xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision b3fb9d64)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/pm.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/slot-gpio.h>
29 #include <linux/amba/bus.h>
30 #include <linux/clk.h>
31 #include <linux/scatterlist.h>
32 #include <linux/of.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 #include <linux/reset.h>
41 
42 #include <asm/div64.h>
43 #include <asm/io.h>
44 
45 #include "mmci.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500v2_variant_init(struct mmci_host *host);
51 
52 static unsigned int fmax = 515633;
53 
54 static struct variant_data variant_arm = {
55 	.fifosize		= 16 * 4,
56 	.fifohalfsize		= 8 * 4,
57 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
58 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
59 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
60 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
61 	.datalength_bits	= 16,
62 	.datactrl_blocksz	= 11,
63 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
64 	.pwrreg_powerup		= MCI_PWR_UP,
65 	.f_max			= 100000000,
66 	.reversed_irq_handling	= true,
67 	.mmcimask1		= true,
68 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
69 	.start_err		= MCI_STARTBITERR,
70 	.opendrain		= MCI_ROD,
71 	.init			= mmci_variant_init,
72 };
73 
74 static struct variant_data variant_arm_extended_fifo = {
75 	.fifosize		= 128 * 4,
76 	.fifohalfsize		= 64 * 4,
77 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
78 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
80 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
81 	.datalength_bits	= 16,
82 	.datactrl_blocksz	= 11,
83 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
84 	.pwrreg_powerup		= MCI_PWR_UP,
85 	.f_max			= 100000000,
86 	.mmcimask1		= true,
87 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
88 	.start_err		= MCI_STARTBITERR,
89 	.opendrain		= MCI_ROD,
90 	.init			= mmci_variant_init,
91 };
92 
93 static struct variant_data variant_arm_extended_fifo_hwfc = {
94 	.fifosize		= 128 * 4,
95 	.fifohalfsize		= 64 * 4,
96 	.clkreg_enable		= MCI_ARM_HWFCEN,
97 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
98 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
99 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
100 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
101 	.datalength_bits	= 16,
102 	.datactrl_blocksz	= 11,
103 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
104 	.pwrreg_powerup		= MCI_PWR_UP,
105 	.f_max			= 100000000,
106 	.mmcimask1		= true,
107 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
108 	.start_err		= MCI_STARTBITERR,
109 	.opendrain		= MCI_ROD,
110 	.init			= mmci_variant_init,
111 };
112 
113 static struct variant_data variant_u300 = {
114 	.fifosize		= 16 * 4,
115 	.fifohalfsize		= 8 * 4,
116 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
117 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
118 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
119 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
120 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
121 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
122 	.datalength_bits	= 16,
123 	.datactrl_blocksz	= 11,
124 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
125 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
126 	.st_sdio			= true,
127 	.pwrreg_powerup		= MCI_PWR_ON,
128 	.f_max			= 100000000,
129 	.signal_direction	= true,
130 	.pwrreg_clkgate		= true,
131 	.pwrreg_nopower		= true,
132 	.mmcimask1		= true,
133 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
134 	.start_err		= MCI_STARTBITERR,
135 	.opendrain		= MCI_OD,
136 	.init			= mmci_variant_init,
137 };
138 
139 static struct variant_data variant_nomadik = {
140 	.fifosize		= 16 * 4,
141 	.fifohalfsize		= 8 * 4,
142 	.clkreg			= MCI_CLK_ENABLE,
143 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
144 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
145 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
146 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
147 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
148 	.datalength_bits	= 24,
149 	.datactrl_blocksz	= 11,
150 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
151 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
152 	.st_sdio		= true,
153 	.st_clkdiv		= true,
154 	.pwrreg_powerup		= MCI_PWR_ON,
155 	.f_max			= 100000000,
156 	.signal_direction	= true,
157 	.pwrreg_clkgate		= true,
158 	.pwrreg_nopower		= true,
159 	.mmcimask1		= true,
160 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
161 	.start_err		= MCI_STARTBITERR,
162 	.opendrain		= MCI_OD,
163 	.init			= mmci_variant_init,
164 };
165 
166 static struct variant_data variant_ux500 = {
167 	.fifosize		= 30 * 4,
168 	.fifohalfsize		= 8 * 4,
169 	.clkreg			= MCI_CLK_ENABLE,
170 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
171 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
172 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
173 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
174 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
175 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
176 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
177 	.datalength_bits	= 24,
178 	.datactrl_blocksz	= 11,
179 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
180 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
181 	.st_sdio		= true,
182 	.st_clkdiv		= true,
183 	.pwrreg_powerup		= MCI_PWR_ON,
184 	.f_max			= 100000000,
185 	.signal_direction	= true,
186 	.pwrreg_clkgate		= true,
187 	.busy_detect		= true,
188 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
189 	.busy_detect_flag	= MCI_ST_CARDBUSY,
190 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
191 	.pwrreg_nopower		= true,
192 	.mmcimask1		= true,
193 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
194 	.start_err		= MCI_STARTBITERR,
195 	.opendrain		= MCI_OD,
196 	.init			= mmci_variant_init,
197 };
198 
199 static struct variant_data variant_ux500v2 = {
200 	.fifosize		= 30 * 4,
201 	.fifohalfsize		= 8 * 4,
202 	.clkreg			= MCI_CLK_ENABLE,
203 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
204 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
205 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
206 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
207 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
208 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
209 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
210 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
211 	.datalength_bits	= 24,
212 	.datactrl_blocksz	= 11,
213 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
214 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
215 	.st_sdio		= true,
216 	.st_clkdiv		= true,
217 	.blksz_datactrl16	= true,
218 	.pwrreg_powerup		= MCI_PWR_ON,
219 	.f_max			= 100000000,
220 	.signal_direction	= true,
221 	.pwrreg_clkgate		= true,
222 	.busy_detect		= true,
223 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
224 	.busy_detect_flag	= MCI_ST_CARDBUSY,
225 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
226 	.pwrreg_nopower		= true,
227 	.mmcimask1		= true,
228 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
229 	.start_err		= MCI_STARTBITERR,
230 	.opendrain		= MCI_OD,
231 	.init			= ux500v2_variant_init,
232 };
233 
234 static struct variant_data variant_stm32 = {
235 	.fifosize		= 32 * 4,
236 	.fifohalfsize		= 8 * 4,
237 	.clkreg			= MCI_CLK_ENABLE,
238 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
239 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
240 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
241 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
242 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
243 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
244 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
245 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
246 	.datalength_bits	= 24,
247 	.datactrl_blocksz	= 11,
248 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
249 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
250 	.st_sdio		= true,
251 	.st_clkdiv		= true,
252 	.pwrreg_powerup		= MCI_PWR_ON,
253 	.f_max			= 48000000,
254 	.pwrreg_clkgate		= true,
255 	.pwrreg_nopower		= true,
256 	.init			= mmci_variant_init,
257 };
258 
259 static struct variant_data variant_stm32_sdmmc = {
260 	.fifosize		= 16 * 4,
261 	.fifohalfsize		= 8 * 4,
262 	.f_max			= 208000000,
263 	.stm32_clkdiv		= true,
264 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
265 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
266 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
267 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
268 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
269 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
270 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
271 	.datactrl_first		= true,
272 	.datacnt_useless	= true,
273 	.datalength_bits	= 25,
274 	.datactrl_blocksz	= 14,
275 	.stm32_idmabsize_mask	= GENMASK(12, 5),
276 	.init			= sdmmc_variant_init,
277 };
278 
279 static struct variant_data variant_qcom = {
280 	.fifosize		= 16 * 4,
281 	.fifohalfsize		= 8 * 4,
282 	.clkreg			= MCI_CLK_ENABLE,
283 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
284 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
285 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
286 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
287 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
288 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
289 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
290 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
291 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
292 	.blksz_datactrl4	= true,
293 	.datalength_bits	= 24,
294 	.datactrl_blocksz	= 11,
295 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
296 	.pwrreg_powerup		= MCI_PWR_UP,
297 	.f_max			= 208000000,
298 	.explicit_mclk_control	= true,
299 	.qcom_fifo		= true,
300 	.qcom_dml		= true,
301 	.mmcimask1		= true,
302 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
303 	.start_err		= MCI_STARTBITERR,
304 	.opendrain		= MCI_ROD,
305 	.init			= qcom_variant_init,
306 };
307 
308 /* Busy detection for the ST Micro variant */
309 static int mmci_card_busy(struct mmc_host *mmc)
310 {
311 	struct mmci_host *host = mmc_priv(mmc);
312 	unsigned long flags;
313 	int busy = 0;
314 
315 	spin_lock_irqsave(&host->lock, flags);
316 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
317 		busy = 1;
318 	spin_unlock_irqrestore(&host->lock, flags);
319 
320 	return busy;
321 }
322 
323 static void mmci_reg_delay(struct mmci_host *host)
324 {
325 	/*
326 	 * According to the spec, at least three feedback clock cycles
327 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
328 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
329 	 * Worst delay time during card init is at 100 kHz => 30 us.
330 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
331 	 */
332 	if (host->cclk < 25000000)
333 		udelay(30);
334 	else
335 		ndelay(120);
336 }
337 
338 /*
339  * This must be called with host->lock held
340  */
341 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
342 {
343 	if (host->clk_reg != clk) {
344 		host->clk_reg = clk;
345 		writel(clk, host->base + MMCICLOCK);
346 	}
347 }
348 
349 /*
350  * This must be called with host->lock held
351  */
352 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
353 {
354 	if (host->pwr_reg != pwr) {
355 		host->pwr_reg = pwr;
356 		writel(pwr, host->base + MMCIPOWER);
357 	}
358 }
359 
360 /*
361  * This must be called with host->lock held
362  */
363 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
364 {
365 	/* Keep busy mode in DPSM if enabled */
366 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
367 
368 	if (host->datactrl_reg != datactrl) {
369 		host->datactrl_reg = datactrl;
370 		writel(datactrl, host->base + MMCIDATACTRL);
371 	}
372 }
373 
374 /*
375  * This must be called with host->lock held
376  */
377 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
378 {
379 	struct variant_data *variant = host->variant;
380 	u32 clk = variant->clkreg;
381 
382 	/* Make sure cclk reflects the current calculated clock */
383 	host->cclk = 0;
384 
385 	if (desired) {
386 		if (variant->explicit_mclk_control) {
387 			host->cclk = host->mclk;
388 		} else if (desired >= host->mclk) {
389 			clk = MCI_CLK_BYPASS;
390 			if (variant->st_clkdiv)
391 				clk |= MCI_ST_UX500_NEG_EDGE;
392 			host->cclk = host->mclk;
393 		} else if (variant->st_clkdiv) {
394 			/*
395 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
396 			 * => clkdiv = (mclk / f) - 2
397 			 * Round the divider up so we don't exceed the max
398 			 * frequency
399 			 */
400 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
401 			if (clk >= 256)
402 				clk = 255;
403 			host->cclk = host->mclk / (clk + 2);
404 		} else {
405 			/*
406 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
407 			 * => clkdiv = mclk / (2 * f) - 1
408 			 */
409 			clk = host->mclk / (2 * desired) - 1;
410 			if (clk >= 256)
411 				clk = 255;
412 			host->cclk = host->mclk / (2 * (clk + 1));
413 		}
414 
415 		clk |= variant->clkreg_enable;
416 		clk |= MCI_CLK_ENABLE;
417 		/* This hasn't proven to be worthwhile */
418 		/* clk |= MCI_CLK_PWRSAVE; */
419 	}
420 
421 	/* Set actual clock for debug */
422 	host->mmc->actual_clock = host->cclk;
423 
424 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
425 		clk |= MCI_4BIT_BUS;
426 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
427 		clk |= variant->clkreg_8bit_bus_enable;
428 
429 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
430 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
431 		clk |= variant->clkreg_neg_edge_enable;
432 
433 	mmci_write_clkreg(host, clk);
434 }
435 
436 void mmci_dma_release(struct mmci_host *host)
437 {
438 	if (host->ops && host->ops->dma_release)
439 		host->ops->dma_release(host);
440 
441 	host->use_dma = false;
442 }
443 
444 void mmci_dma_setup(struct mmci_host *host)
445 {
446 	if (!host->ops || !host->ops->dma_setup)
447 		return;
448 
449 	if (host->ops->dma_setup(host))
450 		return;
451 
452 	/* initialize pre request cookie */
453 	host->next_cookie = 1;
454 
455 	host->use_dma = true;
456 }
457 
458 /*
459  * Validate mmc prerequisites
460  */
461 static int mmci_validate_data(struct mmci_host *host,
462 			      struct mmc_data *data)
463 {
464 	if (!data)
465 		return 0;
466 
467 	if (!is_power_of_2(data->blksz)) {
468 		dev_err(mmc_dev(host->mmc),
469 			"unsupported block size (%d bytes)\n", data->blksz);
470 		return -EINVAL;
471 	}
472 
473 	if (host->ops && host->ops->validate_data)
474 		return host->ops->validate_data(host, data);
475 
476 	return 0;
477 }
478 
479 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
480 {
481 	int err;
482 
483 	if (!host->ops || !host->ops->prep_data)
484 		return 0;
485 
486 	err = host->ops->prep_data(host, data, next);
487 
488 	if (next && !err)
489 		data->host_cookie = ++host->next_cookie < 0 ?
490 			1 : host->next_cookie;
491 
492 	return err;
493 }
494 
495 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
496 		      int err)
497 {
498 	if (host->ops && host->ops->unprep_data)
499 		host->ops->unprep_data(host, data, err);
500 
501 	data->host_cookie = 0;
502 }
503 
504 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
505 {
506 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
507 
508 	if (host->ops && host->ops->get_next_data)
509 		host->ops->get_next_data(host, data);
510 }
511 
512 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
513 {
514 	struct mmc_data *data = host->data;
515 	int ret;
516 
517 	if (!host->use_dma)
518 		return -EINVAL;
519 
520 	ret = mmci_prep_data(host, data, false);
521 	if (ret)
522 		return ret;
523 
524 	if (!host->ops || !host->ops->dma_start)
525 		return -EINVAL;
526 
527 	/* Okay, go for it. */
528 	dev_vdbg(mmc_dev(host->mmc),
529 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
530 		 data->sg_len, data->blksz, data->blocks, data->flags);
531 
532 	host->ops->dma_start(host, &datactrl);
533 
534 	/* Trigger the DMA transfer */
535 	mmci_write_datactrlreg(host, datactrl);
536 
537 	/*
538 	 * Let the MMCI say when the data is ended and it's time
539 	 * to fire next DMA request. When that happens, MMCI will
540 	 * call mmci_data_end()
541 	 */
542 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
543 	       host->base + MMCIMASK0);
544 	return 0;
545 }
546 
547 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
548 {
549 	if (!host->use_dma)
550 		return;
551 
552 	if (host->ops && host->ops->dma_finalize)
553 		host->ops->dma_finalize(host, data);
554 }
555 
556 void mmci_dma_error(struct mmci_host *host)
557 {
558 	if (!host->use_dma)
559 		return;
560 
561 	if (host->ops && host->ops->dma_error)
562 		host->ops->dma_error(host);
563 }
564 
565 static void
566 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
567 {
568 	writel(0, host->base + MMCICOMMAND);
569 
570 	BUG_ON(host->data);
571 
572 	host->mrq = NULL;
573 	host->cmd = NULL;
574 
575 	mmc_request_done(host->mmc, mrq);
576 }
577 
578 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
579 {
580 	void __iomem *base = host->base;
581 	struct variant_data *variant = host->variant;
582 
583 	if (host->singleirq) {
584 		unsigned int mask0 = readl(base + MMCIMASK0);
585 
586 		mask0 &= ~variant->irq_pio_mask;
587 		mask0 |= mask;
588 
589 		writel(mask0, base + MMCIMASK0);
590 	}
591 
592 	if (variant->mmcimask1)
593 		writel(mask, base + MMCIMASK1);
594 
595 	host->mask1_reg = mask;
596 }
597 
598 static void mmci_stop_data(struct mmci_host *host)
599 {
600 	mmci_write_datactrlreg(host, 0);
601 	mmci_set_mask1(host, 0);
602 	host->data = NULL;
603 }
604 
605 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
606 {
607 	unsigned int flags = SG_MITER_ATOMIC;
608 
609 	if (data->flags & MMC_DATA_READ)
610 		flags |= SG_MITER_TO_SG;
611 	else
612 		flags |= SG_MITER_FROM_SG;
613 
614 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
615 }
616 
617 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
618 {
619 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
620 }
621 
622 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
623 {
624 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
625 }
626 
627 /*
628  * All the DMA operation mode stuff goes inside this ifdef.
629  * This assumes that you have a generic DMA device interface,
630  * no custom DMA interfaces are supported.
631  */
632 #ifdef CONFIG_DMA_ENGINE
633 struct mmci_dmae_next {
634 	struct dma_async_tx_descriptor *desc;
635 	struct dma_chan	*chan;
636 };
637 
638 struct mmci_dmae_priv {
639 	struct dma_chan	*cur;
640 	struct dma_chan	*rx_channel;
641 	struct dma_chan	*tx_channel;
642 	struct dma_async_tx_descriptor	*desc_current;
643 	struct mmci_dmae_next next_data;
644 };
645 
646 int mmci_dmae_setup(struct mmci_host *host)
647 {
648 	const char *rxname, *txname;
649 	struct mmci_dmae_priv *dmae;
650 
651 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
652 	if (!dmae)
653 		return -ENOMEM;
654 
655 	host->dma_priv = dmae;
656 
657 	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
658 						     "rx");
659 	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
660 						     "tx");
661 
662 	/*
663 	 * If only an RX channel is specified, the driver will
664 	 * attempt to use it bidirectionally, however if it is
665 	 * is specified but cannot be located, DMA will be disabled.
666 	 */
667 	if (dmae->rx_channel && !dmae->tx_channel)
668 		dmae->tx_channel = dmae->rx_channel;
669 
670 	if (dmae->rx_channel)
671 		rxname = dma_chan_name(dmae->rx_channel);
672 	else
673 		rxname = "none";
674 
675 	if (dmae->tx_channel)
676 		txname = dma_chan_name(dmae->tx_channel);
677 	else
678 		txname = "none";
679 
680 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
681 		 rxname, txname);
682 
683 	/*
684 	 * Limit the maximum segment size in any SG entry according to
685 	 * the parameters of the DMA engine device.
686 	 */
687 	if (dmae->tx_channel) {
688 		struct device *dev = dmae->tx_channel->device->dev;
689 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
690 
691 		if (max_seg_size < host->mmc->max_seg_size)
692 			host->mmc->max_seg_size = max_seg_size;
693 	}
694 	if (dmae->rx_channel) {
695 		struct device *dev = dmae->rx_channel->device->dev;
696 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
697 
698 		if (max_seg_size < host->mmc->max_seg_size)
699 			host->mmc->max_seg_size = max_seg_size;
700 	}
701 
702 	if (!dmae->tx_channel || !dmae->rx_channel) {
703 		mmci_dmae_release(host);
704 		return -EINVAL;
705 	}
706 
707 	return 0;
708 }
709 
710 /*
711  * This is used in or so inline it
712  * so it can be discarded.
713  */
714 void mmci_dmae_release(struct mmci_host *host)
715 {
716 	struct mmci_dmae_priv *dmae = host->dma_priv;
717 
718 	if (dmae->rx_channel)
719 		dma_release_channel(dmae->rx_channel);
720 	if (dmae->tx_channel)
721 		dma_release_channel(dmae->tx_channel);
722 	dmae->rx_channel = dmae->tx_channel = NULL;
723 }
724 
725 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
726 {
727 	struct mmci_dmae_priv *dmae = host->dma_priv;
728 	struct dma_chan *chan;
729 
730 	if (data->flags & MMC_DATA_READ)
731 		chan = dmae->rx_channel;
732 	else
733 		chan = dmae->tx_channel;
734 
735 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
736 		     mmc_get_dma_dir(data));
737 }
738 
739 void mmci_dmae_error(struct mmci_host *host)
740 {
741 	struct mmci_dmae_priv *dmae = host->dma_priv;
742 
743 	if (!dma_inprogress(host))
744 		return;
745 
746 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
747 	dmaengine_terminate_all(dmae->cur);
748 	host->dma_in_progress = false;
749 	dmae->cur = NULL;
750 	dmae->desc_current = NULL;
751 	host->data->host_cookie = 0;
752 
753 	mmci_dma_unmap(host, host->data);
754 }
755 
756 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
757 {
758 	struct mmci_dmae_priv *dmae = host->dma_priv;
759 	u32 status;
760 	int i;
761 
762 	if (!dma_inprogress(host))
763 		return;
764 
765 	/* Wait up to 1ms for the DMA to complete */
766 	for (i = 0; ; i++) {
767 		status = readl(host->base + MMCISTATUS);
768 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
769 			break;
770 		udelay(10);
771 	}
772 
773 	/*
774 	 * Check to see whether we still have some data left in the FIFO -
775 	 * this catches DMA controllers which are unable to monitor the
776 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
777 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
778 	 */
779 	if (status & MCI_RXDATAAVLBLMASK) {
780 		mmci_dma_error(host);
781 		if (!data->error)
782 			data->error = -EIO;
783 	} else if (!data->host_cookie) {
784 		mmci_dma_unmap(host, data);
785 	}
786 
787 	/*
788 	 * Use of DMA with scatter-gather is impossible.
789 	 * Give up with DMA and switch back to PIO mode.
790 	 */
791 	if (status & MCI_RXDATAAVLBLMASK) {
792 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
793 		mmci_dma_release(host);
794 	}
795 
796 	host->dma_in_progress = false;
797 	dmae->cur = NULL;
798 	dmae->desc_current = NULL;
799 }
800 
801 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
802 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
803 				struct dma_chan **dma_chan,
804 				struct dma_async_tx_descriptor **dma_desc)
805 {
806 	struct mmci_dmae_priv *dmae = host->dma_priv;
807 	struct variant_data *variant = host->variant;
808 	struct dma_slave_config conf = {
809 		.src_addr = host->phybase + MMCIFIFO,
810 		.dst_addr = host->phybase + MMCIFIFO,
811 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
812 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
813 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
814 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
815 		.device_fc = false,
816 	};
817 	struct dma_chan *chan;
818 	struct dma_device *device;
819 	struct dma_async_tx_descriptor *desc;
820 	int nr_sg;
821 	unsigned long flags = DMA_CTRL_ACK;
822 
823 	if (data->flags & MMC_DATA_READ) {
824 		conf.direction = DMA_DEV_TO_MEM;
825 		chan = dmae->rx_channel;
826 	} else {
827 		conf.direction = DMA_MEM_TO_DEV;
828 		chan = dmae->tx_channel;
829 	}
830 
831 	/* If there's no DMA channel, fall back to PIO */
832 	if (!chan)
833 		return -EINVAL;
834 
835 	/* If less than or equal to the fifo size, don't bother with DMA */
836 	if (data->blksz * data->blocks <= variant->fifosize)
837 		return -EINVAL;
838 
839 	device = chan->device;
840 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
841 			   mmc_get_dma_dir(data));
842 	if (nr_sg == 0)
843 		return -EINVAL;
844 
845 	if (host->variant->qcom_dml)
846 		flags |= DMA_PREP_INTERRUPT;
847 
848 	dmaengine_slave_config(chan, &conf);
849 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
850 					    conf.direction, flags);
851 	if (!desc)
852 		goto unmap_exit;
853 
854 	*dma_chan = chan;
855 	*dma_desc = desc;
856 
857 	return 0;
858 
859  unmap_exit:
860 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
861 		     mmc_get_dma_dir(data));
862 	return -ENOMEM;
863 }
864 
865 int mmci_dmae_prep_data(struct mmci_host *host,
866 			struct mmc_data *data,
867 			bool next)
868 {
869 	struct mmci_dmae_priv *dmae = host->dma_priv;
870 	struct mmci_dmae_next *nd = &dmae->next_data;
871 
872 	if (!host->use_dma)
873 		return -EINVAL;
874 
875 	if (next)
876 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
877 	/* Check if next job is already prepared. */
878 	if (dmae->cur && dmae->desc_current)
879 		return 0;
880 
881 	/* No job were prepared thus do it now. */
882 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
883 				    &dmae->desc_current);
884 }
885 
886 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
887 {
888 	struct mmci_dmae_priv *dmae = host->dma_priv;
889 
890 	host->dma_in_progress = true;
891 	dmaengine_submit(dmae->desc_current);
892 	dma_async_issue_pending(dmae->cur);
893 
894 	*datactrl |= MCI_DPSM_DMAENABLE;
895 
896 	return 0;
897 }
898 
899 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
900 {
901 	struct mmci_dmae_priv *dmae = host->dma_priv;
902 	struct mmci_dmae_next *next = &dmae->next_data;
903 
904 	if (!host->use_dma)
905 		return;
906 
907 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
908 
909 	dmae->desc_current = next->desc;
910 	dmae->cur = next->chan;
911 	next->desc = NULL;
912 	next->chan = NULL;
913 }
914 
915 void mmci_dmae_unprep_data(struct mmci_host *host,
916 			   struct mmc_data *data, int err)
917 
918 {
919 	struct mmci_dmae_priv *dmae = host->dma_priv;
920 
921 	if (!host->use_dma)
922 		return;
923 
924 	mmci_dma_unmap(host, data);
925 
926 	if (err) {
927 		struct mmci_dmae_next *next = &dmae->next_data;
928 		struct dma_chan *chan;
929 		if (data->flags & MMC_DATA_READ)
930 			chan = dmae->rx_channel;
931 		else
932 			chan = dmae->tx_channel;
933 		dmaengine_terminate_all(chan);
934 
935 		if (dmae->desc_current == next->desc)
936 			dmae->desc_current = NULL;
937 
938 		if (dmae->cur == next->chan) {
939 			host->dma_in_progress = false;
940 			dmae->cur = NULL;
941 		}
942 
943 		next->desc = NULL;
944 		next->chan = NULL;
945 	}
946 }
947 
948 static struct mmci_host_ops mmci_variant_ops = {
949 	.prep_data = mmci_dmae_prep_data,
950 	.unprep_data = mmci_dmae_unprep_data,
951 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
952 	.get_next_data = mmci_dmae_get_next_data,
953 	.dma_setup = mmci_dmae_setup,
954 	.dma_release = mmci_dmae_release,
955 	.dma_start = mmci_dmae_start,
956 	.dma_finalize = mmci_dmae_finalize,
957 	.dma_error = mmci_dmae_error,
958 };
959 #else
960 static struct mmci_host_ops mmci_variant_ops = {
961 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
962 };
963 #endif
964 
965 void mmci_variant_init(struct mmci_host *host)
966 {
967 	host->ops = &mmci_variant_ops;
968 }
969 
970 void ux500v2_variant_init(struct mmci_host *host)
971 {
972 	host->ops = &mmci_variant_ops;
973 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
974 }
975 
976 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
977 {
978 	struct mmci_host *host = mmc_priv(mmc);
979 	struct mmc_data *data = mrq->data;
980 
981 	if (!data)
982 		return;
983 
984 	WARN_ON(data->host_cookie);
985 
986 	if (mmci_validate_data(host, data))
987 		return;
988 
989 	mmci_prep_data(host, data, true);
990 }
991 
992 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
993 			      int err)
994 {
995 	struct mmci_host *host = mmc_priv(mmc);
996 	struct mmc_data *data = mrq->data;
997 
998 	if (!data || !data->host_cookie)
999 		return;
1000 
1001 	mmci_unprep_data(host, data, err);
1002 }
1003 
1004 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1005 {
1006 	struct variant_data *variant = host->variant;
1007 	unsigned int datactrl, timeout, irqmask;
1008 	unsigned long long clks;
1009 	void __iomem *base;
1010 	int blksz_bits;
1011 
1012 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1013 		data->blksz, data->blocks, data->flags);
1014 
1015 	host->data = data;
1016 	host->size = data->blksz * data->blocks;
1017 	data->bytes_xfered = 0;
1018 
1019 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1020 	do_div(clks, NSEC_PER_SEC);
1021 
1022 	timeout = data->timeout_clks + (unsigned int)clks;
1023 
1024 	base = host->base;
1025 	writel(timeout, base + MMCIDATATIMER);
1026 	writel(host->size, base + MMCIDATALENGTH);
1027 
1028 	blksz_bits = ffs(data->blksz) - 1;
1029 	BUG_ON(1 << blksz_bits != data->blksz);
1030 
1031 	if (variant->blksz_datactrl16)
1032 		datactrl = variant->datactrl_dpsm_enable | (data->blksz << 16);
1033 	else if (variant->blksz_datactrl4)
1034 		datactrl = variant->datactrl_dpsm_enable | (data->blksz << 4);
1035 	else
1036 		datactrl = variant->datactrl_dpsm_enable | blksz_bits << 4;
1037 
1038 	if (data->flags & MMC_DATA_READ)
1039 		datactrl |= MCI_DPSM_DIRECTION;
1040 
1041 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1042 		u32 clk;
1043 
1044 		datactrl |= variant->datactrl_mask_sdio;
1045 
1046 		/*
1047 		 * The ST Micro variant for SDIO small write transfers
1048 		 * needs to have clock H/W flow control disabled,
1049 		 * otherwise the transfer will not start. The threshold
1050 		 * depends on the rate of MCLK.
1051 		 */
1052 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1053 		    (host->size < 8 ||
1054 		     (host->size <= 8 && host->mclk > 50000000)))
1055 			clk = host->clk_reg & ~variant->clkreg_enable;
1056 		else
1057 			clk = host->clk_reg | variant->clkreg_enable;
1058 
1059 		mmci_write_clkreg(host, clk);
1060 	}
1061 
1062 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1063 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1064 		datactrl |= variant->datactrl_mask_ddrmode;
1065 
1066 	/*
1067 	 * Attempt to use DMA operation mode, if this
1068 	 * should fail, fall back to PIO mode
1069 	 */
1070 	if (!mmci_dma_start(host, datactrl))
1071 		return;
1072 
1073 	/* IRQ mode, map the SG list for CPU reading/writing */
1074 	mmci_init_sg(host, data);
1075 
1076 	if (data->flags & MMC_DATA_READ) {
1077 		irqmask = MCI_RXFIFOHALFFULLMASK;
1078 
1079 		/*
1080 		 * If we have less than the fifo 'half-full' threshold to
1081 		 * transfer, trigger a PIO interrupt as soon as any data
1082 		 * is available.
1083 		 */
1084 		if (host->size < variant->fifohalfsize)
1085 			irqmask |= MCI_RXDATAAVLBLMASK;
1086 	} else {
1087 		/*
1088 		 * We don't actually need to include "FIFO empty" here
1089 		 * since its implicit in "FIFO half empty".
1090 		 */
1091 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1092 	}
1093 
1094 	mmci_write_datactrlreg(host, datactrl);
1095 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1096 	mmci_set_mask1(host, irqmask);
1097 }
1098 
1099 static void
1100 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1101 {
1102 	void __iomem *base = host->base;
1103 
1104 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1105 	    cmd->opcode, cmd->arg, cmd->flags);
1106 
1107 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1108 		writel(0, base + MMCICOMMAND);
1109 		mmci_reg_delay(host);
1110 	}
1111 
1112 	if (host->variant->cmdreg_stop &&
1113 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1114 		c |= host->variant->cmdreg_stop;
1115 
1116 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1117 	if (cmd->flags & MMC_RSP_PRESENT) {
1118 		if (cmd->flags & MMC_RSP_136)
1119 			c |= host->variant->cmdreg_lrsp_crc;
1120 		else if (cmd->flags & MMC_RSP_CRC)
1121 			c |= host->variant->cmdreg_srsp_crc;
1122 		else
1123 			c |= host->variant->cmdreg_srsp;
1124 	}
1125 	if (/*interrupt*/0)
1126 		c |= MCI_CPSM_INTERRUPT;
1127 
1128 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1129 		c |= host->variant->data_cmd_enable;
1130 
1131 	host->cmd = cmd;
1132 
1133 	writel(cmd->arg, base + MMCIARGUMENT);
1134 	writel(c, base + MMCICOMMAND);
1135 }
1136 
1137 static void mmci_stop_command(struct mmci_host *host)
1138 {
1139 	host->stop_abort.error = 0;
1140 	mmci_start_command(host, &host->stop_abort, 0);
1141 }
1142 
1143 static void
1144 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1145 	      unsigned int status)
1146 {
1147 	unsigned int status_err;
1148 
1149 	/* Make sure we have data to handle */
1150 	if (!data)
1151 		return;
1152 
1153 	/* First check for errors */
1154 	status_err = status & (host->variant->start_err |
1155 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1156 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1157 
1158 	if (status_err) {
1159 		u32 remain, success;
1160 
1161 		/* Terminate the DMA transfer */
1162 		mmci_dma_error(host);
1163 
1164 		/*
1165 		 * Calculate how far we are into the transfer.  Note that
1166 		 * the data counter gives the number of bytes transferred
1167 		 * on the MMC bus, not on the host side.  On reads, this
1168 		 * can be as much as a FIFO-worth of data ahead.  This
1169 		 * matters for FIFO overruns only.
1170 		 */
1171 		if (!host->variant->datacnt_useless) {
1172 			remain = readl(host->base + MMCIDATACNT);
1173 			success = data->blksz * data->blocks - remain;
1174 		} else {
1175 			success = 0;
1176 		}
1177 
1178 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1179 			status_err, success);
1180 		if (status_err & MCI_DATACRCFAIL) {
1181 			/* Last block was not successful */
1182 			success -= 1;
1183 			data->error = -EILSEQ;
1184 		} else if (status_err & MCI_DATATIMEOUT) {
1185 			data->error = -ETIMEDOUT;
1186 		} else if (status_err & MCI_STARTBITERR) {
1187 			data->error = -ECOMM;
1188 		} else if (status_err & MCI_TXUNDERRUN) {
1189 			data->error = -EIO;
1190 		} else if (status_err & MCI_RXOVERRUN) {
1191 			if (success > host->variant->fifosize)
1192 				success -= host->variant->fifosize;
1193 			else
1194 				success = 0;
1195 			data->error = -EIO;
1196 		}
1197 		data->bytes_xfered = round_down(success, data->blksz);
1198 	}
1199 
1200 	if (status & MCI_DATABLOCKEND)
1201 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1202 
1203 	if (status & MCI_DATAEND || data->error) {
1204 		mmci_dma_finalize(host, data);
1205 
1206 		mmci_stop_data(host);
1207 
1208 		if (!data->error)
1209 			/* The error clause is handled above, success! */
1210 			data->bytes_xfered = data->blksz * data->blocks;
1211 
1212 		if (!data->stop) {
1213 			if (host->variant->cmdreg_stop && data->error)
1214 				mmci_stop_command(host);
1215 			else
1216 				mmci_request_end(host, data->mrq);
1217 		} else if (host->mrq->sbc && !data->error) {
1218 			mmci_request_end(host, data->mrq);
1219 		} else {
1220 			mmci_start_command(host, data->stop, 0);
1221 		}
1222 	}
1223 }
1224 
1225 static void
1226 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1227 	     unsigned int status)
1228 {
1229 	void __iomem *base = host->base;
1230 	bool sbc;
1231 
1232 	if (!cmd)
1233 		return;
1234 
1235 	sbc = (cmd == host->mrq->sbc);
1236 
1237 	/*
1238 	 * We need to be one of these interrupts to be considered worth
1239 	 * handling. Note that we tag on any latent IRQs postponed
1240 	 * due to waiting for busy status.
1241 	 */
1242 	if (!((status|host->busy_status) &
1243 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1244 		return;
1245 
1246 	/*
1247 	 * ST Micro variant: handle busy detection.
1248 	 */
1249 	if (host->variant->busy_detect) {
1250 		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1251 
1252 		/* We are busy with a command, return */
1253 		if (host->busy_status &&
1254 		    (status & host->variant->busy_detect_flag))
1255 			return;
1256 
1257 		/*
1258 		 * We were not busy, but we now got a busy response on
1259 		 * something that was not an error, and we double-check
1260 		 * that the special busy status bit is still set before
1261 		 * proceeding.
1262 		 */
1263 		if (!host->busy_status && busy_resp &&
1264 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1265 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1266 
1267 			/* Clear the busy start IRQ */
1268 			writel(host->variant->busy_detect_mask,
1269 			       host->base + MMCICLEAR);
1270 
1271 			/* Unmask the busy end IRQ */
1272 			writel(readl(base + MMCIMASK0) |
1273 			       host->variant->busy_detect_mask,
1274 			       base + MMCIMASK0);
1275 			/*
1276 			 * Now cache the last response status code (until
1277 			 * the busy bit goes low), and return.
1278 			 */
1279 			host->busy_status =
1280 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1281 			return;
1282 		}
1283 
1284 		/*
1285 		 * At this point we are not busy with a command, we have
1286 		 * not received a new busy request, clear and mask the busy
1287 		 * end IRQ and fall through to process the IRQ.
1288 		 */
1289 		if (host->busy_status) {
1290 
1291 			writel(host->variant->busy_detect_mask,
1292 			       host->base + MMCICLEAR);
1293 
1294 			writel(readl(base + MMCIMASK0) &
1295 			       ~host->variant->busy_detect_mask,
1296 			       base + MMCIMASK0);
1297 			host->busy_status = 0;
1298 		}
1299 	}
1300 
1301 	host->cmd = NULL;
1302 
1303 	if (status & MCI_CMDTIMEOUT) {
1304 		cmd->error = -ETIMEDOUT;
1305 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1306 		cmd->error = -EILSEQ;
1307 	} else {
1308 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1309 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1310 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1311 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1312 	}
1313 
1314 	if ((!sbc && !cmd->data) || cmd->error) {
1315 		if (host->data) {
1316 			/* Terminate the DMA transfer */
1317 			mmci_dma_error(host);
1318 
1319 			mmci_stop_data(host);
1320 			if (host->variant->cmdreg_stop && cmd->error) {
1321 				mmci_stop_command(host);
1322 				return;
1323 			}
1324 		}
1325 		mmci_request_end(host, host->mrq);
1326 	} else if (sbc) {
1327 		mmci_start_command(host, host->mrq->cmd, 0);
1328 	} else if (!host->variant->datactrl_first &&
1329 		   !(cmd->data->flags & MMC_DATA_READ)) {
1330 		mmci_start_data(host, cmd->data);
1331 	}
1332 }
1333 
1334 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1335 {
1336 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1337 }
1338 
1339 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1340 {
1341 	/*
1342 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1343 	 * from the fifo range should be used
1344 	 */
1345 	if (status & MCI_RXFIFOHALFFULL)
1346 		return host->variant->fifohalfsize;
1347 	else if (status & MCI_RXDATAAVLBL)
1348 		return 4;
1349 
1350 	return 0;
1351 }
1352 
1353 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1354 {
1355 	void __iomem *base = host->base;
1356 	char *ptr = buffer;
1357 	u32 status = readl(host->base + MMCISTATUS);
1358 	int host_remain = host->size;
1359 
1360 	do {
1361 		int count = host->get_rx_fifocnt(host, status, host_remain);
1362 
1363 		if (count > remain)
1364 			count = remain;
1365 
1366 		if (count <= 0)
1367 			break;
1368 
1369 		/*
1370 		 * SDIO especially may want to send something that is
1371 		 * not divisible by 4 (as opposed to card sectors
1372 		 * etc). Therefore make sure to always read the last bytes
1373 		 * while only doing full 32-bit reads towards the FIFO.
1374 		 */
1375 		if (unlikely(count & 0x3)) {
1376 			if (count < 4) {
1377 				unsigned char buf[4];
1378 				ioread32_rep(base + MMCIFIFO, buf, 1);
1379 				memcpy(ptr, buf, count);
1380 			} else {
1381 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1382 				count &= ~0x3;
1383 			}
1384 		} else {
1385 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1386 		}
1387 
1388 		ptr += count;
1389 		remain -= count;
1390 		host_remain -= count;
1391 
1392 		if (remain == 0)
1393 			break;
1394 
1395 		status = readl(base + MMCISTATUS);
1396 	} while (status & MCI_RXDATAAVLBL);
1397 
1398 	return ptr - buffer;
1399 }
1400 
1401 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1402 {
1403 	struct variant_data *variant = host->variant;
1404 	void __iomem *base = host->base;
1405 	char *ptr = buffer;
1406 
1407 	do {
1408 		unsigned int count, maxcnt;
1409 
1410 		maxcnt = status & MCI_TXFIFOEMPTY ?
1411 			 variant->fifosize : variant->fifohalfsize;
1412 		count = min(remain, maxcnt);
1413 
1414 		/*
1415 		 * SDIO especially may want to send something that is
1416 		 * not divisible by 4 (as opposed to card sectors
1417 		 * etc), and the FIFO only accept full 32-bit writes.
1418 		 * So compensate by adding +3 on the count, a single
1419 		 * byte become a 32bit write, 7 bytes will be two
1420 		 * 32bit writes etc.
1421 		 */
1422 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1423 
1424 		ptr += count;
1425 		remain -= count;
1426 
1427 		if (remain == 0)
1428 			break;
1429 
1430 		status = readl(base + MMCISTATUS);
1431 	} while (status & MCI_TXFIFOHALFEMPTY);
1432 
1433 	return ptr - buffer;
1434 }
1435 
1436 /*
1437  * PIO data transfer IRQ handler.
1438  */
1439 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1440 {
1441 	struct mmci_host *host = dev_id;
1442 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1443 	struct variant_data *variant = host->variant;
1444 	void __iomem *base = host->base;
1445 	u32 status;
1446 
1447 	status = readl(base + MMCISTATUS);
1448 
1449 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1450 
1451 	do {
1452 		unsigned int remain, len;
1453 		char *buffer;
1454 
1455 		/*
1456 		 * For write, we only need to test the half-empty flag
1457 		 * here - if the FIFO is completely empty, then by
1458 		 * definition it is more than half empty.
1459 		 *
1460 		 * For read, check for data available.
1461 		 */
1462 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1463 			break;
1464 
1465 		if (!sg_miter_next(sg_miter))
1466 			break;
1467 
1468 		buffer = sg_miter->addr;
1469 		remain = sg_miter->length;
1470 
1471 		len = 0;
1472 		if (status & MCI_RXACTIVE)
1473 			len = mmci_pio_read(host, buffer, remain);
1474 		if (status & MCI_TXACTIVE)
1475 			len = mmci_pio_write(host, buffer, remain, status);
1476 
1477 		sg_miter->consumed = len;
1478 
1479 		host->size -= len;
1480 		remain -= len;
1481 
1482 		if (remain)
1483 			break;
1484 
1485 		status = readl(base + MMCISTATUS);
1486 	} while (1);
1487 
1488 	sg_miter_stop(sg_miter);
1489 
1490 	/*
1491 	 * If we have less than the fifo 'half-full' threshold to transfer,
1492 	 * trigger a PIO interrupt as soon as any data is available.
1493 	 */
1494 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1495 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1496 
1497 	/*
1498 	 * If we run out of data, disable the data IRQs; this
1499 	 * prevents a race where the FIFO becomes empty before
1500 	 * the chip itself has disabled the data path, and
1501 	 * stops us racing with our data end IRQ.
1502 	 */
1503 	if (host->size == 0) {
1504 		mmci_set_mask1(host, 0);
1505 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1506 	}
1507 
1508 	return IRQ_HANDLED;
1509 }
1510 
1511 /*
1512  * Handle completion of command and data transfers.
1513  */
1514 static irqreturn_t mmci_irq(int irq, void *dev_id)
1515 {
1516 	struct mmci_host *host = dev_id;
1517 	u32 status;
1518 	int ret = 0;
1519 
1520 	spin_lock(&host->lock);
1521 
1522 	do {
1523 		status = readl(host->base + MMCISTATUS);
1524 
1525 		if (host->singleirq) {
1526 			if (status & host->mask1_reg)
1527 				mmci_pio_irq(irq, dev_id);
1528 
1529 			status &= ~host->variant->irq_pio_mask;
1530 		}
1531 
1532 		/*
1533 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1534 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1535 		 * detection variant is handled. Considering the HW seems to be
1536 		 * triggering the IRQ on both edges while monitoring DAT0 for
1537 		 * busy completion and that same status bit is used to monitor
1538 		 * start and end of busy detection, special care must be taken
1539 		 * to make sure that both start and end interrupts are always
1540 		 * cleared one after the other.
1541 		 */
1542 		status &= readl(host->base + MMCIMASK0);
1543 		if (host->variant->busy_detect)
1544 			writel(status & ~host->variant->busy_detect_mask,
1545 			       host->base + MMCICLEAR);
1546 		else
1547 			writel(status, host->base + MMCICLEAR);
1548 
1549 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1550 
1551 		if (host->variant->reversed_irq_handling) {
1552 			mmci_data_irq(host, host->data, status);
1553 			mmci_cmd_irq(host, host->cmd, status);
1554 		} else {
1555 			mmci_cmd_irq(host, host->cmd, status);
1556 			mmci_data_irq(host, host->data, status);
1557 		}
1558 
1559 		/*
1560 		 * Don't poll for busy completion in irq context.
1561 		 */
1562 		if (host->variant->busy_detect && host->busy_status)
1563 			status &= ~host->variant->busy_detect_flag;
1564 
1565 		ret = 1;
1566 	} while (status);
1567 
1568 	spin_unlock(&host->lock);
1569 
1570 	return IRQ_RETVAL(ret);
1571 }
1572 
1573 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1574 {
1575 	struct mmci_host *host = mmc_priv(mmc);
1576 	unsigned long flags;
1577 
1578 	WARN_ON(host->mrq != NULL);
1579 
1580 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1581 	if (mrq->cmd->error) {
1582 		mmc_request_done(mmc, mrq);
1583 		return;
1584 	}
1585 
1586 	spin_lock_irqsave(&host->lock, flags);
1587 
1588 	host->mrq = mrq;
1589 
1590 	if (mrq->data)
1591 		mmci_get_next_data(host, mrq->data);
1592 
1593 	if (mrq->data &&
1594 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1595 		mmci_start_data(host, mrq->data);
1596 
1597 	if (mrq->sbc)
1598 		mmci_start_command(host, mrq->sbc, 0);
1599 	else
1600 		mmci_start_command(host, mrq->cmd, 0);
1601 
1602 	spin_unlock_irqrestore(&host->lock, flags);
1603 }
1604 
1605 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1606 {
1607 	struct mmci_host *host = mmc_priv(mmc);
1608 	struct variant_data *variant = host->variant;
1609 	u32 pwr = 0;
1610 	unsigned long flags;
1611 	int ret;
1612 
1613 	if (host->plat->ios_handler &&
1614 		host->plat->ios_handler(mmc_dev(mmc), ios))
1615 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1616 
1617 	switch (ios->power_mode) {
1618 	case MMC_POWER_OFF:
1619 		if (!IS_ERR(mmc->supply.vmmc))
1620 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1621 
1622 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1623 			regulator_disable(mmc->supply.vqmmc);
1624 			host->vqmmc_enabled = false;
1625 		}
1626 
1627 		break;
1628 	case MMC_POWER_UP:
1629 		if (!IS_ERR(mmc->supply.vmmc))
1630 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1631 
1632 		/*
1633 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1634 		 * and instead uses MCI_PWR_ON so apply whatever value is
1635 		 * configured in the variant data.
1636 		 */
1637 		pwr |= variant->pwrreg_powerup;
1638 
1639 		break;
1640 	case MMC_POWER_ON:
1641 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1642 			ret = regulator_enable(mmc->supply.vqmmc);
1643 			if (ret < 0)
1644 				dev_err(mmc_dev(mmc),
1645 					"failed to enable vqmmc regulator\n");
1646 			else
1647 				host->vqmmc_enabled = true;
1648 		}
1649 
1650 		pwr |= MCI_PWR_ON;
1651 		break;
1652 	}
1653 
1654 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1655 		/*
1656 		 * The ST Micro variant has some additional bits
1657 		 * indicating signal direction for the signals in
1658 		 * the SD/MMC bus and feedback-clock usage.
1659 		 */
1660 		pwr |= host->pwr_reg_add;
1661 
1662 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1663 			pwr &= ~MCI_ST_DATA74DIREN;
1664 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1665 			pwr &= (~MCI_ST_DATA74DIREN &
1666 				~MCI_ST_DATA31DIREN &
1667 				~MCI_ST_DATA2DIREN);
1668 	}
1669 
1670 	if (variant->opendrain) {
1671 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1672 			pwr |= variant->opendrain;
1673 	} else {
1674 		/*
1675 		 * If the variant cannot configure the pads by its own, then we
1676 		 * expect the pinctrl to be able to do that for us
1677 		 */
1678 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1679 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1680 		else
1681 			pinctrl_select_state(host->pinctrl, host->pins_default);
1682 	}
1683 
1684 	/*
1685 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1686 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1687 	 */
1688 	if (!ios->clock && variant->pwrreg_clkgate)
1689 		pwr &= ~MCI_PWR_ON;
1690 
1691 	if (host->variant->explicit_mclk_control &&
1692 	    ios->clock != host->clock_cache) {
1693 		ret = clk_set_rate(host->clk, ios->clock);
1694 		if (ret < 0)
1695 			dev_err(mmc_dev(host->mmc),
1696 				"Error setting clock rate (%d)\n", ret);
1697 		else
1698 			host->mclk = clk_get_rate(host->clk);
1699 	}
1700 	host->clock_cache = ios->clock;
1701 
1702 	spin_lock_irqsave(&host->lock, flags);
1703 
1704 	if (host->ops && host->ops->set_clkreg)
1705 		host->ops->set_clkreg(host, ios->clock);
1706 	else
1707 		mmci_set_clkreg(host, ios->clock);
1708 
1709 	if (host->ops && host->ops->set_pwrreg)
1710 		host->ops->set_pwrreg(host, pwr);
1711 	else
1712 		mmci_write_pwrreg(host, pwr);
1713 
1714 	mmci_reg_delay(host);
1715 
1716 	spin_unlock_irqrestore(&host->lock, flags);
1717 }
1718 
1719 static int mmci_get_cd(struct mmc_host *mmc)
1720 {
1721 	struct mmci_host *host = mmc_priv(mmc);
1722 	struct mmci_platform_data *plat = host->plat;
1723 	unsigned int status = mmc_gpio_get_cd(mmc);
1724 
1725 	if (status == -ENOSYS) {
1726 		if (!plat->status)
1727 			return 1; /* Assume always present */
1728 
1729 		status = plat->status(mmc_dev(host->mmc));
1730 	}
1731 	return status;
1732 }
1733 
1734 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1735 {
1736 	int ret = 0;
1737 
1738 	if (!IS_ERR(mmc->supply.vqmmc)) {
1739 
1740 		switch (ios->signal_voltage) {
1741 		case MMC_SIGNAL_VOLTAGE_330:
1742 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1743 						2700000, 3600000);
1744 			break;
1745 		case MMC_SIGNAL_VOLTAGE_180:
1746 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1747 						1700000, 1950000);
1748 			break;
1749 		case MMC_SIGNAL_VOLTAGE_120:
1750 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1751 						1100000, 1300000);
1752 			break;
1753 		}
1754 
1755 		if (ret)
1756 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1757 	}
1758 
1759 	return ret;
1760 }
1761 
1762 static struct mmc_host_ops mmci_ops = {
1763 	.request	= mmci_request,
1764 	.pre_req	= mmci_pre_request,
1765 	.post_req	= mmci_post_request,
1766 	.set_ios	= mmci_set_ios,
1767 	.get_ro		= mmc_gpio_get_ro,
1768 	.get_cd		= mmci_get_cd,
1769 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1770 };
1771 
1772 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1773 {
1774 	struct mmci_host *host = mmc_priv(mmc);
1775 	int ret = mmc_of_parse(mmc);
1776 
1777 	if (ret)
1778 		return ret;
1779 
1780 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1781 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1782 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1783 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1784 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1785 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1786 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1787 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1788 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1789 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1790 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1791 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1792 	if (of_get_property(np, "st,sig-dir", NULL))
1793 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1794 	if (of_get_property(np, "st,neg-edge", NULL))
1795 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1796 	if (of_get_property(np, "st,use-ckin", NULL))
1797 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1798 
1799 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1800 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1801 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1802 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1803 
1804 	return 0;
1805 }
1806 
1807 static int mmci_probe(struct amba_device *dev,
1808 	const struct amba_id *id)
1809 {
1810 	struct mmci_platform_data *plat = dev->dev.platform_data;
1811 	struct device_node *np = dev->dev.of_node;
1812 	struct variant_data *variant = id->data;
1813 	struct mmci_host *host;
1814 	struct mmc_host *mmc;
1815 	int ret;
1816 
1817 	/* Must have platform data or Device Tree. */
1818 	if (!plat && !np) {
1819 		dev_err(&dev->dev, "No plat data or DT found\n");
1820 		return -EINVAL;
1821 	}
1822 
1823 	if (!plat) {
1824 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1825 		if (!plat)
1826 			return -ENOMEM;
1827 	}
1828 
1829 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1830 	if (!mmc)
1831 		return -ENOMEM;
1832 
1833 	ret = mmci_of_parse(np, mmc);
1834 	if (ret)
1835 		goto host_free;
1836 
1837 	host = mmc_priv(mmc);
1838 	host->mmc = mmc;
1839 
1840 	/*
1841 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1842 	 * pins can be set accordingly using pinctrl
1843 	 */
1844 	if (!variant->opendrain) {
1845 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1846 		if (IS_ERR(host->pinctrl)) {
1847 			dev_err(&dev->dev, "failed to get pinctrl");
1848 			ret = PTR_ERR(host->pinctrl);
1849 			goto host_free;
1850 		}
1851 
1852 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1853 							  PINCTRL_STATE_DEFAULT);
1854 		if (IS_ERR(host->pins_default)) {
1855 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1856 			ret = PTR_ERR(host->pins_default);
1857 			goto host_free;
1858 		}
1859 
1860 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1861 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1862 		if (IS_ERR(host->pins_opendrain)) {
1863 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1864 			ret = PTR_ERR(host->pins_opendrain);
1865 			goto host_free;
1866 		}
1867 	}
1868 
1869 	host->hw_designer = amba_manf(dev);
1870 	host->hw_revision = amba_rev(dev);
1871 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1872 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1873 
1874 	host->clk = devm_clk_get(&dev->dev, NULL);
1875 	if (IS_ERR(host->clk)) {
1876 		ret = PTR_ERR(host->clk);
1877 		goto host_free;
1878 	}
1879 
1880 	ret = clk_prepare_enable(host->clk);
1881 	if (ret)
1882 		goto host_free;
1883 
1884 	if (variant->qcom_fifo)
1885 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1886 	else
1887 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1888 
1889 	host->plat = plat;
1890 	host->variant = variant;
1891 	host->mclk = clk_get_rate(host->clk);
1892 	/*
1893 	 * According to the spec, mclk is max 100 MHz,
1894 	 * so we try to adjust the clock down to this,
1895 	 * (if possible).
1896 	 */
1897 	if (host->mclk > variant->f_max) {
1898 		ret = clk_set_rate(host->clk, variant->f_max);
1899 		if (ret < 0)
1900 			goto clk_disable;
1901 		host->mclk = clk_get_rate(host->clk);
1902 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1903 			host->mclk);
1904 	}
1905 
1906 	host->phybase = dev->res.start;
1907 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1908 	if (IS_ERR(host->base)) {
1909 		ret = PTR_ERR(host->base);
1910 		goto clk_disable;
1911 	}
1912 
1913 	if (variant->init)
1914 		variant->init(host);
1915 
1916 	/*
1917 	 * The ARM and ST versions of the block have slightly different
1918 	 * clock divider equations which means that the minimum divider
1919 	 * differs too.
1920 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1921 	 */
1922 	if (variant->st_clkdiv)
1923 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1924 	else if (variant->stm32_clkdiv)
1925 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1926 	else if (variant->explicit_mclk_control)
1927 		mmc->f_min = clk_round_rate(host->clk, 100000);
1928 	else
1929 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1930 	/*
1931 	 * If no maximum operating frequency is supplied, fall back to use
1932 	 * the module parameter, which has a (low) default value in case it
1933 	 * is not specified. Either value must not exceed the clock rate into
1934 	 * the block, of course.
1935 	 */
1936 	if (mmc->f_max)
1937 		mmc->f_max = variant->explicit_mclk_control ?
1938 				min(variant->f_max, mmc->f_max) :
1939 				min(host->mclk, mmc->f_max);
1940 	else
1941 		mmc->f_max = variant->explicit_mclk_control ?
1942 				fmax : min(host->mclk, fmax);
1943 
1944 
1945 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1946 
1947 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1948 	if (IS_ERR(host->rst)) {
1949 		ret = PTR_ERR(host->rst);
1950 		goto clk_disable;
1951 	}
1952 
1953 	/* Get regulators and the supported OCR mask */
1954 	ret = mmc_regulator_get_supply(mmc);
1955 	if (ret)
1956 		goto clk_disable;
1957 
1958 	if (!mmc->ocr_avail)
1959 		mmc->ocr_avail = plat->ocr_mask;
1960 	else if (plat->ocr_mask)
1961 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1962 
1963 	/* We support these capabilities. */
1964 	mmc->caps |= MMC_CAP_CMD23;
1965 
1966 	/*
1967 	 * Enable busy detection.
1968 	 */
1969 	if (variant->busy_detect) {
1970 		mmci_ops.card_busy = mmci_card_busy;
1971 		/*
1972 		 * Not all variants have a flag to enable busy detection
1973 		 * in the DPSM, but if they do, set it here.
1974 		 */
1975 		if (variant->busy_dpsm_flag)
1976 			mmci_write_datactrlreg(host,
1977 					       host->variant->busy_dpsm_flag);
1978 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1979 		mmc->max_busy_timeout = 0;
1980 	}
1981 
1982 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1983 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1984 	host->stop_abort.arg = 0;
1985 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1986 
1987 	mmc->ops = &mmci_ops;
1988 
1989 	/* We support these PM capabilities. */
1990 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1991 
1992 	/*
1993 	 * We can do SGIO
1994 	 */
1995 	mmc->max_segs = NR_SG;
1996 
1997 	/*
1998 	 * Since only a certain number of bits are valid in the data length
1999 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2000 	 * single request.
2001 	 */
2002 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2003 
2004 	/*
2005 	 * Set the maximum segment size.  Since we aren't doing DMA
2006 	 * (yet) we are only limited by the data length register.
2007 	 */
2008 	mmc->max_seg_size = mmc->max_req_size;
2009 
2010 	/*
2011 	 * Block size can be up to 2048 bytes, but must be a power of two.
2012 	 */
2013 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2014 
2015 	/*
2016 	 * Limit the number of blocks transferred so that we don't overflow
2017 	 * the maximum request size.
2018 	 */
2019 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2020 
2021 	spin_lock_init(&host->lock);
2022 
2023 	writel(0, host->base + MMCIMASK0);
2024 
2025 	if (variant->mmcimask1)
2026 		writel(0, host->base + MMCIMASK1);
2027 
2028 	writel(0xfff, host->base + MMCICLEAR);
2029 
2030 	/*
2031 	 * If:
2032 	 * - not using DT but using a descriptor table, or
2033 	 * - using a table of descriptors ALONGSIDE DT, or
2034 	 * look up these descriptors named "cd" and "wp" right here, fail
2035 	 * silently of these do not exist
2036 	 */
2037 	if (!np) {
2038 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2039 		if (ret == -EPROBE_DEFER)
2040 			goto clk_disable;
2041 
2042 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2043 		if (ret == -EPROBE_DEFER)
2044 			goto clk_disable;
2045 	}
2046 
2047 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2048 			DRIVER_NAME " (cmd)", host);
2049 	if (ret)
2050 		goto clk_disable;
2051 
2052 	if (!dev->irq[1])
2053 		host->singleirq = true;
2054 	else {
2055 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2056 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2057 		if (ret)
2058 			goto clk_disable;
2059 	}
2060 
2061 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2062 
2063 	amba_set_drvdata(dev, mmc);
2064 
2065 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2066 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2067 		 amba_rev(dev), (unsigned long long)dev->res.start,
2068 		 dev->irq[0], dev->irq[1]);
2069 
2070 	mmci_dma_setup(host);
2071 
2072 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2073 	pm_runtime_use_autosuspend(&dev->dev);
2074 
2075 	mmc_add_host(mmc);
2076 
2077 	pm_runtime_put(&dev->dev);
2078 	return 0;
2079 
2080  clk_disable:
2081 	clk_disable_unprepare(host->clk);
2082  host_free:
2083 	mmc_free_host(mmc);
2084 	return ret;
2085 }
2086 
2087 static int mmci_remove(struct amba_device *dev)
2088 {
2089 	struct mmc_host *mmc = amba_get_drvdata(dev);
2090 
2091 	if (mmc) {
2092 		struct mmci_host *host = mmc_priv(mmc);
2093 		struct variant_data *variant = host->variant;
2094 
2095 		/*
2096 		 * Undo pm_runtime_put() in probe.  We use the _sync
2097 		 * version here so that we can access the primecell.
2098 		 */
2099 		pm_runtime_get_sync(&dev->dev);
2100 
2101 		mmc_remove_host(mmc);
2102 
2103 		writel(0, host->base + MMCIMASK0);
2104 
2105 		if (variant->mmcimask1)
2106 			writel(0, host->base + MMCIMASK1);
2107 
2108 		writel(0, host->base + MMCICOMMAND);
2109 		writel(0, host->base + MMCIDATACTRL);
2110 
2111 		mmci_dma_release(host);
2112 		clk_disable_unprepare(host->clk);
2113 		mmc_free_host(mmc);
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 #ifdef CONFIG_PM
2120 static void mmci_save(struct mmci_host *host)
2121 {
2122 	unsigned long flags;
2123 
2124 	spin_lock_irqsave(&host->lock, flags);
2125 
2126 	writel(0, host->base + MMCIMASK0);
2127 	if (host->variant->pwrreg_nopower) {
2128 		writel(0, host->base + MMCIDATACTRL);
2129 		writel(0, host->base + MMCIPOWER);
2130 		writel(0, host->base + MMCICLOCK);
2131 	}
2132 	mmci_reg_delay(host);
2133 
2134 	spin_unlock_irqrestore(&host->lock, flags);
2135 }
2136 
2137 static void mmci_restore(struct mmci_host *host)
2138 {
2139 	unsigned long flags;
2140 
2141 	spin_lock_irqsave(&host->lock, flags);
2142 
2143 	if (host->variant->pwrreg_nopower) {
2144 		writel(host->clk_reg, host->base + MMCICLOCK);
2145 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2146 		writel(host->pwr_reg, host->base + MMCIPOWER);
2147 	}
2148 	writel(MCI_IRQENABLE | host->variant->start_err,
2149 	       host->base + MMCIMASK0);
2150 	mmci_reg_delay(host);
2151 
2152 	spin_unlock_irqrestore(&host->lock, flags);
2153 }
2154 
2155 static int mmci_runtime_suspend(struct device *dev)
2156 {
2157 	struct amba_device *adev = to_amba_device(dev);
2158 	struct mmc_host *mmc = amba_get_drvdata(adev);
2159 
2160 	if (mmc) {
2161 		struct mmci_host *host = mmc_priv(mmc);
2162 		pinctrl_pm_select_sleep_state(dev);
2163 		mmci_save(host);
2164 		clk_disable_unprepare(host->clk);
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static int mmci_runtime_resume(struct device *dev)
2171 {
2172 	struct amba_device *adev = to_amba_device(dev);
2173 	struct mmc_host *mmc = amba_get_drvdata(adev);
2174 
2175 	if (mmc) {
2176 		struct mmci_host *host = mmc_priv(mmc);
2177 		clk_prepare_enable(host->clk);
2178 		mmci_restore(host);
2179 		pinctrl_pm_select_default_state(dev);
2180 	}
2181 
2182 	return 0;
2183 }
2184 #endif
2185 
2186 static const struct dev_pm_ops mmci_dev_pm_ops = {
2187 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2188 				pm_runtime_force_resume)
2189 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2190 };
2191 
2192 static const struct amba_id mmci_ids[] = {
2193 	{
2194 		.id	= 0x00041180,
2195 		.mask	= 0xff0fffff,
2196 		.data	= &variant_arm,
2197 	},
2198 	{
2199 		.id	= 0x01041180,
2200 		.mask	= 0xff0fffff,
2201 		.data	= &variant_arm_extended_fifo,
2202 	},
2203 	{
2204 		.id	= 0x02041180,
2205 		.mask	= 0xff0fffff,
2206 		.data	= &variant_arm_extended_fifo_hwfc,
2207 	},
2208 	{
2209 		.id	= 0x00041181,
2210 		.mask	= 0x000fffff,
2211 		.data	= &variant_arm,
2212 	},
2213 	/* ST Micro variants */
2214 	{
2215 		.id     = 0x00180180,
2216 		.mask   = 0x00ffffff,
2217 		.data	= &variant_u300,
2218 	},
2219 	{
2220 		.id     = 0x10180180,
2221 		.mask   = 0xf0ffffff,
2222 		.data	= &variant_nomadik,
2223 	},
2224 	{
2225 		.id     = 0x00280180,
2226 		.mask   = 0x00ffffff,
2227 		.data	= &variant_nomadik,
2228 	},
2229 	{
2230 		.id     = 0x00480180,
2231 		.mask   = 0xf0ffffff,
2232 		.data	= &variant_ux500,
2233 	},
2234 	{
2235 		.id     = 0x10480180,
2236 		.mask   = 0xf0ffffff,
2237 		.data	= &variant_ux500v2,
2238 	},
2239 	{
2240 		.id     = 0x00880180,
2241 		.mask   = 0x00ffffff,
2242 		.data	= &variant_stm32,
2243 	},
2244 	{
2245 		.id     = 0x10153180,
2246 		.mask	= 0xf0ffffff,
2247 		.data	= &variant_stm32_sdmmc,
2248 	},
2249 	/* Qualcomm variants */
2250 	{
2251 		.id     = 0x00051180,
2252 		.mask	= 0x000fffff,
2253 		.data	= &variant_qcom,
2254 	},
2255 	{ 0, 0 },
2256 };
2257 
2258 MODULE_DEVICE_TABLE(amba, mmci_ids);
2259 
2260 static struct amba_driver mmci_driver = {
2261 	.drv		= {
2262 		.name	= DRIVER_NAME,
2263 		.pm	= &mmci_dev_pm_ops,
2264 	},
2265 	.probe		= mmci_probe,
2266 	.remove		= mmci_remove,
2267 	.id_table	= mmci_ids,
2268 };
2269 
2270 module_amba_driver(mmci_driver);
2271 
2272 module_param(fmax, uint, 0444);
2273 
2274 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2275 MODULE_LICENSE("GPL");
2276