xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision ad7b8918)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/of.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/amba/mmci.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/types.h>
38 #include <linux/pinctrl/consumer.h>
39 
40 #include <asm/div64.h>
41 #include <asm/io.h>
42 
43 #include "mmci.h"
44 #include "mmci_qcom_dml.h"
45 
46 #define DRIVER_NAME "mmci-pl18x"
47 
48 #ifdef CONFIG_DMA_ENGINE
49 void mmci_variant_init(struct mmci_host *host);
50 #else
51 static inline void mmci_variant_init(struct mmci_host *host) {}
52 #endif
53 
54 static unsigned int fmax = 515633;
55 
56 static struct variant_data variant_arm = {
57 	.fifosize		= 16 * 4,
58 	.fifohalfsize		= 8 * 4,
59 	.datalength_bits	= 16,
60 	.pwrreg_powerup		= MCI_PWR_UP,
61 	.f_max			= 100000000,
62 	.reversed_irq_handling	= true,
63 	.mmcimask1		= true,
64 	.start_err		= MCI_STARTBITERR,
65 	.opendrain		= MCI_ROD,
66 	.init			= mmci_variant_init,
67 };
68 
69 static struct variant_data variant_arm_extended_fifo = {
70 	.fifosize		= 128 * 4,
71 	.fifohalfsize		= 64 * 4,
72 	.datalength_bits	= 16,
73 	.pwrreg_powerup		= MCI_PWR_UP,
74 	.f_max			= 100000000,
75 	.mmcimask1		= true,
76 	.start_err		= MCI_STARTBITERR,
77 	.opendrain		= MCI_ROD,
78 	.init			= mmci_variant_init,
79 };
80 
81 static struct variant_data variant_arm_extended_fifo_hwfc = {
82 	.fifosize		= 128 * 4,
83 	.fifohalfsize		= 64 * 4,
84 	.clkreg_enable		= MCI_ARM_HWFCEN,
85 	.datalength_bits	= 16,
86 	.pwrreg_powerup		= MCI_PWR_UP,
87 	.f_max			= 100000000,
88 	.mmcimask1		= true,
89 	.start_err		= MCI_STARTBITERR,
90 	.opendrain		= MCI_ROD,
91 	.init			= mmci_variant_init,
92 };
93 
94 static struct variant_data variant_u300 = {
95 	.fifosize		= 16 * 4,
96 	.fifohalfsize		= 8 * 4,
97 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
98 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
99 	.datalength_bits	= 16,
100 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
101 	.st_sdio			= true,
102 	.pwrreg_powerup		= MCI_PWR_ON,
103 	.f_max			= 100000000,
104 	.signal_direction	= true,
105 	.pwrreg_clkgate		= true,
106 	.pwrreg_nopower		= true,
107 	.mmcimask1		= true,
108 	.start_err		= MCI_STARTBITERR,
109 	.opendrain		= MCI_OD,
110 	.init			= mmci_variant_init,
111 };
112 
113 static struct variant_data variant_nomadik = {
114 	.fifosize		= 16 * 4,
115 	.fifohalfsize		= 8 * 4,
116 	.clkreg			= MCI_CLK_ENABLE,
117 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
118 	.datalength_bits	= 24,
119 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
120 	.st_sdio		= true,
121 	.st_clkdiv		= true,
122 	.pwrreg_powerup		= MCI_PWR_ON,
123 	.f_max			= 100000000,
124 	.signal_direction	= true,
125 	.pwrreg_clkgate		= true,
126 	.pwrreg_nopower		= true,
127 	.mmcimask1		= true,
128 	.start_err		= MCI_STARTBITERR,
129 	.opendrain		= MCI_OD,
130 	.init			= mmci_variant_init,
131 };
132 
133 static struct variant_data variant_ux500 = {
134 	.fifosize		= 30 * 4,
135 	.fifohalfsize		= 8 * 4,
136 	.clkreg			= MCI_CLK_ENABLE,
137 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
138 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
140 	.datalength_bits	= 24,
141 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
142 	.st_sdio		= true,
143 	.st_clkdiv		= true,
144 	.pwrreg_powerup		= MCI_PWR_ON,
145 	.f_max			= 100000000,
146 	.signal_direction	= true,
147 	.pwrreg_clkgate		= true,
148 	.busy_detect		= true,
149 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
150 	.busy_detect_flag	= MCI_ST_CARDBUSY,
151 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
152 	.pwrreg_nopower		= true,
153 	.mmcimask1		= true,
154 	.start_err		= MCI_STARTBITERR,
155 	.opendrain		= MCI_OD,
156 	.init			= mmci_variant_init,
157 };
158 
159 static struct variant_data variant_ux500v2 = {
160 	.fifosize		= 30 * 4,
161 	.fifohalfsize		= 8 * 4,
162 	.clkreg			= MCI_CLK_ENABLE,
163 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
164 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
165 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
166 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
167 	.datalength_bits	= 24,
168 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
169 	.st_sdio		= true,
170 	.st_clkdiv		= true,
171 	.blksz_datactrl16	= true,
172 	.pwrreg_powerup		= MCI_PWR_ON,
173 	.f_max			= 100000000,
174 	.signal_direction	= true,
175 	.pwrreg_clkgate		= true,
176 	.busy_detect		= true,
177 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
178 	.busy_detect_flag	= MCI_ST_CARDBUSY,
179 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
180 	.pwrreg_nopower		= true,
181 	.mmcimask1		= true,
182 	.start_err		= MCI_STARTBITERR,
183 	.opendrain		= MCI_OD,
184 	.init			= mmci_variant_init,
185 };
186 
187 static struct variant_data variant_stm32 = {
188 	.fifosize		= 32 * 4,
189 	.fifohalfsize		= 8 * 4,
190 	.clkreg			= MCI_CLK_ENABLE,
191 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
192 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
193 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
194 	.datalength_bits	= 24,
195 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
196 	.st_sdio		= true,
197 	.st_clkdiv		= true,
198 	.pwrreg_powerup		= MCI_PWR_ON,
199 	.f_max			= 48000000,
200 	.pwrreg_clkgate		= true,
201 	.pwrreg_nopower		= true,
202 	.init			= mmci_variant_init,
203 };
204 
205 static struct variant_data variant_qcom = {
206 	.fifosize		= 16 * 4,
207 	.fifohalfsize		= 8 * 4,
208 	.clkreg			= MCI_CLK_ENABLE,
209 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
210 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
214 	.blksz_datactrl4	= true,
215 	.datalength_bits	= 24,
216 	.pwrreg_powerup		= MCI_PWR_UP,
217 	.f_max			= 208000000,
218 	.explicit_mclk_control	= true,
219 	.qcom_fifo		= true,
220 	.qcom_dml		= true,
221 	.mmcimask1		= true,
222 	.start_err		= MCI_STARTBITERR,
223 	.opendrain		= MCI_ROD,
224 	.init			= qcom_variant_init,
225 };
226 
227 /* Busy detection for the ST Micro variant */
228 static int mmci_card_busy(struct mmc_host *mmc)
229 {
230 	struct mmci_host *host = mmc_priv(mmc);
231 	unsigned long flags;
232 	int busy = 0;
233 
234 	spin_lock_irqsave(&host->lock, flags);
235 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
236 		busy = 1;
237 	spin_unlock_irqrestore(&host->lock, flags);
238 
239 	return busy;
240 }
241 
242 /*
243  * Validate mmc prerequisites
244  */
245 static int mmci_validate_data(struct mmci_host *host,
246 			      struct mmc_data *data)
247 {
248 	if (!data)
249 		return 0;
250 
251 	if (!is_power_of_2(data->blksz)) {
252 		dev_err(mmc_dev(host->mmc),
253 			"unsupported block size (%d bytes)\n", data->blksz);
254 		return -EINVAL;
255 	}
256 
257 	return 0;
258 }
259 
260 static void mmci_reg_delay(struct mmci_host *host)
261 {
262 	/*
263 	 * According to the spec, at least three feedback clock cycles
264 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 	 * Worst delay time during card init is at 100 kHz => 30 us.
267 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
268 	 */
269 	if (host->cclk < 25000000)
270 		udelay(30);
271 	else
272 		ndelay(120);
273 }
274 
275 /*
276  * This must be called with host->lock held
277  */
278 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279 {
280 	if (host->clk_reg != clk) {
281 		host->clk_reg = clk;
282 		writel(clk, host->base + MMCICLOCK);
283 	}
284 }
285 
286 /*
287  * This must be called with host->lock held
288  */
289 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290 {
291 	if (host->pwr_reg != pwr) {
292 		host->pwr_reg = pwr;
293 		writel(pwr, host->base + MMCIPOWER);
294 	}
295 }
296 
297 /*
298  * This must be called with host->lock held
299  */
300 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301 {
302 	/* Keep busy mode in DPSM if enabled */
303 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
304 
305 	if (host->datactrl_reg != datactrl) {
306 		host->datactrl_reg = datactrl;
307 		writel(datactrl, host->base + MMCIDATACTRL);
308 	}
309 }
310 
311 /*
312  * This must be called with host->lock held
313  */
314 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315 {
316 	struct variant_data *variant = host->variant;
317 	u32 clk = variant->clkreg;
318 
319 	/* Make sure cclk reflects the current calculated clock */
320 	host->cclk = 0;
321 
322 	if (desired) {
323 		if (variant->explicit_mclk_control) {
324 			host->cclk = host->mclk;
325 		} else if (desired >= host->mclk) {
326 			clk = MCI_CLK_BYPASS;
327 			if (variant->st_clkdiv)
328 				clk |= MCI_ST_UX500_NEG_EDGE;
329 			host->cclk = host->mclk;
330 		} else if (variant->st_clkdiv) {
331 			/*
332 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 			 * => clkdiv = (mclk / f) - 2
334 			 * Round the divider up so we don't exceed the max
335 			 * frequency
336 			 */
337 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338 			if (clk >= 256)
339 				clk = 255;
340 			host->cclk = host->mclk / (clk + 2);
341 		} else {
342 			/*
343 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 			 * => clkdiv = mclk / (2 * f) - 1
345 			 */
346 			clk = host->mclk / (2 * desired) - 1;
347 			if (clk >= 256)
348 				clk = 255;
349 			host->cclk = host->mclk / (2 * (clk + 1));
350 		}
351 
352 		clk |= variant->clkreg_enable;
353 		clk |= MCI_CLK_ENABLE;
354 		/* This hasn't proven to be worthwhile */
355 		/* clk |= MCI_CLK_PWRSAVE; */
356 	}
357 
358 	/* Set actual clock for debug */
359 	host->mmc->actual_clock = host->cclk;
360 
361 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362 		clk |= MCI_4BIT_BUS;
363 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364 		clk |= variant->clkreg_8bit_bus_enable;
365 
366 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368 		clk |= variant->clkreg_neg_edge_enable;
369 
370 	mmci_write_clkreg(host, clk);
371 }
372 
373 void mmci_dma_release(struct mmci_host *host)
374 {
375 	if (host->ops && host->ops->dma_release)
376 		host->ops->dma_release(host);
377 
378 	host->use_dma = false;
379 }
380 
381 void mmci_dma_setup(struct mmci_host *host)
382 {
383 	if (!host->ops || !host->ops->dma_setup)
384 		return;
385 
386 	if (host->ops->dma_setup(host))
387 		return;
388 
389 	/* initialize pre request cookie */
390 	host->next_cookie = 1;
391 
392 	host->use_dma = true;
393 }
394 
395 static void
396 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
397 {
398 	writel(0, host->base + MMCICOMMAND);
399 
400 	BUG_ON(host->data);
401 
402 	host->mrq = NULL;
403 	host->cmd = NULL;
404 
405 	mmc_request_done(host->mmc, mrq);
406 }
407 
408 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
409 {
410 	void __iomem *base = host->base;
411 	struct variant_data *variant = host->variant;
412 
413 	if (host->singleirq) {
414 		unsigned int mask0 = readl(base + MMCIMASK0);
415 
416 		mask0 &= ~MCI_IRQ1MASK;
417 		mask0 |= mask;
418 
419 		writel(mask0, base + MMCIMASK0);
420 	}
421 
422 	if (variant->mmcimask1)
423 		writel(mask, base + MMCIMASK1);
424 
425 	host->mask1_reg = mask;
426 }
427 
428 static void mmci_stop_data(struct mmci_host *host)
429 {
430 	mmci_write_datactrlreg(host, 0);
431 	mmci_set_mask1(host, 0);
432 	host->data = NULL;
433 }
434 
435 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
436 {
437 	unsigned int flags = SG_MITER_ATOMIC;
438 
439 	if (data->flags & MMC_DATA_READ)
440 		flags |= SG_MITER_TO_SG;
441 	else
442 		flags |= SG_MITER_FROM_SG;
443 
444 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
445 }
446 
447 /*
448  * All the DMA operation mode stuff goes inside this ifdef.
449  * This assumes that you have a generic DMA device interface,
450  * no custom DMA interfaces are supported.
451  */
452 #ifdef CONFIG_DMA_ENGINE
453 struct mmci_dmae_next {
454 	struct dma_async_tx_descriptor *desc;
455 	struct dma_chan	*chan;
456 };
457 
458 struct mmci_dmae_priv {
459 	struct dma_chan	*cur;
460 	struct dma_chan	*rx_channel;
461 	struct dma_chan	*tx_channel;
462 	struct dma_async_tx_descriptor	*desc_current;
463 	struct mmci_dmae_next next_data;
464 };
465 
466 int mmci_dmae_setup(struct mmci_host *host)
467 {
468 	const char *rxname, *txname;
469 	struct mmci_dmae_priv *dmae;
470 
471 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
472 	if (!dmae)
473 		return -ENOMEM;
474 
475 	host->dma_priv = dmae;
476 
477 	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
478 						     "rx");
479 	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
480 						     "tx");
481 
482 	/*
483 	 * If only an RX channel is specified, the driver will
484 	 * attempt to use it bidirectionally, however if it is
485 	 * is specified but cannot be located, DMA will be disabled.
486 	 */
487 	if (dmae->rx_channel && !dmae->tx_channel)
488 		dmae->tx_channel = dmae->rx_channel;
489 
490 	if (dmae->rx_channel)
491 		rxname = dma_chan_name(dmae->rx_channel);
492 	else
493 		rxname = "none";
494 
495 	if (dmae->tx_channel)
496 		txname = dma_chan_name(dmae->tx_channel);
497 	else
498 		txname = "none";
499 
500 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
501 		 rxname, txname);
502 
503 	/*
504 	 * Limit the maximum segment size in any SG entry according to
505 	 * the parameters of the DMA engine device.
506 	 */
507 	if (dmae->tx_channel) {
508 		struct device *dev = dmae->tx_channel->device->dev;
509 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
510 
511 		if (max_seg_size < host->mmc->max_seg_size)
512 			host->mmc->max_seg_size = max_seg_size;
513 	}
514 	if (dmae->rx_channel) {
515 		struct device *dev = dmae->rx_channel->device->dev;
516 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
517 
518 		if (max_seg_size < host->mmc->max_seg_size)
519 			host->mmc->max_seg_size = max_seg_size;
520 	}
521 
522 	if (!dmae->tx_channel || !dmae->rx_channel) {
523 		mmci_dmae_release(host);
524 		return -EINVAL;
525 	}
526 
527 	return 0;
528 }
529 
530 /*
531  * This is used in or so inline it
532  * so it can be discarded.
533  */
534 void mmci_dmae_release(struct mmci_host *host)
535 {
536 	struct mmci_dmae_priv *dmae = host->dma_priv;
537 
538 	if (dmae->rx_channel)
539 		dma_release_channel(dmae->rx_channel);
540 	if (dmae->tx_channel)
541 		dma_release_channel(dmae->tx_channel);
542 	dmae->rx_channel = dmae->tx_channel = NULL;
543 }
544 
545 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
546 {
547 	struct mmci_dmae_priv *dmae = host->dma_priv;
548 	struct dma_chan *chan;
549 
550 	if (data->flags & MMC_DATA_READ)
551 		chan = dmae->rx_channel;
552 	else
553 		chan = dmae->tx_channel;
554 
555 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
556 		     mmc_get_dma_dir(data));
557 }
558 
559 static void mmci_dma_data_error(struct mmci_host *host)
560 {
561 	struct mmci_dmae_priv *dmae = host->dma_priv;
562 
563 	if (!host->use_dma || !dma_inprogress(host))
564 		return;
565 
566 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
567 	dmaengine_terminate_all(dmae->cur);
568 	host->dma_in_progress = false;
569 	dmae->cur = NULL;
570 	dmae->desc_current = NULL;
571 	host->data->host_cookie = 0;
572 
573 	mmci_dma_unmap(host, host->data);
574 }
575 
576 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
577 {
578 	struct mmci_dmae_priv *dmae = host->dma_priv;
579 	u32 status;
580 	int i;
581 
582 	if (!host->use_dma || !dma_inprogress(host))
583 		return;
584 
585 	/* Wait up to 1ms for the DMA to complete */
586 	for (i = 0; ; i++) {
587 		status = readl(host->base + MMCISTATUS);
588 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
589 			break;
590 		udelay(10);
591 	}
592 
593 	/*
594 	 * Check to see whether we still have some data left in the FIFO -
595 	 * this catches DMA controllers which are unable to monitor the
596 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
597 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
598 	 */
599 	if (status & MCI_RXDATAAVLBLMASK) {
600 		mmci_dma_data_error(host);
601 		if (!data->error)
602 			data->error = -EIO;
603 	} else if (!data->host_cookie) {
604 		mmci_dma_unmap(host, data);
605 	}
606 
607 	/*
608 	 * Use of DMA with scatter-gather is impossible.
609 	 * Give up with DMA and switch back to PIO mode.
610 	 */
611 	if (status & MCI_RXDATAAVLBLMASK) {
612 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
613 		mmci_dma_release(host);
614 	}
615 
616 	host->dma_in_progress = false;
617 	dmae->cur = NULL;
618 	dmae->desc_current = NULL;
619 }
620 
621 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
622 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
623 				struct dma_chan **dma_chan,
624 				struct dma_async_tx_descriptor **dma_desc)
625 {
626 	struct mmci_dmae_priv *dmae = host->dma_priv;
627 	struct variant_data *variant = host->variant;
628 	struct dma_slave_config conf = {
629 		.src_addr = host->phybase + MMCIFIFO,
630 		.dst_addr = host->phybase + MMCIFIFO,
631 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
632 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
633 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
634 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
635 		.device_fc = false,
636 	};
637 	struct dma_chan *chan;
638 	struct dma_device *device;
639 	struct dma_async_tx_descriptor *desc;
640 	int nr_sg;
641 	unsigned long flags = DMA_CTRL_ACK;
642 
643 	if (data->flags & MMC_DATA_READ) {
644 		conf.direction = DMA_DEV_TO_MEM;
645 		chan = dmae->rx_channel;
646 	} else {
647 		conf.direction = DMA_MEM_TO_DEV;
648 		chan = dmae->tx_channel;
649 	}
650 
651 	/* If there's no DMA channel, fall back to PIO */
652 	if (!chan)
653 		return -EINVAL;
654 
655 	/* If less than or equal to the fifo size, don't bother with DMA */
656 	if (data->blksz * data->blocks <= variant->fifosize)
657 		return -EINVAL;
658 
659 	device = chan->device;
660 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
661 			   mmc_get_dma_dir(data));
662 	if (nr_sg == 0)
663 		return -EINVAL;
664 
665 	if (host->variant->qcom_dml)
666 		flags |= DMA_PREP_INTERRUPT;
667 
668 	dmaengine_slave_config(chan, &conf);
669 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
670 					    conf.direction, flags);
671 	if (!desc)
672 		goto unmap_exit;
673 
674 	*dma_chan = chan;
675 	*dma_desc = desc;
676 
677 	return 0;
678 
679  unmap_exit:
680 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
681 		     mmc_get_dma_dir(data));
682 	return -ENOMEM;
683 }
684 
685 static inline int mmci_dma_prep_data(struct mmci_host *host,
686 				     struct mmc_data *data,
687 				     bool next)
688 {
689 	struct mmci_dmae_priv *dmae = host->dma_priv;
690 	struct mmci_dmae_next *nd = &dmae->next_data;
691 
692 	if (next)
693 		return __mmci_dma_prep_data(host, data, &nd->chan, &nd->desc);
694 	/* Check if next job is already prepared. */
695 	if (dmae->cur && dmae->desc_current)
696 		return 0;
697 
698 	/* No job were prepared thus do it now. */
699 	return __mmci_dma_prep_data(host, data, &dmae->cur,
700 				    &dmae->desc_current);
701 }
702 
703 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
704 {
705 	int ret;
706 	struct mmci_dmae_priv *dmae = host->dma_priv;
707 	struct mmc_data *data = host->data;
708 
709 	if (!host->use_dma)
710 		return -EINVAL;
711 
712 	ret = mmci_dma_prep_data(host, host->data, false);
713 	if (ret)
714 		return ret;
715 
716 	/* Okay, go for it. */
717 	dev_vdbg(mmc_dev(host->mmc),
718 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
719 		 data->sg_len, data->blksz, data->blocks, data->flags);
720 	host->dma_in_progress = true;
721 	dmaengine_submit(dmae->desc_current);
722 	dma_async_issue_pending(dmae->cur);
723 
724 	if (host->variant->qcom_dml)
725 		dml_start_xfer(host, data);
726 
727 	datactrl |= MCI_DPSM_DMAENABLE;
728 
729 	/* Trigger the DMA transfer */
730 	mmci_write_datactrlreg(host, datactrl);
731 
732 	/*
733 	 * Let the MMCI say when the data is ended and it's time
734 	 * to fire next DMA request. When that happens, MMCI will
735 	 * call mmci_data_end()
736 	 */
737 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
738 	       host->base + MMCIMASK0);
739 	return 0;
740 }
741 
742 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
743 {
744 	struct mmci_dmae_priv *dmae = host->dma_priv;
745 	struct mmci_dmae_next *next = &dmae->next_data;
746 
747 	if (!host->use_dma)
748 		return;
749 
750 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
751 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
752 
753 	dmae->desc_current = next->desc;
754 	dmae->cur = next->chan;
755 	next->desc = NULL;
756 	next->chan = NULL;
757 }
758 
759 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
760 {
761 	struct mmci_host *host = mmc_priv(mmc);
762 	struct mmc_data *data = mrq->data;
763 
764 	if (!host->use_dma || !data)
765 		return;
766 
767 	BUG_ON(data->host_cookie);
768 
769 	if (mmci_validate_data(host, data))
770 		return;
771 
772 	if (!mmci_dma_prep_data(host, data, true))
773 		data->host_cookie = ++host->next_cookie < 0 ?
774 			1 : host->next_cookie;
775 }
776 
777 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
778 			      int err)
779 {
780 	struct mmci_host *host = mmc_priv(mmc);
781 	struct mmci_dmae_priv *dmae = host->dma_priv;
782 	struct mmc_data *data = mrq->data;
783 
784 	if (!host->use_dma || !data || !data->host_cookie)
785 		return;
786 
787 	mmci_dma_unmap(host, data);
788 
789 	if (err) {
790 		struct mmci_dmae_next *next = &dmae->next_data;
791 		struct dma_chan *chan;
792 		if (data->flags & MMC_DATA_READ)
793 			chan = dmae->rx_channel;
794 		else
795 			chan = dmae->tx_channel;
796 		dmaengine_terminate_all(chan);
797 
798 		if (dmae->desc_current == next->desc)
799 			dmae->desc_current = NULL;
800 
801 		if (dmae->cur == next->chan) {
802 			host->dma_in_progress = false;
803 			dmae->cur = NULL;
804 		}
805 
806 		next->desc = NULL;
807 		next->chan = NULL;
808 		data->host_cookie = 0;
809 	}
810 }
811 
812 static struct mmci_host_ops mmci_variant_ops = {
813 	.dma_setup = mmci_dmae_setup,
814 	.dma_release = mmci_dmae_release,
815 };
816 
817 void mmci_variant_init(struct mmci_host *host)
818 {
819 	host->ops = &mmci_variant_ops;
820 }
821 #else
822 /* Blank functions if the DMA engine is not available */
823 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
824 {
825 }
826 
827 static inline void mmci_dma_finalize(struct mmci_host *host,
828 				     struct mmc_data *data)
829 {
830 }
831 
832 static inline void mmci_dma_data_error(struct mmci_host *host)
833 {
834 }
835 
836 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
837 {
838 	return -ENOSYS;
839 }
840 
841 #define mmci_pre_request NULL
842 #define mmci_post_request NULL
843 
844 #endif
845 
846 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
847 {
848 	struct variant_data *variant = host->variant;
849 	unsigned int datactrl, timeout, irqmask;
850 	unsigned long long clks;
851 	void __iomem *base;
852 	int blksz_bits;
853 
854 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
855 		data->blksz, data->blocks, data->flags);
856 
857 	host->data = data;
858 	host->size = data->blksz * data->blocks;
859 	data->bytes_xfered = 0;
860 
861 	clks = (unsigned long long)data->timeout_ns * host->cclk;
862 	do_div(clks, NSEC_PER_SEC);
863 
864 	timeout = data->timeout_clks + (unsigned int)clks;
865 
866 	base = host->base;
867 	writel(timeout, base + MMCIDATATIMER);
868 	writel(host->size, base + MMCIDATALENGTH);
869 
870 	blksz_bits = ffs(data->blksz) - 1;
871 	BUG_ON(1 << blksz_bits != data->blksz);
872 
873 	if (variant->blksz_datactrl16)
874 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
875 	else if (variant->blksz_datactrl4)
876 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
877 	else
878 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
879 
880 	if (data->flags & MMC_DATA_READ)
881 		datactrl |= MCI_DPSM_DIRECTION;
882 
883 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
884 		u32 clk;
885 
886 		datactrl |= variant->datactrl_mask_sdio;
887 
888 		/*
889 		 * The ST Micro variant for SDIO small write transfers
890 		 * needs to have clock H/W flow control disabled,
891 		 * otherwise the transfer will not start. The threshold
892 		 * depends on the rate of MCLK.
893 		 */
894 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
895 		    (host->size < 8 ||
896 		     (host->size <= 8 && host->mclk > 50000000)))
897 			clk = host->clk_reg & ~variant->clkreg_enable;
898 		else
899 			clk = host->clk_reg | variant->clkreg_enable;
900 
901 		mmci_write_clkreg(host, clk);
902 	}
903 
904 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
905 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
906 		datactrl |= variant->datactrl_mask_ddrmode;
907 
908 	/*
909 	 * Attempt to use DMA operation mode, if this
910 	 * should fail, fall back to PIO mode
911 	 */
912 	if (!mmci_dma_start_data(host, datactrl))
913 		return;
914 
915 	/* IRQ mode, map the SG list for CPU reading/writing */
916 	mmci_init_sg(host, data);
917 
918 	if (data->flags & MMC_DATA_READ) {
919 		irqmask = MCI_RXFIFOHALFFULLMASK;
920 
921 		/*
922 		 * If we have less than the fifo 'half-full' threshold to
923 		 * transfer, trigger a PIO interrupt as soon as any data
924 		 * is available.
925 		 */
926 		if (host->size < variant->fifohalfsize)
927 			irqmask |= MCI_RXDATAAVLBLMASK;
928 	} else {
929 		/*
930 		 * We don't actually need to include "FIFO empty" here
931 		 * since its implicit in "FIFO half empty".
932 		 */
933 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
934 	}
935 
936 	mmci_write_datactrlreg(host, datactrl);
937 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
938 	mmci_set_mask1(host, irqmask);
939 }
940 
941 static void
942 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
943 {
944 	void __iomem *base = host->base;
945 
946 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
947 	    cmd->opcode, cmd->arg, cmd->flags);
948 
949 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
950 		writel(0, base + MMCICOMMAND);
951 		mmci_reg_delay(host);
952 	}
953 
954 	c |= cmd->opcode | MCI_CPSM_ENABLE;
955 	if (cmd->flags & MMC_RSP_PRESENT) {
956 		if (cmd->flags & MMC_RSP_136)
957 			c |= MCI_CPSM_LONGRSP;
958 		c |= MCI_CPSM_RESPONSE;
959 	}
960 	if (/*interrupt*/0)
961 		c |= MCI_CPSM_INTERRUPT;
962 
963 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
964 		c |= host->variant->data_cmd_enable;
965 
966 	host->cmd = cmd;
967 
968 	writel(cmd->arg, base + MMCIARGUMENT);
969 	writel(c, base + MMCICOMMAND);
970 }
971 
972 static void
973 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
974 	      unsigned int status)
975 {
976 	/* Make sure we have data to handle */
977 	if (!data)
978 		return;
979 
980 	/* First check for errors */
981 	if (status & (MCI_DATACRCFAIL | MCI_DATATIMEOUT |
982 		      host->variant->start_err |
983 		      MCI_TXUNDERRUN | MCI_RXOVERRUN)) {
984 		u32 remain, success;
985 
986 		/* Terminate the DMA transfer */
987 		mmci_dma_data_error(host);
988 
989 		/*
990 		 * Calculate how far we are into the transfer.  Note that
991 		 * the data counter gives the number of bytes transferred
992 		 * on the MMC bus, not on the host side.  On reads, this
993 		 * can be as much as a FIFO-worth of data ahead.  This
994 		 * matters for FIFO overruns only.
995 		 */
996 		remain = readl(host->base + MMCIDATACNT);
997 		success = data->blksz * data->blocks - remain;
998 
999 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1000 			status, success);
1001 		if (status & MCI_DATACRCFAIL) {
1002 			/* Last block was not successful */
1003 			success -= 1;
1004 			data->error = -EILSEQ;
1005 		} else if (status & MCI_DATATIMEOUT) {
1006 			data->error = -ETIMEDOUT;
1007 		} else if (status & MCI_STARTBITERR) {
1008 			data->error = -ECOMM;
1009 		} else if (status & MCI_TXUNDERRUN) {
1010 			data->error = -EIO;
1011 		} else if (status & MCI_RXOVERRUN) {
1012 			if (success > host->variant->fifosize)
1013 				success -= host->variant->fifosize;
1014 			else
1015 				success = 0;
1016 			data->error = -EIO;
1017 		}
1018 		data->bytes_xfered = round_down(success, data->blksz);
1019 	}
1020 
1021 	if (status & MCI_DATABLOCKEND)
1022 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1023 
1024 	if (status & MCI_DATAEND || data->error) {
1025 		mmci_dma_finalize(host, data);
1026 
1027 		mmci_stop_data(host);
1028 
1029 		if (!data->error)
1030 			/* The error clause is handled above, success! */
1031 			data->bytes_xfered = data->blksz * data->blocks;
1032 
1033 		if (!data->stop || host->mrq->sbc) {
1034 			mmci_request_end(host, data->mrq);
1035 		} else {
1036 			mmci_start_command(host, data->stop, 0);
1037 		}
1038 	}
1039 }
1040 
1041 static void
1042 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1043 	     unsigned int status)
1044 {
1045 	void __iomem *base = host->base;
1046 	bool sbc;
1047 
1048 	if (!cmd)
1049 		return;
1050 
1051 	sbc = (cmd == host->mrq->sbc);
1052 
1053 	/*
1054 	 * We need to be one of these interrupts to be considered worth
1055 	 * handling. Note that we tag on any latent IRQs postponed
1056 	 * due to waiting for busy status.
1057 	 */
1058 	if (!((status|host->busy_status) &
1059 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1060 		return;
1061 
1062 	/*
1063 	 * ST Micro variant: handle busy detection.
1064 	 */
1065 	if (host->variant->busy_detect) {
1066 		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1067 
1068 		/* We are busy with a command, return */
1069 		if (host->busy_status &&
1070 		    (status & host->variant->busy_detect_flag))
1071 			return;
1072 
1073 		/*
1074 		 * We were not busy, but we now got a busy response on
1075 		 * something that was not an error, and we double-check
1076 		 * that the special busy status bit is still set before
1077 		 * proceeding.
1078 		 */
1079 		if (!host->busy_status && busy_resp &&
1080 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1081 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1082 
1083 			/* Clear the busy start IRQ */
1084 			writel(host->variant->busy_detect_mask,
1085 			       host->base + MMCICLEAR);
1086 
1087 			/* Unmask the busy end IRQ */
1088 			writel(readl(base + MMCIMASK0) |
1089 			       host->variant->busy_detect_mask,
1090 			       base + MMCIMASK0);
1091 			/*
1092 			 * Now cache the last response status code (until
1093 			 * the busy bit goes low), and return.
1094 			 */
1095 			host->busy_status =
1096 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1097 			return;
1098 		}
1099 
1100 		/*
1101 		 * At this point we are not busy with a command, we have
1102 		 * not received a new busy request, clear and mask the busy
1103 		 * end IRQ and fall through to process the IRQ.
1104 		 */
1105 		if (host->busy_status) {
1106 
1107 			writel(host->variant->busy_detect_mask,
1108 			       host->base + MMCICLEAR);
1109 
1110 			writel(readl(base + MMCIMASK0) &
1111 			       ~host->variant->busy_detect_mask,
1112 			       base + MMCIMASK0);
1113 			host->busy_status = 0;
1114 		}
1115 	}
1116 
1117 	host->cmd = NULL;
1118 
1119 	if (status & MCI_CMDTIMEOUT) {
1120 		cmd->error = -ETIMEDOUT;
1121 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1122 		cmd->error = -EILSEQ;
1123 	} else {
1124 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1125 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1126 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1127 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1128 	}
1129 
1130 	if ((!sbc && !cmd->data) || cmd->error) {
1131 		if (host->data) {
1132 			/* Terminate the DMA transfer */
1133 			mmci_dma_data_error(host);
1134 
1135 			mmci_stop_data(host);
1136 		}
1137 		mmci_request_end(host, host->mrq);
1138 	} else if (sbc) {
1139 		mmci_start_command(host, host->mrq->cmd, 0);
1140 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1141 		mmci_start_data(host, cmd->data);
1142 	}
1143 }
1144 
1145 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1146 {
1147 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1148 }
1149 
1150 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1151 {
1152 	/*
1153 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1154 	 * from the fifo range should be used
1155 	 */
1156 	if (status & MCI_RXFIFOHALFFULL)
1157 		return host->variant->fifohalfsize;
1158 	else if (status & MCI_RXDATAAVLBL)
1159 		return 4;
1160 
1161 	return 0;
1162 }
1163 
1164 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1165 {
1166 	void __iomem *base = host->base;
1167 	char *ptr = buffer;
1168 	u32 status = readl(host->base + MMCISTATUS);
1169 	int host_remain = host->size;
1170 
1171 	do {
1172 		int count = host->get_rx_fifocnt(host, status, host_remain);
1173 
1174 		if (count > remain)
1175 			count = remain;
1176 
1177 		if (count <= 0)
1178 			break;
1179 
1180 		/*
1181 		 * SDIO especially may want to send something that is
1182 		 * not divisible by 4 (as opposed to card sectors
1183 		 * etc). Therefore make sure to always read the last bytes
1184 		 * while only doing full 32-bit reads towards the FIFO.
1185 		 */
1186 		if (unlikely(count & 0x3)) {
1187 			if (count < 4) {
1188 				unsigned char buf[4];
1189 				ioread32_rep(base + MMCIFIFO, buf, 1);
1190 				memcpy(ptr, buf, count);
1191 			} else {
1192 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1193 				count &= ~0x3;
1194 			}
1195 		} else {
1196 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1197 		}
1198 
1199 		ptr += count;
1200 		remain -= count;
1201 		host_remain -= count;
1202 
1203 		if (remain == 0)
1204 			break;
1205 
1206 		status = readl(base + MMCISTATUS);
1207 	} while (status & MCI_RXDATAAVLBL);
1208 
1209 	return ptr - buffer;
1210 }
1211 
1212 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1213 {
1214 	struct variant_data *variant = host->variant;
1215 	void __iomem *base = host->base;
1216 	char *ptr = buffer;
1217 
1218 	do {
1219 		unsigned int count, maxcnt;
1220 
1221 		maxcnt = status & MCI_TXFIFOEMPTY ?
1222 			 variant->fifosize : variant->fifohalfsize;
1223 		count = min(remain, maxcnt);
1224 
1225 		/*
1226 		 * SDIO especially may want to send something that is
1227 		 * not divisible by 4 (as opposed to card sectors
1228 		 * etc), and the FIFO only accept full 32-bit writes.
1229 		 * So compensate by adding +3 on the count, a single
1230 		 * byte become a 32bit write, 7 bytes will be two
1231 		 * 32bit writes etc.
1232 		 */
1233 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1234 
1235 		ptr += count;
1236 		remain -= count;
1237 
1238 		if (remain == 0)
1239 			break;
1240 
1241 		status = readl(base + MMCISTATUS);
1242 	} while (status & MCI_TXFIFOHALFEMPTY);
1243 
1244 	return ptr - buffer;
1245 }
1246 
1247 /*
1248  * PIO data transfer IRQ handler.
1249  */
1250 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1251 {
1252 	struct mmci_host *host = dev_id;
1253 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1254 	struct variant_data *variant = host->variant;
1255 	void __iomem *base = host->base;
1256 	u32 status;
1257 
1258 	status = readl(base + MMCISTATUS);
1259 
1260 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1261 
1262 	do {
1263 		unsigned int remain, len;
1264 		char *buffer;
1265 
1266 		/*
1267 		 * For write, we only need to test the half-empty flag
1268 		 * here - if the FIFO is completely empty, then by
1269 		 * definition it is more than half empty.
1270 		 *
1271 		 * For read, check for data available.
1272 		 */
1273 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1274 			break;
1275 
1276 		if (!sg_miter_next(sg_miter))
1277 			break;
1278 
1279 		buffer = sg_miter->addr;
1280 		remain = sg_miter->length;
1281 
1282 		len = 0;
1283 		if (status & MCI_RXACTIVE)
1284 			len = mmci_pio_read(host, buffer, remain);
1285 		if (status & MCI_TXACTIVE)
1286 			len = mmci_pio_write(host, buffer, remain, status);
1287 
1288 		sg_miter->consumed = len;
1289 
1290 		host->size -= len;
1291 		remain -= len;
1292 
1293 		if (remain)
1294 			break;
1295 
1296 		status = readl(base + MMCISTATUS);
1297 	} while (1);
1298 
1299 	sg_miter_stop(sg_miter);
1300 
1301 	/*
1302 	 * If we have less than the fifo 'half-full' threshold to transfer,
1303 	 * trigger a PIO interrupt as soon as any data is available.
1304 	 */
1305 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1306 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1307 
1308 	/*
1309 	 * If we run out of data, disable the data IRQs; this
1310 	 * prevents a race where the FIFO becomes empty before
1311 	 * the chip itself has disabled the data path, and
1312 	 * stops us racing with our data end IRQ.
1313 	 */
1314 	if (host->size == 0) {
1315 		mmci_set_mask1(host, 0);
1316 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1317 	}
1318 
1319 	return IRQ_HANDLED;
1320 }
1321 
1322 /*
1323  * Handle completion of command and data transfers.
1324  */
1325 static irqreturn_t mmci_irq(int irq, void *dev_id)
1326 {
1327 	struct mmci_host *host = dev_id;
1328 	u32 status;
1329 	int ret = 0;
1330 
1331 	spin_lock(&host->lock);
1332 
1333 	do {
1334 		status = readl(host->base + MMCISTATUS);
1335 
1336 		if (host->singleirq) {
1337 			if (status & host->mask1_reg)
1338 				mmci_pio_irq(irq, dev_id);
1339 
1340 			status &= ~MCI_IRQ1MASK;
1341 		}
1342 
1343 		/*
1344 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1345 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1346 		 * detection variant is handled. Considering the HW seems to be
1347 		 * triggering the IRQ on both edges while monitoring DAT0 for
1348 		 * busy completion and that same status bit is used to monitor
1349 		 * start and end of busy detection, special care must be taken
1350 		 * to make sure that both start and end interrupts are always
1351 		 * cleared one after the other.
1352 		 */
1353 		status &= readl(host->base + MMCIMASK0);
1354 		if (host->variant->busy_detect)
1355 			writel(status & ~host->variant->busy_detect_mask,
1356 			       host->base + MMCICLEAR);
1357 		else
1358 			writel(status, host->base + MMCICLEAR);
1359 
1360 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1361 
1362 		if (host->variant->reversed_irq_handling) {
1363 			mmci_data_irq(host, host->data, status);
1364 			mmci_cmd_irq(host, host->cmd, status);
1365 		} else {
1366 			mmci_cmd_irq(host, host->cmd, status);
1367 			mmci_data_irq(host, host->data, status);
1368 		}
1369 
1370 		/*
1371 		 * Don't poll for busy completion in irq context.
1372 		 */
1373 		if (host->variant->busy_detect && host->busy_status)
1374 			status &= ~host->variant->busy_detect_flag;
1375 
1376 		ret = 1;
1377 	} while (status);
1378 
1379 	spin_unlock(&host->lock);
1380 
1381 	return IRQ_RETVAL(ret);
1382 }
1383 
1384 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1385 {
1386 	struct mmci_host *host = mmc_priv(mmc);
1387 	unsigned long flags;
1388 
1389 	WARN_ON(host->mrq != NULL);
1390 
1391 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1392 	if (mrq->cmd->error) {
1393 		mmc_request_done(mmc, mrq);
1394 		return;
1395 	}
1396 
1397 	spin_lock_irqsave(&host->lock, flags);
1398 
1399 	host->mrq = mrq;
1400 
1401 	if (mrq->data)
1402 		mmci_get_next_data(host, mrq->data);
1403 
1404 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1405 		mmci_start_data(host, mrq->data);
1406 
1407 	if (mrq->sbc)
1408 		mmci_start_command(host, mrq->sbc, 0);
1409 	else
1410 		mmci_start_command(host, mrq->cmd, 0);
1411 
1412 	spin_unlock_irqrestore(&host->lock, flags);
1413 }
1414 
1415 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1416 {
1417 	struct mmci_host *host = mmc_priv(mmc);
1418 	struct variant_data *variant = host->variant;
1419 	u32 pwr = 0;
1420 	unsigned long flags;
1421 	int ret;
1422 
1423 	if (host->plat->ios_handler &&
1424 		host->plat->ios_handler(mmc_dev(mmc), ios))
1425 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1426 
1427 	switch (ios->power_mode) {
1428 	case MMC_POWER_OFF:
1429 		if (!IS_ERR(mmc->supply.vmmc))
1430 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1431 
1432 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1433 			regulator_disable(mmc->supply.vqmmc);
1434 			host->vqmmc_enabled = false;
1435 		}
1436 
1437 		break;
1438 	case MMC_POWER_UP:
1439 		if (!IS_ERR(mmc->supply.vmmc))
1440 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1441 
1442 		/*
1443 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1444 		 * and instead uses MCI_PWR_ON so apply whatever value is
1445 		 * configured in the variant data.
1446 		 */
1447 		pwr |= variant->pwrreg_powerup;
1448 
1449 		break;
1450 	case MMC_POWER_ON:
1451 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1452 			ret = regulator_enable(mmc->supply.vqmmc);
1453 			if (ret < 0)
1454 				dev_err(mmc_dev(mmc),
1455 					"failed to enable vqmmc regulator\n");
1456 			else
1457 				host->vqmmc_enabled = true;
1458 		}
1459 
1460 		pwr |= MCI_PWR_ON;
1461 		break;
1462 	}
1463 
1464 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1465 		/*
1466 		 * The ST Micro variant has some additional bits
1467 		 * indicating signal direction for the signals in
1468 		 * the SD/MMC bus and feedback-clock usage.
1469 		 */
1470 		pwr |= host->pwr_reg_add;
1471 
1472 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1473 			pwr &= ~MCI_ST_DATA74DIREN;
1474 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1475 			pwr &= (~MCI_ST_DATA74DIREN &
1476 				~MCI_ST_DATA31DIREN &
1477 				~MCI_ST_DATA2DIREN);
1478 	}
1479 
1480 	if (variant->opendrain) {
1481 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1482 			pwr |= variant->opendrain;
1483 	} else {
1484 		/*
1485 		 * If the variant cannot configure the pads by its own, then we
1486 		 * expect the pinctrl to be able to do that for us
1487 		 */
1488 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1489 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1490 		else
1491 			pinctrl_select_state(host->pinctrl, host->pins_default);
1492 	}
1493 
1494 	/*
1495 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1496 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1497 	 */
1498 	if (!ios->clock && variant->pwrreg_clkgate)
1499 		pwr &= ~MCI_PWR_ON;
1500 
1501 	if (host->variant->explicit_mclk_control &&
1502 	    ios->clock != host->clock_cache) {
1503 		ret = clk_set_rate(host->clk, ios->clock);
1504 		if (ret < 0)
1505 			dev_err(mmc_dev(host->mmc),
1506 				"Error setting clock rate (%d)\n", ret);
1507 		else
1508 			host->mclk = clk_get_rate(host->clk);
1509 	}
1510 	host->clock_cache = ios->clock;
1511 
1512 	spin_lock_irqsave(&host->lock, flags);
1513 
1514 	mmci_set_clkreg(host, ios->clock);
1515 	mmci_write_pwrreg(host, pwr);
1516 	mmci_reg_delay(host);
1517 
1518 	spin_unlock_irqrestore(&host->lock, flags);
1519 }
1520 
1521 static int mmci_get_cd(struct mmc_host *mmc)
1522 {
1523 	struct mmci_host *host = mmc_priv(mmc);
1524 	struct mmci_platform_data *plat = host->plat;
1525 	unsigned int status = mmc_gpio_get_cd(mmc);
1526 
1527 	if (status == -ENOSYS) {
1528 		if (!plat->status)
1529 			return 1; /* Assume always present */
1530 
1531 		status = plat->status(mmc_dev(host->mmc));
1532 	}
1533 	return status;
1534 }
1535 
1536 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1537 {
1538 	int ret = 0;
1539 
1540 	if (!IS_ERR(mmc->supply.vqmmc)) {
1541 
1542 		switch (ios->signal_voltage) {
1543 		case MMC_SIGNAL_VOLTAGE_330:
1544 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1545 						2700000, 3600000);
1546 			break;
1547 		case MMC_SIGNAL_VOLTAGE_180:
1548 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1549 						1700000, 1950000);
1550 			break;
1551 		case MMC_SIGNAL_VOLTAGE_120:
1552 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1553 						1100000, 1300000);
1554 			break;
1555 		}
1556 
1557 		if (ret)
1558 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1559 	}
1560 
1561 	return ret;
1562 }
1563 
1564 static struct mmc_host_ops mmci_ops = {
1565 	.request	= mmci_request,
1566 	.pre_req	= mmci_pre_request,
1567 	.post_req	= mmci_post_request,
1568 	.set_ios	= mmci_set_ios,
1569 	.get_ro		= mmc_gpio_get_ro,
1570 	.get_cd		= mmci_get_cd,
1571 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1572 };
1573 
1574 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1575 {
1576 	struct mmci_host *host = mmc_priv(mmc);
1577 	int ret = mmc_of_parse(mmc);
1578 
1579 	if (ret)
1580 		return ret;
1581 
1582 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1583 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1584 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1585 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1586 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1587 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1588 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1589 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1590 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1591 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1592 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1593 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1594 
1595 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1596 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1597 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1598 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1599 
1600 	return 0;
1601 }
1602 
1603 static int mmci_probe(struct amba_device *dev,
1604 	const struct amba_id *id)
1605 {
1606 	struct mmci_platform_data *plat = dev->dev.platform_data;
1607 	struct device_node *np = dev->dev.of_node;
1608 	struct variant_data *variant = id->data;
1609 	struct mmci_host *host;
1610 	struct mmc_host *mmc;
1611 	int ret;
1612 
1613 	/* Must have platform data or Device Tree. */
1614 	if (!plat && !np) {
1615 		dev_err(&dev->dev, "No plat data or DT found\n");
1616 		return -EINVAL;
1617 	}
1618 
1619 	if (!plat) {
1620 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1621 		if (!plat)
1622 			return -ENOMEM;
1623 	}
1624 
1625 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1626 	if (!mmc)
1627 		return -ENOMEM;
1628 
1629 	ret = mmci_of_parse(np, mmc);
1630 	if (ret)
1631 		goto host_free;
1632 
1633 	host = mmc_priv(mmc);
1634 	host->mmc = mmc;
1635 
1636 	/*
1637 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1638 	 * pins can be set accordingly using pinctrl
1639 	 */
1640 	if (!variant->opendrain) {
1641 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1642 		if (IS_ERR(host->pinctrl)) {
1643 			dev_err(&dev->dev, "failed to get pinctrl");
1644 			ret = PTR_ERR(host->pinctrl);
1645 			goto host_free;
1646 		}
1647 
1648 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1649 							  PINCTRL_STATE_DEFAULT);
1650 		if (IS_ERR(host->pins_default)) {
1651 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1652 			ret = PTR_ERR(host->pins_default);
1653 			goto host_free;
1654 		}
1655 
1656 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1657 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1658 		if (IS_ERR(host->pins_opendrain)) {
1659 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1660 			ret = PTR_ERR(host->pins_opendrain);
1661 			goto host_free;
1662 		}
1663 	}
1664 
1665 	host->hw_designer = amba_manf(dev);
1666 	host->hw_revision = amba_rev(dev);
1667 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1668 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1669 
1670 	host->clk = devm_clk_get(&dev->dev, NULL);
1671 	if (IS_ERR(host->clk)) {
1672 		ret = PTR_ERR(host->clk);
1673 		goto host_free;
1674 	}
1675 
1676 	ret = clk_prepare_enable(host->clk);
1677 	if (ret)
1678 		goto host_free;
1679 
1680 	if (variant->qcom_fifo)
1681 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1682 	else
1683 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1684 
1685 	host->plat = plat;
1686 	host->variant = variant;
1687 	host->mclk = clk_get_rate(host->clk);
1688 	/*
1689 	 * According to the spec, mclk is max 100 MHz,
1690 	 * so we try to adjust the clock down to this,
1691 	 * (if possible).
1692 	 */
1693 	if (host->mclk > variant->f_max) {
1694 		ret = clk_set_rate(host->clk, variant->f_max);
1695 		if (ret < 0)
1696 			goto clk_disable;
1697 		host->mclk = clk_get_rate(host->clk);
1698 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1699 			host->mclk);
1700 	}
1701 
1702 	host->phybase = dev->res.start;
1703 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1704 	if (IS_ERR(host->base)) {
1705 		ret = PTR_ERR(host->base);
1706 		goto clk_disable;
1707 	}
1708 
1709 	if (variant->init)
1710 		variant->init(host);
1711 
1712 	/*
1713 	 * The ARM and ST versions of the block have slightly different
1714 	 * clock divider equations which means that the minimum divider
1715 	 * differs too.
1716 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1717 	 */
1718 	if (variant->st_clkdiv)
1719 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1720 	else if (variant->explicit_mclk_control)
1721 		mmc->f_min = clk_round_rate(host->clk, 100000);
1722 	else
1723 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1724 	/*
1725 	 * If no maximum operating frequency is supplied, fall back to use
1726 	 * the module parameter, which has a (low) default value in case it
1727 	 * is not specified. Either value must not exceed the clock rate into
1728 	 * the block, of course.
1729 	 */
1730 	if (mmc->f_max)
1731 		mmc->f_max = variant->explicit_mclk_control ?
1732 				min(variant->f_max, mmc->f_max) :
1733 				min(host->mclk, mmc->f_max);
1734 	else
1735 		mmc->f_max = variant->explicit_mclk_control ?
1736 				fmax : min(host->mclk, fmax);
1737 
1738 
1739 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1740 
1741 	/* Get regulators and the supported OCR mask */
1742 	ret = mmc_regulator_get_supply(mmc);
1743 	if (ret)
1744 		goto clk_disable;
1745 
1746 	if (!mmc->ocr_avail)
1747 		mmc->ocr_avail = plat->ocr_mask;
1748 	else if (plat->ocr_mask)
1749 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1750 
1751 	/* We support these capabilities. */
1752 	mmc->caps |= MMC_CAP_CMD23;
1753 
1754 	/*
1755 	 * Enable busy detection.
1756 	 */
1757 	if (variant->busy_detect) {
1758 		mmci_ops.card_busy = mmci_card_busy;
1759 		/*
1760 		 * Not all variants have a flag to enable busy detection
1761 		 * in the DPSM, but if they do, set it here.
1762 		 */
1763 		if (variant->busy_dpsm_flag)
1764 			mmci_write_datactrlreg(host,
1765 					       host->variant->busy_dpsm_flag);
1766 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1767 		mmc->max_busy_timeout = 0;
1768 	}
1769 
1770 	mmc->ops = &mmci_ops;
1771 
1772 	/* We support these PM capabilities. */
1773 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1774 
1775 	/*
1776 	 * We can do SGIO
1777 	 */
1778 	mmc->max_segs = NR_SG;
1779 
1780 	/*
1781 	 * Since only a certain number of bits are valid in the data length
1782 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1783 	 * single request.
1784 	 */
1785 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1786 
1787 	/*
1788 	 * Set the maximum segment size.  Since we aren't doing DMA
1789 	 * (yet) we are only limited by the data length register.
1790 	 */
1791 	mmc->max_seg_size = mmc->max_req_size;
1792 
1793 	/*
1794 	 * Block size can be up to 2048 bytes, but must be a power of two.
1795 	 */
1796 	mmc->max_blk_size = 1 << 11;
1797 
1798 	/*
1799 	 * Limit the number of blocks transferred so that we don't overflow
1800 	 * the maximum request size.
1801 	 */
1802 	mmc->max_blk_count = mmc->max_req_size >> 11;
1803 
1804 	spin_lock_init(&host->lock);
1805 
1806 	writel(0, host->base + MMCIMASK0);
1807 
1808 	if (variant->mmcimask1)
1809 		writel(0, host->base + MMCIMASK1);
1810 
1811 	writel(0xfff, host->base + MMCICLEAR);
1812 
1813 	/*
1814 	 * If:
1815 	 * - not using DT but using a descriptor table, or
1816 	 * - using a table of descriptors ALONGSIDE DT, or
1817 	 * look up these descriptors named "cd" and "wp" right here, fail
1818 	 * silently of these do not exist
1819 	 */
1820 	if (!np) {
1821 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1822 		if (ret == -EPROBE_DEFER)
1823 			goto clk_disable;
1824 
1825 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1826 		if (ret == -EPROBE_DEFER)
1827 			goto clk_disable;
1828 	}
1829 
1830 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1831 			DRIVER_NAME " (cmd)", host);
1832 	if (ret)
1833 		goto clk_disable;
1834 
1835 	if (!dev->irq[1])
1836 		host->singleirq = true;
1837 	else {
1838 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1839 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1840 		if (ret)
1841 			goto clk_disable;
1842 	}
1843 
1844 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1845 
1846 	amba_set_drvdata(dev, mmc);
1847 
1848 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1849 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1850 		 amba_rev(dev), (unsigned long long)dev->res.start,
1851 		 dev->irq[0], dev->irq[1]);
1852 
1853 	mmci_dma_setup(host);
1854 
1855 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1856 	pm_runtime_use_autosuspend(&dev->dev);
1857 
1858 	mmc_add_host(mmc);
1859 
1860 	pm_runtime_put(&dev->dev);
1861 	return 0;
1862 
1863  clk_disable:
1864 	clk_disable_unprepare(host->clk);
1865  host_free:
1866 	mmc_free_host(mmc);
1867 	return ret;
1868 }
1869 
1870 static int mmci_remove(struct amba_device *dev)
1871 {
1872 	struct mmc_host *mmc = amba_get_drvdata(dev);
1873 
1874 	if (mmc) {
1875 		struct mmci_host *host = mmc_priv(mmc);
1876 		struct variant_data *variant = host->variant;
1877 
1878 		/*
1879 		 * Undo pm_runtime_put() in probe.  We use the _sync
1880 		 * version here so that we can access the primecell.
1881 		 */
1882 		pm_runtime_get_sync(&dev->dev);
1883 
1884 		mmc_remove_host(mmc);
1885 
1886 		writel(0, host->base + MMCIMASK0);
1887 
1888 		if (variant->mmcimask1)
1889 			writel(0, host->base + MMCIMASK1);
1890 
1891 		writel(0, host->base + MMCICOMMAND);
1892 		writel(0, host->base + MMCIDATACTRL);
1893 
1894 		mmci_dma_release(host);
1895 		clk_disable_unprepare(host->clk);
1896 		mmc_free_host(mmc);
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 #ifdef CONFIG_PM
1903 static void mmci_save(struct mmci_host *host)
1904 {
1905 	unsigned long flags;
1906 
1907 	spin_lock_irqsave(&host->lock, flags);
1908 
1909 	writel(0, host->base + MMCIMASK0);
1910 	if (host->variant->pwrreg_nopower) {
1911 		writel(0, host->base + MMCIDATACTRL);
1912 		writel(0, host->base + MMCIPOWER);
1913 		writel(0, host->base + MMCICLOCK);
1914 	}
1915 	mmci_reg_delay(host);
1916 
1917 	spin_unlock_irqrestore(&host->lock, flags);
1918 }
1919 
1920 static void mmci_restore(struct mmci_host *host)
1921 {
1922 	unsigned long flags;
1923 
1924 	spin_lock_irqsave(&host->lock, flags);
1925 
1926 	if (host->variant->pwrreg_nopower) {
1927 		writel(host->clk_reg, host->base + MMCICLOCK);
1928 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1929 		writel(host->pwr_reg, host->base + MMCIPOWER);
1930 	}
1931 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1932 	mmci_reg_delay(host);
1933 
1934 	spin_unlock_irqrestore(&host->lock, flags);
1935 }
1936 
1937 static int mmci_runtime_suspend(struct device *dev)
1938 {
1939 	struct amba_device *adev = to_amba_device(dev);
1940 	struct mmc_host *mmc = amba_get_drvdata(adev);
1941 
1942 	if (mmc) {
1943 		struct mmci_host *host = mmc_priv(mmc);
1944 		pinctrl_pm_select_sleep_state(dev);
1945 		mmci_save(host);
1946 		clk_disable_unprepare(host->clk);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static int mmci_runtime_resume(struct device *dev)
1953 {
1954 	struct amba_device *adev = to_amba_device(dev);
1955 	struct mmc_host *mmc = amba_get_drvdata(adev);
1956 
1957 	if (mmc) {
1958 		struct mmci_host *host = mmc_priv(mmc);
1959 		clk_prepare_enable(host->clk);
1960 		mmci_restore(host);
1961 		pinctrl_pm_select_default_state(dev);
1962 	}
1963 
1964 	return 0;
1965 }
1966 #endif
1967 
1968 static const struct dev_pm_ops mmci_dev_pm_ops = {
1969 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1970 				pm_runtime_force_resume)
1971 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1972 };
1973 
1974 static const struct amba_id mmci_ids[] = {
1975 	{
1976 		.id	= 0x00041180,
1977 		.mask	= 0xff0fffff,
1978 		.data	= &variant_arm,
1979 	},
1980 	{
1981 		.id	= 0x01041180,
1982 		.mask	= 0xff0fffff,
1983 		.data	= &variant_arm_extended_fifo,
1984 	},
1985 	{
1986 		.id	= 0x02041180,
1987 		.mask	= 0xff0fffff,
1988 		.data	= &variant_arm_extended_fifo_hwfc,
1989 	},
1990 	{
1991 		.id	= 0x00041181,
1992 		.mask	= 0x000fffff,
1993 		.data	= &variant_arm,
1994 	},
1995 	/* ST Micro variants */
1996 	{
1997 		.id     = 0x00180180,
1998 		.mask   = 0x00ffffff,
1999 		.data	= &variant_u300,
2000 	},
2001 	{
2002 		.id     = 0x10180180,
2003 		.mask   = 0xf0ffffff,
2004 		.data	= &variant_nomadik,
2005 	},
2006 	{
2007 		.id     = 0x00280180,
2008 		.mask   = 0x00ffffff,
2009 		.data	= &variant_nomadik,
2010 	},
2011 	{
2012 		.id     = 0x00480180,
2013 		.mask   = 0xf0ffffff,
2014 		.data	= &variant_ux500,
2015 	},
2016 	{
2017 		.id     = 0x10480180,
2018 		.mask   = 0xf0ffffff,
2019 		.data	= &variant_ux500v2,
2020 	},
2021 	{
2022 		.id     = 0x00880180,
2023 		.mask   = 0x00ffffff,
2024 		.data	= &variant_stm32,
2025 	},
2026 	/* Qualcomm variants */
2027 	{
2028 		.id     = 0x00051180,
2029 		.mask	= 0x000fffff,
2030 		.data	= &variant_qcom,
2031 	},
2032 	{ 0, 0 },
2033 };
2034 
2035 MODULE_DEVICE_TABLE(amba, mmci_ids);
2036 
2037 static struct amba_driver mmci_driver = {
2038 	.drv		= {
2039 		.name	= DRIVER_NAME,
2040 		.pm	= &mmci_dev_pm_ops,
2041 	},
2042 	.probe		= mmci_probe,
2043 	.remove		= mmci_remove,
2044 	.id_table	= mmci_ids,
2045 };
2046 
2047 module_amba_driver(mmci_driver);
2048 
2049 module_param(fmax, uint, 0444);
2050 
2051 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2052 MODULE_LICENSE("GPL");
2053