xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision af958a38)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44 
45 #include "mmci.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static unsigned int fmax = 515633;
50 
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57  * @datalength_bits: number of bits in the MMCIDATALENGTH register
58  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59  *	      is asserted (likewise for RX)
60  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61  *		  is asserted (likewise for RX)
62  * @data_cmd_enable: enable value for data commands.
63  * @sdio: variant supports SDIO
64  * @st_clkdiv: true if using a ST-specific clock divider algorithm
65  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68  *		     register
69  * @pwrreg_powerup: power up value for MMCIPOWER register
70  * @f_max: maximum clk frequency supported by the controller.
71  * @signal_direction: input/out direction of bus signals can be indicated
72  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
73  * @busy_detect: true if busy detection on dat0 is supported
74  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
75  * @explicit_mclk_control: enable explicit mclk control in driver.
76  * @qcom_fifo: enables qcom specific fifo pio read logic.
77  * @reversed_irq_handling: handle data irq before cmd irq.
78  */
79 struct variant_data {
80 	unsigned int		clkreg;
81 	unsigned int		clkreg_enable;
82 	unsigned int		clkreg_8bit_bus_enable;
83 	unsigned int		clkreg_neg_edge_enable;
84 	unsigned int		datalength_bits;
85 	unsigned int		fifosize;
86 	unsigned int		fifohalfsize;
87 	unsigned int		data_cmd_enable;
88 	unsigned int		datactrl_mask_ddrmode;
89 	bool			sdio;
90 	bool			st_clkdiv;
91 	bool			blksz_datactrl16;
92 	bool			blksz_datactrl4;
93 	u32			pwrreg_powerup;
94 	u32			f_max;
95 	bool			signal_direction;
96 	bool			pwrreg_clkgate;
97 	bool			busy_detect;
98 	bool			pwrreg_nopower;
99 	bool			explicit_mclk_control;
100 	bool			qcom_fifo;
101 	bool			reversed_irq_handling;
102 };
103 
104 static struct variant_data variant_arm = {
105 	.fifosize		= 16 * 4,
106 	.fifohalfsize		= 8 * 4,
107 	.datalength_bits	= 16,
108 	.pwrreg_powerup		= MCI_PWR_UP,
109 	.f_max			= 100000000,
110 	.reversed_irq_handling	= true,
111 };
112 
113 static struct variant_data variant_arm_extended_fifo = {
114 	.fifosize		= 128 * 4,
115 	.fifohalfsize		= 64 * 4,
116 	.datalength_bits	= 16,
117 	.pwrreg_powerup		= MCI_PWR_UP,
118 	.f_max			= 100000000,
119 };
120 
121 static struct variant_data variant_arm_extended_fifo_hwfc = {
122 	.fifosize		= 128 * 4,
123 	.fifohalfsize		= 64 * 4,
124 	.clkreg_enable		= MCI_ARM_HWFCEN,
125 	.datalength_bits	= 16,
126 	.pwrreg_powerup		= MCI_PWR_UP,
127 	.f_max			= 100000000,
128 };
129 
130 static struct variant_data variant_u300 = {
131 	.fifosize		= 16 * 4,
132 	.fifohalfsize		= 8 * 4,
133 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
134 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
135 	.datalength_bits	= 16,
136 	.sdio			= true,
137 	.pwrreg_powerup		= MCI_PWR_ON,
138 	.f_max			= 100000000,
139 	.signal_direction	= true,
140 	.pwrreg_clkgate		= true,
141 	.pwrreg_nopower		= true,
142 };
143 
144 static struct variant_data variant_nomadik = {
145 	.fifosize		= 16 * 4,
146 	.fifohalfsize		= 8 * 4,
147 	.clkreg			= MCI_CLK_ENABLE,
148 	.datalength_bits	= 24,
149 	.sdio			= true,
150 	.st_clkdiv		= true,
151 	.pwrreg_powerup		= MCI_PWR_ON,
152 	.f_max			= 100000000,
153 	.signal_direction	= true,
154 	.pwrreg_clkgate		= true,
155 	.pwrreg_nopower		= true,
156 };
157 
158 static struct variant_data variant_ux500 = {
159 	.fifosize		= 30 * 4,
160 	.fifohalfsize		= 8 * 4,
161 	.clkreg			= MCI_CLK_ENABLE,
162 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
163 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
164 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
165 	.datalength_bits	= 24,
166 	.sdio			= true,
167 	.st_clkdiv		= true,
168 	.pwrreg_powerup		= MCI_PWR_ON,
169 	.f_max			= 100000000,
170 	.signal_direction	= true,
171 	.pwrreg_clkgate		= true,
172 	.busy_detect		= true,
173 	.pwrreg_nopower		= true,
174 };
175 
176 static struct variant_data variant_ux500v2 = {
177 	.fifosize		= 30 * 4,
178 	.fifohalfsize		= 8 * 4,
179 	.clkreg			= MCI_CLK_ENABLE,
180 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
181 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
182 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
183 	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
184 	.datalength_bits	= 24,
185 	.sdio			= true,
186 	.st_clkdiv		= true,
187 	.blksz_datactrl16	= true,
188 	.pwrreg_powerup		= MCI_PWR_ON,
189 	.f_max			= 100000000,
190 	.signal_direction	= true,
191 	.pwrreg_clkgate		= true,
192 	.busy_detect		= true,
193 	.pwrreg_nopower		= true,
194 };
195 
196 static struct variant_data variant_qcom = {
197 	.fifosize		= 16 * 4,
198 	.fifohalfsize		= 8 * 4,
199 	.clkreg			= MCI_CLK_ENABLE,
200 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
201 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
202 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
203 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
204 	.data_cmd_enable	= MCI_QCOM_CSPM_DATCMD,
205 	.blksz_datactrl4	= true,
206 	.datalength_bits	= 24,
207 	.pwrreg_powerup		= MCI_PWR_UP,
208 	.f_max			= 208000000,
209 	.explicit_mclk_control	= true,
210 	.qcom_fifo		= true,
211 };
212 
213 static int mmci_card_busy(struct mmc_host *mmc)
214 {
215 	struct mmci_host *host = mmc_priv(mmc);
216 	unsigned long flags;
217 	int busy = 0;
218 
219 	pm_runtime_get_sync(mmc_dev(mmc));
220 
221 	spin_lock_irqsave(&host->lock, flags);
222 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
223 		busy = 1;
224 	spin_unlock_irqrestore(&host->lock, flags);
225 
226 	pm_runtime_mark_last_busy(mmc_dev(mmc));
227 	pm_runtime_put_autosuspend(mmc_dev(mmc));
228 
229 	return busy;
230 }
231 
232 /*
233  * Validate mmc prerequisites
234  */
235 static int mmci_validate_data(struct mmci_host *host,
236 			      struct mmc_data *data)
237 {
238 	if (!data)
239 		return 0;
240 
241 	if (!is_power_of_2(data->blksz)) {
242 		dev_err(mmc_dev(host->mmc),
243 			"unsupported block size (%d bytes)\n", data->blksz);
244 		return -EINVAL;
245 	}
246 
247 	return 0;
248 }
249 
250 static void mmci_reg_delay(struct mmci_host *host)
251 {
252 	/*
253 	 * According to the spec, at least three feedback clock cycles
254 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
255 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
256 	 * Worst delay time during card init is at 100 kHz => 30 us.
257 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
258 	 */
259 	if (host->cclk < 25000000)
260 		udelay(30);
261 	else
262 		ndelay(120);
263 }
264 
265 /*
266  * This must be called with host->lock held
267  */
268 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
269 {
270 	if (host->clk_reg != clk) {
271 		host->clk_reg = clk;
272 		writel(clk, host->base + MMCICLOCK);
273 	}
274 }
275 
276 /*
277  * This must be called with host->lock held
278  */
279 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
280 {
281 	if (host->pwr_reg != pwr) {
282 		host->pwr_reg = pwr;
283 		writel(pwr, host->base + MMCIPOWER);
284 	}
285 }
286 
287 /*
288  * This must be called with host->lock held
289  */
290 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
291 {
292 	/* Keep ST Micro busy mode if enabled */
293 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
294 
295 	if (host->datactrl_reg != datactrl) {
296 		host->datactrl_reg = datactrl;
297 		writel(datactrl, host->base + MMCIDATACTRL);
298 	}
299 }
300 
301 /*
302  * This must be called with host->lock held
303  */
304 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
305 {
306 	struct variant_data *variant = host->variant;
307 	u32 clk = variant->clkreg;
308 
309 	/* Make sure cclk reflects the current calculated clock */
310 	host->cclk = 0;
311 
312 	if (desired) {
313 		if (variant->explicit_mclk_control) {
314 			host->cclk = host->mclk;
315 		} else if (desired >= host->mclk) {
316 			clk = MCI_CLK_BYPASS;
317 			if (variant->st_clkdiv)
318 				clk |= MCI_ST_UX500_NEG_EDGE;
319 			host->cclk = host->mclk;
320 		} else if (variant->st_clkdiv) {
321 			/*
322 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
323 			 * => clkdiv = (mclk / f) - 2
324 			 * Round the divider up so we don't exceed the max
325 			 * frequency
326 			 */
327 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
328 			if (clk >= 256)
329 				clk = 255;
330 			host->cclk = host->mclk / (clk + 2);
331 		} else {
332 			/*
333 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
334 			 * => clkdiv = mclk / (2 * f) - 1
335 			 */
336 			clk = host->mclk / (2 * desired) - 1;
337 			if (clk >= 256)
338 				clk = 255;
339 			host->cclk = host->mclk / (2 * (clk + 1));
340 		}
341 
342 		clk |= variant->clkreg_enable;
343 		clk |= MCI_CLK_ENABLE;
344 		/* This hasn't proven to be worthwhile */
345 		/* clk |= MCI_CLK_PWRSAVE; */
346 	}
347 
348 	/* Set actual clock for debug */
349 	host->mmc->actual_clock = host->cclk;
350 
351 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
352 		clk |= MCI_4BIT_BUS;
353 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
354 		clk |= variant->clkreg_8bit_bus_enable;
355 
356 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
357 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
358 		clk |= variant->clkreg_neg_edge_enable;
359 
360 	mmci_write_clkreg(host, clk);
361 }
362 
363 static void
364 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
365 {
366 	writel(0, host->base + MMCICOMMAND);
367 
368 	BUG_ON(host->data);
369 
370 	host->mrq = NULL;
371 	host->cmd = NULL;
372 
373 	mmc_request_done(host->mmc, mrq);
374 
375 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
376 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
377 }
378 
379 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
380 {
381 	void __iomem *base = host->base;
382 
383 	if (host->singleirq) {
384 		unsigned int mask0 = readl(base + MMCIMASK0);
385 
386 		mask0 &= ~MCI_IRQ1MASK;
387 		mask0 |= mask;
388 
389 		writel(mask0, base + MMCIMASK0);
390 	}
391 
392 	writel(mask, base + MMCIMASK1);
393 }
394 
395 static void mmci_stop_data(struct mmci_host *host)
396 {
397 	mmci_write_datactrlreg(host, 0);
398 	mmci_set_mask1(host, 0);
399 	host->data = NULL;
400 }
401 
402 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
403 {
404 	unsigned int flags = SG_MITER_ATOMIC;
405 
406 	if (data->flags & MMC_DATA_READ)
407 		flags |= SG_MITER_TO_SG;
408 	else
409 		flags |= SG_MITER_FROM_SG;
410 
411 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
412 }
413 
414 /*
415  * All the DMA operation mode stuff goes inside this ifdef.
416  * This assumes that you have a generic DMA device interface,
417  * no custom DMA interfaces are supported.
418  */
419 #ifdef CONFIG_DMA_ENGINE
420 static void mmci_dma_setup(struct mmci_host *host)
421 {
422 	const char *rxname, *txname;
423 	dma_cap_mask_t mask;
424 
425 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
426 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
427 
428 	/* initialize pre request cookie */
429 	host->next_data.cookie = 1;
430 
431 	/* Try to acquire a generic DMA engine slave channel */
432 	dma_cap_zero(mask);
433 	dma_cap_set(DMA_SLAVE, mask);
434 
435 	/*
436 	 * If only an RX channel is specified, the driver will
437 	 * attempt to use it bidirectionally, however if it is
438 	 * is specified but cannot be located, DMA will be disabled.
439 	 */
440 	if (host->dma_rx_channel && !host->dma_tx_channel)
441 		host->dma_tx_channel = host->dma_rx_channel;
442 
443 	if (host->dma_rx_channel)
444 		rxname = dma_chan_name(host->dma_rx_channel);
445 	else
446 		rxname = "none";
447 
448 	if (host->dma_tx_channel)
449 		txname = dma_chan_name(host->dma_tx_channel);
450 	else
451 		txname = "none";
452 
453 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
454 		 rxname, txname);
455 
456 	/*
457 	 * Limit the maximum segment size in any SG entry according to
458 	 * the parameters of the DMA engine device.
459 	 */
460 	if (host->dma_tx_channel) {
461 		struct device *dev = host->dma_tx_channel->device->dev;
462 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
463 
464 		if (max_seg_size < host->mmc->max_seg_size)
465 			host->mmc->max_seg_size = max_seg_size;
466 	}
467 	if (host->dma_rx_channel) {
468 		struct device *dev = host->dma_rx_channel->device->dev;
469 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
470 
471 		if (max_seg_size < host->mmc->max_seg_size)
472 			host->mmc->max_seg_size = max_seg_size;
473 	}
474 }
475 
476 /*
477  * This is used in or so inline it
478  * so it can be discarded.
479  */
480 static inline void mmci_dma_release(struct mmci_host *host)
481 {
482 	if (host->dma_rx_channel)
483 		dma_release_channel(host->dma_rx_channel);
484 	if (host->dma_tx_channel)
485 		dma_release_channel(host->dma_tx_channel);
486 	host->dma_rx_channel = host->dma_tx_channel = NULL;
487 }
488 
489 static void mmci_dma_data_error(struct mmci_host *host)
490 {
491 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
492 	dmaengine_terminate_all(host->dma_current);
493 	host->dma_current = NULL;
494 	host->dma_desc_current = NULL;
495 	host->data->host_cookie = 0;
496 }
497 
498 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
499 {
500 	struct dma_chan *chan;
501 	enum dma_data_direction dir;
502 
503 	if (data->flags & MMC_DATA_READ) {
504 		dir = DMA_FROM_DEVICE;
505 		chan = host->dma_rx_channel;
506 	} else {
507 		dir = DMA_TO_DEVICE;
508 		chan = host->dma_tx_channel;
509 	}
510 
511 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
512 }
513 
514 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
515 {
516 	u32 status;
517 	int i;
518 
519 	/* Wait up to 1ms for the DMA to complete */
520 	for (i = 0; ; i++) {
521 		status = readl(host->base + MMCISTATUS);
522 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
523 			break;
524 		udelay(10);
525 	}
526 
527 	/*
528 	 * Check to see whether we still have some data left in the FIFO -
529 	 * this catches DMA controllers which are unable to monitor the
530 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
531 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
532 	 */
533 	if (status & MCI_RXDATAAVLBLMASK) {
534 		mmci_dma_data_error(host);
535 		if (!data->error)
536 			data->error = -EIO;
537 	}
538 
539 	if (!data->host_cookie)
540 		mmci_dma_unmap(host, data);
541 
542 	/*
543 	 * Use of DMA with scatter-gather is impossible.
544 	 * Give up with DMA and switch back to PIO mode.
545 	 */
546 	if (status & MCI_RXDATAAVLBLMASK) {
547 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
548 		mmci_dma_release(host);
549 	}
550 
551 	host->dma_current = NULL;
552 	host->dma_desc_current = NULL;
553 }
554 
555 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
556 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
557 				struct dma_chan **dma_chan,
558 				struct dma_async_tx_descriptor **dma_desc)
559 {
560 	struct variant_data *variant = host->variant;
561 	struct dma_slave_config conf = {
562 		.src_addr = host->phybase + MMCIFIFO,
563 		.dst_addr = host->phybase + MMCIFIFO,
564 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
565 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
566 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
567 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
568 		.device_fc = false,
569 	};
570 	struct dma_chan *chan;
571 	struct dma_device *device;
572 	struct dma_async_tx_descriptor *desc;
573 	enum dma_data_direction buffer_dirn;
574 	int nr_sg;
575 
576 	if (data->flags & MMC_DATA_READ) {
577 		conf.direction = DMA_DEV_TO_MEM;
578 		buffer_dirn = DMA_FROM_DEVICE;
579 		chan = host->dma_rx_channel;
580 	} else {
581 		conf.direction = DMA_MEM_TO_DEV;
582 		buffer_dirn = DMA_TO_DEVICE;
583 		chan = host->dma_tx_channel;
584 	}
585 
586 	/* If there's no DMA channel, fall back to PIO */
587 	if (!chan)
588 		return -EINVAL;
589 
590 	/* If less than or equal to the fifo size, don't bother with DMA */
591 	if (data->blksz * data->blocks <= variant->fifosize)
592 		return -EINVAL;
593 
594 	device = chan->device;
595 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
596 	if (nr_sg == 0)
597 		return -EINVAL;
598 
599 	dmaengine_slave_config(chan, &conf);
600 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
601 					    conf.direction, DMA_CTRL_ACK);
602 	if (!desc)
603 		goto unmap_exit;
604 
605 	*dma_chan = chan;
606 	*dma_desc = desc;
607 
608 	return 0;
609 
610  unmap_exit:
611 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
612 	return -ENOMEM;
613 }
614 
615 static inline int mmci_dma_prep_data(struct mmci_host *host,
616 				     struct mmc_data *data)
617 {
618 	/* Check if next job is already prepared. */
619 	if (host->dma_current && host->dma_desc_current)
620 		return 0;
621 
622 	/* No job were prepared thus do it now. */
623 	return __mmci_dma_prep_data(host, data, &host->dma_current,
624 				    &host->dma_desc_current);
625 }
626 
627 static inline int mmci_dma_prep_next(struct mmci_host *host,
628 				     struct mmc_data *data)
629 {
630 	struct mmci_host_next *nd = &host->next_data;
631 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
632 }
633 
634 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
635 {
636 	int ret;
637 	struct mmc_data *data = host->data;
638 
639 	ret = mmci_dma_prep_data(host, host->data);
640 	if (ret)
641 		return ret;
642 
643 	/* Okay, go for it. */
644 	dev_vdbg(mmc_dev(host->mmc),
645 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
646 		 data->sg_len, data->blksz, data->blocks, data->flags);
647 	dmaengine_submit(host->dma_desc_current);
648 	dma_async_issue_pending(host->dma_current);
649 
650 	datactrl |= MCI_DPSM_DMAENABLE;
651 
652 	/* Trigger the DMA transfer */
653 	mmci_write_datactrlreg(host, datactrl);
654 
655 	/*
656 	 * Let the MMCI say when the data is ended and it's time
657 	 * to fire next DMA request. When that happens, MMCI will
658 	 * call mmci_data_end()
659 	 */
660 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
661 	       host->base + MMCIMASK0);
662 	return 0;
663 }
664 
665 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
666 {
667 	struct mmci_host_next *next = &host->next_data;
668 
669 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
670 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
671 
672 	host->dma_desc_current = next->dma_desc;
673 	host->dma_current = next->dma_chan;
674 	next->dma_desc = NULL;
675 	next->dma_chan = NULL;
676 }
677 
678 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
679 			     bool is_first_req)
680 {
681 	struct mmci_host *host = mmc_priv(mmc);
682 	struct mmc_data *data = mrq->data;
683 	struct mmci_host_next *nd = &host->next_data;
684 
685 	if (!data)
686 		return;
687 
688 	BUG_ON(data->host_cookie);
689 
690 	if (mmci_validate_data(host, data))
691 		return;
692 
693 	if (!mmci_dma_prep_next(host, data))
694 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
695 }
696 
697 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
698 			      int err)
699 {
700 	struct mmci_host *host = mmc_priv(mmc);
701 	struct mmc_data *data = mrq->data;
702 
703 	if (!data || !data->host_cookie)
704 		return;
705 
706 	mmci_dma_unmap(host, data);
707 
708 	if (err) {
709 		struct mmci_host_next *next = &host->next_data;
710 		struct dma_chan *chan;
711 		if (data->flags & MMC_DATA_READ)
712 			chan = host->dma_rx_channel;
713 		else
714 			chan = host->dma_tx_channel;
715 		dmaengine_terminate_all(chan);
716 
717 		next->dma_desc = NULL;
718 		next->dma_chan = NULL;
719 	}
720 }
721 
722 #else
723 /* Blank functions if the DMA engine is not available */
724 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
725 {
726 }
727 static inline void mmci_dma_setup(struct mmci_host *host)
728 {
729 }
730 
731 static inline void mmci_dma_release(struct mmci_host *host)
732 {
733 }
734 
735 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
736 {
737 }
738 
739 static inline void mmci_dma_finalize(struct mmci_host *host,
740 				     struct mmc_data *data)
741 {
742 }
743 
744 static inline void mmci_dma_data_error(struct mmci_host *host)
745 {
746 }
747 
748 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
749 {
750 	return -ENOSYS;
751 }
752 
753 #define mmci_pre_request NULL
754 #define mmci_post_request NULL
755 
756 #endif
757 
758 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
759 {
760 	struct variant_data *variant = host->variant;
761 	unsigned int datactrl, timeout, irqmask;
762 	unsigned long long clks;
763 	void __iomem *base;
764 	int blksz_bits;
765 
766 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
767 		data->blksz, data->blocks, data->flags);
768 
769 	host->data = data;
770 	host->size = data->blksz * data->blocks;
771 	data->bytes_xfered = 0;
772 
773 	clks = (unsigned long long)data->timeout_ns * host->cclk;
774 	do_div(clks, NSEC_PER_SEC);
775 
776 	timeout = data->timeout_clks + (unsigned int)clks;
777 
778 	base = host->base;
779 	writel(timeout, base + MMCIDATATIMER);
780 	writel(host->size, base + MMCIDATALENGTH);
781 
782 	blksz_bits = ffs(data->blksz) - 1;
783 	BUG_ON(1 << blksz_bits != data->blksz);
784 
785 	if (variant->blksz_datactrl16)
786 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
787 	else if (variant->blksz_datactrl4)
788 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
789 	else
790 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
791 
792 	if (data->flags & MMC_DATA_READ)
793 		datactrl |= MCI_DPSM_DIRECTION;
794 
795 	/* The ST Micro variants has a special bit to enable SDIO */
796 	if (variant->sdio && host->mmc->card)
797 		if (mmc_card_sdio(host->mmc->card)) {
798 			/*
799 			 * The ST Micro variants has a special bit
800 			 * to enable SDIO.
801 			 */
802 			u32 clk;
803 
804 			datactrl |= MCI_ST_DPSM_SDIOEN;
805 
806 			/*
807 			 * The ST Micro variant for SDIO small write transfers
808 			 * needs to have clock H/W flow control disabled,
809 			 * otherwise the transfer will not start. The threshold
810 			 * depends on the rate of MCLK.
811 			 */
812 			if (data->flags & MMC_DATA_WRITE &&
813 			    (host->size < 8 ||
814 			     (host->size <= 8 && host->mclk > 50000000)))
815 				clk = host->clk_reg & ~variant->clkreg_enable;
816 			else
817 				clk = host->clk_reg | variant->clkreg_enable;
818 
819 			mmci_write_clkreg(host, clk);
820 		}
821 
822 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
823 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
824 		datactrl |= variant->datactrl_mask_ddrmode;
825 
826 	/*
827 	 * Attempt to use DMA operation mode, if this
828 	 * should fail, fall back to PIO mode
829 	 */
830 	if (!mmci_dma_start_data(host, datactrl))
831 		return;
832 
833 	/* IRQ mode, map the SG list for CPU reading/writing */
834 	mmci_init_sg(host, data);
835 
836 	if (data->flags & MMC_DATA_READ) {
837 		irqmask = MCI_RXFIFOHALFFULLMASK;
838 
839 		/*
840 		 * If we have less than the fifo 'half-full' threshold to
841 		 * transfer, trigger a PIO interrupt as soon as any data
842 		 * is available.
843 		 */
844 		if (host->size < variant->fifohalfsize)
845 			irqmask |= MCI_RXDATAAVLBLMASK;
846 	} else {
847 		/*
848 		 * We don't actually need to include "FIFO empty" here
849 		 * since its implicit in "FIFO half empty".
850 		 */
851 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
852 	}
853 
854 	mmci_write_datactrlreg(host, datactrl);
855 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
856 	mmci_set_mask1(host, irqmask);
857 }
858 
859 static void
860 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
861 {
862 	void __iomem *base = host->base;
863 
864 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
865 	    cmd->opcode, cmd->arg, cmd->flags);
866 
867 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
868 		writel(0, base + MMCICOMMAND);
869 		mmci_reg_delay(host);
870 	}
871 
872 	c |= cmd->opcode | MCI_CPSM_ENABLE;
873 	if (cmd->flags & MMC_RSP_PRESENT) {
874 		if (cmd->flags & MMC_RSP_136)
875 			c |= MCI_CPSM_LONGRSP;
876 		c |= MCI_CPSM_RESPONSE;
877 	}
878 	if (/*interrupt*/0)
879 		c |= MCI_CPSM_INTERRUPT;
880 
881 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
882 		c |= host->variant->data_cmd_enable;
883 
884 	host->cmd = cmd;
885 
886 	writel(cmd->arg, base + MMCIARGUMENT);
887 	writel(c, base + MMCICOMMAND);
888 }
889 
890 static void
891 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
892 	      unsigned int status)
893 {
894 	/* Make sure we have data to handle */
895 	if (!data)
896 		return;
897 
898 	/* First check for errors */
899 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
900 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
901 		u32 remain, success;
902 
903 		/* Terminate the DMA transfer */
904 		if (dma_inprogress(host)) {
905 			mmci_dma_data_error(host);
906 			mmci_dma_unmap(host, data);
907 		}
908 
909 		/*
910 		 * Calculate how far we are into the transfer.  Note that
911 		 * the data counter gives the number of bytes transferred
912 		 * on the MMC bus, not on the host side.  On reads, this
913 		 * can be as much as a FIFO-worth of data ahead.  This
914 		 * matters for FIFO overruns only.
915 		 */
916 		remain = readl(host->base + MMCIDATACNT);
917 		success = data->blksz * data->blocks - remain;
918 
919 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
920 			status, success);
921 		if (status & MCI_DATACRCFAIL) {
922 			/* Last block was not successful */
923 			success -= 1;
924 			data->error = -EILSEQ;
925 		} else if (status & MCI_DATATIMEOUT) {
926 			data->error = -ETIMEDOUT;
927 		} else if (status & MCI_STARTBITERR) {
928 			data->error = -ECOMM;
929 		} else if (status & MCI_TXUNDERRUN) {
930 			data->error = -EIO;
931 		} else if (status & MCI_RXOVERRUN) {
932 			if (success > host->variant->fifosize)
933 				success -= host->variant->fifosize;
934 			else
935 				success = 0;
936 			data->error = -EIO;
937 		}
938 		data->bytes_xfered = round_down(success, data->blksz);
939 	}
940 
941 	if (status & MCI_DATABLOCKEND)
942 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
943 
944 	if (status & MCI_DATAEND || data->error) {
945 		if (dma_inprogress(host))
946 			mmci_dma_finalize(host, data);
947 		mmci_stop_data(host);
948 
949 		if (!data->error)
950 			/* The error clause is handled above, success! */
951 			data->bytes_xfered = data->blksz * data->blocks;
952 
953 		if (!data->stop || host->mrq->sbc) {
954 			mmci_request_end(host, data->mrq);
955 		} else {
956 			mmci_start_command(host, data->stop, 0);
957 		}
958 	}
959 }
960 
961 static void
962 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
963 	     unsigned int status)
964 {
965 	void __iomem *base = host->base;
966 	bool sbc, busy_resp;
967 
968 	if (!cmd)
969 		return;
970 
971 	sbc = (cmd == host->mrq->sbc);
972 	busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
973 
974 	if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
975 		MCI_CMDSENT|MCI_CMDRESPEND)))
976 		return;
977 
978 	/* Check if we need to wait for busy completion. */
979 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
980 		return;
981 
982 	/* Enable busy completion if needed and supported. */
983 	if (!host->busy_status && busy_resp &&
984 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
985 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
986 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
987 			base + MMCIMASK0);
988 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
989 		return;
990 	}
991 
992 	/* At busy completion, mask the IRQ and complete the request. */
993 	if (host->busy_status) {
994 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
995 			base + MMCIMASK0);
996 		host->busy_status = 0;
997 	}
998 
999 	host->cmd = NULL;
1000 
1001 	if (status & MCI_CMDTIMEOUT) {
1002 		cmd->error = -ETIMEDOUT;
1003 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1004 		cmd->error = -EILSEQ;
1005 	} else {
1006 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1007 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1008 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1009 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1010 	}
1011 
1012 	if ((!sbc && !cmd->data) || cmd->error) {
1013 		if (host->data) {
1014 			/* Terminate the DMA transfer */
1015 			if (dma_inprogress(host)) {
1016 				mmci_dma_data_error(host);
1017 				mmci_dma_unmap(host, host->data);
1018 			}
1019 			mmci_stop_data(host);
1020 		}
1021 		mmci_request_end(host, host->mrq);
1022 	} else if (sbc) {
1023 		mmci_start_command(host, host->mrq->cmd, 0);
1024 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1025 		mmci_start_data(host, cmd->data);
1026 	}
1027 }
1028 
1029 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1030 {
1031 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1032 }
1033 
1034 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1035 {
1036 	/*
1037 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1038 	 * from the fifo range should be used
1039 	 */
1040 	if (status & MCI_RXFIFOHALFFULL)
1041 		return host->variant->fifohalfsize;
1042 	else if (status & MCI_RXDATAAVLBL)
1043 		return 4;
1044 
1045 	return 0;
1046 }
1047 
1048 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1049 {
1050 	void __iomem *base = host->base;
1051 	char *ptr = buffer;
1052 	u32 status = readl(host->base + MMCISTATUS);
1053 	int host_remain = host->size;
1054 
1055 	do {
1056 		int count = host->get_rx_fifocnt(host, status, host_remain);
1057 
1058 		if (count > remain)
1059 			count = remain;
1060 
1061 		if (count <= 0)
1062 			break;
1063 
1064 		/*
1065 		 * SDIO especially may want to send something that is
1066 		 * not divisible by 4 (as opposed to card sectors
1067 		 * etc). Therefore make sure to always read the last bytes
1068 		 * while only doing full 32-bit reads towards the FIFO.
1069 		 */
1070 		if (unlikely(count & 0x3)) {
1071 			if (count < 4) {
1072 				unsigned char buf[4];
1073 				ioread32_rep(base + MMCIFIFO, buf, 1);
1074 				memcpy(ptr, buf, count);
1075 			} else {
1076 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1077 				count &= ~0x3;
1078 			}
1079 		} else {
1080 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1081 		}
1082 
1083 		ptr += count;
1084 		remain -= count;
1085 		host_remain -= count;
1086 
1087 		if (remain == 0)
1088 			break;
1089 
1090 		status = readl(base + MMCISTATUS);
1091 	} while (status & MCI_RXDATAAVLBL);
1092 
1093 	return ptr - buffer;
1094 }
1095 
1096 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1097 {
1098 	struct variant_data *variant = host->variant;
1099 	void __iomem *base = host->base;
1100 	char *ptr = buffer;
1101 
1102 	do {
1103 		unsigned int count, maxcnt;
1104 
1105 		maxcnt = status & MCI_TXFIFOEMPTY ?
1106 			 variant->fifosize : variant->fifohalfsize;
1107 		count = min(remain, maxcnt);
1108 
1109 		/*
1110 		 * SDIO especially may want to send something that is
1111 		 * not divisible by 4 (as opposed to card sectors
1112 		 * etc), and the FIFO only accept full 32-bit writes.
1113 		 * So compensate by adding +3 on the count, a single
1114 		 * byte become a 32bit write, 7 bytes will be two
1115 		 * 32bit writes etc.
1116 		 */
1117 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1118 
1119 		ptr += count;
1120 		remain -= count;
1121 
1122 		if (remain == 0)
1123 			break;
1124 
1125 		status = readl(base + MMCISTATUS);
1126 	} while (status & MCI_TXFIFOHALFEMPTY);
1127 
1128 	return ptr - buffer;
1129 }
1130 
1131 /*
1132  * PIO data transfer IRQ handler.
1133  */
1134 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1135 {
1136 	struct mmci_host *host = dev_id;
1137 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1138 	struct variant_data *variant = host->variant;
1139 	void __iomem *base = host->base;
1140 	unsigned long flags;
1141 	u32 status;
1142 
1143 	status = readl(base + MMCISTATUS);
1144 
1145 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1146 
1147 	local_irq_save(flags);
1148 
1149 	do {
1150 		unsigned int remain, len;
1151 		char *buffer;
1152 
1153 		/*
1154 		 * For write, we only need to test the half-empty flag
1155 		 * here - if the FIFO is completely empty, then by
1156 		 * definition it is more than half empty.
1157 		 *
1158 		 * For read, check for data available.
1159 		 */
1160 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1161 			break;
1162 
1163 		if (!sg_miter_next(sg_miter))
1164 			break;
1165 
1166 		buffer = sg_miter->addr;
1167 		remain = sg_miter->length;
1168 
1169 		len = 0;
1170 		if (status & MCI_RXACTIVE)
1171 			len = mmci_pio_read(host, buffer, remain);
1172 		if (status & MCI_TXACTIVE)
1173 			len = mmci_pio_write(host, buffer, remain, status);
1174 
1175 		sg_miter->consumed = len;
1176 
1177 		host->size -= len;
1178 		remain -= len;
1179 
1180 		if (remain)
1181 			break;
1182 
1183 		status = readl(base + MMCISTATUS);
1184 	} while (1);
1185 
1186 	sg_miter_stop(sg_miter);
1187 
1188 	local_irq_restore(flags);
1189 
1190 	/*
1191 	 * If we have less than the fifo 'half-full' threshold to transfer,
1192 	 * trigger a PIO interrupt as soon as any data is available.
1193 	 */
1194 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1195 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1196 
1197 	/*
1198 	 * If we run out of data, disable the data IRQs; this
1199 	 * prevents a race where the FIFO becomes empty before
1200 	 * the chip itself has disabled the data path, and
1201 	 * stops us racing with our data end IRQ.
1202 	 */
1203 	if (host->size == 0) {
1204 		mmci_set_mask1(host, 0);
1205 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1206 	}
1207 
1208 	return IRQ_HANDLED;
1209 }
1210 
1211 /*
1212  * Handle completion of command and data transfers.
1213  */
1214 static irqreturn_t mmci_irq(int irq, void *dev_id)
1215 {
1216 	struct mmci_host *host = dev_id;
1217 	u32 status;
1218 	int ret = 0;
1219 
1220 	spin_lock(&host->lock);
1221 
1222 	do {
1223 		status = readl(host->base + MMCISTATUS);
1224 
1225 		if (host->singleirq) {
1226 			if (status & readl(host->base + MMCIMASK1))
1227 				mmci_pio_irq(irq, dev_id);
1228 
1229 			status &= ~MCI_IRQ1MASK;
1230 		}
1231 
1232 		/*
1233 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1234 		 * enabled) since the HW seems to be triggering the IRQ on both
1235 		 * edges while monitoring DAT0 for busy completion.
1236 		 */
1237 		status &= readl(host->base + MMCIMASK0);
1238 		writel(status, host->base + MMCICLEAR);
1239 
1240 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1241 
1242 		if (host->variant->reversed_irq_handling) {
1243 			mmci_data_irq(host, host->data, status);
1244 			mmci_cmd_irq(host, host->cmd, status);
1245 		} else {
1246 			mmci_cmd_irq(host, host->cmd, status);
1247 			mmci_data_irq(host, host->data, status);
1248 		}
1249 
1250 		/* Don't poll for busy completion in irq context. */
1251 		if (host->busy_status)
1252 			status &= ~MCI_ST_CARDBUSY;
1253 
1254 		ret = 1;
1255 	} while (status);
1256 
1257 	spin_unlock(&host->lock);
1258 
1259 	return IRQ_RETVAL(ret);
1260 }
1261 
1262 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1263 {
1264 	struct mmci_host *host = mmc_priv(mmc);
1265 	unsigned long flags;
1266 
1267 	WARN_ON(host->mrq != NULL);
1268 
1269 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1270 	if (mrq->cmd->error) {
1271 		mmc_request_done(mmc, mrq);
1272 		return;
1273 	}
1274 
1275 	pm_runtime_get_sync(mmc_dev(mmc));
1276 
1277 	spin_lock_irqsave(&host->lock, flags);
1278 
1279 	host->mrq = mrq;
1280 
1281 	if (mrq->data)
1282 		mmci_get_next_data(host, mrq->data);
1283 
1284 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1285 		mmci_start_data(host, mrq->data);
1286 
1287 	if (mrq->sbc)
1288 		mmci_start_command(host, mrq->sbc, 0);
1289 	else
1290 		mmci_start_command(host, mrq->cmd, 0);
1291 
1292 	spin_unlock_irqrestore(&host->lock, flags);
1293 }
1294 
1295 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1296 {
1297 	struct mmci_host *host = mmc_priv(mmc);
1298 	struct variant_data *variant = host->variant;
1299 	u32 pwr = 0;
1300 	unsigned long flags;
1301 	int ret;
1302 
1303 	pm_runtime_get_sync(mmc_dev(mmc));
1304 
1305 	if (host->plat->ios_handler &&
1306 		host->plat->ios_handler(mmc_dev(mmc), ios))
1307 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1308 
1309 	switch (ios->power_mode) {
1310 	case MMC_POWER_OFF:
1311 		if (!IS_ERR(mmc->supply.vmmc))
1312 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1313 
1314 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1315 			regulator_disable(mmc->supply.vqmmc);
1316 			host->vqmmc_enabled = false;
1317 		}
1318 
1319 		break;
1320 	case MMC_POWER_UP:
1321 		if (!IS_ERR(mmc->supply.vmmc))
1322 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1323 
1324 		/*
1325 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1326 		 * and instead uses MCI_PWR_ON so apply whatever value is
1327 		 * configured in the variant data.
1328 		 */
1329 		pwr |= variant->pwrreg_powerup;
1330 
1331 		break;
1332 	case MMC_POWER_ON:
1333 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1334 			ret = regulator_enable(mmc->supply.vqmmc);
1335 			if (ret < 0)
1336 				dev_err(mmc_dev(mmc),
1337 					"failed to enable vqmmc regulator\n");
1338 			else
1339 				host->vqmmc_enabled = true;
1340 		}
1341 
1342 		pwr |= MCI_PWR_ON;
1343 		break;
1344 	}
1345 
1346 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1347 		/*
1348 		 * The ST Micro variant has some additional bits
1349 		 * indicating signal direction for the signals in
1350 		 * the SD/MMC bus and feedback-clock usage.
1351 		 */
1352 		pwr |= host->pwr_reg_add;
1353 
1354 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1355 			pwr &= ~MCI_ST_DATA74DIREN;
1356 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1357 			pwr &= (~MCI_ST_DATA74DIREN &
1358 				~MCI_ST_DATA31DIREN &
1359 				~MCI_ST_DATA2DIREN);
1360 	}
1361 
1362 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1363 		if (host->hw_designer != AMBA_VENDOR_ST)
1364 			pwr |= MCI_ROD;
1365 		else {
1366 			/*
1367 			 * The ST Micro variant use the ROD bit for something
1368 			 * else and only has OD (Open Drain).
1369 			 */
1370 			pwr |= MCI_OD;
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1376 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1377 	 */
1378 	if (!ios->clock && variant->pwrreg_clkgate)
1379 		pwr &= ~MCI_PWR_ON;
1380 
1381 	if (host->variant->explicit_mclk_control &&
1382 	    ios->clock != host->clock_cache) {
1383 		ret = clk_set_rate(host->clk, ios->clock);
1384 		if (ret < 0)
1385 			dev_err(mmc_dev(host->mmc),
1386 				"Error setting clock rate (%d)\n", ret);
1387 		else
1388 			host->mclk = clk_get_rate(host->clk);
1389 	}
1390 	host->clock_cache = ios->clock;
1391 
1392 	spin_lock_irqsave(&host->lock, flags);
1393 
1394 	mmci_set_clkreg(host, ios->clock);
1395 	mmci_write_pwrreg(host, pwr);
1396 	mmci_reg_delay(host);
1397 
1398 	spin_unlock_irqrestore(&host->lock, flags);
1399 
1400 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1401 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1402 }
1403 
1404 static int mmci_get_cd(struct mmc_host *mmc)
1405 {
1406 	struct mmci_host *host = mmc_priv(mmc);
1407 	struct mmci_platform_data *plat = host->plat;
1408 	unsigned int status = mmc_gpio_get_cd(mmc);
1409 
1410 	if (status == -ENOSYS) {
1411 		if (!plat->status)
1412 			return 1; /* Assume always present */
1413 
1414 		status = plat->status(mmc_dev(host->mmc));
1415 	}
1416 	return status;
1417 }
1418 
1419 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1420 {
1421 	int ret = 0;
1422 
1423 	if (!IS_ERR(mmc->supply.vqmmc)) {
1424 
1425 		pm_runtime_get_sync(mmc_dev(mmc));
1426 
1427 		switch (ios->signal_voltage) {
1428 		case MMC_SIGNAL_VOLTAGE_330:
1429 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1430 						2700000, 3600000);
1431 			break;
1432 		case MMC_SIGNAL_VOLTAGE_180:
1433 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1434 						1700000, 1950000);
1435 			break;
1436 		case MMC_SIGNAL_VOLTAGE_120:
1437 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1438 						1100000, 1300000);
1439 			break;
1440 		}
1441 
1442 		if (ret)
1443 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1444 
1445 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1446 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 static struct mmc_host_ops mmci_ops = {
1453 	.request	= mmci_request,
1454 	.pre_req	= mmci_pre_request,
1455 	.post_req	= mmci_post_request,
1456 	.set_ios	= mmci_set_ios,
1457 	.get_ro		= mmc_gpio_get_ro,
1458 	.get_cd		= mmci_get_cd,
1459 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1460 };
1461 
1462 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1463 {
1464 	struct mmci_host *host = mmc_priv(mmc);
1465 	int ret = mmc_of_parse(mmc);
1466 
1467 	if (ret)
1468 		return ret;
1469 
1470 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1471 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1472 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1473 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1474 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1475 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1476 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1477 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1478 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1479 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1480 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1481 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1482 
1483 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1484 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1485 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1486 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1487 
1488 	return 0;
1489 }
1490 
1491 static int mmci_probe(struct amba_device *dev,
1492 	const struct amba_id *id)
1493 {
1494 	struct mmci_platform_data *plat = dev->dev.platform_data;
1495 	struct device_node *np = dev->dev.of_node;
1496 	struct variant_data *variant = id->data;
1497 	struct mmci_host *host;
1498 	struct mmc_host *mmc;
1499 	int ret;
1500 
1501 	/* Must have platform data or Device Tree. */
1502 	if (!plat && !np) {
1503 		dev_err(&dev->dev, "No plat data or DT found\n");
1504 		return -EINVAL;
1505 	}
1506 
1507 	if (!plat) {
1508 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1509 		if (!plat)
1510 			return -ENOMEM;
1511 	}
1512 
1513 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1514 	if (!mmc)
1515 		return -ENOMEM;
1516 
1517 	ret = mmci_of_parse(np, mmc);
1518 	if (ret)
1519 		goto host_free;
1520 
1521 	host = mmc_priv(mmc);
1522 	host->mmc = mmc;
1523 
1524 	host->hw_designer = amba_manf(dev);
1525 	host->hw_revision = amba_rev(dev);
1526 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1527 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1528 
1529 	host->clk = devm_clk_get(&dev->dev, NULL);
1530 	if (IS_ERR(host->clk)) {
1531 		ret = PTR_ERR(host->clk);
1532 		goto host_free;
1533 	}
1534 
1535 	ret = clk_prepare_enable(host->clk);
1536 	if (ret)
1537 		goto host_free;
1538 
1539 	if (variant->qcom_fifo)
1540 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1541 	else
1542 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1543 
1544 	host->plat = plat;
1545 	host->variant = variant;
1546 	host->mclk = clk_get_rate(host->clk);
1547 	/*
1548 	 * According to the spec, mclk is max 100 MHz,
1549 	 * so we try to adjust the clock down to this,
1550 	 * (if possible).
1551 	 */
1552 	if (host->mclk > variant->f_max) {
1553 		ret = clk_set_rate(host->clk, variant->f_max);
1554 		if (ret < 0)
1555 			goto clk_disable;
1556 		host->mclk = clk_get_rate(host->clk);
1557 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1558 			host->mclk);
1559 	}
1560 
1561 	host->phybase = dev->res.start;
1562 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1563 	if (IS_ERR(host->base)) {
1564 		ret = PTR_ERR(host->base);
1565 		goto clk_disable;
1566 	}
1567 
1568 	/*
1569 	 * The ARM and ST versions of the block have slightly different
1570 	 * clock divider equations which means that the minimum divider
1571 	 * differs too.
1572 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1573 	 */
1574 	if (variant->st_clkdiv)
1575 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1576 	else if (variant->explicit_mclk_control)
1577 		mmc->f_min = clk_round_rate(host->clk, 100000);
1578 	else
1579 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1580 	/*
1581 	 * If no maximum operating frequency is supplied, fall back to use
1582 	 * the module parameter, which has a (low) default value in case it
1583 	 * is not specified. Either value must not exceed the clock rate into
1584 	 * the block, of course.
1585 	 */
1586 	if (mmc->f_max)
1587 		mmc->f_max = variant->explicit_mclk_control ?
1588 				min(variant->f_max, mmc->f_max) :
1589 				min(host->mclk, mmc->f_max);
1590 	else
1591 		mmc->f_max = variant->explicit_mclk_control ?
1592 				fmax : min(host->mclk, fmax);
1593 
1594 
1595 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1596 
1597 	/* Get regulators and the supported OCR mask */
1598 	mmc_regulator_get_supply(mmc);
1599 	if (!mmc->ocr_avail)
1600 		mmc->ocr_avail = plat->ocr_mask;
1601 	else if (plat->ocr_mask)
1602 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1603 
1604 	/* DT takes precedence over platform data. */
1605 	if (!np) {
1606 		if (!plat->cd_invert)
1607 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1608 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1609 	}
1610 
1611 	/* We support these capabilities. */
1612 	mmc->caps |= MMC_CAP_CMD23;
1613 
1614 	if (variant->busy_detect) {
1615 		mmci_ops.card_busy = mmci_card_busy;
1616 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1617 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1618 		mmc->max_busy_timeout = 0;
1619 	}
1620 
1621 	mmc->ops = &mmci_ops;
1622 
1623 	/* We support these PM capabilities. */
1624 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1625 
1626 	/*
1627 	 * We can do SGIO
1628 	 */
1629 	mmc->max_segs = NR_SG;
1630 
1631 	/*
1632 	 * Since only a certain number of bits are valid in the data length
1633 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1634 	 * single request.
1635 	 */
1636 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1637 
1638 	/*
1639 	 * Set the maximum segment size.  Since we aren't doing DMA
1640 	 * (yet) we are only limited by the data length register.
1641 	 */
1642 	mmc->max_seg_size = mmc->max_req_size;
1643 
1644 	/*
1645 	 * Block size can be up to 2048 bytes, but must be a power of two.
1646 	 */
1647 	mmc->max_blk_size = 1 << 11;
1648 
1649 	/*
1650 	 * Limit the number of blocks transferred so that we don't overflow
1651 	 * the maximum request size.
1652 	 */
1653 	mmc->max_blk_count = mmc->max_req_size >> 11;
1654 
1655 	spin_lock_init(&host->lock);
1656 
1657 	writel(0, host->base + MMCIMASK0);
1658 	writel(0, host->base + MMCIMASK1);
1659 	writel(0xfff, host->base + MMCICLEAR);
1660 
1661 	/* If DT, cd/wp gpios must be supplied through it. */
1662 	if (!np && gpio_is_valid(plat->gpio_cd)) {
1663 		ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1664 		if (ret)
1665 			goto clk_disable;
1666 	}
1667 	if (!np && gpio_is_valid(plat->gpio_wp)) {
1668 		ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1669 		if (ret)
1670 			goto clk_disable;
1671 	}
1672 
1673 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1674 			DRIVER_NAME " (cmd)", host);
1675 	if (ret)
1676 		goto clk_disable;
1677 
1678 	if (!dev->irq[1])
1679 		host->singleirq = true;
1680 	else {
1681 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1682 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1683 		if (ret)
1684 			goto clk_disable;
1685 	}
1686 
1687 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1688 
1689 	amba_set_drvdata(dev, mmc);
1690 
1691 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1692 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1693 		 amba_rev(dev), (unsigned long long)dev->res.start,
1694 		 dev->irq[0], dev->irq[1]);
1695 
1696 	mmci_dma_setup(host);
1697 
1698 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1699 	pm_runtime_use_autosuspend(&dev->dev);
1700 	pm_runtime_put(&dev->dev);
1701 
1702 	mmc_add_host(mmc);
1703 
1704 	return 0;
1705 
1706  clk_disable:
1707 	clk_disable_unprepare(host->clk);
1708  host_free:
1709 	mmc_free_host(mmc);
1710 	return ret;
1711 }
1712 
1713 static int mmci_remove(struct amba_device *dev)
1714 {
1715 	struct mmc_host *mmc = amba_get_drvdata(dev);
1716 
1717 	if (mmc) {
1718 		struct mmci_host *host = mmc_priv(mmc);
1719 
1720 		/*
1721 		 * Undo pm_runtime_put() in probe.  We use the _sync
1722 		 * version here so that we can access the primecell.
1723 		 */
1724 		pm_runtime_get_sync(&dev->dev);
1725 
1726 		mmc_remove_host(mmc);
1727 
1728 		writel(0, host->base + MMCIMASK0);
1729 		writel(0, host->base + MMCIMASK1);
1730 
1731 		writel(0, host->base + MMCICOMMAND);
1732 		writel(0, host->base + MMCIDATACTRL);
1733 
1734 		mmci_dma_release(host);
1735 		clk_disable_unprepare(host->clk);
1736 		mmc_free_host(mmc);
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 #ifdef CONFIG_PM
1743 static void mmci_save(struct mmci_host *host)
1744 {
1745 	unsigned long flags;
1746 
1747 	spin_lock_irqsave(&host->lock, flags);
1748 
1749 	writel(0, host->base + MMCIMASK0);
1750 	if (host->variant->pwrreg_nopower) {
1751 		writel(0, host->base + MMCIDATACTRL);
1752 		writel(0, host->base + MMCIPOWER);
1753 		writel(0, host->base + MMCICLOCK);
1754 	}
1755 	mmci_reg_delay(host);
1756 
1757 	spin_unlock_irqrestore(&host->lock, flags);
1758 }
1759 
1760 static void mmci_restore(struct mmci_host *host)
1761 {
1762 	unsigned long flags;
1763 
1764 	spin_lock_irqsave(&host->lock, flags);
1765 
1766 	if (host->variant->pwrreg_nopower) {
1767 		writel(host->clk_reg, host->base + MMCICLOCK);
1768 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1769 		writel(host->pwr_reg, host->base + MMCIPOWER);
1770 	}
1771 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1772 	mmci_reg_delay(host);
1773 
1774 	spin_unlock_irqrestore(&host->lock, flags);
1775 }
1776 
1777 static int mmci_runtime_suspend(struct device *dev)
1778 {
1779 	struct amba_device *adev = to_amba_device(dev);
1780 	struct mmc_host *mmc = amba_get_drvdata(adev);
1781 
1782 	if (mmc) {
1783 		struct mmci_host *host = mmc_priv(mmc);
1784 		pinctrl_pm_select_sleep_state(dev);
1785 		mmci_save(host);
1786 		clk_disable_unprepare(host->clk);
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 static int mmci_runtime_resume(struct device *dev)
1793 {
1794 	struct amba_device *adev = to_amba_device(dev);
1795 	struct mmc_host *mmc = amba_get_drvdata(adev);
1796 
1797 	if (mmc) {
1798 		struct mmci_host *host = mmc_priv(mmc);
1799 		clk_prepare_enable(host->clk);
1800 		mmci_restore(host);
1801 		pinctrl_pm_select_default_state(dev);
1802 	}
1803 
1804 	return 0;
1805 }
1806 #endif
1807 
1808 static const struct dev_pm_ops mmci_dev_pm_ops = {
1809 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1810 				pm_runtime_force_resume)
1811 	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1812 };
1813 
1814 static struct amba_id mmci_ids[] = {
1815 	{
1816 		.id	= 0x00041180,
1817 		.mask	= 0xff0fffff,
1818 		.data	= &variant_arm,
1819 	},
1820 	{
1821 		.id	= 0x01041180,
1822 		.mask	= 0xff0fffff,
1823 		.data	= &variant_arm_extended_fifo,
1824 	},
1825 	{
1826 		.id	= 0x02041180,
1827 		.mask	= 0xff0fffff,
1828 		.data	= &variant_arm_extended_fifo_hwfc,
1829 	},
1830 	{
1831 		.id	= 0x00041181,
1832 		.mask	= 0x000fffff,
1833 		.data	= &variant_arm,
1834 	},
1835 	/* ST Micro variants */
1836 	{
1837 		.id     = 0x00180180,
1838 		.mask   = 0x00ffffff,
1839 		.data	= &variant_u300,
1840 	},
1841 	{
1842 		.id     = 0x10180180,
1843 		.mask   = 0xf0ffffff,
1844 		.data	= &variant_nomadik,
1845 	},
1846 	{
1847 		.id     = 0x00280180,
1848 		.mask   = 0x00ffffff,
1849 		.data	= &variant_u300,
1850 	},
1851 	{
1852 		.id     = 0x00480180,
1853 		.mask   = 0xf0ffffff,
1854 		.data	= &variant_ux500,
1855 	},
1856 	{
1857 		.id     = 0x10480180,
1858 		.mask   = 0xf0ffffff,
1859 		.data	= &variant_ux500v2,
1860 	},
1861 	/* Qualcomm variants */
1862 	{
1863 		.id     = 0x00051180,
1864 		.mask	= 0x000fffff,
1865 		.data	= &variant_qcom,
1866 	},
1867 	{ 0, 0 },
1868 };
1869 
1870 MODULE_DEVICE_TABLE(amba, mmci_ids);
1871 
1872 static struct amba_driver mmci_driver = {
1873 	.drv		= {
1874 		.name	= DRIVER_NAME,
1875 		.pm	= &mmci_dev_pm_ops,
1876 	},
1877 	.probe		= mmci_probe,
1878 	.remove		= mmci_remove,
1879 	.id_table	= mmci_ids,
1880 };
1881 
1882 module_amba_driver(mmci_driver);
1883 
1884 module_param(fmax, uint, 0444);
1885 
1886 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1887 MODULE_LICENSE("GPL");
1888