xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision a34a9f1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/workqueue.h>
41 
42 #include <asm/div64.h>
43 #include <asm/io.h>
44 
45 #include "mmci.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500_variant_init(struct mmci_host *host);
51 static void ux500v2_variant_init(struct mmci_host *host);
52 
53 static unsigned int fmax = 515633;
54 
55 static struct variant_data variant_arm = {
56 	.fifosize		= 16 * 4,
57 	.fifohalfsize		= 8 * 4,
58 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
59 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
61 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
62 	.datalength_bits	= 16,
63 	.datactrl_blocksz	= 11,
64 	.pwrreg_powerup		= MCI_PWR_UP,
65 	.f_max			= 100000000,
66 	.reversed_irq_handling	= true,
67 	.mmcimask1		= true,
68 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
69 	.start_err		= MCI_STARTBITERR,
70 	.opendrain		= MCI_ROD,
71 	.init			= mmci_variant_init,
72 };
73 
74 static struct variant_data variant_arm_extended_fifo = {
75 	.fifosize		= 128 * 4,
76 	.fifohalfsize		= 64 * 4,
77 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
78 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
80 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
81 	.datalength_bits	= 16,
82 	.datactrl_blocksz	= 11,
83 	.pwrreg_powerup		= MCI_PWR_UP,
84 	.f_max			= 100000000,
85 	.mmcimask1		= true,
86 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
87 	.start_err		= MCI_STARTBITERR,
88 	.opendrain		= MCI_ROD,
89 	.init			= mmci_variant_init,
90 };
91 
92 static struct variant_data variant_arm_extended_fifo_hwfc = {
93 	.fifosize		= 128 * 4,
94 	.fifohalfsize		= 64 * 4,
95 	.clkreg_enable		= MCI_ARM_HWFCEN,
96 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
97 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
99 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
100 	.datalength_bits	= 16,
101 	.datactrl_blocksz	= 11,
102 	.pwrreg_powerup		= MCI_PWR_UP,
103 	.f_max			= 100000000,
104 	.mmcimask1		= true,
105 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
106 	.start_err		= MCI_STARTBITERR,
107 	.opendrain		= MCI_ROD,
108 	.init			= mmci_variant_init,
109 };
110 
111 static struct variant_data variant_u300 = {
112 	.fifosize		= 16 * 4,
113 	.fifohalfsize		= 8 * 4,
114 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
115 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
117 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
119 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
120 	.datalength_bits	= 16,
121 	.datactrl_blocksz	= 11,
122 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
123 	.st_sdio			= true,
124 	.pwrreg_powerup		= MCI_PWR_ON,
125 	.f_max			= 100000000,
126 	.signal_direction	= true,
127 	.pwrreg_clkgate		= true,
128 	.pwrreg_nopower		= true,
129 	.mmcimask1		= true,
130 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
131 	.start_err		= MCI_STARTBITERR,
132 	.opendrain		= MCI_OD,
133 	.init			= mmci_variant_init,
134 };
135 
136 static struct variant_data variant_nomadik = {
137 	.fifosize		= 16 * 4,
138 	.fifohalfsize		= 8 * 4,
139 	.clkreg			= MCI_CLK_ENABLE,
140 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
142 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
144 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
145 	.datalength_bits	= 24,
146 	.datactrl_blocksz	= 11,
147 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
148 	.st_sdio		= true,
149 	.st_clkdiv		= true,
150 	.pwrreg_powerup		= MCI_PWR_ON,
151 	.f_max			= 100000000,
152 	.signal_direction	= true,
153 	.pwrreg_clkgate		= true,
154 	.pwrreg_nopower		= true,
155 	.mmcimask1		= true,
156 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
157 	.start_err		= MCI_STARTBITERR,
158 	.opendrain		= MCI_OD,
159 	.init			= mmci_variant_init,
160 };
161 
162 static struct variant_data variant_ux500 = {
163 	.fifosize		= 30 * 4,
164 	.fifohalfsize		= 8 * 4,
165 	.clkreg			= MCI_CLK_ENABLE,
166 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
167 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
169 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
170 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
172 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
173 	.datalength_bits	= 24,
174 	.datactrl_blocksz	= 11,
175 	.datactrl_any_blocksz	= true,
176 	.dma_power_of_2		= true,
177 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
178 	.st_sdio		= true,
179 	.st_clkdiv		= true,
180 	.pwrreg_powerup		= MCI_PWR_ON,
181 	.f_max			= 100000000,
182 	.signal_direction	= true,
183 	.pwrreg_clkgate		= true,
184 	.busy_detect		= true,
185 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
186 	.busy_detect_flag	= MCI_ST_CARDBUSY,
187 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
188 	.pwrreg_nopower		= true,
189 	.mmcimask1		= true,
190 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
191 	.start_err		= MCI_STARTBITERR,
192 	.opendrain		= MCI_OD,
193 	.init			= ux500_variant_init,
194 };
195 
196 static struct variant_data variant_ux500v2 = {
197 	.fifosize		= 30 * 4,
198 	.fifohalfsize		= 8 * 4,
199 	.clkreg			= MCI_CLK_ENABLE,
200 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
201 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
203 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
204 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
206 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
207 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
208 	.datalength_bits	= 24,
209 	.datactrl_blocksz	= 11,
210 	.datactrl_any_blocksz	= true,
211 	.dma_power_of_2		= true,
212 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
213 	.st_sdio		= true,
214 	.st_clkdiv		= true,
215 	.pwrreg_powerup		= MCI_PWR_ON,
216 	.f_max			= 100000000,
217 	.signal_direction	= true,
218 	.pwrreg_clkgate		= true,
219 	.busy_detect		= true,
220 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
221 	.busy_detect_flag	= MCI_ST_CARDBUSY,
222 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
223 	.pwrreg_nopower		= true,
224 	.mmcimask1		= true,
225 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
226 	.start_err		= MCI_STARTBITERR,
227 	.opendrain		= MCI_OD,
228 	.init			= ux500v2_variant_init,
229 };
230 
231 static struct variant_data variant_stm32 = {
232 	.fifosize		= 32 * 4,
233 	.fifohalfsize		= 8 * 4,
234 	.clkreg			= MCI_CLK_ENABLE,
235 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
236 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
238 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
239 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
241 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
242 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
243 	.datalength_bits	= 24,
244 	.datactrl_blocksz	= 11,
245 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
246 	.st_sdio		= true,
247 	.st_clkdiv		= true,
248 	.pwrreg_powerup		= MCI_PWR_ON,
249 	.f_max			= 48000000,
250 	.pwrreg_clkgate		= true,
251 	.pwrreg_nopower		= true,
252 	.init			= mmci_variant_init,
253 };
254 
255 static struct variant_data variant_stm32_sdmmc = {
256 	.fifosize		= 16 * 4,
257 	.fifohalfsize		= 8 * 4,
258 	.f_max			= 208000000,
259 	.stm32_clkdiv		= true,
260 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
261 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
262 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
263 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
264 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
265 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
266 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
267 	.datactrl_first		= true,
268 	.datacnt_useless	= true,
269 	.datalength_bits	= 25,
270 	.datactrl_blocksz	= 14,
271 	.datactrl_any_blocksz	= true,
272 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
273 	.stm32_idmabsize_mask	= GENMASK(12, 5),
274 	.stm32_idmabsize_align	= BIT(5),
275 	.busy_timeout		= true,
276 	.busy_detect		= true,
277 	.busy_detect_flag	= MCI_STM32_BUSYD0,
278 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
279 	.init			= sdmmc_variant_init,
280 };
281 
282 static struct variant_data variant_stm32_sdmmcv2 = {
283 	.fifosize		= 16 * 4,
284 	.fifohalfsize		= 8 * 4,
285 	.f_max			= 267000000,
286 	.stm32_clkdiv		= true,
287 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
288 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
289 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
290 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
291 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
292 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
293 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
294 	.datactrl_first		= true,
295 	.datacnt_useless	= true,
296 	.datalength_bits	= 25,
297 	.datactrl_blocksz	= 14,
298 	.datactrl_any_blocksz	= true,
299 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
300 	.stm32_idmabsize_mask	= GENMASK(16, 5),
301 	.stm32_idmabsize_align	= BIT(5),
302 	.dma_lli		= true,
303 	.busy_timeout		= true,
304 	.busy_detect		= true,
305 	.busy_detect_flag	= MCI_STM32_BUSYD0,
306 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
307 	.init			= sdmmc_variant_init,
308 };
309 
310 static struct variant_data variant_stm32_sdmmcv3 = {
311 	.fifosize		= 256 * 4,
312 	.fifohalfsize		= 128 * 4,
313 	.f_max			= 267000000,
314 	.stm32_clkdiv		= true,
315 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
316 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
317 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
318 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
319 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
320 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
321 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
322 	.datactrl_first		= true,
323 	.datacnt_useless	= true,
324 	.datalength_bits	= 25,
325 	.datactrl_blocksz	= 14,
326 	.datactrl_any_blocksz	= true,
327 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
328 	.stm32_idmabsize_mask	= GENMASK(16, 6),
329 	.stm32_idmabsize_align	= BIT(6),
330 	.dma_lli		= true,
331 	.busy_timeout		= true,
332 	.busy_detect		= true,
333 	.busy_detect_flag	= MCI_STM32_BUSYD0,
334 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
335 	.init			= sdmmc_variant_init,
336 };
337 
338 static struct variant_data variant_qcom = {
339 	.fifosize		= 16 * 4,
340 	.fifohalfsize		= 8 * 4,
341 	.clkreg			= MCI_CLK_ENABLE,
342 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
343 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
344 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
345 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
346 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
347 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
348 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
349 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
350 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
351 	.datalength_bits	= 24,
352 	.datactrl_blocksz	= 11,
353 	.datactrl_any_blocksz	= true,
354 	.pwrreg_powerup		= MCI_PWR_UP,
355 	.f_max			= 208000000,
356 	.explicit_mclk_control	= true,
357 	.qcom_fifo		= true,
358 	.qcom_dml		= true,
359 	.mmcimask1		= true,
360 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
361 	.start_err		= MCI_STARTBITERR,
362 	.opendrain		= MCI_ROD,
363 	.init			= qcom_variant_init,
364 };
365 
366 /* Busy detection for the ST Micro variant */
367 static int mmci_card_busy(struct mmc_host *mmc)
368 {
369 	struct mmci_host *host = mmc_priv(mmc);
370 	unsigned long flags;
371 	int busy = 0;
372 
373 	spin_lock_irqsave(&host->lock, flags);
374 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
375 		busy = 1;
376 	spin_unlock_irqrestore(&host->lock, flags);
377 
378 	return busy;
379 }
380 
381 static void mmci_reg_delay(struct mmci_host *host)
382 {
383 	/*
384 	 * According to the spec, at least three feedback clock cycles
385 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
386 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
387 	 * Worst delay time during card init is at 100 kHz => 30 us.
388 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
389 	 */
390 	if (host->cclk < 25000000)
391 		udelay(30);
392 	else
393 		ndelay(120);
394 }
395 
396 /*
397  * This must be called with host->lock held
398  */
399 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
400 {
401 	if (host->clk_reg != clk) {
402 		host->clk_reg = clk;
403 		writel(clk, host->base + MMCICLOCK);
404 	}
405 }
406 
407 /*
408  * This must be called with host->lock held
409  */
410 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
411 {
412 	if (host->pwr_reg != pwr) {
413 		host->pwr_reg = pwr;
414 		writel(pwr, host->base + MMCIPOWER);
415 	}
416 }
417 
418 /*
419  * This must be called with host->lock held
420  */
421 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
422 {
423 	/* Keep busy mode in DPSM if enabled */
424 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
425 
426 	if (host->datactrl_reg != datactrl) {
427 		host->datactrl_reg = datactrl;
428 		writel(datactrl, host->base + MMCIDATACTRL);
429 	}
430 }
431 
432 /*
433  * This must be called with host->lock held
434  */
435 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
436 {
437 	struct variant_data *variant = host->variant;
438 	u32 clk = variant->clkreg;
439 
440 	/* Make sure cclk reflects the current calculated clock */
441 	host->cclk = 0;
442 
443 	if (desired) {
444 		if (variant->explicit_mclk_control) {
445 			host->cclk = host->mclk;
446 		} else if (desired >= host->mclk) {
447 			clk = MCI_CLK_BYPASS;
448 			if (variant->st_clkdiv)
449 				clk |= MCI_ST_UX500_NEG_EDGE;
450 			host->cclk = host->mclk;
451 		} else if (variant->st_clkdiv) {
452 			/*
453 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
454 			 * => clkdiv = (mclk / f) - 2
455 			 * Round the divider up so we don't exceed the max
456 			 * frequency
457 			 */
458 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
459 			if (clk >= 256)
460 				clk = 255;
461 			host->cclk = host->mclk / (clk + 2);
462 		} else {
463 			/*
464 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
465 			 * => clkdiv = mclk / (2 * f) - 1
466 			 */
467 			clk = host->mclk / (2 * desired) - 1;
468 			if (clk >= 256)
469 				clk = 255;
470 			host->cclk = host->mclk / (2 * (clk + 1));
471 		}
472 
473 		clk |= variant->clkreg_enable;
474 		clk |= MCI_CLK_ENABLE;
475 		/* This hasn't proven to be worthwhile */
476 		/* clk |= MCI_CLK_PWRSAVE; */
477 	}
478 
479 	/* Set actual clock for debug */
480 	host->mmc->actual_clock = host->cclk;
481 
482 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
483 		clk |= MCI_4BIT_BUS;
484 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
485 		clk |= variant->clkreg_8bit_bus_enable;
486 
487 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
488 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
489 		clk |= variant->clkreg_neg_edge_enable;
490 
491 	mmci_write_clkreg(host, clk);
492 }
493 
494 static void mmci_dma_release(struct mmci_host *host)
495 {
496 	if (host->ops && host->ops->dma_release)
497 		host->ops->dma_release(host);
498 
499 	host->use_dma = false;
500 }
501 
502 static void mmci_dma_setup(struct mmci_host *host)
503 {
504 	if (!host->ops || !host->ops->dma_setup)
505 		return;
506 
507 	if (host->ops->dma_setup(host))
508 		return;
509 
510 	/* initialize pre request cookie */
511 	host->next_cookie = 1;
512 
513 	host->use_dma = true;
514 }
515 
516 /*
517  * Validate mmc prerequisites
518  */
519 static int mmci_validate_data(struct mmci_host *host,
520 			      struct mmc_data *data)
521 {
522 	struct variant_data *variant = host->variant;
523 
524 	if (!data)
525 		return 0;
526 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
527 		dev_err(mmc_dev(host->mmc),
528 			"unsupported block size (%d bytes)\n", data->blksz);
529 		return -EINVAL;
530 	}
531 
532 	if (host->ops && host->ops->validate_data)
533 		return host->ops->validate_data(host, data);
534 
535 	return 0;
536 }
537 
538 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
539 {
540 	int err;
541 
542 	if (!host->ops || !host->ops->prep_data)
543 		return 0;
544 
545 	err = host->ops->prep_data(host, data, next);
546 
547 	if (next && !err)
548 		data->host_cookie = ++host->next_cookie < 0 ?
549 			1 : host->next_cookie;
550 
551 	return err;
552 }
553 
554 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
555 		      int err)
556 {
557 	if (host->ops && host->ops->unprep_data)
558 		host->ops->unprep_data(host, data, err);
559 
560 	data->host_cookie = 0;
561 }
562 
563 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
564 {
565 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
566 
567 	if (host->ops && host->ops->get_next_data)
568 		host->ops->get_next_data(host, data);
569 }
570 
571 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
572 {
573 	struct mmc_data *data = host->data;
574 	int ret;
575 
576 	if (!host->use_dma)
577 		return -EINVAL;
578 
579 	ret = mmci_prep_data(host, data, false);
580 	if (ret)
581 		return ret;
582 
583 	if (!host->ops || !host->ops->dma_start)
584 		return -EINVAL;
585 
586 	/* Okay, go for it. */
587 	dev_vdbg(mmc_dev(host->mmc),
588 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
589 		 data->sg_len, data->blksz, data->blocks, data->flags);
590 
591 	ret = host->ops->dma_start(host, &datactrl);
592 	if (ret)
593 		return ret;
594 
595 	/* Trigger the DMA transfer */
596 	mmci_write_datactrlreg(host, datactrl);
597 
598 	/*
599 	 * Let the MMCI say when the data is ended and it's time
600 	 * to fire next DMA request. When that happens, MMCI will
601 	 * call mmci_data_end()
602 	 */
603 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
604 	       host->base + MMCIMASK0);
605 	return 0;
606 }
607 
608 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
609 {
610 	if (!host->use_dma)
611 		return;
612 
613 	if (host->ops && host->ops->dma_finalize)
614 		host->ops->dma_finalize(host, data);
615 }
616 
617 static void mmci_dma_error(struct mmci_host *host)
618 {
619 	if (!host->use_dma)
620 		return;
621 
622 	if (host->ops && host->ops->dma_error)
623 		host->ops->dma_error(host);
624 }
625 
626 static void
627 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
628 {
629 	writel(0, host->base + MMCICOMMAND);
630 
631 	BUG_ON(host->data);
632 
633 	host->mrq = NULL;
634 	host->cmd = NULL;
635 
636 	mmc_request_done(host->mmc, mrq);
637 }
638 
639 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
640 {
641 	void __iomem *base = host->base;
642 	struct variant_data *variant = host->variant;
643 
644 	if (host->singleirq) {
645 		unsigned int mask0 = readl(base + MMCIMASK0);
646 
647 		mask0 &= ~variant->irq_pio_mask;
648 		mask0 |= mask;
649 
650 		writel(mask0, base + MMCIMASK0);
651 	}
652 
653 	if (variant->mmcimask1)
654 		writel(mask, base + MMCIMASK1);
655 
656 	host->mask1_reg = mask;
657 }
658 
659 static void mmci_stop_data(struct mmci_host *host)
660 {
661 	mmci_write_datactrlreg(host, 0);
662 	mmci_set_mask1(host, 0);
663 	host->data = NULL;
664 }
665 
666 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
667 {
668 	unsigned int flags = SG_MITER_ATOMIC;
669 
670 	if (data->flags & MMC_DATA_READ)
671 		flags |= SG_MITER_TO_SG;
672 	else
673 		flags |= SG_MITER_FROM_SG;
674 
675 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
676 }
677 
678 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
679 {
680 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
681 }
682 
683 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
684 {
685 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
686 }
687 
688 static void ux500_busy_clear_mask_done(struct mmci_host *host)
689 {
690 	void __iomem *base = host->base;
691 
692 	writel(host->variant->busy_detect_mask, base + MMCICLEAR);
693 	writel(readl(base + MMCIMASK0) &
694 	       ~host->variant->busy_detect_mask, base + MMCIMASK0);
695 	host->busy_state = MMCI_BUSY_DONE;
696 	host->busy_status = 0;
697 }
698 
699 /*
700  * ux500_busy_complete() - this will wait until the busy status
701  * goes off, saving any status that occur in the meantime into
702  * host->busy_status until we know the card is not busy any more.
703  * The function returns true when the busy detection is ended
704  * and we should continue processing the command.
705  *
706  * The Ux500 typically fires two IRQs over a busy cycle like this:
707  *
708  *  DAT0 busy          +-----------------+
709  *                     |                 |
710  *  DAT0 not busy  ----+                 +--------
711  *
712  *                     ^                 ^
713  *                     |                 |
714  *                    IRQ1              IRQ2
715  */
716 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
717 				u32 status, u32 err_msk)
718 {
719 	void __iomem *base = host->base;
720 	int retries = 10;
721 
722 	if (status & err_msk) {
723 		/* Stop any ongoing busy detection if an error occurs */
724 		ux500_busy_clear_mask_done(host);
725 		goto out_ret_state;
726 	}
727 
728 	/*
729 	 * The state transitions are encoded in a state machine crossing
730 	 * the edges in this switch statement.
731 	 */
732 	switch (host->busy_state) {
733 
734 	/*
735 	 * Before unmasking for the busy end IRQ, confirm that the
736 	 * command was sent successfully. To keep track of having a
737 	 * command in-progress, waiting for busy signaling to end,
738 	 * store the status in host->busy_status.
739 	 *
740 	 * Note that, the card may need a couple of clock cycles before
741 	 * it starts signaling busy on DAT0, hence re-read the
742 	 * MMCISTATUS register here, to allow the busy bit to be set.
743 	 */
744 	case MMCI_BUSY_DONE:
745 		/*
746 		 * Save the first status register read to be sure to catch
747 		 * all bits that may be lost will retrying. If the command
748 		 * is still busy this will result in assigning 0 to
749 		 * host->busy_status, which is what it should be in IDLE.
750 		 */
751 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
752 		while (retries) {
753 			status = readl(base + MMCISTATUS);
754 			/* Keep accumulating status bits */
755 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
756 			if (status & host->variant->busy_detect_flag) {
757 				writel(readl(base + MMCIMASK0) |
758 				       host->variant->busy_detect_mask,
759 				       base + MMCIMASK0);
760 				host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
761 				schedule_delayed_work(&host->ux500_busy_timeout_work,
762 				      msecs_to_jiffies(cmd->busy_timeout));
763 				goto out_ret_state;
764 			}
765 			retries--;
766 		}
767 		dev_dbg(mmc_dev(host->mmc),
768 			"no busy signalling in time CMD%02x\n", cmd->opcode);
769 		ux500_busy_clear_mask_done(host);
770 		break;
771 
772 	/*
773 	 * If there is a command in-progress that has been successfully
774 	 * sent, then bail out if busy status is set and wait for the
775 	 * busy end IRQ.
776 	 *
777 	 * Note that, the HW triggers an IRQ on both edges while
778 	 * monitoring DAT0 for busy completion, but there is only one
779 	 * status bit in MMCISTATUS for the busy state. Therefore
780 	 * both the start and the end interrupts needs to be cleared,
781 	 * one after the other. So, clear the busy start IRQ here.
782 	 */
783 	case MMCI_BUSY_WAITING_FOR_START_IRQ:
784 		if (status & host->variant->busy_detect_flag) {
785 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
786 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
787 			host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
788 		} else {
789 			dev_dbg(mmc_dev(host->mmc),
790 				"lost busy status when waiting for busy start IRQ CMD%02x\n",
791 				cmd->opcode);
792 			cancel_delayed_work(&host->ux500_busy_timeout_work);
793 			ux500_busy_clear_mask_done(host);
794 		}
795 		break;
796 
797 	case MMCI_BUSY_WAITING_FOR_END_IRQ:
798 		if (!(status & host->variant->busy_detect_flag)) {
799 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
800 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
801 			cancel_delayed_work(&host->ux500_busy_timeout_work);
802 			ux500_busy_clear_mask_done(host);
803 		} else {
804 			dev_dbg(mmc_dev(host->mmc),
805 				"busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
806 				cmd->opcode);
807 		}
808 		break;
809 
810 	default:
811 		dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
812 			host->busy_state, cmd->opcode);
813 		break;
814 	}
815 
816 out_ret_state:
817 	return (host->busy_state == MMCI_BUSY_DONE);
818 }
819 
820 /*
821  * All the DMA operation mode stuff goes inside this ifdef.
822  * This assumes that you have a generic DMA device interface,
823  * no custom DMA interfaces are supported.
824  */
825 #ifdef CONFIG_DMA_ENGINE
826 struct mmci_dmae_next {
827 	struct dma_async_tx_descriptor *desc;
828 	struct dma_chan	*chan;
829 };
830 
831 struct mmci_dmae_priv {
832 	struct dma_chan	*cur;
833 	struct dma_chan	*rx_channel;
834 	struct dma_chan	*tx_channel;
835 	struct dma_async_tx_descriptor	*desc_current;
836 	struct mmci_dmae_next next_data;
837 };
838 
839 int mmci_dmae_setup(struct mmci_host *host)
840 {
841 	const char *rxname, *txname;
842 	struct mmci_dmae_priv *dmae;
843 
844 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
845 	if (!dmae)
846 		return -ENOMEM;
847 
848 	host->dma_priv = dmae;
849 
850 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
851 	if (IS_ERR(dmae->rx_channel)) {
852 		int ret = PTR_ERR(dmae->rx_channel);
853 		dmae->rx_channel = NULL;
854 		return ret;
855 	}
856 
857 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
858 	if (IS_ERR(dmae->tx_channel)) {
859 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
860 			dev_warn(mmc_dev(host->mmc),
861 				 "Deferred probe for TX channel ignored\n");
862 		dmae->tx_channel = NULL;
863 	}
864 
865 	/*
866 	 * If only an RX channel is specified, the driver will
867 	 * attempt to use it bidirectionally, however if it
868 	 * is specified but cannot be located, DMA will be disabled.
869 	 */
870 	if (dmae->rx_channel && !dmae->tx_channel)
871 		dmae->tx_channel = dmae->rx_channel;
872 
873 	if (dmae->rx_channel)
874 		rxname = dma_chan_name(dmae->rx_channel);
875 	else
876 		rxname = "none";
877 
878 	if (dmae->tx_channel)
879 		txname = dma_chan_name(dmae->tx_channel);
880 	else
881 		txname = "none";
882 
883 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
884 		 rxname, txname);
885 
886 	/*
887 	 * Limit the maximum segment size in any SG entry according to
888 	 * the parameters of the DMA engine device.
889 	 */
890 	if (dmae->tx_channel) {
891 		struct device *dev = dmae->tx_channel->device->dev;
892 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
893 
894 		if (max_seg_size < host->mmc->max_seg_size)
895 			host->mmc->max_seg_size = max_seg_size;
896 	}
897 	if (dmae->rx_channel) {
898 		struct device *dev = dmae->rx_channel->device->dev;
899 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
900 
901 		if (max_seg_size < host->mmc->max_seg_size)
902 			host->mmc->max_seg_size = max_seg_size;
903 	}
904 
905 	if (!dmae->tx_channel || !dmae->rx_channel) {
906 		mmci_dmae_release(host);
907 		return -EINVAL;
908 	}
909 
910 	return 0;
911 }
912 
913 /*
914  * This is used in or so inline it
915  * so it can be discarded.
916  */
917 void mmci_dmae_release(struct mmci_host *host)
918 {
919 	struct mmci_dmae_priv *dmae = host->dma_priv;
920 
921 	if (dmae->rx_channel)
922 		dma_release_channel(dmae->rx_channel);
923 	if (dmae->tx_channel)
924 		dma_release_channel(dmae->tx_channel);
925 	dmae->rx_channel = dmae->tx_channel = NULL;
926 }
927 
928 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
929 {
930 	struct mmci_dmae_priv *dmae = host->dma_priv;
931 	struct dma_chan *chan;
932 
933 	if (data->flags & MMC_DATA_READ)
934 		chan = dmae->rx_channel;
935 	else
936 		chan = dmae->tx_channel;
937 
938 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
939 		     mmc_get_dma_dir(data));
940 }
941 
942 void mmci_dmae_error(struct mmci_host *host)
943 {
944 	struct mmci_dmae_priv *dmae = host->dma_priv;
945 
946 	if (!dma_inprogress(host))
947 		return;
948 
949 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
950 	dmaengine_terminate_all(dmae->cur);
951 	host->dma_in_progress = false;
952 	dmae->cur = NULL;
953 	dmae->desc_current = NULL;
954 	host->data->host_cookie = 0;
955 
956 	mmci_dma_unmap(host, host->data);
957 }
958 
959 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
960 {
961 	struct mmci_dmae_priv *dmae = host->dma_priv;
962 	u32 status;
963 	int i;
964 
965 	if (!dma_inprogress(host))
966 		return;
967 
968 	/* Wait up to 1ms for the DMA to complete */
969 	for (i = 0; ; i++) {
970 		status = readl(host->base + MMCISTATUS);
971 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
972 			break;
973 		udelay(10);
974 	}
975 
976 	/*
977 	 * Check to see whether we still have some data left in the FIFO -
978 	 * this catches DMA controllers which are unable to monitor the
979 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
980 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
981 	 */
982 	if (status & MCI_RXDATAAVLBLMASK) {
983 		mmci_dma_error(host);
984 		if (!data->error)
985 			data->error = -EIO;
986 	} else if (!data->host_cookie) {
987 		mmci_dma_unmap(host, data);
988 	}
989 
990 	/*
991 	 * Use of DMA with scatter-gather is impossible.
992 	 * Give up with DMA and switch back to PIO mode.
993 	 */
994 	if (status & MCI_RXDATAAVLBLMASK) {
995 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
996 		mmci_dma_release(host);
997 	}
998 
999 	host->dma_in_progress = false;
1000 	dmae->cur = NULL;
1001 	dmae->desc_current = NULL;
1002 }
1003 
1004 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1005 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1006 				struct dma_chan **dma_chan,
1007 				struct dma_async_tx_descriptor **dma_desc)
1008 {
1009 	struct mmci_dmae_priv *dmae = host->dma_priv;
1010 	struct variant_data *variant = host->variant;
1011 	struct dma_slave_config conf = {
1012 		.src_addr = host->phybase + MMCIFIFO,
1013 		.dst_addr = host->phybase + MMCIFIFO,
1014 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1015 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1016 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1017 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1018 		.device_fc = false,
1019 	};
1020 	struct dma_chan *chan;
1021 	struct dma_device *device;
1022 	struct dma_async_tx_descriptor *desc;
1023 	int nr_sg;
1024 	unsigned long flags = DMA_CTRL_ACK;
1025 
1026 	if (data->flags & MMC_DATA_READ) {
1027 		conf.direction = DMA_DEV_TO_MEM;
1028 		chan = dmae->rx_channel;
1029 	} else {
1030 		conf.direction = DMA_MEM_TO_DEV;
1031 		chan = dmae->tx_channel;
1032 	}
1033 
1034 	/* If there's no DMA channel, fall back to PIO */
1035 	if (!chan)
1036 		return -EINVAL;
1037 
1038 	/* If less than or equal to the fifo size, don't bother with DMA */
1039 	if (data->blksz * data->blocks <= variant->fifosize)
1040 		return -EINVAL;
1041 
1042 	/*
1043 	 * This is necessary to get SDIO working on the Ux500. We do not yet
1044 	 * know if this is a bug in:
1045 	 * - The Ux500 DMA controller (DMA40)
1046 	 * - The MMCI DMA interface on the Ux500
1047 	 * some power of two blocks (such as 64 bytes) are sent regularly
1048 	 * during SDIO traffic and those work fine so for these we enable DMA
1049 	 * transfers.
1050 	 */
1051 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1052 		return -EINVAL;
1053 
1054 	device = chan->device;
1055 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1056 			   mmc_get_dma_dir(data));
1057 	if (nr_sg == 0)
1058 		return -EINVAL;
1059 
1060 	if (host->variant->qcom_dml)
1061 		flags |= DMA_PREP_INTERRUPT;
1062 
1063 	dmaengine_slave_config(chan, &conf);
1064 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1065 					    conf.direction, flags);
1066 	if (!desc)
1067 		goto unmap_exit;
1068 
1069 	*dma_chan = chan;
1070 	*dma_desc = desc;
1071 
1072 	return 0;
1073 
1074  unmap_exit:
1075 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
1076 		     mmc_get_dma_dir(data));
1077 	return -ENOMEM;
1078 }
1079 
1080 int mmci_dmae_prep_data(struct mmci_host *host,
1081 			struct mmc_data *data,
1082 			bool next)
1083 {
1084 	struct mmci_dmae_priv *dmae = host->dma_priv;
1085 	struct mmci_dmae_next *nd = &dmae->next_data;
1086 
1087 	if (!host->use_dma)
1088 		return -EINVAL;
1089 
1090 	if (next)
1091 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1092 	/* Check if next job is already prepared. */
1093 	if (dmae->cur && dmae->desc_current)
1094 		return 0;
1095 
1096 	/* No job were prepared thus do it now. */
1097 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
1098 				    &dmae->desc_current);
1099 }
1100 
1101 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1102 {
1103 	struct mmci_dmae_priv *dmae = host->dma_priv;
1104 	int ret;
1105 
1106 	host->dma_in_progress = true;
1107 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1108 	if (ret < 0) {
1109 		host->dma_in_progress = false;
1110 		return ret;
1111 	}
1112 	dma_async_issue_pending(dmae->cur);
1113 
1114 	*datactrl |= MCI_DPSM_DMAENABLE;
1115 
1116 	return 0;
1117 }
1118 
1119 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1120 {
1121 	struct mmci_dmae_priv *dmae = host->dma_priv;
1122 	struct mmci_dmae_next *next = &dmae->next_data;
1123 
1124 	if (!host->use_dma)
1125 		return;
1126 
1127 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1128 
1129 	dmae->desc_current = next->desc;
1130 	dmae->cur = next->chan;
1131 	next->desc = NULL;
1132 	next->chan = NULL;
1133 }
1134 
1135 void mmci_dmae_unprep_data(struct mmci_host *host,
1136 			   struct mmc_data *data, int err)
1137 
1138 {
1139 	struct mmci_dmae_priv *dmae = host->dma_priv;
1140 
1141 	if (!host->use_dma)
1142 		return;
1143 
1144 	mmci_dma_unmap(host, data);
1145 
1146 	if (err) {
1147 		struct mmci_dmae_next *next = &dmae->next_data;
1148 		struct dma_chan *chan;
1149 		if (data->flags & MMC_DATA_READ)
1150 			chan = dmae->rx_channel;
1151 		else
1152 			chan = dmae->tx_channel;
1153 		dmaengine_terminate_all(chan);
1154 
1155 		if (dmae->desc_current == next->desc)
1156 			dmae->desc_current = NULL;
1157 
1158 		if (dmae->cur == next->chan) {
1159 			host->dma_in_progress = false;
1160 			dmae->cur = NULL;
1161 		}
1162 
1163 		next->desc = NULL;
1164 		next->chan = NULL;
1165 	}
1166 }
1167 
1168 static struct mmci_host_ops mmci_variant_ops = {
1169 	.prep_data = mmci_dmae_prep_data,
1170 	.unprep_data = mmci_dmae_unprep_data,
1171 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1172 	.get_next_data = mmci_dmae_get_next_data,
1173 	.dma_setup = mmci_dmae_setup,
1174 	.dma_release = mmci_dmae_release,
1175 	.dma_start = mmci_dmae_start,
1176 	.dma_finalize = mmci_dmae_finalize,
1177 	.dma_error = mmci_dmae_error,
1178 };
1179 #else
1180 static struct mmci_host_ops mmci_variant_ops = {
1181 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1182 };
1183 #endif
1184 
1185 static void mmci_variant_init(struct mmci_host *host)
1186 {
1187 	host->ops = &mmci_variant_ops;
1188 }
1189 
1190 static void ux500_variant_init(struct mmci_host *host)
1191 {
1192 	host->ops = &mmci_variant_ops;
1193 	host->ops->busy_complete = ux500_busy_complete;
1194 }
1195 
1196 static void ux500v2_variant_init(struct mmci_host *host)
1197 {
1198 	host->ops = &mmci_variant_ops;
1199 	host->ops->busy_complete = ux500_busy_complete;
1200 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1201 }
1202 
1203 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1204 {
1205 	struct mmci_host *host = mmc_priv(mmc);
1206 	struct mmc_data *data = mrq->data;
1207 
1208 	if (!data)
1209 		return;
1210 
1211 	WARN_ON(data->host_cookie);
1212 
1213 	if (mmci_validate_data(host, data))
1214 		return;
1215 
1216 	mmci_prep_data(host, data, true);
1217 }
1218 
1219 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1220 			      int err)
1221 {
1222 	struct mmci_host *host = mmc_priv(mmc);
1223 	struct mmc_data *data = mrq->data;
1224 
1225 	if (!data || !data->host_cookie)
1226 		return;
1227 
1228 	mmci_unprep_data(host, data, err);
1229 }
1230 
1231 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1232 {
1233 	struct variant_data *variant = host->variant;
1234 	unsigned int datactrl, timeout, irqmask;
1235 	unsigned long long clks;
1236 	void __iomem *base;
1237 
1238 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1239 		data->blksz, data->blocks, data->flags);
1240 
1241 	host->data = data;
1242 	host->size = data->blksz * data->blocks;
1243 	data->bytes_xfered = 0;
1244 
1245 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1246 	do_div(clks, NSEC_PER_SEC);
1247 
1248 	timeout = data->timeout_clks + (unsigned int)clks;
1249 
1250 	base = host->base;
1251 	writel(timeout, base + MMCIDATATIMER);
1252 	writel(host->size, base + MMCIDATALENGTH);
1253 
1254 	datactrl = host->ops->get_datactrl_cfg(host);
1255 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1256 
1257 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1258 		u32 clk;
1259 
1260 		datactrl |= variant->datactrl_mask_sdio;
1261 
1262 		/*
1263 		 * The ST Micro variant for SDIO small write transfers
1264 		 * needs to have clock H/W flow control disabled,
1265 		 * otherwise the transfer will not start. The threshold
1266 		 * depends on the rate of MCLK.
1267 		 */
1268 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1269 		    (host->size < 8 ||
1270 		     (host->size <= 8 && host->mclk > 50000000)))
1271 			clk = host->clk_reg & ~variant->clkreg_enable;
1272 		else
1273 			clk = host->clk_reg | variant->clkreg_enable;
1274 
1275 		mmci_write_clkreg(host, clk);
1276 	}
1277 
1278 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1279 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1280 		datactrl |= variant->datactrl_mask_ddrmode;
1281 
1282 	/*
1283 	 * Attempt to use DMA operation mode, if this
1284 	 * should fail, fall back to PIO mode
1285 	 */
1286 	if (!mmci_dma_start(host, datactrl))
1287 		return;
1288 
1289 	/* IRQ mode, map the SG list for CPU reading/writing */
1290 	mmci_init_sg(host, data);
1291 
1292 	if (data->flags & MMC_DATA_READ) {
1293 		irqmask = MCI_RXFIFOHALFFULLMASK;
1294 
1295 		/*
1296 		 * If we have less than the fifo 'half-full' threshold to
1297 		 * transfer, trigger a PIO interrupt as soon as any data
1298 		 * is available.
1299 		 */
1300 		if (host->size < variant->fifohalfsize)
1301 			irqmask |= MCI_RXDATAAVLBLMASK;
1302 	} else {
1303 		/*
1304 		 * We don't actually need to include "FIFO empty" here
1305 		 * since its implicit in "FIFO half empty".
1306 		 */
1307 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1308 	}
1309 
1310 	mmci_write_datactrlreg(host, datactrl);
1311 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1312 	mmci_set_mask1(host, irqmask);
1313 }
1314 
1315 static void
1316 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1317 {
1318 	void __iomem *base = host->base;
1319 	bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1320 	unsigned long long clks;
1321 
1322 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1323 	    cmd->opcode, cmd->arg, cmd->flags);
1324 
1325 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1326 		writel(0, base + MMCICOMMAND);
1327 		mmci_reg_delay(host);
1328 	}
1329 
1330 	if (host->variant->cmdreg_stop &&
1331 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1332 		c |= host->variant->cmdreg_stop;
1333 
1334 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1335 	if (cmd->flags & MMC_RSP_PRESENT) {
1336 		if (cmd->flags & MMC_RSP_136)
1337 			c |= host->variant->cmdreg_lrsp_crc;
1338 		else if (cmd->flags & MMC_RSP_CRC)
1339 			c |= host->variant->cmdreg_srsp_crc;
1340 		else
1341 			c |= host->variant->cmdreg_srsp;
1342 	}
1343 
1344 	host->busy_status = 0;
1345 	host->busy_state = MMCI_BUSY_DONE;
1346 
1347 	/* Assign a default timeout if the core does not provide one */
1348 	if (busy_resp && !cmd->busy_timeout)
1349 		cmd->busy_timeout = 10 * MSEC_PER_SEC;
1350 
1351 	if (busy_resp && host->variant->busy_timeout) {
1352 		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1353 			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1354 		else
1355 			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1356 
1357 		do_div(clks, MSEC_PER_SEC);
1358 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1359 	}
1360 
1361 	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1362 		host->ops->pre_sig_volt_switch(host);
1363 
1364 	if (/*interrupt*/0)
1365 		c |= MCI_CPSM_INTERRUPT;
1366 
1367 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1368 		c |= host->variant->data_cmd_enable;
1369 
1370 	host->cmd = cmd;
1371 
1372 	writel(cmd->arg, base + MMCIARGUMENT);
1373 	writel(c, base + MMCICOMMAND);
1374 }
1375 
1376 static void mmci_stop_command(struct mmci_host *host)
1377 {
1378 	host->stop_abort.error = 0;
1379 	mmci_start_command(host, &host->stop_abort, 0);
1380 }
1381 
1382 static void
1383 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1384 	      unsigned int status)
1385 {
1386 	unsigned int status_err;
1387 
1388 	/* Make sure we have data to handle */
1389 	if (!data)
1390 		return;
1391 
1392 	/* First check for errors */
1393 	status_err = status & (host->variant->start_err |
1394 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1395 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1396 
1397 	if (status_err) {
1398 		u32 remain, success;
1399 
1400 		/* Terminate the DMA transfer */
1401 		mmci_dma_error(host);
1402 
1403 		/*
1404 		 * Calculate how far we are into the transfer.  Note that
1405 		 * the data counter gives the number of bytes transferred
1406 		 * on the MMC bus, not on the host side.  On reads, this
1407 		 * can be as much as a FIFO-worth of data ahead.  This
1408 		 * matters for FIFO overruns only.
1409 		 */
1410 		if (!host->variant->datacnt_useless) {
1411 			remain = readl(host->base + MMCIDATACNT);
1412 			success = data->blksz * data->blocks - remain;
1413 		} else {
1414 			success = 0;
1415 		}
1416 
1417 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1418 			status_err, success);
1419 		if (status_err & MCI_DATACRCFAIL) {
1420 			/* Last block was not successful */
1421 			success -= 1;
1422 			data->error = -EILSEQ;
1423 		} else if (status_err & MCI_DATATIMEOUT) {
1424 			data->error = -ETIMEDOUT;
1425 		} else if (status_err & MCI_STARTBITERR) {
1426 			data->error = -ECOMM;
1427 		} else if (status_err & MCI_TXUNDERRUN) {
1428 			data->error = -EIO;
1429 		} else if (status_err & MCI_RXOVERRUN) {
1430 			if (success > host->variant->fifosize)
1431 				success -= host->variant->fifosize;
1432 			else
1433 				success = 0;
1434 			data->error = -EIO;
1435 		}
1436 		data->bytes_xfered = round_down(success, data->blksz);
1437 	}
1438 
1439 	if (status & MCI_DATABLOCKEND)
1440 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1441 
1442 	if (status & MCI_DATAEND || data->error) {
1443 		mmci_dma_finalize(host, data);
1444 
1445 		mmci_stop_data(host);
1446 
1447 		if (!data->error)
1448 			/* The error clause is handled above, success! */
1449 			data->bytes_xfered = data->blksz * data->blocks;
1450 
1451 		if (!data->stop) {
1452 			if (host->variant->cmdreg_stop && data->error)
1453 				mmci_stop_command(host);
1454 			else
1455 				mmci_request_end(host, data->mrq);
1456 		} else if (host->mrq->sbc && !data->error) {
1457 			mmci_request_end(host, data->mrq);
1458 		} else {
1459 			mmci_start_command(host, data->stop, 0);
1460 		}
1461 	}
1462 }
1463 
1464 static void
1465 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1466 	     unsigned int status)
1467 {
1468 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1469 	void __iomem *base = host->base;
1470 	bool sbc, busy_resp;
1471 
1472 	if (!cmd)
1473 		return;
1474 
1475 	sbc = (cmd == host->mrq->sbc);
1476 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1477 
1478 	/*
1479 	 * We need to be one of these interrupts to be considered worth
1480 	 * handling. Note that we tag on any latent IRQs postponed
1481 	 * due to waiting for busy status.
1482 	 */
1483 	if (host->variant->busy_timeout && busy_resp)
1484 		err_msk |= MCI_DATATIMEOUT;
1485 
1486 	if (!((status | host->busy_status) &
1487 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1488 		return;
1489 
1490 	/* Handle busy detection on DAT0 if the variant supports it. */
1491 	if (busy_resp && host->variant->busy_detect)
1492 		if (!host->ops->busy_complete(host, cmd, status, err_msk))
1493 			return;
1494 
1495 	host->cmd = NULL;
1496 
1497 	if (status & MCI_CMDTIMEOUT) {
1498 		cmd->error = -ETIMEDOUT;
1499 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1500 		cmd->error = -EILSEQ;
1501 	} else if (host->variant->busy_timeout && busy_resp &&
1502 		   status & MCI_DATATIMEOUT) {
1503 		cmd->error = -ETIMEDOUT;
1504 		/*
1505 		 * This will wake up mmci_irq_thread() which will issue
1506 		 * a hardware reset of the MMCI block.
1507 		 */
1508 		host->irq_action = IRQ_WAKE_THREAD;
1509 	} else {
1510 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1511 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1512 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1513 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1514 	}
1515 
1516 	if ((!sbc && !cmd->data) || cmd->error) {
1517 		if (host->data) {
1518 			/* Terminate the DMA transfer */
1519 			mmci_dma_error(host);
1520 
1521 			mmci_stop_data(host);
1522 			if (host->variant->cmdreg_stop && cmd->error) {
1523 				mmci_stop_command(host);
1524 				return;
1525 			}
1526 		}
1527 
1528 		if (host->irq_action != IRQ_WAKE_THREAD)
1529 			mmci_request_end(host, host->mrq);
1530 
1531 	} else if (sbc) {
1532 		mmci_start_command(host, host->mrq->cmd, 0);
1533 	} else if (!host->variant->datactrl_first &&
1534 		   !(cmd->data->flags & MMC_DATA_READ)) {
1535 		mmci_start_data(host, cmd->data);
1536 	}
1537 }
1538 
1539 static char *ux500_state_str(struct mmci_host *host)
1540 {
1541 	switch (host->busy_state) {
1542 	case MMCI_BUSY_WAITING_FOR_START_IRQ:
1543 		return "waiting for start IRQ";
1544 	case MMCI_BUSY_WAITING_FOR_END_IRQ:
1545 		return "waiting for end IRQ";
1546 	case MMCI_BUSY_DONE:
1547 		return "not waiting for IRQs";
1548 	default:
1549 		return "unknown";
1550 	}
1551 }
1552 
1553 /*
1554  * This busy timeout worker is used to "kick" the command IRQ if a
1555  * busy detect IRQ fails to appear in reasonable time. Only used on
1556  * variants with busy detection IRQ delivery.
1557  */
1558 static void ux500_busy_timeout_work(struct work_struct *work)
1559 {
1560 	struct mmci_host *host = container_of(work, struct mmci_host,
1561 					ux500_busy_timeout_work.work);
1562 	unsigned long flags;
1563 	u32 status;
1564 
1565 	spin_lock_irqsave(&host->lock, flags);
1566 
1567 	if (host->cmd) {
1568 		/* If we are still busy let's tag on a cmd-timeout error. */
1569 		status = readl(host->base + MMCISTATUS);
1570 		if (status & host->variant->busy_detect_flag) {
1571 			status |= MCI_CMDTIMEOUT;
1572 			dev_err(mmc_dev(host->mmc),
1573 				"timeout in state %s still busy with CMD%02x\n",
1574 				ux500_state_str(host), host->cmd->opcode);
1575 		} else {
1576 			dev_err(mmc_dev(host->mmc),
1577 				"timeout in state %s waiting for busy CMD%02x\n",
1578 				ux500_state_str(host), host->cmd->opcode);
1579 		}
1580 
1581 		mmci_cmd_irq(host, host->cmd, status);
1582 	}
1583 
1584 	spin_unlock_irqrestore(&host->lock, flags);
1585 }
1586 
1587 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1588 {
1589 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1590 }
1591 
1592 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1593 {
1594 	/*
1595 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1596 	 * from the fifo range should be used
1597 	 */
1598 	if (status & MCI_RXFIFOHALFFULL)
1599 		return host->variant->fifohalfsize;
1600 	else if (status & MCI_RXDATAAVLBL)
1601 		return 4;
1602 
1603 	return 0;
1604 }
1605 
1606 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1607 {
1608 	void __iomem *base = host->base;
1609 	char *ptr = buffer;
1610 	u32 status = readl(host->base + MMCISTATUS);
1611 	int host_remain = host->size;
1612 
1613 	do {
1614 		int count = host->get_rx_fifocnt(host, status, host_remain);
1615 
1616 		if (count > remain)
1617 			count = remain;
1618 
1619 		if (count <= 0)
1620 			break;
1621 
1622 		/*
1623 		 * SDIO especially may want to send something that is
1624 		 * not divisible by 4 (as opposed to card sectors
1625 		 * etc). Therefore make sure to always read the last bytes
1626 		 * while only doing full 32-bit reads towards the FIFO.
1627 		 */
1628 		if (unlikely(count & 0x3)) {
1629 			if (count < 4) {
1630 				unsigned char buf[4];
1631 				ioread32_rep(base + MMCIFIFO, buf, 1);
1632 				memcpy(ptr, buf, count);
1633 			} else {
1634 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1635 				count &= ~0x3;
1636 			}
1637 		} else {
1638 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1639 		}
1640 
1641 		ptr += count;
1642 		remain -= count;
1643 		host_remain -= count;
1644 
1645 		if (remain == 0)
1646 			break;
1647 
1648 		status = readl(base + MMCISTATUS);
1649 	} while (status & MCI_RXDATAAVLBL);
1650 
1651 	return ptr - buffer;
1652 }
1653 
1654 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1655 {
1656 	struct variant_data *variant = host->variant;
1657 	void __iomem *base = host->base;
1658 	char *ptr = buffer;
1659 
1660 	do {
1661 		unsigned int count, maxcnt;
1662 
1663 		maxcnt = status & MCI_TXFIFOEMPTY ?
1664 			 variant->fifosize : variant->fifohalfsize;
1665 		count = min(remain, maxcnt);
1666 
1667 		/*
1668 		 * SDIO especially may want to send something that is
1669 		 * not divisible by 4 (as opposed to card sectors
1670 		 * etc), and the FIFO only accept full 32-bit writes.
1671 		 * So compensate by adding +3 on the count, a single
1672 		 * byte become a 32bit write, 7 bytes will be two
1673 		 * 32bit writes etc.
1674 		 */
1675 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1676 
1677 		ptr += count;
1678 		remain -= count;
1679 
1680 		if (remain == 0)
1681 			break;
1682 
1683 		status = readl(base + MMCISTATUS);
1684 	} while (status & MCI_TXFIFOHALFEMPTY);
1685 
1686 	return ptr - buffer;
1687 }
1688 
1689 /*
1690  * PIO data transfer IRQ handler.
1691  */
1692 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1693 {
1694 	struct mmci_host *host = dev_id;
1695 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1696 	struct variant_data *variant = host->variant;
1697 	void __iomem *base = host->base;
1698 	u32 status;
1699 
1700 	status = readl(base + MMCISTATUS);
1701 
1702 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1703 
1704 	do {
1705 		unsigned int remain, len;
1706 		char *buffer;
1707 
1708 		/*
1709 		 * For write, we only need to test the half-empty flag
1710 		 * here - if the FIFO is completely empty, then by
1711 		 * definition it is more than half empty.
1712 		 *
1713 		 * For read, check for data available.
1714 		 */
1715 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1716 			break;
1717 
1718 		if (!sg_miter_next(sg_miter))
1719 			break;
1720 
1721 		buffer = sg_miter->addr;
1722 		remain = sg_miter->length;
1723 
1724 		len = 0;
1725 		if (status & MCI_RXACTIVE)
1726 			len = mmci_pio_read(host, buffer, remain);
1727 		if (status & MCI_TXACTIVE)
1728 			len = mmci_pio_write(host, buffer, remain, status);
1729 
1730 		sg_miter->consumed = len;
1731 
1732 		host->size -= len;
1733 		remain -= len;
1734 
1735 		if (remain)
1736 			break;
1737 
1738 		status = readl(base + MMCISTATUS);
1739 	} while (1);
1740 
1741 	sg_miter_stop(sg_miter);
1742 
1743 	/*
1744 	 * If we have less than the fifo 'half-full' threshold to transfer,
1745 	 * trigger a PIO interrupt as soon as any data is available.
1746 	 */
1747 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1748 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1749 
1750 	/*
1751 	 * If we run out of data, disable the data IRQs; this
1752 	 * prevents a race where the FIFO becomes empty before
1753 	 * the chip itself has disabled the data path, and
1754 	 * stops us racing with our data end IRQ.
1755 	 */
1756 	if (host->size == 0) {
1757 		mmci_set_mask1(host, 0);
1758 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1759 	}
1760 
1761 	return IRQ_HANDLED;
1762 }
1763 
1764 /*
1765  * Handle completion of command and data transfers.
1766  */
1767 static irqreturn_t mmci_irq(int irq, void *dev_id)
1768 {
1769 	struct mmci_host *host = dev_id;
1770 	u32 status;
1771 
1772 	spin_lock(&host->lock);
1773 	host->irq_action = IRQ_HANDLED;
1774 
1775 	do {
1776 		status = readl(host->base + MMCISTATUS);
1777 		if (!status)
1778 			break;
1779 
1780 		if (host->singleirq) {
1781 			if (status & host->mask1_reg)
1782 				mmci_pio_irq(irq, dev_id);
1783 
1784 			status &= ~host->variant->irq_pio_mask;
1785 		}
1786 
1787 		/*
1788 		 * Busy detection is managed by mmci_cmd_irq(), including to
1789 		 * clear the corresponding IRQ.
1790 		 */
1791 		status &= readl(host->base + MMCIMASK0);
1792 		if (host->variant->busy_detect)
1793 			writel(status & ~host->variant->busy_detect_mask,
1794 			       host->base + MMCICLEAR);
1795 		else
1796 			writel(status, host->base + MMCICLEAR);
1797 
1798 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1799 
1800 		if (host->variant->reversed_irq_handling) {
1801 			mmci_data_irq(host, host->data, status);
1802 			mmci_cmd_irq(host, host->cmd, status);
1803 		} else {
1804 			mmci_cmd_irq(host, host->cmd, status);
1805 			mmci_data_irq(host, host->data, status);
1806 		}
1807 
1808 		/*
1809 		 * Busy detection has been handled by mmci_cmd_irq() above.
1810 		 * Clear the status bit to prevent polling in IRQ context.
1811 		 */
1812 		if (host->variant->busy_detect_flag)
1813 			status &= ~host->variant->busy_detect_flag;
1814 
1815 	} while (status);
1816 
1817 	spin_unlock(&host->lock);
1818 
1819 	return host->irq_action;
1820 }
1821 
1822 /*
1823  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1824  *
1825  * A reset is needed for some variants, where a datatimeout for a R1B request
1826  * causes the DPSM to stay busy (non-functional).
1827  */
1828 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1829 {
1830 	struct mmci_host *host = dev_id;
1831 	unsigned long flags;
1832 
1833 	if (host->rst) {
1834 		reset_control_assert(host->rst);
1835 		udelay(2);
1836 		reset_control_deassert(host->rst);
1837 	}
1838 
1839 	spin_lock_irqsave(&host->lock, flags);
1840 	writel(host->clk_reg, host->base + MMCICLOCK);
1841 	writel(host->pwr_reg, host->base + MMCIPOWER);
1842 	writel(MCI_IRQENABLE | host->variant->start_err,
1843 	       host->base + MMCIMASK0);
1844 
1845 	host->irq_action = IRQ_HANDLED;
1846 	mmci_request_end(host, host->mrq);
1847 	spin_unlock_irqrestore(&host->lock, flags);
1848 
1849 	return host->irq_action;
1850 }
1851 
1852 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1853 {
1854 	struct mmci_host *host = mmc_priv(mmc);
1855 	unsigned long flags;
1856 
1857 	WARN_ON(host->mrq != NULL);
1858 
1859 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1860 	if (mrq->cmd->error) {
1861 		mmc_request_done(mmc, mrq);
1862 		return;
1863 	}
1864 
1865 	spin_lock_irqsave(&host->lock, flags);
1866 
1867 	host->mrq = mrq;
1868 
1869 	if (mrq->data)
1870 		mmci_get_next_data(host, mrq->data);
1871 
1872 	if (mrq->data &&
1873 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1874 		mmci_start_data(host, mrq->data);
1875 
1876 	if (mrq->sbc)
1877 		mmci_start_command(host, mrq->sbc, 0);
1878 	else
1879 		mmci_start_command(host, mrq->cmd, 0);
1880 
1881 	spin_unlock_irqrestore(&host->lock, flags);
1882 }
1883 
1884 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1885 {
1886 	struct mmci_host *host = mmc_priv(mmc);
1887 	u32 max_busy_timeout = 0;
1888 
1889 	if (!host->variant->busy_detect)
1890 		return;
1891 
1892 	if (host->variant->busy_timeout && mmc->actual_clock)
1893 		max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1894 							  MSEC_PER_SEC);
1895 
1896 	mmc->max_busy_timeout = max_busy_timeout;
1897 }
1898 
1899 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1900 {
1901 	struct mmci_host *host = mmc_priv(mmc);
1902 	struct variant_data *variant = host->variant;
1903 	u32 pwr = 0;
1904 	unsigned long flags;
1905 	int ret;
1906 
1907 	switch (ios->power_mode) {
1908 	case MMC_POWER_OFF:
1909 		if (!IS_ERR(mmc->supply.vmmc))
1910 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1911 
1912 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1913 			regulator_disable(mmc->supply.vqmmc);
1914 			host->vqmmc_enabled = false;
1915 		}
1916 
1917 		break;
1918 	case MMC_POWER_UP:
1919 		if (!IS_ERR(mmc->supply.vmmc))
1920 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1921 
1922 		/*
1923 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1924 		 * and instead uses MCI_PWR_ON so apply whatever value is
1925 		 * configured in the variant data.
1926 		 */
1927 		pwr |= variant->pwrreg_powerup;
1928 
1929 		break;
1930 	case MMC_POWER_ON:
1931 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1932 			ret = regulator_enable(mmc->supply.vqmmc);
1933 			if (ret < 0)
1934 				dev_err(mmc_dev(mmc),
1935 					"failed to enable vqmmc regulator\n");
1936 			else
1937 				host->vqmmc_enabled = true;
1938 		}
1939 
1940 		pwr |= MCI_PWR_ON;
1941 		break;
1942 	}
1943 
1944 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1945 		/*
1946 		 * The ST Micro variant has some additional bits
1947 		 * indicating signal direction for the signals in
1948 		 * the SD/MMC bus and feedback-clock usage.
1949 		 */
1950 		pwr |= host->pwr_reg_add;
1951 
1952 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1953 			pwr &= ~MCI_ST_DATA74DIREN;
1954 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1955 			pwr &= (~MCI_ST_DATA74DIREN &
1956 				~MCI_ST_DATA31DIREN &
1957 				~MCI_ST_DATA2DIREN);
1958 	}
1959 
1960 	if (variant->opendrain) {
1961 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1962 			pwr |= variant->opendrain;
1963 	} else {
1964 		/*
1965 		 * If the variant cannot configure the pads by its own, then we
1966 		 * expect the pinctrl to be able to do that for us
1967 		 */
1968 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1969 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1970 		else
1971 			pinctrl_select_default_state(mmc_dev(mmc));
1972 	}
1973 
1974 	/*
1975 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1976 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1977 	 */
1978 	if (!ios->clock && variant->pwrreg_clkgate)
1979 		pwr &= ~MCI_PWR_ON;
1980 
1981 	if (host->variant->explicit_mclk_control &&
1982 	    ios->clock != host->clock_cache) {
1983 		ret = clk_set_rate(host->clk, ios->clock);
1984 		if (ret < 0)
1985 			dev_err(mmc_dev(host->mmc),
1986 				"Error setting clock rate (%d)\n", ret);
1987 		else
1988 			host->mclk = clk_get_rate(host->clk);
1989 	}
1990 	host->clock_cache = ios->clock;
1991 
1992 	spin_lock_irqsave(&host->lock, flags);
1993 
1994 	if (host->ops && host->ops->set_clkreg)
1995 		host->ops->set_clkreg(host, ios->clock);
1996 	else
1997 		mmci_set_clkreg(host, ios->clock);
1998 
1999 	mmci_set_max_busy_timeout(mmc);
2000 
2001 	if (host->ops && host->ops->set_pwrreg)
2002 		host->ops->set_pwrreg(host, pwr);
2003 	else
2004 		mmci_write_pwrreg(host, pwr);
2005 
2006 	mmci_reg_delay(host);
2007 
2008 	spin_unlock_irqrestore(&host->lock, flags);
2009 }
2010 
2011 static int mmci_get_cd(struct mmc_host *mmc)
2012 {
2013 	struct mmci_host *host = mmc_priv(mmc);
2014 	struct mmci_platform_data *plat = host->plat;
2015 	unsigned int status = mmc_gpio_get_cd(mmc);
2016 
2017 	if (status == -ENOSYS) {
2018 		if (!plat->status)
2019 			return 1; /* Assume always present */
2020 
2021 		status = plat->status(mmc_dev(host->mmc));
2022 	}
2023 	return status;
2024 }
2025 
2026 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2027 {
2028 	struct mmci_host *host = mmc_priv(mmc);
2029 	int ret;
2030 
2031 	ret = mmc_regulator_set_vqmmc(mmc, ios);
2032 
2033 	if (!ret && host->ops && host->ops->post_sig_volt_switch)
2034 		ret = host->ops->post_sig_volt_switch(host, ios);
2035 	else if (ret)
2036 		ret = 0;
2037 
2038 	if (ret < 0)
2039 		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2040 
2041 	return ret;
2042 }
2043 
2044 static struct mmc_host_ops mmci_ops = {
2045 	.request	= mmci_request,
2046 	.pre_req	= mmci_pre_request,
2047 	.post_req	= mmci_post_request,
2048 	.set_ios	= mmci_set_ios,
2049 	.get_ro		= mmc_gpio_get_ro,
2050 	.get_cd		= mmci_get_cd,
2051 	.start_signal_voltage_switch = mmci_sig_volt_switch,
2052 };
2053 
2054 static void mmci_probe_level_translator(struct mmc_host *mmc)
2055 {
2056 	struct device *dev = mmc_dev(mmc);
2057 	struct mmci_host *host = mmc_priv(mmc);
2058 	struct gpio_desc *cmd_gpio;
2059 	struct gpio_desc *ck_gpio;
2060 	struct gpio_desc *ckin_gpio;
2061 	int clk_hi, clk_lo;
2062 
2063 	/*
2064 	 * Assume the level translator is present if st,use-ckin is set.
2065 	 * This is to cater for DTs which do not implement this test.
2066 	 */
2067 	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2068 
2069 	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2070 	if (IS_ERR(cmd_gpio))
2071 		goto exit_cmd;
2072 
2073 	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2074 	if (IS_ERR(ck_gpio))
2075 		goto exit_ck;
2076 
2077 	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2078 	if (IS_ERR(ckin_gpio))
2079 		goto exit_ckin;
2080 
2081 	/* All GPIOs are valid, test whether level translator works */
2082 
2083 	/* Sample CKIN */
2084 	clk_hi = !!gpiod_get_value(ckin_gpio);
2085 
2086 	/* Set CK low */
2087 	gpiod_set_value(ck_gpio, 0);
2088 
2089 	/* Sample CKIN */
2090 	clk_lo = !!gpiod_get_value(ckin_gpio);
2091 
2092 	/* Tristate all */
2093 	gpiod_direction_input(cmd_gpio);
2094 	gpiod_direction_input(ck_gpio);
2095 
2096 	/* Level translator is present if CK signal is propagated to CKIN */
2097 	if (!clk_hi || clk_lo) {
2098 		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2099 		dev_warn(dev,
2100 			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2101 	}
2102 
2103 	gpiod_put(ckin_gpio);
2104 
2105 exit_ckin:
2106 	gpiod_put(ck_gpio);
2107 exit_ck:
2108 	gpiod_put(cmd_gpio);
2109 exit_cmd:
2110 	pinctrl_select_default_state(dev);
2111 }
2112 
2113 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2114 {
2115 	struct mmci_host *host = mmc_priv(mmc);
2116 	int ret = mmc_of_parse(mmc);
2117 
2118 	if (ret)
2119 		return ret;
2120 
2121 	if (of_property_read_bool(np, "st,sig-dir-dat0"))
2122 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2123 	if (of_property_read_bool(np, "st,sig-dir-dat2"))
2124 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2125 	if (of_property_read_bool(np, "st,sig-dir-dat31"))
2126 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2127 	if (of_property_read_bool(np, "st,sig-dir-dat74"))
2128 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2129 	if (of_property_read_bool(np, "st,sig-dir-cmd"))
2130 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
2131 	if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2132 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
2133 	if (of_property_read_bool(np, "st,sig-dir"))
2134 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
2135 	if (of_property_read_bool(np, "st,neg-edge"))
2136 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2137 	if (of_property_read_bool(np, "st,use-ckin"))
2138 		mmci_probe_level_translator(mmc);
2139 
2140 	if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2141 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2142 	if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2143 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2144 
2145 	return 0;
2146 }
2147 
2148 static int mmci_probe(struct amba_device *dev,
2149 	const struct amba_id *id)
2150 {
2151 	struct mmci_platform_data *plat = dev->dev.platform_data;
2152 	struct device_node *np = dev->dev.of_node;
2153 	struct variant_data *variant = id->data;
2154 	struct mmci_host *host;
2155 	struct mmc_host *mmc;
2156 	int ret;
2157 
2158 	/* Must have platform data or Device Tree. */
2159 	if (!plat && !np) {
2160 		dev_err(&dev->dev, "No plat data or DT found\n");
2161 		return -EINVAL;
2162 	}
2163 
2164 	if (!plat) {
2165 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2166 		if (!plat)
2167 			return -ENOMEM;
2168 	}
2169 
2170 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2171 	if (!mmc)
2172 		return -ENOMEM;
2173 
2174 	host = mmc_priv(mmc);
2175 	host->mmc = mmc;
2176 	host->mmc_ops = &mmci_ops;
2177 	mmc->ops = &mmci_ops;
2178 
2179 	ret = mmci_of_parse(np, mmc);
2180 	if (ret)
2181 		goto host_free;
2182 
2183 	/*
2184 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2185 	 * pins can be set accordingly using pinctrl
2186 	 */
2187 	if (!variant->opendrain) {
2188 		host->pinctrl = devm_pinctrl_get(&dev->dev);
2189 		if (IS_ERR(host->pinctrl)) {
2190 			dev_err(&dev->dev, "failed to get pinctrl");
2191 			ret = PTR_ERR(host->pinctrl);
2192 			goto host_free;
2193 		}
2194 
2195 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2196 							    MMCI_PINCTRL_STATE_OPENDRAIN);
2197 		if (IS_ERR(host->pins_opendrain)) {
2198 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2199 			ret = PTR_ERR(host->pins_opendrain);
2200 			goto host_free;
2201 		}
2202 	}
2203 
2204 	host->hw_designer = amba_manf(dev);
2205 	host->hw_revision = amba_rev(dev);
2206 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2207 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2208 
2209 	host->clk = devm_clk_get(&dev->dev, NULL);
2210 	if (IS_ERR(host->clk)) {
2211 		ret = PTR_ERR(host->clk);
2212 		goto host_free;
2213 	}
2214 
2215 	ret = clk_prepare_enable(host->clk);
2216 	if (ret)
2217 		goto host_free;
2218 
2219 	if (variant->qcom_fifo)
2220 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2221 	else
2222 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2223 
2224 	host->plat = plat;
2225 	host->variant = variant;
2226 	host->mclk = clk_get_rate(host->clk);
2227 	/*
2228 	 * According to the spec, mclk is max 100 MHz,
2229 	 * so we try to adjust the clock down to this,
2230 	 * (if possible).
2231 	 */
2232 	if (host->mclk > variant->f_max) {
2233 		ret = clk_set_rate(host->clk, variant->f_max);
2234 		if (ret < 0)
2235 			goto clk_disable;
2236 		host->mclk = clk_get_rate(host->clk);
2237 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2238 			host->mclk);
2239 	}
2240 
2241 	host->phybase = dev->res.start;
2242 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2243 	if (IS_ERR(host->base)) {
2244 		ret = PTR_ERR(host->base);
2245 		goto clk_disable;
2246 	}
2247 
2248 	if (variant->init)
2249 		variant->init(host);
2250 
2251 	/*
2252 	 * The ARM and ST versions of the block have slightly different
2253 	 * clock divider equations which means that the minimum divider
2254 	 * differs too.
2255 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2256 	 */
2257 	if (variant->st_clkdiv)
2258 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2259 	else if (variant->stm32_clkdiv)
2260 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2261 	else if (variant->explicit_mclk_control)
2262 		mmc->f_min = clk_round_rate(host->clk, 100000);
2263 	else
2264 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2265 	/*
2266 	 * If no maximum operating frequency is supplied, fall back to use
2267 	 * the module parameter, which has a (low) default value in case it
2268 	 * is not specified. Either value must not exceed the clock rate into
2269 	 * the block, of course.
2270 	 */
2271 	if (mmc->f_max)
2272 		mmc->f_max = variant->explicit_mclk_control ?
2273 				min(variant->f_max, mmc->f_max) :
2274 				min(host->mclk, mmc->f_max);
2275 	else
2276 		mmc->f_max = variant->explicit_mclk_control ?
2277 				fmax : min(host->mclk, fmax);
2278 
2279 
2280 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2281 
2282 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2283 	if (IS_ERR(host->rst)) {
2284 		ret = PTR_ERR(host->rst);
2285 		goto clk_disable;
2286 	}
2287 	ret = reset_control_deassert(host->rst);
2288 	if (ret)
2289 		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2290 
2291 	/* Get regulators and the supported OCR mask */
2292 	ret = mmc_regulator_get_supply(mmc);
2293 	if (ret)
2294 		goto clk_disable;
2295 
2296 	if (!mmc->ocr_avail)
2297 		mmc->ocr_avail = plat->ocr_mask;
2298 	else if (plat->ocr_mask)
2299 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2300 
2301 	/* We support these capabilities. */
2302 	mmc->caps |= MMC_CAP_CMD23;
2303 
2304 	/*
2305 	 * Enable busy detection.
2306 	 */
2307 	if (variant->busy_detect) {
2308 		mmci_ops.card_busy = mmci_card_busy;
2309 		/*
2310 		 * Not all variants have a flag to enable busy detection
2311 		 * in the DPSM, but if they do, set it here.
2312 		 */
2313 		if (variant->busy_dpsm_flag)
2314 			mmci_write_datactrlreg(host,
2315 					       host->variant->busy_dpsm_flag);
2316 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2317 	}
2318 
2319 	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2320 	if (variant->busy_timeout)
2321 		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2322 
2323 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2324 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2325 	host->stop_abort.arg = 0;
2326 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2327 
2328 	/* We support these PM capabilities. */
2329 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2330 
2331 	/*
2332 	 * We can do SGIO
2333 	 */
2334 	mmc->max_segs = NR_SG;
2335 
2336 	/*
2337 	 * Since only a certain number of bits are valid in the data length
2338 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2339 	 * single request.
2340 	 */
2341 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2342 
2343 	/*
2344 	 * Set the maximum segment size.  Since we aren't doing DMA
2345 	 * (yet) we are only limited by the data length register.
2346 	 */
2347 	mmc->max_seg_size = mmc->max_req_size;
2348 
2349 	/*
2350 	 * Block size can be up to 2048 bytes, but must be a power of two.
2351 	 */
2352 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2353 
2354 	/*
2355 	 * Limit the number of blocks transferred so that we don't overflow
2356 	 * the maximum request size.
2357 	 */
2358 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2359 
2360 	spin_lock_init(&host->lock);
2361 
2362 	writel(0, host->base + MMCIMASK0);
2363 
2364 	if (variant->mmcimask1)
2365 		writel(0, host->base + MMCIMASK1);
2366 
2367 	writel(0xfff, host->base + MMCICLEAR);
2368 
2369 	/*
2370 	 * If:
2371 	 * - not using DT but using a descriptor table, or
2372 	 * - using a table of descriptors ALONGSIDE DT, or
2373 	 * look up these descriptors named "cd" and "wp" right here, fail
2374 	 * silently of these do not exist
2375 	 */
2376 	if (!np) {
2377 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2378 		if (ret == -EPROBE_DEFER)
2379 			goto clk_disable;
2380 
2381 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2382 		if (ret == -EPROBE_DEFER)
2383 			goto clk_disable;
2384 	}
2385 
2386 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2387 					mmci_irq_thread, IRQF_SHARED,
2388 					DRIVER_NAME " (cmd)", host);
2389 	if (ret)
2390 		goto clk_disable;
2391 
2392 	if (!dev->irq[1])
2393 		host->singleirq = true;
2394 	else {
2395 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2396 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2397 		if (ret)
2398 			goto clk_disable;
2399 	}
2400 
2401 	if (host->variant->busy_detect)
2402 		INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2403 				  ux500_busy_timeout_work);
2404 
2405 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2406 
2407 	amba_set_drvdata(dev, mmc);
2408 
2409 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2410 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2411 		 amba_rev(dev), (unsigned long long)dev->res.start,
2412 		 dev->irq[0], dev->irq[1]);
2413 
2414 	mmci_dma_setup(host);
2415 
2416 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2417 	pm_runtime_use_autosuspend(&dev->dev);
2418 
2419 	ret = mmc_add_host(mmc);
2420 	if (ret)
2421 		goto clk_disable;
2422 
2423 	pm_runtime_put(&dev->dev);
2424 	return 0;
2425 
2426  clk_disable:
2427 	clk_disable_unprepare(host->clk);
2428  host_free:
2429 	mmc_free_host(mmc);
2430 	return ret;
2431 }
2432 
2433 static void mmci_remove(struct amba_device *dev)
2434 {
2435 	struct mmc_host *mmc = amba_get_drvdata(dev);
2436 
2437 	if (mmc) {
2438 		struct mmci_host *host = mmc_priv(mmc);
2439 		struct variant_data *variant = host->variant;
2440 
2441 		/*
2442 		 * Undo pm_runtime_put() in probe.  We use the _sync
2443 		 * version here so that we can access the primecell.
2444 		 */
2445 		pm_runtime_get_sync(&dev->dev);
2446 
2447 		mmc_remove_host(mmc);
2448 
2449 		writel(0, host->base + MMCIMASK0);
2450 
2451 		if (variant->mmcimask1)
2452 			writel(0, host->base + MMCIMASK1);
2453 
2454 		writel(0, host->base + MMCICOMMAND);
2455 		writel(0, host->base + MMCIDATACTRL);
2456 
2457 		mmci_dma_release(host);
2458 		clk_disable_unprepare(host->clk);
2459 		mmc_free_host(mmc);
2460 	}
2461 }
2462 
2463 #ifdef CONFIG_PM
2464 static void mmci_save(struct mmci_host *host)
2465 {
2466 	unsigned long flags;
2467 
2468 	spin_lock_irqsave(&host->lock, flags);
2469 
2470 	writel(0, host->base + MMCIMASK0);
2471 	if (host->variant->pwrreg_nopower) {
2472 		writel(0, host->base + MMCIDATACTRL);
2473 		writel(0, host->base + MMCIPOWER);
2474 		writel(0, host->base + MMCICLOCK);
2475 	}
2476 	mmci_reg_delay(host);
2477 
2478 	spin_unlock_irqrestore(&host->lock, flags);
2479 }
2480 
2481 static void mmci_restore(struct mmci_host *host)
2482 {
2483 	unsigned long flags;
2484 
2485 	spin_lock_irqsave(&host->lock, flags);
2486 
2487 	if (host->variant->pwrreg_nopower) {
2488 		writel(host->clk_reg, host->base + MMCICLOCK);
2489 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2490 		writel(host->pwr_reg, host->base + MMCIPOWER);
2491 	}
2492 	writel(MCI_IRQENABLE | host->variant->start_err,
2493 	       host->base + MMCIMASK0);
2494 	mmci_reg_delay(host);
2495 
2496 	spin_unlock_irqrestore(&host->lock, flags);
2497 }
2498 
2499 static int mmci_runtime_suspend(struct device *dev)
2500 {
2501 	struct amba_device *adev = to_amba_device(dev);
2502 	struct mmc_host *mmc = amba_get_drvdata(adev);
2503 
2504 	if (mmc) {
2505 		struct mmci_host *host = mmc_priv(mmc);
2506 		pinctrl_pm_select_sleep_state(dev);
2507 		mmci_save(host);
2508 		clk_disable_unprepare(host->clk);
2509 	}
2510 
2511 	return 0;
2512 }
2513 
2514 static int mmci_runtime_resume(struct device *dev)
2515 {
2516 	struct amba_device *adev = to_amba_device(dev);
2517 	struct mmc_host *mmc = amba_get_drvdata(adev);
2518 
2519 	if (mmc) {
2520 		struct mmci_host *host = mmc_priv(mmc);
2521 		clk_prepare_enable(host->clk);
2522 		mmci_restore(host);
2523 		pinctrl_select_default_state(dev);
2524 	}
2525 
2526 	return 0;
2527 }
2528 #endif
2529 
2530 static const struct dev_pm_ops mmci_dev_pm_ops = {
2531 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2532 				pm_runtime_force_resume)
2533 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2534 };
2535 
2536 static const struct amba_id mmci_ids[] = {
2537 	{
2538 		.id	= 0x00041180,
2539 		.mask	= 0xff0fffff,
2540 		.data	= &variant_arm,
2541 	},
2542 	{
2543 		.id	= 0x01041180,
2544 		.mask	= 0xff0fffff,
2545 		.data	= &variant_arm_extended_fifo,
2546 	},
2547 	{
2548 		.id	= 0x02041180,
2549 		.mask	= 0xff0fffff,
2550 		.data	= &variant_arm_extended_fifo_hwfc,
2551 	},
2552 	{
2553 		.id	= 0x00041181,
2554 		.mask	= 0x000fffff,
2555 		.data	= &variant_arm,
2556 	},
2557 	/* ST Micro variants */
2558 	{
2559 		.id     = 0x00180180,
2560 		.mask   = 0x00ffffff,
2561 		.data	= &variant_u300,
2562 	},
2563 	{
2564 		.id     = 0x10180180,
2565 		.mask   = 0xf0ffffff,
2566 		.data	= &variant_nomadik,
2567 	},
2568 	{
2569 		.id     = 0x00280180,
2570 		.mask   = 0x00ffffff,
2571 		.data	= &variant_nomadik,
2572 	},
2573 	{
2574 		.id     = 0x00480180,
2575 		.mask   = 0xf0ffffff,
2576 		.data	= &variant_ux500,
2577 	},
2578 	{
2579 		.id     = 0x10480180,
2580 		.mask   = 0xf0ffffff,
2581 		.data	= &variant_ux500v2,
2582 	},
2583 	{
2584 		.id     = 0x00880180,
2585 		.mask   = 0x00ffffff,
2586 		.data	= &variant_stm32,
2587 	},
2588 	{
2589 		.id     = 0x10153180,
2590 		.mask	= 0xf0ffffff,
2591 		.data	= &variant_stm32_sdmmc,
2592 	},
2593 	{
2594 		.id     = 0x00253180,
2595 		.mask	= 0xf0ffffff,
2596 		.data	= &variant_stm32_sdmmcv2,
2597 	},
2598 	{
2599 		.id     = 0x20253180,
2600 		.mask	= 0xf0ffffff,
2601 		.data	= &variant_stm32_sdmmcv2,
2602 	},
2603 	{
2604 		.id     = 0x00353180,
2605 		.mask	= 0xf0ffffff,
2606 		.data	= &variant_stm32_sdmmcv3,
2607 	},
2608 	/* Qualcomm variants */
2609 	{
2610 		.id     = 0x00051180,
2611 		.mask	= 0x000fffff,
2612 		.data	= &variant_qcom,
2613 	},
2614 	{ 0, 0 },
2615 };
2616 
2617 MODULE_DEVICE_TABLE(amba, mmci_ids);
2618 
2619 static struct amba_driver mmci_driver = {
2620 	.drv		= {
2621 		.name	= DRIVER_NAME,
2622 		.pm	= &mmci_dev_pm_ops,
2623 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2624 	},
2625 	.probe		= mmci_probe,
2626 	.remove		= mmci_remove,
2627 	.id_table	= mmci_ids,
2628 };
2629 
2630 module_amba_driver(mmci_driver);
2631 
2632 module_param(fmax, uint, 0444);
2633 
2634 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2635 MODULE_LICENSE("GPL");
2636