xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision a8fe58ce)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44 
45 #include "mmci.h"
46 #include "mmci_qcom_dml.h"
47 
48 #define DRIVER_NAME "mmci-pl18x"
49 
50 static unsigned int fmax = 515633;
51 
52 /**
53  * struct variant_data - MMCI variant-specific quirks
54  * @clkreg: default value for MCICLOCK register
55  * @clkreg_enable: enable value for MMCICLOCK register
56  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58  * @datalength_bits: number of bits in the MMCIDATALENGTH register
59  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60  *	      is asserted (likewise for RX)
61  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62  *		  is asserted (likewise for RX)
63  * @data_cmd_enable: enable value for data commands.
64  * @st_sdio: enable ST specific SDIO logic
65  * @st_clkdiv: true if using a ST-specific clock divider algorithm
66  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69  *		     register
70  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71  * @pwrreg_powerup: power up value for MMCIPOWER register
72  * @f_max: maximum clk frequency supported by the controller.
73  * @signal_direction: input/out direction of bus signals can be indicated
74  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75  * @busy_detect: true if busy detection on dat0 is supported
76  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77  * @explicit_mclk_control: enable explicit mclk control in driver.
78  * @qcom_fifo: enables qcom specific fifo pio read logic.
79  * @qcom_dml: enables qcom specific dma glue for dma transfers.
80  * @reversed_irq_handling: handle data irq before cmd irq.
81  */
82 struct variant_data {
83 	unsigned int		clkreg;
84 	unsigned int		clkreg_enable;
85 	unsigned int		clkreg_8bit_bus_enable;
86 	unsigned int		clkreg_neg_edge_enable;
87 	unsigned int		datalength_bits;
88 	unsigned int		fifosize;
89 	unsigned int		fifohalfsize;
90 	unsigned int		data_cmd_enable;
91 	unsigned int		datactrl_mask_ddrmode;
92 	unsigned int		datactrl_mask_sdio;
93 	bool			st_sdio;
94 	bool			st_clkdiv;
95 	bool			blksz_datactrl16;
96 	bool			blksz_datactrl4;
97 	u32			pwrreg_powerup;
98 	u32			f_max;
99 	bool			signal_direction;
100 	bool			pwrreg_clkgate;
101 	bool			busy_detect;
102 	bool			pwrreg_nopower;
103 	bool			explicit_mclk_control;
104 	bool			qcom_fifo;
105 	bool			qcom_dml;
106 	bool			reversed_irq_handling;
107 };
108 
109 static struct variant_data variant_arm = {
110 	.fifosize		= 16 * 4,
111 	.fifohalfsize		= 8 * 4,
112 	.datalength_bits	= 16,
113 	.pwrreg_powerup		= MCI_PWR_UP,
114 	.f_max			= 100000000,
115 	.reversed_irq_handling	= true,
116 };
117 
118 static struct variant_data variant_arm_extended_fifo = {
119 	.fifosize		= 128 * 4,
120 	.fifohalfsize		= 64 * 4,
121 	.datalength_bits	= 16,
122 	.pwrreg_powerup		= MCI_PWR_UP,
123 	.f_max			= 100000000,
124 };
125 
126 static struct variant_data variant_arm_extended_fifo_hwfc = {
127 	.fifosize		= 128 * 4,
128 	.fifohalfsize		= 64 * 4,
129 	.clkreg_enable		= MCI_ARM_HWFCEN,
130 	.datalength_bits	= 16,
131 	.pwrreg_powerup		= MCI_PWR_UP,
132 	.f_max			= 100000000,
133 };
134 
135 static struct variant_data variant_u300 = {
136 	.fifosize		= 16 * 4,
137 	.fifohalfsize		= 8 * 4,
138 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
139 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 	.datalength_bits	= 16,
141 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
142 	.st_sdio			= true,
143 	.pwrreg_powerup		= MCI_PWR_ON,
144 	.f_max			= 100000000,
145 	.signal_direction	= true,
146 	.pwrreg_clkgate		= true,
147 	.pwrreg_nopower		= true,
148 };
149 
150 static struct variant_data variant_nomadik = {
151 	.fifosize		= 16 * 4,
152 	.fifohalfsize		= 8 * 4,
153 	.clkreg			= MCI_CLK_ENABLE,
154 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
155 	.datalength_bits	= 24,
156 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
157 	.st_sdio		= true,
158 	.st_clkdiv		= true,
159 	.pwrreg_powerup		= MCI_PWR_ON,
160 	.f_max			= 100000000,
161 	.signal_direction	= true,
162 	.pwrreg_clkgate		= true,
163 	.pwrreg_nopower		= true,
164 };
165 
166 static struct variant_data variant_ux500 = {
167 	.fifosize		= 30 * 4,
168 	.fifohalfsize		= 8 * 4,
169 	.clkreg			= MCI_CLK_ENABLE,
170 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
171 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
172 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
173 	.datalength_bits	= 24,
174 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
175 	.st_sdio		= true,
176 	.st_clkdiv		= true,
177 	.pwrreg_powerup		= MCI_PWR_ON,
178 	.f_max			= 100000000,
179 	.signal_direction	= true,
180 	.pwrreg_clkgate		= true,
181 	.busy_detect		= true,
182 	.pwrreg_nopower		= true,
183 };
184 
185 static struct variant_data variant_ux500v2 = {
186 	.fifosize		= 30 * 4,
187 	.fifohalfsize		= 8 * 4,
188 	.clkreg			= MCI_CLK_ENABLE,
189 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
190 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
191 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
192 	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
193 	.datalength_bits	= 24,
194 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
195 	.st_sdio		= true,
196 	.st_clkdiv		= true,
197 	.blksz_datactrl16	= true,
198 	.pwrreg_powerup		= MCI_PWR_ON,
199 	.f_max			= 100000000,
200 	.signal_direction	= true,
201 	.pwrreg_clkgate		= true,
202 	.busy_detect		= true,
203 	.pwrreg_nopower		= true,
204 };
205 
206 static struct variant_data variant_qcom = {
207 	.fifosize		= 16 * 4,
208 	.fifohalfsize		= 8 * 4,
209 	.clkreg			= MCI_CLK_ENABLE,
210 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
211 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
212 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
213 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
214 	.data_cmd_enable	= MCI_QCOM_CSPM_DATCMD,
215 	.blksz_datactrl4	= true,
216 	.datalength_bits	= 24,
217 	.pwrreg_powerup		= MCI_PWR_UP,
218 	.f_max			= 208000000,
219 	.explicit_mclk_control	= true,
220 	.qcom_fifo		= true,
221 	.qcom_dml		= true,
222 };
223 
224 static int mmci_card_busy(struct mmc_host *mmc)
225 {
226 	struct mmci_host *host = mmc_priv(mmc);
227 	unsigned long flags;
228 	int busy = 0;
229 
230 	pm_runtime_get_sync(mmc_dev(mmc));
231 
232 	spin_lock_irqsave(&host->lock, flags);
233 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
234 		busy = 1;
235 	spin_unlock_irqrestore(&host->lock, flags);
236 
237 	pm_runtime_mark_last_busy(mmc_dev(mmc));
238 	pm_runtime_put_autosuspend(mmc_dev(mmc));
239 
240 	return busy;
241 }
242 
243 /*
244  * Validate mmc prerequisites
245  */
246 static int mmci_validate_data(struct mmci_host *host,
247 			      struct mmc_data *data)
248 {
249 	if (!data)
250 		return 0;
251 
252 	if (!is_power_of_2(data->blksz)) {
253 		dev_err(mmc_dev(host->mmc),
254 			"unsupported block size (%d bytes)\n", data->blksz);
255 		return -EINVAL;
256 	}
257 
258 	return 0;
259 }
260 
261 static void mmci_reg_delay(struct mmci_host *host)
262 {
263 	/*
264 	 * According to the spec, at least three feedback clock cycles
265 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
266 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
267 	 * Worst delay time during card init is at 100 kHz => 30 us.
268 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
269 	 */
270 	if (host->cclk < 25000000)
271 		udelay(30);
272 	else
273 		ndelay(120);
274 }
275 
276 /*
277  * This must be called with host->lock held
278  */
279 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
280 {
281 	if (host->clk_reg != clk) {
282 		host->clk_reg = clk;
283 		writel(clk, host->base + MMCICLOCK);
284 	}
285 }
286 
287 /*
288  * This must be called with host->lock held
289  */
290 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
291 {
292 	if (host->pwr_reg != pwr) {
293 		host->pwr_reg = pwr;
294 		writel(pwr, host->base + MMCIPOWER);
295 	}
296 }
297 
298 /*
299  * This must be called with host->lock held
300  */
301 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
302 {
303 	/* Keep ST Micro busy mode if enabled */
304 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
305 
306 	if (host->datactrl_reg != datactrl) {
307 		host->datactrl_reg = datactrl;
308 		writel(datactrl, host->base + MMCIDATACTRL);
309 	}
310 }
311 
312 /*
313  * This must be called with host->lock held
314  */
315 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
316 {
317 	struct variant_data *variant = host->variant;
318 	u32 clk = variant->clkreg;
319 
320 	/* Make sure cclk reflects the current calculated clock */
321 	host->cclk = 0;
322 
323 	if (desired) {
324 		if (variant->explicit_mclk_control) {
325 			host->cclk = host->mclk;
326 		} else if (desired >= host->mclk) {
327 			clk = MCI_CLK_BYPASS;
328 			if (variant->st_clkdiv)
329 				clk |= MCI_ST_UX500_NEG_EDGE;
330 			host->cclk = host->mclk;
331 		} else if (variant->st_clkdiv) {
332 			/*
333 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
334 			 * => clkdiv = (mclk / f) - 2
335 			 * Round the divider up so we don't exceed the max
336 			 * frequency
337 			 */
338 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
339 			if (clk >= 256)
340 				clk = 255;
341 			host->cclk = host->mclk / (clk + 2);
342 		} else {
343 			/*
344 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
345 			 * => clkdiv = mclk / (2 * f) - 1
346 			 */
347 			clk = host->mclk / (2 * desired) - 1;
348 			if (clk >= 256)
349 				clk = 255;
350 			host->cclk = host->mclk / (2 * (clk + 1));
351 		}
352 
353 		clk |= variant->clkreg_enable;
354 		clk |= MCI_CLK_ENABLE;
355 		/* This hasn't proven to be worthwhile */
356 		/* clk |= MCI_CLK_PWRSAVE; */
357 	}
358 
359 	/* Set actual clock for debug */
360 	host->mmc->actual_clock = host->cclk;
361 
362 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
363 		clk |= MCI_4BIT_BUS;
364 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
365 		clk |= variant->clkreg_8bit_bus_enable;
366 
367 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
368 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
369 		clk |= variant->clkreg_neg_edge_enable;
370 
371 	mmci_write_clkreg(host, clk);
372 }
373 
374 static void
375 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
376 {
377 	writel(0, host->base + MMCICOMMAND);
378 
379 	BUG_ON(host->data);
380 
381 	host->mrq = NULL;
382 	host->cmd = NULL;
383 
384 	mmc_request_done(host->mmc, mrq);
385 
386 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
387 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
388 }
389 
390 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
391 {
392 	void __iomem *base = host->base;
393 
394 	if (host->singleirq) {
395 		unsigned int mask0 = readl(base + MMCIMASK0);
396 
397 		mask0 &= ~MCI_IRQ1MASK;
398 		mask0 |= mask;
399 
400 		writel(mask0, base + MMCIMASK0);
401 	}
402 
403 	writel(mask, base + MMCIMASK1);
404 }
405 
406 static void mmci_stop_data(struct mmci_host *host)
407 {
408 	mmci_write_datactrlreg(host, 0);
409 	mmci_set_mask1(host, 0);
410 	host->data = NULL;
411 }
412 
413 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
414 {
415 	unsigned int flags = SG_MITER_ATOMIC;
416 
417 	if (data->flags & MMC_DATA_READ)
418 		flags |= SG_MITER_TO_SG;
419 	else
420 		flags |= SG_MITER_FROM_SG;
421 
422 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
423 }
424 
425 /*
426  * All the DMA operation mode stuff goes inside this ifdef.
427  * This assumes that you have a generic DMA device interface,
428  * no custom DMA interfaces are supported.
429  */
430 #ifdef CONFIG_DMA_ENGINE
431 static void mmci_dma_setup(struct mmci_host *host)
432 {
433 	const char *rxname, *txname;
434 	struct variant_data *variant = host->variant;
435 
436 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
437 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
438 
439 	/* initialize pre request cookie */
440 	host->next_data.cookie = 1;
441 
442 	/*
443 	 * If only an RX channel is specified, the driver will
444 	 * attempt to use it bidirectionally, however if it is
445 	 * is specified but cannot be located, DMA will be disabled.
446 	 */
447 	if (host->dma_rx_channel && !host->dma_tx_channel)
448 		host->dma_tx_channel = host->dma_rx_channel;
449 
450 	if (host->dma_rx_channel)
451 		rxname = dma_chan_name(host->dma_rx_channel);
452 	else
453 		rxname = "none";
454 
455 	if (host->dma_tx_channel)
456 		txname = dma_chan_name(host->dma_tx_channel);
457 	else
458 		txname = "none";
459 
460 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
461 		 rxname, txname);
462 
463 	/*
464 	 * Limit the maximum segment size in any SG entry according to
465 	 * the parameters of the DMA engine device.
466 	 */
467 	if (host->dma_tx_channel) {
468 		struct device *dev = host->dma_tx_channel->device->dev;
469 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
470 
471 		if (max_seg_size < host->mmc->max_seg_size)
472 			host->mmc->max_seg_size = max_seg_size;
473 	}
474 	if (host->dma_rx_channel) {
475 		struct device *dev = host->dma_rx_channel->device->dev;
476 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
477 
478 		if (max_seg_size < host->mmc->max_seg_size)
479 			host->mmc->max_seg_size = max_seg_size;
480 	}
481 
482 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
483 		if (dml_hw_init(host, host->mmc->parent->of_node))
484 			variant->qcom_dml = false;
485 }
486 
487 /*
488  * This is used in or so inline it
489  * so it can be discarded.
490  */
491 static inline void mmci_dma_release(struct mmci_host *host)
492 {
493 	if (host->dma_rx_channel)
494 		dma_release_channel(host->dma_rx_channel);
495 	if (host->dma_tx_channel)
496 		dma_release_channel(host->dma_tx_channel);
497 	host->dma_rx_channel = host->dma_tx_channel = NULL;
498 }
499 
500 static void mmci_dma_data_error(struct mmci_host *host)
501 {
502 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
503 	dmaengine_terminate_all(host->dma_current);
504 	host->dma_current = NULL;
505 	host->dma_desc_current = NULL;
506 	host->data->host_cookie = 0;
507 }
508 
509 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
510 {
511 	struct dma_chan *chan;
512 	enum dma_data_direction dir;
513 
514 	if (data->flags & MMC_DATA_READ) {
515 		dir = DMA_FROM_DEVICE;
516 		chan = host->dma_rx_channel;
517 	} else {
518 		dir = DMA_TO_DEVICE;
519 		chan = host->dma_tx_channel;
520 	}
521 
522 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
523 }
524 
525 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
526 {
527 	u32 status;
528 	int i;
529 
530 	/* Wait up to 1ms for the DMA to complete */
531 	for (i = 0; ; i++) {
532 		status = readl(host->base + MMCISTATUS);
533 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
534 			break;
535 		udelay(10);
536 	}
537 
538 	/*
539 	 * Check to see whether we still have some data left in the FIFO -
540 	 * this catches DMA controllers which are unable to monitor the
541 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
542 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
543 	 */
544 	if (status & MCI_RXDATAAVLBLMASK) {
545 		mmci_dma_data_error(host);
546 		if (!data->error)
547 			data->error = -EIO;
548 	}
549 
550 	if (!data->host_cookie)
551 		mmci_dma_unmap(host, data);
552 
553 	/*
554 	 * Use of DMA with scatter-gather is impossible.
555 	 * Give up with DMA and switch back to PIO mode.
556 	 */
557 	if (status & MCI_RXDATAAVLBLMASK) {
558 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
559 		mmci_dma_release(host);
560 	}
561 
562 	host->dma_current = NULL;
563 	host->dma_desc_current = NULL;
564 }
565 
566 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
567 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
568 				struct dma_chan **dma_chan,
569 				struct dma_async_tx_descriptor **dma_desc)
570 {
571 	struct variant_data *variant = host->variant;
572 	struct dma_slave_config conf = {
573 		.src_addr = host->phybase + MMCIFIFO,
574 		.dst_addr = host->phybase + MMCIFIFO,
575 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
576 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
577 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
578 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
579 		.device_fc = false,
580 	};
581 	struct dma_chan *chan;
582 	struct dma_device *device;
583 	struct dma_async_tx_descriptor *desc;
584 	enum dma_data_direction buffer_dirn;
585 	int nr_sg;
586 	unsigned long flags = DMA_CTRL_ACK;
587 
588 	if (data->flags & MMC_DATA_READ) {
589 		conf.direction = DMA_DEV_TO_MEM;
590 		buffer_dirn = DMA_FROM_DEVICE;
591 		chan = host->dma_rx_channel;
592 	} else {
593 		conf.direction = DMA_MEM_TO_DEV;
594 		buffer_dirn = DMA_TO_DEVICE;
595 		chan = host->dma_tx_channel;
596 	}
597 
598 	/* If there's no DMA channel, fall back to PIO */
599 	if (!chan)
600 		return -EINVAL;
601 
602 	/* If less than or equal to the fifo size, don't bother with DMA */
603 	if (data->blksz * data->blocks <= variant->fifosize)
604 		return -EINVAL;
605 
606 	device = chan->device;
607 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
608 	if (nr_sg == 0)
609 		return -EINVAL;
610 
611 	if (host->variant->qcom_dml)
612 		flags |= DMA_PREP_INTERRUPT;
613 
614 	dmaengine_slave_config(chan, &conf);
615 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
616 					    conf.direction, flags);
617 	if (!desc)
618 		goto unmap_exit;
619 
620 	*dma_chan = chan;
621 	*dma_desc = desc;
622 
623 	return 0;
624 
625  unmap_exit:
626 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
627 	return -ENOMEM;
628 }
629 
630 static inline int mmci_dma_prep_data(struct mmci_host *host,
631 				     struct mmc_data *data)
632 {
633 	/* Check if next job is already prepared. */
634 	if (host->dma_current && host->dma_desc_current)
635 		return 0;
636 
637 	/* No job were prepared thus do it now. */
638 	return __mmci_dma_prep_data(host, data, &host->dma_current,
639 				    &host->dma_desc_current);
640 }
641 
642 static inline int mmci_dma_prep_next(struct mmci_host *host,
643 				     struct mmc_data *data)
644 {
645 	struct mmci_host_next *nd = &host->next_data;
646 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
647 }
648 
649 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
650 {
651 	int ret;
652 	struct mmc_data *data = host->data;
653 
654 	ret = mmci_dma_prep_data(host, host->data);
655 	if (ret)
656 		return ret;
657 
658 	/* Okay, go for it. */
659 	dev_vdbg(mmc_dev(host->mmc),
660 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
661 		 data->sg_len, data->blksz, data->blocks, data->flags);
662 	dmaengine_submit(host->dma_desc_current);
663 	dma_async_issue_pending(host->dma_current);
664 
665 	if (host->variant->qcom_dml)
666 		dml_start_xfer(host, data);
667 
668 	datactrl |= MCI_DPSM_DMAENABLE;
669 
670 	/* Trigger the DMA transfer */
671 	mmci_write_datactrlreg(host, datactrl);
672 
673 	/*
674 	 * Let the MMCI say when the data is ended and it's time
675 	 * to fire next DMA request. When that happens, MMCI will
676 	 * call mmci_data_end()
677 	 */
678 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
679 	       host->base + MMCIMASK0);
680 	return 0;
681 }
682 
683 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
684 {
685 	struct mmci_host_next *next = &host->next_data;
686 
687 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
688 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
689 
690 	host->dma_desc_current = next->dma_desc;
691 	host->dma_current = next->dma_chan;
692 	next->dma_desc = NULL;
693 	next->dma_chan = NULL;
694 }
695 
696 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
697 			     bool is_first_req)
698 {
699 	struct mmci_host *host = mmc_priv(mmc);
700 	struct mmc_data *data = mrq->data;
701 	struct mmci_host_next *nd = &host->next_data;
702 
703 	if (!data)
704 		return;
705 
706 	BUG_ON(data->host_cookie);
707 
708 	if (mmci_validate_data(host, data))
709 		return;
710 
711 	if (!mmci_dma_prep_next(host, data))
712 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
713 }
714 
715 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
716 			      int err)
717 {
718 	struct mmci_host *host = mmc_priv(mmc);
719 	struct mmc_data *data = mrq->data;
720 
721 	if (!data || !data->host_cookie)
722 		return;
723 
724 	mmci_dma_unmap(host, data);
725 
726 	if (err) {
727 		struct mmci_host_next *next = &host->next_data;
728 		struct dma_chan *chan;
729 		if (data->flags & MMC_DATA_READ)
730 			chan = host->dma_rx_channel;
731 		else
732 			chan = host->dma_tx_channel;
733 		dmaengine_terminate_all(chan);
734 
735 		if (host->dma_desc_current == next->dma_desc)
736 			host->dma_desc_current = NULL;
737 
738 		if (host->dma_current == next->dma_chan)
739 			host->dma_current = NULL;
740 
741 		next->dma_desc = NULL;
742 		next->dma_chan = NULL;
743 		data->host_cookie = 0;
744 	}
745 }
746 
747 #else
748 /* Blank functions if the DMA engine is not available */
749 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
750 {
751 }
752 static inline void mmci_dma_setup(struct mmci_host *host)
753 {
754 }
755 
756 static inline void mmci_dma_release(struct mmci_host *host)
757 {
758 }
759 
760 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
761 {
762 }
763 
764 static inline void mmci_dma_finalize(struct mmci_host *host,
765 				     struct mmc_data *data)
766 {
767 }
768 
769 static inline void mmci_dma_data_error(struct mmci_host *host)
770 {
771 }
772 
773 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
774 {
775 	return -ENOSYS;
776 }
777 
778 #define mmci_pre_request NULL
779 #define mmci_post_request NULL
780 
781 #endif
782 
783 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
784 {
785 	struct variant_data *variant = host->variant;
786 	unsigned int datactrl, timeout, irqmask;
787 	unsigned long long clks;
788 	void __iomem *base;
789 	int blksz_bits;
790 
791 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
792 		data->blksz, data->blocks, data->flags);
793 
794 	host->data = data;
795 	host->size = data->blksz * data->blocks;
796 	data->bytes_xfered = 0;
797 
798 	clks = (unsigned long long)data->timeout_ns * host->cclk;
799 	do_div(clks, NSEC_PER_SEC);
800 
801 	timeout = data->timeout_clks + (unsigned int)clks;
802 
803 	base = host->base;
804 	writel(timeout, base + MMCIDATATIMER);
805 	writel(host->size, base + MMCIDATALENGTH);
806 
807 	blksz_bits = ffs(data->blksz) - 1;
808 	BUG_ON(1 << blksz_bits != data->blksz);
809 
810 	if (variant->blksz_datactrl16)
811 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
812 	else if (variant->blksz_datactrl4)
813 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
814 	else
815 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
816 
817 	if (data->flags & MMC_DATA_READ)
818 		datactrl |= MCI_DPSM_DIRECTION;
819 
820 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
821 		u32 clk;
822 
823 		datactrl |= variant->datactrl_mask_sdio;
824 
825 		/*
826 		 * The ST Micro variant for SDIO small write transfers
827 		 * needs to have clock H/W flow control disabled,
828 		 * otherwise the transfer will not start. The threshold
829 		 * depends on the rate of MCLK.
830 		 */
831 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
832 		    (host->size < 8 ||
833 		     (host->size <= 8 && host->mclk > 50000000)))
834 			clk = host->clk_reg & ~variant->clkreg_enable;
835 		else
836 			clk = host->clk_reg | variant->clkreg_enable;
837 
838 		mmci_write_clkreg(host, clk);
839 	}
840 
841 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
842 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
843 		datactrl |= variant->datactrl_mask_ddrmode;
844 
845 	/*
846 	 * Attempt to use DMA operation mode, if this
847 	 * should fail, fall back to PIO mode
848 	 */
849 	if (!mmci_dma_start_data(host, datactrl))
850 		return;
851 
852 	/* IRQ mode, map the SG list for CPU reading/writing */
853 	mmci_init_sg(host, data);
854 
855 	if (data->flags & MMC_DATA_READ) {
856 		irqmask = MCI_RXFIFOHALFFULLMASK;
857 
858 		/*
859 		 * If we have less than the fifo 'half-full' threshold to
860 		 * transfer, trigger a PIO interrupt as soon as any data
861 		 * is available.
862 		 */
863 		if (host->size < variant->fifohalfsize)
864 			irqmask |= MCI_RXDATAAVLBLMASK;
865 	} else {
866 		/*
867 		 * We don't actually need to include "FIFO empty" here
868 		 * since its implicit in "FIFO half empty".
869 		 */
870 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
871 	}
872 
873 	mmci_write_datactrlreg(host, datactrl);
874 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
875 	mmci_set_mask1(host, irqmask);
876 }
877 
878 static void
879 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
880 {
881 	void __iomem *base = host->base;
882 
883 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
884 	    cmd->opcode, cmd->arg, cmd->flags);
885 
886 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
887 		writel(0, base + MMCICOMMAND);
888 		mmci_reg_delay(host);
889 	}
890 
891 	c |= cmd->opcode | MCI_CPSM_ENABLE;
892 	if (cmd->flags & MMC_RSP_PRESENT) {
893 		if (cmd->flags & MMC_RSP_136)
894 			c |= MCI_CPSM_LONGRSP;
895 		c |= MCI_CPSM_RESPONSE;
896 	}
897 	if (/*interrupt*/0)
898 		c |= MCI_CPSM_INTERRUPT;
899 
900 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
901 		c |= host->variant->data_cmd_enable;
902 
903 	host->cmd = cmd;
904 
905 	writel(cmd->arg, base + MMCIARGUMENT);
906 	writel(c, base + MMCICOMMAND);
907 }
908 
909 static void
910 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
911 	      unsigned int status)
912 {
913 	/* Make sure we have data to handle */
914 	if (!data)
915 		return;
916 
917 	/* First check for errors */
918 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
919 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
920 		u32 remain, success;
921 
922 		/* Terminate the DMA transfer */
923 		if (dma_inprogress(host)) {
924 			mmci_dma_data_error(host);
925 			mmci_dma_unmap(host, data);
926 		}
927 
928 		/*
929 		 * Calculate how far we are into the transfer.  Note that
930 		 * the data counter gives the number of bytes transferred
931 		 * on the MMC bus, not on the host side.  On reads, this
932 		 * can be as much as a FIFO-worth of data ahead.  This
933 		 * matters for FIFO overruns only.
934 		 */
935 		remain = readl(host->base + MMCIDATACNT);
936 		success = data->blksz * data->blocks - remain;
937 
938 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
939 			status, success);
940 		if (status & MCI_DATACRCFAIL) {
941 			/* Last block was not successful */
942 			success -= 1;
943 			data->error = -EILSEQ;
944 		} else if (status & MCI_DATATIMEOUT) {
945 			data->error = -ETIMEDOUT;
946 		} else if (status & MCI_STARTBITERR) {
947 			data->error = -ECOMM;
948 		} else if (status & MCI_TXUNDERRUN) {
949 			data->error = -EIO;
950 		} else if (status & MCI_RXOVERRUN) {
951 			if (success > host->variant->fifosize)
952 				success -= host->variant->fifosize;
953 			else
954 				success = 0;
955 			data->error = -EIO;
956 		}
957 		data->bytes_xfered = round_down(success, data->blksz);
958 	}
959 
960 	if (status & MCI_DATABLOCKEND)
961 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
962 
963 	if (status & MCI_DATAEND || data->error) {
964 		if (dma_inprogress(host))
965 			mmci_dma_finalize(host, data);
966 		mmci_stop_data(host);
967 
968 		if (!data->error)
969 			/* The error clause is handled above, success! */
970 			data->bytes_xfered = data->blksz * data->blocks;
971 
972 		if (!data->stop || host->mrq->sbc) {
973 			mmci_request_end(host, data->mrq);
974 		} else {
975 			mmci_start_command(host, data->stop, 0);
976 		}
977 	}
978 }
979 
980 static void
981 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
982 	     unsigned int status)
983 {
984 	void __iomem *base = host->base;
985 	bool sbc, busy_resp;
986 
987 	if (!cmd)
988 		return;
989 
990 	sbc = (cmd == host->mrq->sbc);
991 	busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
992 
993 	if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
994 		MCI_CMDSENT|MCI_CMDRESPEND)))
995 		return;
996 
997 	/* Check if we need to wait for busy completion. */
998 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
999 		return;
1000 
1001 	/* Enable busy completion if needed and supported. */
1002 	if (!host->busy_status && busy_resp &&
1003 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1004 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1005 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1006 			base + MMCIMASK0);
1007 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1008 		return;
1009 	}
1010 
1011 	/* At busy completion, mask the IRQ and complete the request. */
1012 	if (host->busy_status) {
1013 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1014 			base + MMCIMASK0);
1015 		host->busy_status = 0;
1016 	}
1017 
1018 	host->cmd = NULL;
1019 
1020 	if (status & MCI_CMDTIMEOUT) {
1021 		cmd->error = -ETIMEDOUT;
1022 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1023 		cmd->error = -EILSEQ;
1024 	} else {
1025 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1026 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1027 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1028 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1029 	}
1030 
1031 	if ((!sbc && !cmd->data) || cmd->error) {
1032 		if (host->data) {
1033 			/* Terminate the DMA transfer */
1034 			if (dma_inprogress(host)) {
1035 				mmci_dma_data_error(host);
1036 				mmci_dma_unmap(host, host->data);
1037 			}
1038 			mmci_stop_data(host);
1039 		}
1040 		mmci_request_end(host, host->mrq);
1041 	} else if (sbc) {
1042 		mmci_start_command(host, host->mrq->cmd, 0);
1043 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1044 		mmci_start_data(host, cmd->data);
1045 	}
1046 }
1047 
1048 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1049 {
1050 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1051 }
1052 
1053 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1054 {
1055 	/*
1056 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1057 	 * from the fifo range should be used
1058 	 */
1059 	if (status & MCI_RXFIFOHALFFULL)
1060 		return host->variant->fifohalfsize;
1061 	else if (status & MCI_RXDATAAVLBL)
1062 		return 4;
1063 
1064 	return 0;
1065 }
1066 
1067 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1068 {
1069 	void __iomem *base = host->base;
1070 	char *ptr = buffer;
1071 	u32 status = readl(host->base + MMCISTATUS);
1072 	int host_remain = host->size;
1073 
1074 	do {
1075 		int count = host->get_rx_fifocnt(host, status, host_remain);
1076 
1077 		if (count > remain)
1078 			count = remain;
1079 
1080 		if (count <= 0)
1081 			break;
1082 
1083 		/*
1084 		 * SDIO especially may want to send something that is
1085 		 * not divisible by 4 (as opposed to card sectors
1086 		 * etc). Therefore make sure to always read the last bytes
1087 		 * while only doing full 32-bit reads towards the FIFO.
1088 		 */
1089 		if (unlikely(count & 0x3)) {
1090 			if (count < 4) {
1091 				unsigned char buf[4];
1092 				ioread32_rep(base + MMCIFIFO, buf, 1);
1093 				memcpy(ptr, buf, count);
1094 			} else {
1095 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1096 				count &= ~0x3;
1097 			}
1098 		} else {
1099 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1100 		}
1101 
1102 		ptr += count;
1103 		remain -= count;
1104 		host_remain -= count;
1105 
1106 		if (remain == 0)
1107 			break;
1108 
1109 		status = readl(base + MMCISTATUS);
1110 	} while (status & MCI_RXDATAAVLBL);
1111 
1112 	return ptr - buffer;
1113 }
1114 
1115 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1116 {
1117 	struct variant_data *variant = host->variant;
1118 	void __iomem *base = host->base;
1119 	char *ptr = buffer;
1120 
1121 	do {
1122 		unsigned int count, maxcnt;
1123 
1124 		maxcnt = status & MCI_TXFIFOEMPTY ?
1125 			 variant->fifosize : variant->fifohalfsize;
1126 		count = min(remain, maxcnt);
1127 
1128 		/*
1129 		 * SDIO especially may want to send something that is
1130 		 * not divisible by 4 (as opposed to card sectors
1131 		 * etc), and the FIFO only accept full 32-bit writes.
1132 		 * So compensate by adding +3 on the count, a single
1133 		 * byte become a 32bit write, 7 bytes will be two
1134 		 * 32bit writes etc.
1135 		 */
1136 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1137 
1138 		ptr += count;
1139 		remain -= count;
1140 
1141 		if (remain == 0)
1142 			break;
1143 
1144 		status = readl(base + MMCISTATUS);
1145 	} while (status & MCI_TXFIFOHALFEMPTY);
1146 
1147 	return ptr - buffer;
1148 }
1149 
1150 /*
1151  * PIO data transfer IRQ handler.
1152  */
1153 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1154 {
1155 	struct mmci_host *host = dev_id;
1156 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1157 	struct variant_data *variant = host->variant;
1158 	void __iomem *base = host->base;
1159 	unsigned long flags;
1160 	u32 status;
1161 
1162 	status = readl(base + MMCISTATUS);
1163 
1164 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1165 
1166 	local_irq_save(flags);
1167 
1168 	do {
1169 		unsigned int remain, len;
1170 		char *buffer;
1171 
1172 		/*
1173 		 * For write, we only need to test the half-empty flag
1174 		 * here - if the FIFO is completely empty, then by
1175 		 * definition it is more than half empty.
1176 		 *
1177 		 * For read, check for data available.
1178 		 */
1179 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1180 			break;
1181 
1182 		if (!sg_miter_next(sg_miter))
1183 			break;
1184 
1185 		buffer = sg_miter->addr;
1186 		remain = sg_miter->length;
1187 
1188 		len = 0;
1189 		if (status & MCI_RXACTIVE)
1190 			len = mmci_pio_read(host, buffer, remain);
1191 		if (status & MCI_TXACTIVE)
1192 			len = mmci_pio_write(host, buffer, remain, status);
1193 
1194 		sg_miter->consumed = len;
1195 
1196 		host->size -= len;
1197 		remain -= len;
1198 
1199 		if (remain)
1200 			break;
1201 
1202 		status = readl(base + MMCISTATUS);
1203 	} while (1);
1204 
1205 	sg_miter_stop(sg_miter);
1206 
1207 	local_irq_restore(flags);
1208 
1209 	/*
1210 	 * If we have less than the fifo 'half-full' threshold to transfer,
1211 	 * trigger a PIO interrupt as soon as any data is available.
1212 	 */
1213 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1214 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1215 
1216 	/*
1217 	 * If we run out of data, disable the data IRQs; this
1218 	 * prevents a race where the FIFO becomes empty before
1219 	 * the chip itself has disabled the data path, and
1220 	 * stops us racing with our data end IRQ.
1221 	 */
1222 	if (host->size == 0) {
1223 		mmci_set_mask1(host, 0);
1224 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1225 	}
1226 
1227 	return IRQ_HANDLED;
1228 }
1229 
1230 /*
1231  * Handle completion of command and data transfers.
1232  */
1233 static irqreturn_t mmci_irq(int irq, void *dev_id)
1234 {
1235 	struct mmci_host *host = dev_id;
1236 	u32 status;
1237 	int ret = 0;
1238 
1239 	spin_lock(&host->lock);
1240 
1241 	do {
1242 		status = readl(host->base + MMCISTATUS);
1243 
1244 		if (host->singleirq) {
1245 			if (status & readl(host->base + MMCIMASK1))
1246 				mmci_pio_irq(irq, dev_id);
1247 
1248 			status &= ~MCI_IRQ1MASK;
1249 		}
1250 
1251 		/*
1252 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1253 		 * enabled) since the HW seems to be triggering the IRQ on both
1254 		 * edges while monitoring DAT0 for busy completion.
1255 		 */
1256 		status &= readl(host->base + MMCIMASK0);
1257 		writel(status, host->base + MMCICLEAR);
1258 
1259 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1260 
1261 		if (host->variant->reversed_irq_handling) {
1262 			mmci_data_irq(host, host->data, status);
1263 			mmci_cmd_irq(host, host->cmd, status);
1264 		} else {
1265 			mmci_cmd_irq(host, host->cmd, status);
1266 			mmci_data_irq(host, host->data, status);
1267 		}
1268 
1269 		/* Don't poll for busy completion in irq context. */
1270 		if (host->busy_status)
1271 			status &= ~MCI_ST_CARDBUSY;
1272 
1273 		ret = 1;
1274 	} while (status);
1275 
1276 	spin_unlock(&host->lock);
1277 
1278 	return IRQ_RETVAL(ret);
1279 }
1280 
1281 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1282 {
1283 	struct mmci_host *host = mmc_priv(mmc);
1284 	unsigned long flags;
1285 
1286 	WARN_ON(host->mrq != NULL);
1287 
1288 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1289 	if (mrq->cmd->error) {
1290 		mmc_request_done(mmc, mrq);
1291 		return;
1292 	}
1293 
1294 	pm_runtime_get_sync(mmc_dev(mmc));
1295 
1296 	spin_lock_irqsave(&host->lock, flags);
1297 
1298 	host->mrq = mrq;
1299 
1300 	if (mrq->data)
1301 		mmci_get_next_data(host, mrq->data);
1302 
1303 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1304 		mmci_start_data(host, mrq->data);
1305 
1306 	if (mrq->sbc)
1307 		mmci_start_command(host, mrq->sbc, 0);
1308 	else
1309 		mmci_start_command(host, mrq->cmd, 0);
1310 
1311 	spin_unlock_irqrestore(&host->lock, flags);
1312 }
1313 
1314 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1315 {
1316 	struct mmci_host *host = mmc_priv(mmc);
1317 	struct variant_data *variant = host->variant;
1318 	u32 pwr = 0;
1319 	unsigned long flags;
1320 	int ret;
1321 
1322 	pm_runtime_get_sync(mmc_dev(mmc));
1323 
1324 	if (host->plat->ios_handler &&
1325 		host->plat->ios_handler(mmc_dev(mmc), ios))
1326 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1327 
1328 	switch (ios->power_mode) {
1329 	case MMC_POWER_OFF:
1330 		if (!IS_ERR(mmc->supply.vmmc))
1331 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1332 
1333 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1334 			regulator_disable(mmc->supply.vqmmc);
1335 			host->vqmmc_enabled = false;
1336 		}
1337 
1338 		break;
1339 	case MMC_POWER_UP:
1340 		if (!IS_ERR(mmc->supply.vmmc))
1341 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1342 
1343 		/*
1344 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1345 		 * and instead uses MCI_PWR_ON so apply whatever value is
1346 		 * configured in the variant data.
1347 		 */
1348 		pwr |= variant->pwrreg_powerup;
1349 
1350 		break;
1351 	case MMC_POWER_ON:
1352 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1353 			ret = regulator_enable(mmc->supply.vqmmc);
1354 			if (ret < 0)
1355 				dev_err(mmc_dev(mmc),
1356 					"failed to enable vqmmc regulator\n");
1357 			else
1358 				host->vqmmc_enabled = true;
1359 		}
1360 
1361 		pwr |= MCI_PWR_ON;
1362 		break;
1363 	}
1364 
1365 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1366 		/*
1367 		 * The ST Micro variant has some additional bits
1368 		 * indicating signal direction for the signals in
1369 		 * the SD/MMC bus and feedback-clock usage.
1370 		 */
1371 		pwr |= host->pwr_reg_add;
1372 
1373 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1374 			pwr &= ~MCI_ST_DATA74DIREN;
1375 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1376 			pwr &= (~MCI_ST_DATA74DIREN &
1377 				~MCI_ST_DATA31DIREN &
1378 				~MCI_ST_DATA2DIREN);
1379 	}
1380 
1381 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1382 		if (host->hw_designer != AMBA_VENDOR_ST)
1383 			pwr |= MCI_ROD;
1384 		else {
1385 			/*
1386 			 * The ST Micro variant use the ROD bit for something
1387 			 * else and only has OD (Open Drain).
1388 			 */
1389 			pwr |= MCI_OD;
1390 		}
1391 	}
1392 
1393 	/*
1394 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1395 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1396 	 */
1397 	if (!ios->clock && variant->pwrreg_clkgate)
1398 		pwr &= ~MCI_PWR_ON;
1399 
1400 	if (host->variant->explicit_mclk_control &&
1401 	    ios->clock != host->clock_cache) {
1402 		ret = clk_set_rate(host->clk, ios->clock);
1403 		if (ret < 0)
1404 			dev_err(mmc_dev(host->mmc),
1405 				"Error setting clock rate (%d)\n", ret);
1406 		else
1407 			host->mclk = clk_get_rate(host->clk);
1408 	}
1409 	host->clock_cache = ios->clock;
1410 
1411 	spin_lock_irqsave(&host->lock, flags);
1412 
1413 	mmci_set_clkreg(host, ios->clock);
1414 	mmci_write_pwrreg(host, pwr);
1415 	mmci_reg_delay(host);
1416 
1417 	spin_unlock_irqrestore(&host->lock, flags);
1418 
1419 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1420 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1421 }
1422 
1423 static int mmci_get_cd(struct mmc_host *mmc)
1424 {
1425 	struct mmci_host *host = mmc_priv(mmc);
1426 	struct mmci_platform_data *plat = host->plat;
1427 	unsigned int status = mmc_gpio_get_cd(mmc);
1428 
1429 	if (status == -ENOSYS) {
1430 		if (!plat->status)
1431 			return 1; /* Assume always present */
1432 
1433 		status = plat->status(mmc_dev(host->mmc));
1434 	}
1435 	return status;
1436 }
1437 
1438 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1439 {
1440 	int ret = 0;
1441 
1442 	if (!IS_ERR(mmc->supply.vqmmc)) {
1443 
1444 		pm_runtime_get_sync(mmc_dev(mmc));
1445 
1446 		switch (ios->signal_voltage) {
1447 		case MMC_SIGNAL_VOLTAGE_330:
1448 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1449 						2700000, 3600000);
1450 			break;
1451 		case MMC_SIGNAL_VOLTAGE_180:
1452 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1453 						1700000, 1950000);
1454 			break;
1455 		case MMC_SIGNAL_VOLTAGE_120:
1456 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1457 						1100000, 1300000);
1458 			break;
1459 		}
1460 
1461 		if (ret)
1462 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1463 
1464 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1465 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1466 	}
1467 
1468 	return ret;
1469 }
1470 
1471 static struct mmc_host_ops mmci_ops = {
1472 	.request	= mmci_request,
1473 	.pre_req	= mmci_pre_request,
1474 	.post_req	= mmci_post_request,
1475 	.set_ios	= mmci_set_ios,
1476 	.get_ro		= mmc_gpio_get_ro,
1477 	.get_cd		= mmci_get_cd,
1478 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1479 };
1480 
1481 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1482 {
1483 	struct mmci_host *host = mmc_priv(mmc);
1484 	int ret = mmc_of_parse(mmc);
1485 
1486 	if (ret)
1487 		return ret;
1488 
1489 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1490 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1491 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1492 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1493 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1494 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1495 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1496 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1497 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1498 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1499 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1500 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1501 
1502 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1503 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1504 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1505 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1506 
1507 	return 0;
1508 }
1509 
1510 static int mmci_probe(struct amba_device *dev,
1511 	const struct amba_id *id)
1512 {
1513 	struct mmci_platform_data *plat = dev->dev.platform_data;
1514 	struct device_node *np = dev->dev.of_node;
1515 	struct variant_data *variant = id->data;
1516 	struct mmci_host *host;
1517 	struct mmc_host *mmc;
1518 	int ret;
1519 
1520 	/* Must have platform data or Device Tree. */
1521 	if (!plat && !np) {
1522 		dev_err(&dev->dev, "No plat data or DT found\n");
1523 		return -EINVAL;
1524 	}
1525 
1526 	if (!plat) {
1527 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1528 		if (!plat)
1529 			return -ENOMEM;
1530 	}
1531 
1532 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1533 	if (!mmc)
1534 		return -ENOMEM;
1535 
1536 	ret = mmci_of_parse(np, mmc);
1537 	if (ret)
1538 		goto host_free;
1539 
1540 	host = mmc_priv(mmc);
1541 	host->mmc = mmc;
1542 
1543 	host->hw_designer = amba_manf(dev);
1544 	host->hw_revision = amba_rev(dev);
1545 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1546 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1547 
1548 	host->clk = devm_clk_get(&dev->dev, NULL);
1549 	if (IS_ERR(host->clk)) {
1550 		ret = PTR_ERR(host->clk);
1551 		goto host_free;
1552 	}
1553 
1554 	ret = clk_prepare_enable(host->clk);
1555 	if (ret)
1556 		goto host_free;
1557 
1558 	if (variant->qcom_fifo)
1559 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1560 	else
1561 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1562 
1563 	host->plat = plat;
1564 	host->variant = variant;
1565 	host->mclk = clk_get_rate(host->clk);
1566 	/*
1567 	 * According to the spec, mclk is max 100 MHz,
1568 	 * so we try to adjust the clock down to this,
1569 	 * (if possible).
1570 	 */
1571 	if (host->mclk > variant->f_max) {
1572 		ret = clk_set_rate(host->clk, variant->f_max);
1573 		if (ret < 0)
1574 			goto clk_disable;
1575 		host->mclk = clk_get_rate(host->clk);
1576 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1577 			host->mclk);
1578 	}
1579 
1580 	host->phybase = dev->res.start;
1581 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1582 	if (IS_ERR(host->base)) {
1583 		ret = PTR_ERR(host->base);
1584 		goto clk_disable;
1585 	}
1586 
1587 	/*
1588 	 * The ARM and ST versions of the block have slightly different
1589 	 * clock divider equations which means that the minimum divider
1590 	 * differs too.
1591 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1592 	 */
1593 	if (variant->st_clkdiv)
1594 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1595 	else if (variant->explicit_mclk_control)
1596 		mmc->f_min = clk_round_rate(host->clk, 100000);
1597 	else
1598 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1599 	/*
1600 	 * If no maximum operating frequency is supplied, fall back to use
1601 	 * the module parameter, which has a (low) default value in case it
1602 	 * is not specified. Either value must not exceed the clock rate into
1603 	 * the block, of course.
1604 	 */
1605 	if (mmc->f_max)
1606 		mmc->f_max = variant->explicit_mclk_control ?
1607 				min(variant->f_max, mmc->f_max) :
1608 				min(host->mclk, mmc->f_max);
1609 	else
1610 		mmc->f_max = variant->explicit_mclk_control ?
1611 				fmax : min(host->mclk, fmax);
1612 
1613 
1614 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1615 
1616 	/* Get regulators and the supported OCR mask */
1617 	ret = mmc_regulator_get_supply(mmc);
1618 	if (ret == -EPROBE_DEFER)
1619 		goto clk_disable;
1620 
1621 	if (!mmc->ocr_avail)
1622 		mmc->ocr_avail = plat->ocr_mask;
1623 	else if (plat->ocr_mask)
1624 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1625 
1626 	/* DT takes precedence over platform data. */
1627 	if (!np) {
1628 		if (!plat->cd_invert)
1629 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1630 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1631 	}
1632 
1633 	/* We support these capabilities. */
1634 	mmc->caps |= MMC_CAP_CMD23;
1635 
1636 	if (variant->busy_detect) {
1637 		mmci_ops.card_busy = mmci_card_busy;
1638 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1639 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1640 		mmc->max_busy_timeout = 0;
1641 	}
1642 
1643 	mmc->ops = &mmci_ops;
1644 
1645 	/* We support these PM capabilities. */
1646 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1647 
1648 	/*
1649 	 * We can do SGIO
1650 	 */
1651 	mmc->max_segs = NR_SG;
1652 
1653 	/*
1654 	 * Since only a certain number of bits are valid in the data length
1655 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1656 	 * single request.
1657 	 */
1658 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1659 
1660 	/*
1661 	 * Set the maximum segment size.  Since we aren't doing DMA
1662 	 * (yet) we are only limited by the data length register.
1663 	 */
1664 	mmc->max_seg_size = mmc->max_req_size;
1665 
1666 	/*
1667 	 * Block size can be up to 2048 bytes, but must be a power of two.
1668 	 */
1669 	mmc->max_blk_size = 1 << 11;
1670 
1671 	/*
1672 	 * Limit the number of blocks transferred so that we don't overflow
1673 	 * the maximum request size.
1674 	 */
1675 	mmc->max_blk_count = mmc->max_req_size >> 11;
1676 
1677 	spin_lock_init(&host->lock);
1678 
1679 	writel(0, host->base + MMCIMASK0);
1680 	writel(0, host->base + MMCIMASK1);
1681 	writel(0xfff, host->base + MMCICLEAR);
1682 
1683 	/*
1684 	 * If:
1685 	 * - not using DT but using a descriptor table, or
1686 	 * - using a table of descriptors ALONGSIDE DT, or
1687 	 * look up these descriptors named "cd" and "wp" right here, fail
1688 	 * silently of these do not exist and proceed to try platform data
1689 	 */
1690 	if (!np) {
1691 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1692 		if (ret < 0) {
1693 			if (ret == -EPROBE_DEFER)
1694 				goto clk_disable;
1695 			else if (gpio_is_valid(plat->gpio_cd)) {
1696 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1697 				if (ret)
1698 					goto clk_disable;
1699 			}
1700 		}
1701 
1702 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1703 		if (ret < 0) {
1704 			if (ret == -EPROBE_DEFER)
1705 				goto clk_disable;
1706 			else if (gpio_is_valid(plat->gpio_wp)) {
1707 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1708 				if (ret)
1709 					goto clk_disable;
1710 			}
1711 		}
1712 	}
1713 
1714 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1715 			DRIVER_NAME " (cmd)", host);
1716 	if (ret)
1717 		goto clk_disable;
1718 
1719 	if (!dev->irq[1])
1720 		host->singleirq = true;
1721 	else {
1722 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1723 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1724 		if (ret)
1725 			goto clk_disable;
1726 	}
1727 
1728 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1729 
1730 	amba_set_drvdata(dev, mmc);
1731 
1732 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1733 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1734 		 amba_rev(dev), (unsigned long long)dev->res.start,
1735 		 dev->irq[0], dev->irq[1]);
1736 
1737 	mmci_dma_setup(host);
1738 
1739 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1740 	pm_runtime_use_autosuspend(&dev->dev);
1741 
1742 	mmc_add_host(mmc);
1743 
1744 	pm_runtime_put(&dev->dev);
1745 	return 0;
1746 
1747  clk_disable:
1748 	clk_disable_unprepare(host->clk);
1749  host_free:
1750 	mmc_free_host(mmc);
1751 	return ret;
1752 }
1753 
1754 static int mmci_remove(struct amba_device *dev)
1755 {
1756 	struct mmc_host *mmc = amba_get_drvdata(dev);
1757 
1758 	if (mmc) {
1759 		struct mmci_host *host = mmc_priv(mmc);
1760 
1761 		/*
1762 		 * Undo pm_runtime_put() in probe.  We use the _sync
1763 		 * version here so that we can access the primecell.
1764 		 */
1765 		pm_runtime_get_sync(&dev->dev);
1766 
1767 		mmc_remove_host(mmc);
1768 
1769 		writel(0, host->base + MMCIMASK0);
1770 		writel(0, host->base + MMCIMASK1);
1771 
1772 		writel(0, host->base + MMCICOMMAND);
1773 		writel(0, host->base + MMCIDATACTRL);
1774 
1775 		mmci_dma_release(host);
1776 		clk_disable_unprepare(host->clk);
1777 		mmc_free_host(mmc);
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 #ifdef CONFIG_PM
1784 static void mmci_save(struct mmci_host *host)
1785 {
1786 	unsigned long flags;
1787 
1788 	spin_lock_irqsave(&host->lock, flags);
1789 
1790 	writel(0, host->base + MMCIMASK0);
1791 	if (host->variant->pwrreg_nopower) {
1792 		writel(0, host->base + MMCIDATACTRL);
1793 		writel(0, host->base + MMCIPOWER);
1794 		writel(0, host->base + MMCICLOCK);
1795 	}
1796 	mmci_reg_delay(host);
1797 
1798 	spin_unlock_irqrestore(&host->lock, flags);
1799 }
1800 
1801 static void mmci_restore(struct mmci_host *host)
1802 {
1803 	unsigned long flags;
1804 
1805 	spin_lock_irqsave(&host->lock, flags);
1806 
1807 	if (host->variant->pwrreg_nopower) {
1808 		writel(host->clk_reg, host->base + MMCICLOCK);
1809 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1810 		writel(host->pwr_reg, host->base + MMCIPOWER);
1811 	}
1812 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1813 	mmci_reg_delay(host);
1814 
1815 	spin_unlock_irqrestore(&host->lock, flags);
1816 }
1817 
1818 static int mmci_runtime_suspend(struct device *dev)
1819 {
1820 	struct amba_device *adev = to_amba_device(dev);
1821 	struct mmc_host *mmc = amba_get_drvdata(adev);
1822 
1823 	if (mmc) {
1824 		struct mmci_host *host = mmc_priv(mmc);
1825 		pinctrl_pm_select_sleep_state(dev);
1826 		mmci_save(host);
1827 		clk_disable_unprepare(host->clk);
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static int mmci_runtime_resume(struct device *dev)
1834 {
1835 	struct amba_device *adev = to_amba_device(dev);
1836 	struct mmc_host *mmc = amba_get_drvdata(adev);
1837 
1838 	if (mmc) {
1839 		struct mmci_host *host = mmc_priv(mmc);
1840 		clk_prepare_enable(host->clk);
1841 		mmci_restore(host);
1842 		pinctrl_pm_select_default_state(dev);
1843 	}
1844 
1845 	return 0;
1846 }
1847 #endif
1848 
1849 static const struct dev_pm_ops mmci_dev_pm_ops = {
1850 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1851 				pm_runtime_force_resume)
1852 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1853 };
1854 
1855 static struct amba_id mmci_ids[] = {
1856 	{
1857 		.id	= 0x00041180,
1858 		.mask	= 0xff0fffff,
1859 		.data	= &variant_arm,
1860 	},
1861 	{
1862 		.id	= 0x01041180,
1863 		.mask	= 0xff0fffff,
1864 		.data	= &variant_arm_extended_fifo,
1865 	},
1866 	{
1867 		.id	= 0x02041180,
1868 		.mask	= 0xff0fffff,
1869 		.data	= &variant_arm_extended_fifo_hwfc,
1870 	},
1871 	{
1872 		.id	= 0x00041181,
1873 		.mask	= 0x000fffff,
1874 		.data	= &variant_arm,
1875 	},
1876 	/* ST Micro variants */
1877 	{
1878 		.id     = 0x00180180,
1879 		.mask   = 0x00ffffff,
1880 		.data	= &variant_u300,
1881 	},
1882 	{
1883 		.id     = 0x10180180,
1884 		.mask   = 0xf0ffffff,
1885 		.data	= &variant_nomadik,
1886 	},
1887 	{
1888 		.id     = 0x00280180,
1889 		.mask   = 0x00ffffff,
1890 		.data	= &variant_nomadik,
1891 	},
1892 	{
1893 		.id     = 0x00480180,
1894 		.mask   = 0xf0ffffff,
1895 		.data	= &variant_ux500,
1896 	},
1897 	{
1898 		.id     = 0x10480180,
1899 		.mask   = 0xf0ffffff,
1900 		.data	= &variant_ux500v2,
1901 	},
1902 	/* Qualcomm variants */
1903 	{
1904 		.id     = 0x00051180,
1905 		.mask	= 0x000fffff,
1906 		.data	= &variant_qcom,
1907 	},
1908 	{ 0, 0 },
1909 };
1910 
1911 MODULE_DEVICE_TABLE(amba, mmci_ids);
1912 
1913 static struct amba_driver mmci_driver = {
1914 	.drv		= {
1915 		.name	= DRIVER_NAME,
1916 		.pm	= &mmci_dev_pm_ops,
1917 	},
1918 	.probe		= mmci_probe,
1919 	.remove		= mmci_remove,
1920 	.id_table	= mmci_ids,
1921 };
1922 
1923 module_amba_driver(mmci_driver);
1924 
1925 module_param(fmax, uint, 0444);
1926 
1927 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1928 MODULE_LICENSE("GPL");
1929