xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/slot-gpio.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/reset.h>
38 
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 
42 #include "mmci.h"
43 
44 #define DRIVER_NAME "mmci-pl18x"
45 
46 static void mmci_variant_init(struct mmci_host *host);
47 static void ux500_variant_init(struct mmci_host *host);
48 static void ux500v2_variant_init(struct mmci_host *host);
49 
50 static unsigned int fmax = 515633;
51 
52 static struct variant_data variant_arm = {
53 	.fifosize		= 16 * 4,
54 	.fifohalfsize		= 8 * 4,
55 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
56 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
57 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
58 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
59 	.datalength_bits	= 16,
60 	.datactrl_blocksz	= 11,
61 	.pwrreg_powerup		= MCI_PWR_UP,
62 	.f_max			= 100000000,
63 	.reversed_irq_handling	= true,
64 	.mmcimask1		= true,
65 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
66 	.start_err		= MCI_STARTBITERR,
67 	.opendrain		= MCI_ROD,
68 	.init			= mmci_variant_init,
69 };
70 
71 static struct variant_data variant_arm_extended_fifo = {
72 	.fifosize		= 128 * 4,
73 	.fifohalfsize		= 64 * 4,
74 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
75 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
76 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
77 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
78 	.datalength_bits	= 16,
79 	.datactrl_blocksz	= 11,
80 	.pwrreg_powerup		= MCI_PWR_UP,
81 	.f_max			= 100000000,
82 	.mmcimask1		= true,
83 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
84 	.start_err		= MCI_STARTBITERR,
85 	.opendrain		= MCI_ROD,
86 	.init			= mmci_variant_init,
87 };
88 
89 static struct variant_data variant_arm_extended_fifo_hwfc = {
90 	.fifosize		= 128 * 4,
91 	.fifohalfsize		= 64 * 4,
92 	.clkreg_enable		= MCI_ARM_HWFCEN,
93 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
94 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
95 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
96 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
97 	.datalength_bits	= 16,
98 	.datactrl_blocksz	= 11,
99 	.pwrreg_powerup		= MCI_PWR_UP,
100 	.f_max			= 100000000,
101 	.mmcimask1		= true,
102 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
103 	.start_err		= MCI_STARTBITERR,
104 	.opendrain		= MCI_ROD,
105 	.init			= mmci_variant_init,
106 };
107 
108 static struct variant_data variant_u300 = {
109 	.fifosize		= 16 * 4,
110 	.fifohalfsize		= 8 * 4,
111 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
112 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
113 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
114 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
115 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
116 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
117 	.datalength_bits	= 16,
118 	.datactrl_blocksz	= 11,
119 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
120 	.st_sdio			= true,
121 	.pwrreg_powerup		= MCI_PWR_ON,
122 	.f_max			= 100000000,
123 	.signal_direction	= true,
124 	.pwrreg_clkgate		= true,
125 	.pwrreg_nopower		= true,
126 	.mmcimask1		= true,
127 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
128 	.start_err		= MCI_STARTBITERR,
129 	.opendrain		= MCI_OD,
130 	.init			= mmci_variant_init,
131 };
132 
133 static struct variant_data variant_nomadik = {
134 	.fifosize		= 16 * 4,
135 	.fifohalfsize		= 8 * 4,
136 	.clkreg			= MCI_CLK_ENABLE,
137 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
138 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
139 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
140 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
141 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
142 	.datalength_bits	= 24,
143 	.datactrl_blocksz	= 11,
144 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
145 	.st_sdio		= true,
146 	.st_clkdiv		= true,
147 	.pwrreg_powerup		= MCI_PWR_ON,
148 	.f_max			= 100000000,
149 	.signal_direction	= true,
150 	.pwrreg_clkgate		= true,
151 	.pwrreg_nopower		= true,
152 	.mmcimask1		= true,
153 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
154 	.start_err		= MCI_STARTBITERR,
155 	.opendrain		= MCI_OD,
156 	.init			= mmci_variant_init,
157 };
158 
159 static struct variant_data variant_ux500 = {
160 	.fifosize		= 30 * 4,
161 	.fifohalfsize		= 8 * 4,
162 	.clkreg			= MCI_CLK_ENABLE,
163 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
164 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
165 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
166 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
167 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
168 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
169 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
170 	.datalength_bits	= 24,
171 	.datactrl_blocksz	= 11,
172 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
173 	.st_sdio		= true,
174 	.st_clkdiv		= true,
175 	.pwrreg_powerup		= MCI_PWR_ON,
176 	.f_max			= 100000000,
177 	.signal_direction	= true,
178 	.pwrreg_clkgate		= true,
179 	.busy_detect		= true,
180 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
181 	.busy_detect_flag	= MCI_ST_CARDBUSY,
182 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
183 	.pwrreg_nopower		= true,
184 	.mmcimask1		= true,
185 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
186 	.start_err		= MCI_STARTBITERR,
187 	.opendrain		= MCI_OD,
188 	.init			= ux500_variant_init,
189 };
190 
191 static struct variant_data variant_ux500v2 = {
192 	.fifosize		= 30 * 4,
193 	.fifohalfsize		= 8 * 4,
194 	.clkreg			= MCI_CLK_ENABLE,
195 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
196 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
197 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
198 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
199 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
200 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
201 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
202 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
203 	.datalength_bits	= 24,
204 	.datactrl_blocksz	= 11,
205 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
206 	.st_sdio		= true,
207 	.st_clkdiv		= true,
208 	.pwrreg_powerup		= MCI_PWR_ON,
209 	.f_max			= 100000000,
210 	.signal_direction	= true,
211 	.pwrreg_clkgate		= true,
212 	.busy_detect		= true,
213 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
214 	.busy_detect_flag	= MCI_ST_CARDBUSY,
215 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
216 	.pwrreg_nopower		= true,
217 	.mmcimask1		= true,
218 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
219 	.start_err		= MCI_STARTBITERR,
220 	.opendrain		= MCI_OD,
221 	.init			= ux500v2_variant_init,
222 };
223 
224 static struct variant_data variant_stm32 = {
225 	.fifosize		= 32 * 4,
226 	.fifohalfsize		= 8 * 4,
227 	.clkreg			= MCI_CLK_ENABLE,
228 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
229 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
230 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
231 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
232 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
233 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
234 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
235 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
236 	.datalength_bits	= 24,
237 	.datactrl_blocksz	= 11,
238 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
239 	.st_sdio		= true,
240 	.st_clkdiv		= true,
241 	.pwrreg_powerup		= MCI_PWR_ON,
242 	.f_max			= 48000000,
243 	.pwrreg_clkgate		= true,
244 	.pwrreg_nopower		= true,
245 	.init			= mmci_variant_init,
246 };
247 
248 static struct variant_data variant_stm32_sdmmc = {
249 	.fifosize		= 16 * 4,
250 	.fifohalfsize		= 8 * 4,
251 	.f_max			= 208000000,
252 	.stm32_clkdiv		= true,
253 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
254 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
255 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
256 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
257 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
258 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
259 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
260 	.datactrl_first		= true,
261 	.datacnt_useless	= true,
262 	.datalength_bits	= 25,
263 	.datactrl_blocksz	= 14,
264 	.stm32_idmabsize_mask	= GENMASK(12, 5),
265 	.busy_timeout		= true,
266 	.busy_detect		= true,
267 	.busy_detect_flag	= MCI_STM32_BUSYD0,
268 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
269 	.init			= sdmmc_variant_init,
270 };
271 
272 static struct variant_data variant_qcom = {
273 	.fifosize		= 16 * 4,
274 	.fifohalfsize		= 8 * 4,
275 	.clkreg			= MCI_CLK_ENABLE,
276 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
277 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
278 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
279 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
280 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
281 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
282 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
283 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
284 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
285 	.datalength_bits	= 24,
286 	.datactrl_blocksz	= 11,
287 	.pwrreg_powerup		= MCI_PWR_UP,
288 	.f_max			= 208000000,
289 	.explicit_mclk_control	= true,
290 	.qcom_fifo		= true,
291 	.qcom_dml		= true,
292 	.mmcimask1		= true,
293 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
294 	.start_err		= MCI_STARTBITERR,
295 	.opendrain		= MCI_ROD,
296 	.init			= qcom_variant_init,
297 };
298 
299 /* Busy detection for the ST Micro variant */
300 static int mmci_card_busy(struct mmc_host *mmc)
301 {
302 	struct mmci_host *host = mmc_priv(mmc);
303 	unsigned long flags;
304 	int busy = 0;
305 
306 	spin_lock_irqsave(&host->lock, flags);
307 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
308 		busy = 1;
309 	spin_unlock_irqrestore(&host->lock, flags);
310 
311 	return busy;
312 }
313 
314 static void mmci_reg_delay(struct mmci_host *host)
315 {
316 	/*
317 	 * According to the spec, at least three feedback clock cycles
318 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
319 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
320 	 * Worst delay time during card init is at 100 kHz => 30 us.
321 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
322 	 */
323 	if (host->cclk < 25000000)
324 		udelay(30);
325 	else
326 		ndelay(120);
327 }
328 
329 /*
330  * This must be called with host->lock held
331  */
332 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
333 {
334 	if (host->clk_reg != clk) {
335 		host->clk_reg = clk;
336 		writel(clk, host->base + MMCICLOCK);
337 	}
338 }
339 
340 /*
341  * This must be called with host->lock held
342  */
343 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
344 {
345 	if (host->pwr_reg != pwr) {
346 		host->pwr_reg = pwr;
347 		writel(pwr, host->base + MMCIPOWER);
348 	}
349 }
350 
351 /*
352  * This must be called with host->lock held
353  */
354 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
355 {
356 	/* Keep busy mode in DPSM if enabled */
357 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
358 
359 	if (host->datactrl_reg != datactrl) {
360 		host->datactrl_reg = datactrl;
361 		writel(datactrl, host->base + MMCIDATACTRL);
362 	}
363 }
364 
365 /*
366  * This must be called with host->lock held
367  */
368 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
369 {
370 	struct variant_data *variant = host->variant;
371 	u32 clk = variant->clkreg;
372 
373 	/* Make sure cclk reflects the current calculated clock */
374 	host->cclk = 0;
375 
376 	if (desired) {
377 		if (variant->explicit_mclk_control) {
378 			host->cclk = host->mclk;
379 		} else if (desired >= host->mclk) {
380 			clk = MCI_CLK_BYPASS;
381 			if (variant->st_clkdiv)
382 				clk |= MCI_ST_UX500_NEG_EDGE;
383 			host->cclk = host->mclk;
384 		} else if (variant->st_clkdiv) {
385 			/*
386 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
387 			 * => clkdiv = (mclk / f) - 2
388 			 * Round the divider up so we don't exceed the max
389 			 * frequency
390 			 */
391 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
392 			if (clk >= 256)
393 				clk = 255;
394 			host->cclk = host->mclk / (clk + 2);
395 		} else {
396 			/*
397 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
398 			 * => clkdiv = mclk / (2 * f) - 1
399 			 */
400 			clk = host->mclk / (2 * desired) - 1;
401 			if (clk >= 256)
402 				clk = 255;
403 			host->cclk = host->mclk / (2 * (clk + 1));
404 		}
405 
406 		clk |= variant->clkreg_enable;
407 		clk |= MCI_CLK_ENABLE;
408 		/* This hasn't proven to be worthwhile */
409 		/* clk |= MCI_CLK_PWRSAVE; */
410 	}
411 
412 	/* Set actual clock for debug */
413 	host->mmc->actual_clock = host->cclk;
414 
415 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
416 		clk |= MCI_4BIT_BUS;
417 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
418 		clk |= variant->clkreg_8bit_bus_enable;
419 
420 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
421 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
422 		clk |= variant->clkreg_neg_edge_enable;
423 
424 	mmci_write_clkreg(host, clk);
425 }
426 
427 static void mmci_dma_release(struct mmci_host *host)
428 {
429 	if (host->ops && host->ops->dma_release)
430 		host->ops->dma_release(host);
431 
432 	host->use_dma = false;
433 }
434 
435 static void mmci_dma_setup(struct mmci_host *host)
436 {
437 	if (!host->ops || !host->ops->dma_setup)
438 		return;
439 
440 	if (host->ops->dma_setup(host))
441 		return;
442 
443 	/* initialize pre request cookie */
444 	host->next_cookie = 1;
445 
446 	host->use_dma = true;
447 }
448 
449 /*
450  * Validate mmc prerequisites
451  */
452 static int mmci_validate_data(struct mmci_host *host,
453 			      struct mmc_data *data)
454 {
455 	if (!data)
456 		return 0;
457 
458 	if (!is_power_of_2(data->blksz)) {
459 		dev_err(mmc_dev(host->mmc),
460 			"unsupported block size (%d bytes)\n", data->blksz);
461 		return -EINVAL;
462 	}
463 
464 	if (host->ops && host->ops->validate_data)
465 		return host->ops->validate_data(host, data);
466 
467 	return 0;
468 }
469 
470 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
471 {
472 	int err;
473 
474 	if (!host->ops || !host->ops->prep_data)
475 		return 0;
476 
477 	err = host->ops->prep_data(host, data, next);
478 
479 	if (next && !err)
480 		data->host_cookie = ++host->next_cookie < 0 ?
481 			1 : host->next_cookie;
482 
483 	return err;
484 }
485 
486 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
487 		      int err)
488 {
489 	if (host->ops && host->ops->unprep_data)
490 		host->ops->unprep_data(host, data, err);
491 
492 	data->host_cookie = 0;
493 }
494 
495 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
496 {
497 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
498 
499 	if (host->ops && host->ops->get_next_data)
500 		host->ops->get_next_data(host, data);
501 }
502 
503 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
504 {
505 	struct mmc_data *data = host->data;
506 	int ret;
507 
508 	if (!host->use_dma)
509 		return -EINVAL;
510 
511 	ret = mmci_prep_data(host, data, false);
512 	if (ret)
513 		return ret;
514 
515 	if (!host->ops || !host->ops->dma_start)
516 		return -EINVAL;
517 
518 	/* Okay, go for it. */
519 	dev_vdbg(mmc_dev(host->mmc),
520 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
521 		 data->sg_len, data->blksz, data->blocks, data->flags);
522 
523 	host->ops->dma_start(host, &datactrl);
524 
525 	/* Trigger the DMA transfer */
526 	mmci_write_datactrlreg(host, datactrl);
527 
528 	/*
529 	 * Let the MMCI say when the data is ended and it's time
530 	 * to fire next DMA request. When that happens, MMCI will
531 	 * call mmci_data_end()
532 	 */
533 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
534 	       host->base + MMCIMASK0);
535 	return 0;
536 }
537 
538 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
539 {
540 	if (!host->use_dma)
541 		return;
542 
543 	if (host->ops && host->ops->dma_finalize)
544 		host->ops->dma_finalize(host, data);
545 }
546 
547 static void mmci_dma_error(struct mmci_host *host)
548 {
549 	if (!host->use_dma)
550 		return;
551 
552 	if (host->ops && host->ops->dma_error)
553 		host->ops->dma_error(host);
554 }
555 
556 static void
557 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
558 {
559 	writel(0, host->base + MMCICOMMAND);
560 
561 	BUG_ON(host->data);
562 
563 	host->mrq = NULL;
564 	host->cmd = NULL;
565 
566 	mmc_request_done(host->mmc, mrq);
567 }
568 
569 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
570 {
571 	void __iomem *base = host->base;
572 	struct variant_data *variant = host->variant;
573 
574 	if (host->singleirq) {
575 		unsigned int mask0 = readl(base + MMCIMASK0);
576 
577 		mask0 &= ~variant->irq_pio_mask;
578 		mask0 |= mask;
579 
580 		writel(mask0, base + MMCIMASK0);
581 	}
582 
583 	if (variant->mmcimask1)
584 		writel(mask, base + MMCIMASK1);
585 
586 	host->mask1_reg = mask;
587 }
588 
589 static void mmci_stop_data(struct mmci_host *host)
590 {
591 	mmci_write_datactrlreg(host, 0);
592 	mmci_set_mask1(host, 0);
593 	host->data = NULL;
594 }
595 
596 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
597 {
598 	unsigned int flags = SG_MITER_ATOMIC;
599 
600 	if (data->flags & MMC_DATA_READ)
601 		flags |= SG_MITER_TO_SG;
602 	else
603 		flags |= SG_MITER_FROM_SG;
604 
605 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
606 }
607 
608 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
609 {
610 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
611 }
612 
613 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
614 {
615 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
616 }
617 
618 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
619 {
620 	void __iomem *base = host->base;
621 
622 	/*
623 	 * Before unmasking for the busy end IRQ, confirm that the
624 	 * command was sent successfully. To keep track of having a
625 	 * command in-progress, waiting for busy signaling to end,
626 	 * store the status in host->busy_status.
627 	 *
628 	 * Note that, the card may need a couple of clock cycles before
629 	 * it starts signaling busy on DAT0, hence re-read the
630 	 * MMCISTATUS register here, to allow the busy bit to be set.
631 	 * Potentially we may even need to poll the register for a
632 	 * while, to allow it to be set, but tests indicates that it
633 	 * isn't needed.
634 	 */
635 	if (!host->busy_status && !(status & err_msk) &&
636 	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
637 		writel(readl(base + MMCIMASK0) |
638 		       host->variant->busy_detect_mask,
639 		       base + MMCIMASK0);
640 
641 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
642 		return false;
643 	}
644 
645 	/*
646 	 * If there is a command in-progress that has been successfully
647 	 * sent, then bail out if busy status is set and wait for the
648 	 * busy end IRQ.
649 	 *
650 	 * Note that, the HW triggers an IRQ on both edges while
651 	 * monitoring DAT0 for busy completion, but there is only one
652 	 * status bit in MMCISTATUS for the busy state. Therefore
653 	 * both the start and the end interrupts needs to be cleared,
654 	 * one after the other. So, clear the busy start IRQ here.
655 	 */
656 	if (host->busy_status &&
657 	    (status & host->variant->busy_detect_flag)) {
658 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
659 		return false;
660 	}
661 
662 	/*
663 	 * If there is a command in-progress that has been successfully
664 	 * sent and the busy bit isn't set, it means we have received
665 	 * the busy end IRQ. Clear and mask the IRQ, then continue to
666 	 * process the command.
667 	 */
668 	if (host->busy_status) {
669 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
670 
671 		writel(readl(base + MMCIMASK0) &
672 		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
673 		host->busy_status = 0;
674 	}
675 
676 	return true;
677 }
678 
679 /*
680  * All the DMA operation mode stuff goes inside this ifdef.
681  * This assumes that you have a generic DMA device interface,
682  * no custom DMA interfaces are supported.
683  */
684 #ifdef CONFIG_DMA_ENGINE
685 struct mmci_dmae_next {
686 	struct dma_async_tx_descriptor *desc;
687 	struct dma_chan	*chan;
688 };
689 
690 struct mmci_dmae_priv {
691 	struct dma_chan	*cur;
692 	struct dma_chan	*rx_channel;
693 	struct dma_chan	*tx_channel;
694 	struct dma_async_tx_descriptor	*desc_current;
695 	struct mmci_dmae_next next_data;
696 };
697 
698 int mmci_dmae_setup(struct mmci_host *host)
699 {
700 	const char *rxname, *txname;
701 	struct mmci_dmae_priv *dmae;
702 
703 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
704 	if (!dmae)
705 		return -ENOMEM;
706 
707 	host->dma_priv = dmae;
708 
709 	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
710 						     "rx");
711 	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
712 						     "tx");
713 
714 	/*
715 	 * If only an RX channel is specified, the driver will
716 	 * attempt to use it bidirectionally, however if it is
717 	 * is specified but cannot be located, DMA will be disabled.
718 	 */
719 	if (dmae->rx_channel && !dmae->tx_channel)
720 		dmae->tx_channel = dmae->rx_channel;
721 
722 	if (dmae->rx_channel)
723 		rxname = dma_chan_name(dmae->rx_channel);
724 	else
725 		rxname = "none";
726 
727 	if (dmae->tx_channel)
728 		txname = dma_chan_name(dmae->tx_channel);
729 	else
730 		txname = "none";
731 
732 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
733 		 rxname, txname);
734 
735 	/*
736 	 * Limit the maximum segment size in any SG entry according to
737 	 * the parameters of the DMA engine device.
738 	 */
739 	if (dmae->tx_channel) {
740 		struct device *dev = dmae->tx_channel->device->dev;
741 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
742 
743 		if (max_seg_size < host->mmc->max_seg_size)
744 			host->mmc->max_seg_size = max_seg_size;
745 	}
746 	if (dmae->rx_channel) {
747 		struct device *dev = dmae->rx_channel->device->dev;
748 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 
750 		if (max_seg_size < host->mmc->max_seg_size)
751 			host->mmc->max_seg_size = max_seg_size;
752 	}
753 
754 	if (!dmae->tx_channel || !dmae->rx_channel) {
755 		mmci_dmae_release(host);
756 		return -EINVAL;
757 	}
758 
759 	return 0;
760 }
761 
762 /*
763  * This is used in or so inline it
764  * so it can be discarded.
765  */
766 void mmci_dmae_release(struct mmci_host *host)
767 {
768 	struct mmci_dmae_priv *dmae = host->dma_priv;
769 
770 	if (dmae->rx_channel)
771 		dma_release_channel(dmae->rx_channel);
772 	if (dmae->tx_channel)
773 		dma_release_channel(dmae->tx_channel);
774 	dmae->rx_channel = dmae->tx_channel = NULL;
775 }
776 
777 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
778 {
779 	struct mmci_dmae_priv *dmae = host->dma_priv;
780 	struct dma_chan *chan;
781 
782 	if (data->flags & MMC_DATA_READ)
783 		chan = dmae->rx_channel;
784 	else
785 		chan = dmae->tx_channel;
786 
787 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
788 		     mmc_get_dma_dir(data));
789 }
790 
791 void mmci_dmae_error(struct mmci_host *host)
792 {
793 	struct mmci_dmae_priv *dmae = host->dma_priv;
794 
795 	if (!dma_inprogress(host))
796 		return;
797 
798 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
799 	dmaengine_terminate_all(dmae->cur);
800 	host->dma_in_progress = false;
801 	dmae->cur = NULL;
802 	dmae->desc_current = NULL;
803 	host->data->host_cookie = 0;
804 
805 	mmci_dma_unmap(host, host->data);
806 }
807 
808 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
809 {
810 	struct mmci_dmae_priv *dmae = host->dma_priv;
811 	u32 status;
812 	int i;
813 
814 	if (!dma_inprogress(host))
815 		return;
816 
817 	/* Wait up to 1ms for the DMA to complete */
818 	for (i = 0; ; i++) {
819 		status = readl(host->base + MMCISTATUS);
820 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
821 			break;
822 		udelay(10);
823 	}
824 
825 	/*
826 	 * Check to see whether we still have some data left in the FIFO -
827 	 * this catches DMA controllers which are unable to monitor the
828 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
829 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
830 	 */
831 	if (status & MCI_RXDATAAVLBLMASK) {
832 		mmci_dma_error(host);
833 		if (!data->error)
834 			data->error = -EIO;
835 	} else if (!data->host_cookie) {
836 		mmci_dma_unmap(host, data);
837 	}
838 
839 	/*
840 	 * Use of DMA with scatter-gather is impossible.
841 	 * Give up with DMA and switch back to PIO mode.
842 	 */
843 	if (status & MCI_RXDATAAVLBLMASK) {
844 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
845 		mmci_dma_release(host);
846 	}
847 
848 	host->dma_in_progress = false;
849 	dmae->cur = NULL;
850 	dmae->desc_current = NULL;
851 }
852 
853 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
854 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
855 				struct dma_chan **dma_chan,
856 				struct dma_async_tx_descriptor **dma_desc)
857 {
858 	struct mmci_dmae_priv *dmae = host->dma_priv;
859 	struct variant_data *variant = host->variant;
860 	struct dma_slave_config conf = {
861 		.src_addr = host->phybase + MMCIFIFO,
862 		.dst_addr = host->phybase + MMCIFIFO,
863 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
864 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
865 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
866 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
867 		.device_fc = false,
868 	};
869 	struct dma_chan *chan;
870 	struct dma_device *device;
871 	struct dma_async_tx_descriptor *desc;
872 	int nr_sg;
873 	unsigned long flags = DMA_CTRL_ACK;
874 
875 	if (data->flags & MMC_DATA_READ) {
876 		conf.direction = DMA_DEV_TO_MEM;
877 		chan = dmae->rx_channel;
878 	} else {
879 		conf.direction = DMA_MEM_TO_DEV;
880 		chan = dmae->tx_channel;
881 	}
882 
883 	/* If there's no DMA channel, fall back to PIO */
884 	if (!chan)
885 		return -EINVAL;
886 
887 	/* If less than or equal to the fifo size, don't bother with DMA */
888 	if (data->blksz * data->blocks <= variant->fifosize)
889 		return -EINVAL;
890 
891 	device = chan->device;
892 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
893 			   mmc_get_dma_dir(data));
894 	if (nr_sg == 0)
895 		return -EINVAL;
896 
897 	if (host->variant->qcom_dml)
898 		flags |= DMA_PREP_INTERRUPT;
899 
900 	dmaengine_slave_config(chan, &conf);
901 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
902 					    conf.direction, flags);
903 	if (!desc)
904 		goto unmap_exit;
905 
906 	*dma_chan = chan;
907 	*dma_desc = desc;
908 
909 	return 0;
910 
911  unmap_exit:
912 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
913 		     mmc_get_dma_dir(data));
914 	return -ENOMEM;
915 }
916 
917 int mmci_dmae_prep_data(struct mmci_host *host,
918 			struct mmc_data *data,
919 			bool next)
920 {
921 	struct mmci_dmae_priv *dmae = host->dma_priv;
922 	struct mmci_dmae_next *nd = &dmae->next_data;
923 
924 	if (!host->use_dma)
925 		return -EINVAL;
926 
927 	if (next)
928 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
929 	/* Check if next job is already prepared. */
930 	if (dmae->cur && dmae->desc_current)
931 		return 0;
932 
933 	/* No job were prepared thus do it now. */
934 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
935 				    &dmae->desc_current);
936 }
937 
938 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
939 {
940 	struct mmci_dmae_priv *dmae = host->dma_priv;
941 
942 	host->dma_in_progress = true;
943 	dmaengine_submit(dmae->desc_current);
944 	dma_async_issue_pending(dmae->cur);
945 
946 	*datactrl |= MCI_DPSM_DMAENABLE;
947 
948 	return 0;
949 }
950 
951 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
952 {
953 	struct mmci_dmae_priv *dmae = host->dma_priv;
954 	struct mmci_dmae_next *next = &dmae->next_data;
955 
956 	if (!host->use_dma)
957 		return;
958 
959 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
960 
961 	dmae->desc_current = next->desc;
962 	dmae->cur = next->chan;
963 	next->desc = NULL;
964 	next->chan = NULL;
965 }
966 
967 void mmci_dmae_unprep_data(struct mmci_host *host,
968 			   struct mmc_data *data, int err)
969 
970 {
971 	struct mmci_dmae_priv *dmae = host->dma_priv;
972 
973 	if (!host->use_dma)
974 		return;
975 
976 	mmci_dma_unmap(host, data);
977 
978 	if (err) {
979 		struct mmci_dmae_next *next = &dmae->next_data;
980 		struct dma_chan *chan;
981 		if (data->flags & MMC_DATA_READ)
982 			chan = dmae->rx_channel;
983 		else
984 			chan = dmae->tx_channel;
985 		dmaengine_terminate_all(chan);
986 
987 		if (dmae->desc_current == next->desc)
988 			dmae->desc_current = NULL;
989 
990 		if (dmae->cur == next->chan) {
991 			host->dma_in_progress = false;
992 			dmae->cur = NULL;
993 		}
994 
995 		next->desc = NULL;
996 		next->chan = NULL;
997 	}
998 }
999 
1000 static struct mmci_host_ops mmci_variant_ops = {
1001 	.prep_data = mmci_dmae_prep_data,
1002 	.unprep_data = mmci_dmae_unprep_data,
1003 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1004 	.get_next_data = mmci_dmae_get_next_data,
1005 	.dma_setup = mmci_dmae_setup,
1006 	.dma_release = mmci_dmae_release,
1007 	.dma_start = mmci_dmae_start,
1008 	.dma_finalize = mmci_dmae_finalize,
1009 	.dma_error = mmci_dmae_error,
1010 };
1011 #else
1012 static struct mmci_host_ops mmci_variant_ops = {
1013 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1014 };
1015 #endif
1016 
1017 static void mmci_variant_init(struct mmci_host *host)
1018 {
1019 	host->ops = &mmci_variant_ops;
1020 }
1021 
1022 static void ux500_variant_init(struct mmci_host *host)
1023 {
1024 	host->ops = &mmci_variant_ops;
1025 	host->ops->busy_complete = ux500_busy_complete;
1026 }
1027 
1028 static void ux500v2_variant_init(struct mmci_host *host)
1029 {
1030 	host->ops = &mmci_variant_ops;
1031 	host->ops->busy_complete = ux500_busy_complete;
1032 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1033 }
1034 
1035 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1036 {
1037 	struct mmci_host *host = mmc_priv(mmc);
1038 	struct mmc_data *data = mrq->data;
1039 
1040 	if (!data)
1041 		return;
1042 
1043 	WARN_ON(data->host_cookie);
1044 
1045 	if (mmci_validate_data(host, data))
1046 		return;
1047 
1048 	mmci_prep_data(host, data, true);
1049 }
1050 
1051 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1052 			      int err)
1053 {
1054 	struct mmci_host *host = mmc_priv(mmc);
1055 	struct mmc_data *data = mrq->data;
1056 
1057 	if (!data || !data->host_cookie)
1058 		return;
1059 
1060 	mmci_unprep_data(host, data, err);
1061 }
1062 
1063 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1064 {
1065 	struct variant_data *variant = host->variant;
1066 	unsigned int datactrl, timeout, irqmask;
1067 	unsigned long long clks;
1068 	void __iomem *base;
1069 
1070 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1071 		data->blksz, data->blocks, data->flags);
1072 
1073 	host->data = data;
1074 	host->size = data->blksz * data->blocks;
1075 	data->bytes_xfered = 0;
1076 
1077 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1078 	do_div(clks, NSEC_PER_SEC);
1079 
1080 	timeout = data->timeout_clks + (unsigned int)clks;
1081 
1082 	base = host->base;
1083 	writel(timeout, base + MMCIDATATIMER);
1084 	writel(host->size, base + MMCIDATALENGTH);
1085 
1086 	datactrl = host->ops->get_datactrl_cfg(host);
1087 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1088 
1089 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1090 		u32 clk;
1091 
1092 		datactrl |= variant->datactrl_mask_sdio;
1093 
1094 		/*
1095 		 * The ST Micro variant for SDIO small write transfers
1096 		 * needs to have clock H/W flow control disabled,
1097 		 * otherwise the transfer will not start. The threshold
1098 		 * depends on the rate of MCLK.
1099 		 */
1100 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1101 		    (host->size < 8 ||
1102 		     (host->size <= 8 && host->mclk > 50000000)))
1103 			clk = host->clk_reg & ~variant->clkreg_enable;
1104 		else
1105 			clk = host->clk_reg | variant->clkreg_enable;
1106 
1107 		mmci_write_clkreg(host, clk);
1108 	}
1109 
1110 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1111 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1112 		datactrl |= variant->datactrl_mask_ddrmode;
1113 
1114 	/*
1115 	 * Attempt to use DMA operation mode, if this
1116 	 * should fail, fall back to PIO mode
1117 	 */
1118 	if (!mmci_dma_start(host, datactrl))
1119 		return;
1120 
1121 	/* IRQ mode, map the SG list for CPU reading/writing */
1122 	mmci_init_sg(host, data);
1123 
1124 	if (data->flags & MMC_DATA_READ) {
1125 		irqmask = MCI_RXFIFOHALFFULLMASK;
1126 
1127 		/*
1128 		 * If we have less than the fifo 'half-full' threshold to
1129 		 * transfer, trigger a PIO interrupt as soon as any data
1130 		 * is available.
1131 		 */
1132 		if (host->size < variant->fifohalfsize)
1133 			irqmask |= MCI_RXDATAAVLBLMASK;
1134 	} else {
1135 		/*
1136 		 * We don't actually need to include "FIFO empty" here
1137 		 * since its implicit in "FIFO half empty".
1138 		 */
1139 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1140 	}
1141 
1142 	mmci_write_datactrlreg(host, datactrl);
1143 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1144 	mmci_set_mask1(host, irqmask);
1145 }
1146 
1147 static void
1148 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1149 {
1150 	void __iomem *base = host->base;
1151 	unsigned long long clks;
1152 
1153 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1154 	    cmd->opcode, cmd->arg, cmd->flags);
1155 
1156 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1157 		writel(0, base + MMCICOMMAND);
1158 		mmci_reg_delay(host);
1159 	}
1160 
1161 	if (host->variant->cmdreg_stop &&
1162 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1163 		c |= host->variant->cmdreg_stop;
1164 
1165 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1166 	if (cmd->flags & MMC_RSP_PRESENT) {
1167 		if (cmd->flags & MMC_RSP_136)
1168 			c |= host->variant->cmdreg_lrsp_crc;
1169 		else if (cmd->flags & MMC_RSP_CRC)
1170 			c |= host->variant->cmdreg_srsp_crc;
1171 		else
1172 			c |= host->variant->cmdreg_srsp;
1173 	}
1174 
1175 	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1176 		if (!cmd->busy_timeout)
1177 			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1178 
1179 		clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1180 		do_div(clks, MSEC_PER_SEC);
1181 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1182 	}
1183 
1184 	if (/*interrupt*/0)
1185 		c |= MCI_CPSM_INTERRUPT;
1186 
1187 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1188 		c |= host->variant->data_cmd_enable;
1189 
1190 	host->cmd = cmd;
1191 
1192 	writel(cmd->arg, base + MMCIARGUMENT);
1193 	writel(c, base + MMCICOMMAND);
1194 }
1195 
1196 static void mmci_stop_command(struct mmci_host *host)
1197 {
1198 	host->stop_abort.error = 0;
1199 	mmci_start_command(host, &host->stop_abort, 0);
1200 }
1201 
1202 static void
1203 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1204 	      unsigned int status)
1205 {
1206 	unsigned int status_err;
1207 
1208 	/* Make sure we have data to handle */
1209 	if (!data)
1210 		return;
1211 
1212 	/* First check for errors */
1213 	status_err = status & (host->variant->start_err |
1214 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1215 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1216 
1217 	if (status_err) {
1218 		u32 remain, success;
1219 
1220 		/* Terminate the DMA transfer */
1221 		mmci_dma_error(host);
1222 
1223 		/*
1224 		 * Calculate how far we are into the transfer.  Note that
1225 		 * the data counter gives the number of bytes transferred
1226 		 * on the MMC bus, not on the host side.  On reads, this
1227 		 * can be as much as a FIFO-worth of data ahead.  This
1228 		 * matters for FIFO overruns only.
1229 		 */
1230 		if (!host->variant->datacnt_useless) {
1231 			remain = readl(host->base + MMCIDATACNT);
1232 			success = data->blksz * data->blocks - remain;
1233 		} else {
1234 			success = 0;
1235 		}
1236 
1237 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1238 			status_err, success);
1239 		if (status_err & MCI_DATACRCFAIL) {
1240 			/* Last block was not successful */
1241 			success -= 1;
1242 			data->error = -EILSEQ;
1243 		} else if (status_err & MCI_DATATIMEOUT) {
1244 			data->error = -ETIMEDOUT;
1245 		} else if (status_err & MCI_STARTBITERR) {
1246 			data->error = -ECOMM;
1247 		} else if (status_err & MCI_TXUNDERRUN) {
1248 			data->error = -EIO;
1249 		} else if (status_err & MCI_RXOVERRUN) {
1250 			if (success > host->variant->fifosize)
1251 				success -= host->variant->fifosize;
1252 			else
1253 				success = 0;
1254 			data->error = -EIO;
1255 		}
1256 		data->bytes_xfered = round_down(success, data->blksz);
1257 	}
1258 
1259 	if (status & MCI_DATABLOCKEND)
1260 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1261 
1262 	if (status & MCI_DATAEND || data->error) {
1263 		mmci_dma_finalize(host, data);
1264 
1265 		mmci_stop_data(host);
1266 
1267 		if (!data->error)
1268 			/* The error clause is handled above, success! */
1269 			data->bytes_xfered = data->blksz * data->blocks;
1270 
1271 		if (!data->stop) {
1272 			if (host->variant->cmdreg_stop && data->error)
1273 				mmci_stop_command(host);
1274 			else
1275 				mmci_request_end(host, data->mrq);
1276 		} else if (host->mrq->sbc && !data->error) {
1277 			mmci_request_end(host, data->mrq);
1278 		} else {
1279 			mmci_start_command(host, data->stop, 0);
1280 		}
1281 	}
1282 }
1283 
1284 static void
1285 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1286 	     unsigned int status)
1287 {
1288 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1289 	void __iomem *base = host->base;
1290 	bool sbc, busy_resp;
1291 
1292 	if (!cmd)
1293 		return;
1294 
1295 	sbc = (cmd == host->mrq->sbc);
1296 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1297 
1298 	/*
1299 	 * We need to be one of these interrupts to be considered worth
1300 	 * handling. Note that we tag on any latent IRQs postponed
1301 	 * due to waiting for busy status.
1302 	 */
1303 	if (host->variant->busy_timeout && busy_resp)
1304 		err_msk |= MCI_DATATIMEOUT;
1305 
1306 	if (!((status | host->busy_status) &
1307 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1308 		return;
1309 
1310 	/* Handle busy detection on DAT0 if the variant supports it. */
1311 	if (busy_resp && host->variant->busy_detect)
1312 		if (!host->ops->busy_complete(host, status, err_msk))
1313 			return;
1314 
1315 	host->cmd = NULL;
1316 
1317 	if (status & MCI_CMDTIMEOUT) {
1318 		cmd->error = -ETIMEDOUT;
1319 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1320 		cmd->error = -EILSEQ;
1321 	} else if (host->variant->busy_timeout && busy_resp &&
1322 		   status & MCI_DATATIMEOUT) {
1323 		cmd->error = -ETIMEDOUT;
1324 	} else {
1325 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1326 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1327 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1328 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1329 	}
1330 
1331 	if ((!sbc && !cmd->data) || cmd->error) {
1332 		if (host->data) {
1333 			/* Terminate the DMA transfer */
1334 			mmci_dma_error(host);
1335 
1336 			mmci_stop_data(host);
1337 			if (host->variant->cmdreg_stop && cmd->error) {
1338 				mmci_stop_command(host);
1339 				return;
1340 			}
1341 		}
1342 		mmci_request_end(host, host->mrq);
1343 	} else if (sbc) {
1344 		mmci_start_command(host, host->mrq->cmd, 0);
1345 	} else if (!host->variant->datactrl_first &&
1346 		   !(cmd->data->flags & MMC_DATA_READ)) {
1347 		mmci_start_data(host, cmd->data);
1348 	}
1349 }
1350 
1351 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1352 {
1353 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1354 }
1355 
1356 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1357 {
1358 	/*
1359 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1360 	 * from the fifo range should be used
1361 	 */
1362 	if (status & MCI_RXFIFOHALFFULL)
1363 		return host->variant->fifohalfsize;
1364 	else if (status & MCI_RXDATAAVLBL)
1365 		return 4;
1366 
1367 	return 0;
1368 }
1369 
1370 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1371 {
1372 	void __iomem *base = host->base;
1373 	char *ptr = buffer;
1374 	u32 status = readl(host->base + MMCISTATUS);
1375 	int host_remain = host->size;
1376 
1377 	do {
1378 		int count = host->get_rx_fifocnt(host, status, host_remain);
1379 
1380 		if (count > remain)
1381 			count = remain;
1382 
1383 		if (count <= 0)
1384 			break;
1385 
1386 		/*
1387 		 * SDIO especially may want to send something that is
1388 		 * not divisible by 4 (as opposed to card sectors
1389 		 * etc). Therefore make sure to always read the last bytes
1390 		 * while only doing full 32-bit reads towards the FIFO.
1391 		 */
1392 		if (unlikely(count & 0x3)) {
1393 			if (count < 4) {
1394 				unsigned char buf[4];
1395 				ioread32_rep(base + MMCIFIFO, buf, 1);
1396 				memcpy(ptr, buf, count);
1397 			} else {
1398 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1399 				count &= ~0x3;
1400 			}
1401 		} else {
1402 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1403 		}
1404 
1405 		ptr += count;
1406 		remain -= count;
1407 		host_remain -= count;
1408 
1409 		if (remain == 0)
1410 			break;
1411 
1412 		status = readl(base + MMCISTATUS);
1413 	} while (status & MCI_RXDATAAVLBL);
1414 
1415 	return ptr - buffer;
1416 }
1417 
1418 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1419 {
1420 	struct variant_data *variant = host->variant;
1421 	void __iomem *base = host->base;
1422 	char *ptr = buffer;
1423 
1424 	do {
1425 		unsigned int count, maxcnt;
1426 
1427 		maxcnt = status & MCI_TXFIFOEMPTY ?
1428 			 variant->fifosize : variant->fifohalfsize;
1429 		count = min(remain, maxcnt);
1430 
1431 		/*
1432 		 * SDIO especially may want to send something that is
1433 		 * not divisible by 4 (as opposed to card sectors
1434 		 * etc), and the FIFO only accept full 32-bit writes.
1435 		 * So compensate by adding +3 on the count, a single
1436 		 * byte become a 32bit write, 7 bytes will be two
1437 		 * 32bit writes etc.
1438 		 */
1439 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1440 
1441 		ptr += count;
1442 		remain -= count;
1443 
1444 		if (remain == 0)
1445 			break;
1446 
1447 		status = readl(base + MMCISTATUS);
1448 	} while (status & MCI_TXFIFOHALFEMPTY);
1449 
1450 	return ptr - buffer;
1451 }
1452 
1453 /*
1454  * PIO data transfer IRQ handler.
1455  */
1456 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1457 {
1458 	struct mmci_host *host = dev_id;
1459 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1460 	struct variant_data *variant = host->variant;
1461 	void __iomem *base = host->base;
1462 	u32 status;
1463 
1464 	status = readl(base + MMCISTATUS);
1465 
1466 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1467 
1468 	do {
1469 		unsigned int remain, len;
1470 		char *buffer;
1471 
1472 		/*
1473 		 * For write, we only need to test the half-empty flag
1474 		 * here - if the FIFO is completely empty, then by
1475 		 * definition it is more than half empty.
1476 		 *
1477 		 * For read, check for data available.
1478 		 */
1479 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1480 			break;
1481 
1482 		if (!sg_miter_next(sg_miter))
1483 			break;
1484 
1485 		buffer = sg_miter->addr;
1486 		remain = sg_miter->length;
1487 
1488 		len = 0;
1489 		if (status & MCI_RXACTIVE)
1490 			len = mmci_pio_read(host, buffer, remain);
1491 		if (status & MCI_TXACTIVE)
1492 			len = mmci_pio_write(host, buffer, remain, status);
1493 
1494 		sg_miter->consumed = len;
1495 
1496 		host->size -= len;
1497 		remain -= len;
1498 
1499 		if (remain)
1500 			break;
1501 
1502 		status = readl(base + MMCISTATUS);
1503 	} while (1);
1504 
1505 	sg_miter_stop(sg_miter);
1506 
1507 	/*
1508 	 * If we have less than the fifo 'half-full' threshold to transfer,
1509 	 * trigger a PIO interrupt as soon as any data is available.
1510 	 */
1511 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1512 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1513 
1514 	/*
1515 	 * If we run out of data, disable the data IRQs; this
1516 	 * prevents a race where the FIFO becomes empty before
1517 	 * the chip itself has disabled the data path, and
1518 	 * stops us racing with our data end IRQ.
1519 	 */
1520 	if (host->size == 0) {
1521 		mmci_set_mask1(host, 0);
1522 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1523 	}
1524 
1525 	return IRQ_HANDLED;
1526 }
1527 
1528 /*
1529  * Handle completion of command and data transfers.
1530  */
1531 static irqreturn_t mmci_irq(int irq, void *dev_id)
1532 {
1533 	struct mmci_host *host = dev_id;
1534 	u32 status;
1535 	int ret = 0;
1536 
1537 	spin_lock(&host->lock);
1538 
1539 	do {
1540 		status = readl(host->base + MMCISTATUS);
1541 
1542 		if (host->singleirq) {
1543 			if (status & host->mask1_reg)
1544 				mmci_pio_irq(irq, dev_id);
1545 
1546 			status &= ~host->variant->irq_pio_mask;
1547 		}
1548 
1549 		/*
1550 		 * Busy detection is managed by mmci_cmd_irq(), including to
1551 		 * clear the corresponding IRQ.
1552 		 */
1553 		status &= readl(host->base + MMCIMASK0);
1554 		if (host->variant->busy_detect)
1555 			writel(status & ~host->variant->busy_detect_mask,
1556 			       host->base + MMCICLEAR);
1557 		else
1558 			writel(status, host->base + MMCICLEAR);
1559 
1560 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1561 
1562 		if (host->variant->reversed_irq_handling) {
1563 			mmci_data_irq(host, host->data, status);
1564 			mmci_cmd_irq(host, host->cmd, status);
1565 		} else {
1566 			mmci_cmd_irq(host, host->cmd, status);
1567 			mmci_data_irq(host, host->data, status);
1568 		}
1569 
1570 		/*
1571 		 * Busy detection has been handled by mmci_cmd_irq() above.
1572 		 * Clear the status bit to prevent polling in IRQ context.
1573 		 */
1574 		if (host->variant->busy_detect_flag)
1575 			status &= ~host->variant->busy_detect_flag;
1576 
1577 		ret = 1;
1578 	} while (status);
1579 
1580 	spin_unlock(&host->lock);
1581 
1582 	return IRQ_RETVAL(ret);
1583 }
1584 
1585 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1586 {
1587 	struct mmci_host *host = mmc_priv(mmc);
1588 	unsigned long flags;
1589 
1590 	WARN_ON(host->mrq != NULL);
1591 
1592 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1593 	if (mrq->cmd->error) {
1594 		mmc_request_done(mmc, mrq);
1595 		return;
1596 	}
1597 
1598 	spin_lock_irqsave(&host->lock, flags);
1599 
1600 	host->mrq = mrq;
1601 
1602 	if (mrq->data)
1603 		mmci_get_next_data(host, mrq->data);
1604 
1605 	if (mrq->data &&
1606 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1607 		mmci_start_data(host, mrq->data);
1608 
1609 	if (mrq->sbc)
1610 		mmci_start_command(host, mrq->sbc, 0);
1611 	else
1612 		mmci_start_command(host, mrq->cmd, 0);
1613 
1614 	spin_unlock_irqrestore(&host->lock, flags);
1615 }
1616 
1617 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1618 {
1619 	struct mmci_host *host = mmc_priv(mmc);
1620 	u32 max_busy_timeout = 0;
1621 
1622 	if (!host->variant->busy_detect)
1623 		return;
1624 
1625 	if (host->variant->busy_timeout && mmc->actual_clock)
1626 		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1627 
1628 	mmc->max_busy_timeout = max_busy_timeout;
1629 }
1630 
1631 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1632 {
1633 	struct mmci_host *host = mmc_priv(mmc);
1634 	struct variant_data *variant = host->variant;
1635 	u32 pwr = 0;
1636 	unsigned long flags;
1637 	int ret;
1638 
1639 	if (host->plat->ios_handler &&
1640 		host->plat->ios_handler(mmc_dev(mmc), ios))
1641 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1642 
1643 	switch (ios->power_mode) {
1644 	case MMC_POWER_OFF:
1645 		if (!IS_ERR(mmc->supply.vmmc))
1646 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1647 
1648 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1649 			regulator_disable(mmc->supply.vqmmc);
1650 			host->vqmmc_enabled = false;
1651 		}
1652 
1653 		break;
1654 	case MMC_POWER_UP:
1655 		if (!IS_ERR(mmc->supply.vmmc))
1656 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1657 
1658 		/*
1659 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1660 		 * and instead uses MCI_PWR_ON so apply whatever value is
1661 		 * configured in the variant data.
1662 		 */
1663 		pwr |= variant->pwrreg_powerup;
1664 
1665 		break;
1666 	case MMC_POWER_ON:
1667 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1668 			ret = regulator_enable(mmc->supply.vqmmc);
1669 			if (ret < 0)
1670 				dev_err(mmc_dev(mmc),
1671 					"failed to enable vqmmc regulator\n");
1672 			else
1673 				host->vqmmc_enabled = true;
1674 		}
1675 
1676 		pwr |= MCI_PWR_ON;
1677 		break;
1678 	}
1679 
1680 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1681 		/*
1682 		 * The ST Micro variant has some additional bits
1683 		 * indicating signal direction for the signals in
1684 		 * the SD/MMC bus and feedback-clock usage.
1685 		 */
1686 		pwr |= host->pwr_reg_add;
1687 
1688 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1689 			pwr &= ~MCI_ST_DATA74DIREN;
1690 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1691 			pwr &= (~MCI_ST_DATA74DIREN &
1692 				~MCI_ST_DATA31DIREN &
1693 				~MCI_ST_DATA2DIREN);
1694 	}
1695 
1696 	if (variant->opendrain) {
1697 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1698 			pwr |= variant->opendrain;
1699 	} else {
1700 		/*
1701 		 * If the variant cannot configure the pads by its own, then we
1702 		 * expect the pinctrl to be able to do that for us
1703 		 */
1704 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1705 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1706 		else
1707 			pinctrl_select_state(host->pinctrl, host->pins_default);
1708 	}
1709 
1710 	/*
1711 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1712 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1713 	 */
1714 	if (!ios->clock && variant->pwrreg_clkgate)
1715 		pwr &= ~MCI_PWR_ON;
1716 
1717 	if (host->variant->explicit_mclk_control &&
1718 	    ios->clock != host->clock_cache) {
1719 		ret = clk_set_rate(host->clk, ios->clock);
1720 		if (ret < 0)
1721 			dev_err(mmc_dev(host->mmc),
1722 				"Error setting clock rate (%d)\n", ret);
1723 		else
1724 			host->mclk = clk_get_rate(host->clk);
1725 	}
1726 	host->clock_cache = ios->clock;
1727 
1728 	spin_lock_irqsave(&host->lock, flags);
1729 
1730 	if (host->ops && host->ops->set_clkreg)
1731 		host->ops->set_clkreg(host, ios->clock);
1732 	else
1733 		mmci_set_clkreg(host, ios->clock);
1734 
1735 	mmci_set_max_busy_timeout(mmc);
1736 
1737 	if (host->ops && host->ops->set_pwrreg)
1738 		host->ops->set_pwrreg(host, pwr);
1739 	else
1740 		mmci_write_pwrreg(host, pwr);
1741 
1742 	mmci_reg_delay(host);
1743 
1744 	spin_unlock_irqrestore(&host->lock, flags);
1745 }
1746 
1747 static int mmci_get_cd(struct mmc_host *mmc)
1748 {
1749 	struct mmci_host *host = mmc_priv(mmc);
1750 	struct mmci_platform_data *plat = host->plat;
1751 	unsigned int status = mmc_gpio_get_cd(mmc);
1752 
1753 	if (status == -ENOSYS) {
1754 		if (!plat->status)
1755 			return 1; /* Assume always present */
1756 
1757 		status = plat->status(mmc_dev(host->mmc));
1758 	}
1759 	return status;
1760 }
1761 
1762 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1763 {
1764 	int ret = 0;
1765 
1766 	if (!IS_ERR(mmc->supply.vqmmc)) {
1767 
1768 		switch (ios->signal_voltage) {
1769 		case MMC_SIGNAL_VOLTAGE_330:
1770 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1771 						2700000, 3600000);
1772 			break;
1773 		case MMC_SIGNAL_VOLTAGE_180:
1774 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1775 						1700000, 1950000);
1776 			break;
1777 		case MMC_SIGNAL_VOLTAGE_120:
1778 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1779 						1100000, 1300000);
1780 			break;
1781 		}
1782 
1783 		if (ret)
1784 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 static struct mmc_host_ops mmci_ops = {
1791 	.request	= mmci_request,
1792 	.pre_req	= mmci_pre_request,
1793 	.post_req	= mmci_post_request,
1794 	.set_ios	= mmci_set_ios,
1795 	.get_ro		= mmc_gpio_get_ro,
1796 	.get_cd		= mmci_get_cd,
1797 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1798 };
1799 
1800 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1801 {
1802 	struct mmci_host *host = mmc_priv(mmc);
1803 	int ret = mmc_of_parse(mmc);
1804 
1805 	if (ret)
1806 		return ret;
1807 
1808 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1809 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1810 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1811 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1812 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1813 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1814 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1815 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1816 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1817 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1818 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1819 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1820 	if (of_get_property(np, "st,sig-dir", NULL))
1821 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1822 	if (of_get_property(np, "st,neg-edge", NULL))
1823 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1824 	if (of_get_property(np, "st,use-ckin", NULL))
1825 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1826 
1827 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1828 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1829 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1830 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1831 
1832 	return 0;
1833 }
1834 
1835 static int mmci_probe(struct amba_device *dev,
1836 	const struct amba_id *id)
1837 {
1838 	struct mmci_platform_data *plat = dev->dev.platform_data;
1839 	struct device_node *np = dev->dev.of_node;
1840 	struct variant_data *variant = id->data;
1841 	struct mmci_host *host;
1842 	struct mmc_host *mmc;
1843 	int ret;
1844 
1845 	/* Must have platform data or Device Tree. */
1846 	if (!plat && !np) {
1847 		dev_err(&dev->dev, "No plat data or DT found\n");
1848 		return -EINVAL;
1849 	}
1850 
1851 	if (!plat) {
1852 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1853 		if (!plat)
1854 			return -ENOMEM;
1855 	}
1856 
1857 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1858 	if (!mmc)
1859 		return -ENOMEM;
1860 
1861 	ret = mmci_of_parse(np, mmc);
1862 	if (ret)
1863 		goto host_free;
1864 
1865 	host = mmc_priv(mmc);
1866 	host->mmc = mmc;
1867 
1868 	/*
1869 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1870 	 * pins can be set accordingly using pinctrl
1871 	 */
1872 	if (!variant->opendrain) {
1873 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1874 		if (IS_ERR(host->pinctrl)) {
1875 			dev_err(&dev->dev, "failed to get pinctrl");
1876 			ret = PTR_ERR(host->pinctrl);
1877 			goto host_free;
1878 		}
1879 
1880 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1881 							  PINCTRL_STATE_DEFAULT);
1882 		if (IS_ERR(host->pins_default)) {
1883 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1884 			ret = PTR_ERR(host->pins_default);
1885 			goto host_free;
1886 		}
1887 
1888 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1889 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1890 		if (IS_ERR(host->pins_opendrain)) {
1891 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1892 			ret = PTR_ERR(host->pins_opendrain);
1893 			goto host_free;
1894 		}
1895 	}
1896 
1897 	host->hw_designer = amba_manf(dev);
1898 	host->hw_revision = amba_rev(dev);
1899 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1900 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1901 
1902 	host->clk = devm_clk_get(&dev->dev, NULL);
1903 	if (IS_ERR(host->clk)) {
1904 		ret = PTR_ERR(host->clk);
1905 		goto host_free;
1906 	}
1907 
1908 	ret = clk_prepare_enable(host->clk);
1909 	if (ret)
1910 		goto host_free;
1911 
1912 	if (variant->qcom_fifo)
1913 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1914 	else
1915 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1916 
1917 	host->plat = plat;
1918 	host->variant = variant;
1919 	host->mclk = clk_get_rate(host->clk);
1920 	/*
1921 	 * According to the spec, mclk is max 100 MHz,
1922 	 * so we try to adjust the clock down to this,
1923 	 * (if possible).
1924 	 */
1925 	if (host->mclk > variant->f_max) {
1926 		ret = clk_set_rate(host->clk, variant->f_max);
1927 		if (ret < 0)
1928 			goto clk_disable;
1929 		host->mclk = clk_get_rate(host->clk);
1930 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1931 			host->mclk);
1932 	}
1933 
1934 	host->phybase = dev->res.start;
1935 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1936 	if (IS_ERR(host->base)) {
1937 		ret = PTR_ERR(host->base);
1938 		goto clk_disable;
1939 	}
1940 
1941 	if (variant->init)
1942 		variant->init(host);
1943 
1944 	/*
1945 	 * The ARM and ST versions of the block have slightly different
1946 	 * clock divider equations which means that the minimum divider
1947 	 * differs too.
1948 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1949 	 */
1950 	if (variant->st_clkdiv)
1951 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1952 	else if (variant->stm32_clkdiv)
1953 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1954 	else if (variant->explicit_mclk_control)
1955 		mmc->f_min = clk_round_rate(host->clk, 100000);
1956 	else
1957 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1958 	/*
1959 	 * If no maximum operating frequency is supplied, fall back to use
1960 	 * the module parameter, which has a (low) default value in case it
1961 	 * is not specified. Either value must not exceed the clock rate into
1962 	 * the block, of course.
1963 	 */
1964 	if (mmc->f_max)
1965 		mmc->f_max = variant->explicit_mclk_control ?
1966 				min(variant->f_max, mmc->f_max) :
1967 				min(host->mclk, mmc->f_max);
1968 	else
1969 		mmc->f_max = variant->explicit_mclk_control ?
1970 				fmax : min(host->mclk, fmax);
1971 
1972 
1973 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1974 
1975 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1976 	if (IS_ERR(host->rst)) {
1977 		ret = PTR_ERR(host->rst);
1978 		goto clk_disable;
1979 	}
1980 
1981 	/* Get regulators and the supported OCR mask */
1982 	ret = mmc_regulator_get_supply(mmc);
1983 	if (ret)
1984 		goto clk_disable;
1985 
1986 	if (!mmc->ocr_avail)
1987 		mmc->ocr_avail = plat->ocr_mask;
1988 	else if (plat->ocr_mask)
1989 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1990 
1991 	/* We support these capabilities. */
1992 	mmc->caps |= MMC_CAP_CMD23;
1993 
1994 	/*
1995 	 * Enable busy detection.
1996 	 */
1997 	if (variant->busy_detect) {
1998 		mmci_ops.card_busy = mmci_card_busy;
1999 		/*
2000 		 * Not all variants have a flag to enable busy detection
2001 		 * in the DPSM, but if they do, set it here.
2002 		 */
2003 		if (variant->busy_dpsm_flag)
2004 			mmci_write_datactrlreg(host,
2005 					       host->variant->busy_dpsm_flag);
2006 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2007 	}
2008 
2009 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2010 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2011 	host->stop_abort.arg = 0;
2012 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2013 
2014 	mmc->ops = &mmci_ops;
2015 
2016 	/* We support these PM capabilities. */
2017 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2018 
2019 	/*
2020 	 * We can do SGIO
2021 	 */
2022 	mmc->max_segs = NR_SG;
2023 
2024 	/*
2025 	 * Since only a certain number of bits are valid in the data length
2026 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2027 	 * single request.
2028 	 */
2029 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2030 
2031 	/*
2032 	 * Set the maximum segment size.  Since we aren't doing DMA
2033 	 * (yet) we are only limited by the data length register.
2034 	 */
2035 	mmc->max_seg_size = mmc->max_req_size;
2036 
2037 	/*
2038 	 * Block size can be up to 2048 bytes, but must be a power of two.
2039 	 */
2040 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2041 
2042 	/*
2043 	 * Limit the number of blocks transferred so that we don't overflow
2044 	 * the maximum request size.
2045 	 */
2046 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2047 
2048 	spin_lock_init(&host->lock);
2049 
2050 	writel(0, host->base + MMCIMASK0);
2051 
2052 	if (variant->mmcimask1)
2053 		writel(0, host->base + MMCIMASK1);
2054 
2055 	writel(0xfff, host->base + MMCICLEAR);
2056 
2057 	/*
2058 	 * If:
2059 	 * - not using DT but using a descriptor table, or
2060 	 * - using a table of descriptors ALONGSIDE DT, or
2061 	 * look up these descriptors named "cd" and "wp" right here, fail
2062 	 * silently of these do not exist
2063 	 */
2064 	if (!np) {
2065 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2066 		if (ret == -EPROBE_DEFER)
2067 			goto clk_disable;
2068 
2069 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2070 		if (ret == -EPROBE_DEFER)
2071 			goto clk_disable;
2072 	}
2073 
2074 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2075 			DRIVER_NAME " (cmd)", host);
2076 	if (ret)
2077 		goto clk_disable;
2078 
2079 	if (!dev->irq[1])
2080 		host->singleirq = true;
2081 	else {
2082 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2083 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2084 		if (ret)
2085 			goto clk_disable;
2086 	}
2087 
2088 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2089 
2090 	amba_set_drvdata(dev, mmc);
2091 
2092 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2093 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2094 		 amba_rev(dev), (unsigned long long)dev->res.start,
2095 		 dev->irq[0], dev->irq[1]);
2096 
2097 	mmci_dma_setup(host);
2098 
2099 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2100 	pm_runtime_use_autosuspend(&dev->dev);
2101 
2102 	mmc_add_host(mmc);
2103 
2104 	pm_runtime_put(&dev->dev);
2105 	return 0;
2106 
2107  clk_disable:
2108 	clk_disable_unprepare(host->clk);
2109  host_free:
2110 	mmc_free_host(mmc);
2111 	return ret;
2112 }
2113 
2114 static int mmci_remove(struct amba_device *dev)
2115 {
2116 	struct mmc_host *mmc = amba_get_drvdata(dev);
2117 
2118 	if (mmc) {
2119 		struct mmci_host *host = mmc_priv(mmc);
2120 		struct variant_data *variant = host->variant;
2121 
2122 		/*
2123 		 * Undo pm_runtime_put() in probe.  We use the _sync
2124 		 * version here so that we can access the primecell.
2125 		 */
2126 		pm_runtime_get_sync(&dev->dev);
2127 
2128 		mmc_remove_host(mmc);
2129 
2130 		writel(0, host->base + MMCIMASK0);
2131 
2132 		if (variant->mmcimask1)
2133 			writel(0, host->base + MMCIMASK1);
2134 
2135 		writel(0, host->base + MMCICOMMAND);
2136 		writel(0, host->base + MMCIDATACTRL);
2137 
2138 		mmci_dma_release(host);
2139 		clk_disable_unprepare(host->clk);
2140 		mmc_free_host(mmc);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 #ifdef CONFIG_PM
2147 static void mmci_save(struct mmci_host *host)
2148 {
2149 	unsigned long flags;
2150 
2151 	spin_lock_irqsave(&host->lock, flags);
2152 
2153 	writel(0, host->base + MMCIMASK0);
2154 	if (host->variant->pwrreg_nopower) {
2155 		writel(0, host->base + MMCIDATACTRL);
2156 		writel(0, host->base + MMCIPOWER);
2157 		writel(0, host->base + MMCICLOCK);
2158 	}
2159 	mmci_reg_delay(host);
2160 
2161 	spin_unlock_irqrestore(&host->lock, flags);
2162 }
2163 
2164 static void mmci_restore(struct mmci_host *host)
2165 {
2166 	unsigned long flags;
2167 
2168 	spin_lock_irqsave(&host->lock, flags);
2169 
2170 	if (host->variant->pwrreg_nopower) {
2171 		writel(host->clk_reg, host->base + MMCICLOCK);
2172 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2173 		writel(host->pwr_reg, host->base + MMCIPOWER);
2174 	}
2175 	writel(MCI_IRQENABLE | host->variant->start_err,
2176 	       host->base + MMCIMASK0);
2177 	mmci_reg_delay(host);
2178 
2179 	spin_unlock_irqrestore(&host->lock, flags);
2180 }
2181 
2182 static int mmci_runtime_suspend(struct device *dev)
2183 {
2184 	struct amba_device *adev = to_amba_device(dev);
2185 	struct mmc_host *mmc = amba_get_drvdata(adev);
2186 
2187 	if (mmc) {
2188 		struct mmci_host *host = mmc_priv(mmc);
2189 		pinctrl_pm_select_sleep_state(dev);
2190 		mmci_save(host);
2191 		clk_disable_unprepare(host->clk);
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static int mmci_runtime_resume(struct device *dev)
2198 {
2199 	struct amba_device *adev = to_amba_device(dev);
2200 	struct mmc_host *mmc = amba_get_drvdata(adev);
2201 
2202 	if (mmc) {
2203 		struct mmci_host *host = mmc_priv(mmc);
2204 		clk_prepare_enable(host->clk);
2205 		mmci_restore(host);
2206 		pinctrl_pm_select_default_state(dev);
2207 	}
2208 
2209 	return 0;
2210 }
2211 #endif
2212 
2213 static const struct dev_pm_ops mmci_dev_pm_ops = {
2214 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2215 				pm_runtime_force_resume)
2216 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2217 };
2218 
2219 static const struct amba_id mmci_ids[] = {
2220 	{
2221 		.id	= 0x00041180,
2222 		.mask	= 0xff0fffff,
2223 		.data	= &variant_arm,
2224 	},
2225 	{
2226 		.id	= 0x01041180,
2227 		.mask	= 0xff0fffff,
2228 		.data	= &variant_arm_extended_fifo,
2229 	},
2230 	{
2231 		.id	= 0x02041180,
2232 		.mask	= 0xff0fffff,
2233 		.data	= &variant_arm_extended_fifo_hwfc,
2234 	},
2235 	{
2236 		.id	= 0x00041181,
2237 		.mask	= 0x000fffff,
2238 		.data	= &variant_arm,
2239 	},
2240 	/* ST Micro variants */
2241 	{
2242 		.id     = 0x00180180,
2243 		.mask   = 0x00ffffff,
2244 		.data	= &variant_u300,
2245 	},
2246 	{
2247 		.id     = 0x10180180,
2248 		.mask   = 0xf0ffffff,
2249 		.data	= &variant_nomadik,
2250 	},
2251 	{
2252 		.id     = 0x00280180,
2253 		.mask   = 0x00ffffff,
2254 		.data	= &variant_nomadik,
2255 	},
2256 	{
2257 		.id     = 0x00480180,
2258 		.mask   = 0xf0ffffff,
2259 		.data	= &variant_ux500,
2260 	},
2261 	{
2262 		.id     = 0x10480180,
2263 		.mask   = 0xf0ffffff,
2264 		.data	= &variant_ux500v2,
2265 	},
2266 	{
2267 		.id     = 0x00880180,
2268 		.mask   = 0x00ffffff,
2269 		.data	= &variant_stm32,
2270 	},
2271 	{
2272 		.id     = 0x10153180,
2273 		.mask	= 0xf0ffffff,
2274 		.data	= &variant_stm32_sdmmc,
2275 	},
2276 	/* Qualcomm variants */
2277 	{
2278 		.id     = 0x00051180,
2279 		.mask	= 0x000fffff,
2280 		.data	= &variant_qcom,
2281 	},
2282 	{ 0, 0 },
2283 };
2284 
2285 MODULE_DEVICE_TABLE(amba, mmci_ids);
2286 
2287 static struct amba_driver mmci_driver = {
2288 	.drv		= {
2289 		.name	= DRIVER_NAME,
2290 		.pm	= &mmci_dev_pm_ops,
2291 	},
2292 	.probe		= mmci_probe,
2293 	.remove		= mmci_remove,
2294 	.id_table	= mmci_ids,
2295 };
2296 
2297 module_amba_driver(mmci_driver);
2298 
2299 module_param(fmax, uint, 0444);
2300 
2301 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2302 MODULE_LICENSE("GPL");
2303