adev);
1974 
1975 	if (mmc) {
1976 		struct mmci_host *host = mmc_priv(mmc);
1977 		clk_prepare_enable(host->clk);
1978 		mmci_restore(host);
1979 		pinctrl_pm_select_default_state(dev);
1980 	}
1981 
1982 	return 0;
1983 }
1984 #endif
1985 
1986 static const struct dev_pm_ops mmci_dev_pm_ops = {
1987 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1988 				pm_runtime_force_resume)
1989 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1990 };
1991 
1992 static const struct amba_id mmci_ids[] = {
1993 	{
1994 		.id	= 0x00041180,
1995 		.mask	= 0xff0fffff,
1996 		.data	= &variant_arm,
1997 	},
1998 	{
1999 		.id	= 0x01041180,
2000 		.mask	= 0xff0fffff,
2001 		.data	= &variant_arm_extended_fifo,
2002 	},
2003 	{
2004 		.id	= 0x02041180,
2005 		.mask	= 0xff0fffff,
2006 		.data	= &variant_arm_extended_fifo_hwfc,
2007 	},
2008 	{
2009 		.id	= 0x00041181,
2010 		.mask	= 0x000fffff,
2011 		.data	= &variant_arm,
2012 	},
2013 	/* ST Micro variants */
2014 	{
2015 		.id     = 0x00180180,
2016 		.mask   = 0x00ffffff,
2017 		.data	= &variant_u300,
2018 	},
2019 	{
2020 		.id     = 0x10180180,
2021 		.mask   = 0xf0ffffff,
2022 		.data	= &variant_nomadik,
2023 	},
2024 	{
2025 		.id     = 0x00280180,
2026 		.mask   = 0x00ffffff,
2027 		.data	= &variant_nomadik,
2028 	},
2029 	{
2030 		.id     = 0x00480180,
2031 		.mask   = 0xf0ffffff,
2032 		.data	= &variant_ux500,
2033 	},
2034 	{
2035 		.id     = 0x10480180,
2036 		.mask   = 0xf0ffffff,
2037 		.data	= &variant_ux500v2,
2038 	},
2039 	{
2040 		.id     = 0x00880180,
2041 		.mask   = 0x00ffffff,
2042 		.data	= &variant_stm32,
2043 	},
2044 	/* Qualcomm variants */
2045 	{
2046 		.id     = 0x00051180,
2047 		.mask	= 0x000fffff,
2048 		.data	= &variant_qcom,
2049 	},
2050 	{ 0, 0 },
2051 };
2052 
2053 MODULE_DEVICE_TABLE(amba, mmci_ids);
2054 
2055 static struct amba_driver mmci_driver = {
2056 	.drv		= {
2057 		.name	= DRIVER_NAME,
2058 		.pm	= &mmci_dev_pm_ops,
2059 	},
2060 	.probe		= mmci_probe,
2061 	.remove		= mmci_remove,
2062 	.id_table	= mmci_ids,
2063 };
2064 
2065 module_amba_driver(mmci_driver);
2066 
2067 module_param(fmax, uint, 0444);
2068 
2069 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2070 MODULE_LICENSE("GPL");
2071