xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 9a8f3203)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/pm.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/slot-gpio.h>
29 #include <linux/amba/bus.h>
30 #include <linux/clk.h>
31 #include <linux/scatterlist.h>
32 #include <linux/of.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 #include <linux/reset.h>
41 
42 #include <asm/div64.h>
43 #include <asm/io.h>
44 
45 #include "mmci.h"
46 #include "mmci_qcom_dml.h"
47 
48 #define DRIVER_NAME "mmci-pl18x"
49 
50 #ifdef CONFIG_DMA_ENGINE
51 void mmci_variant_init(struct mmci_host *host);
52 #else
53 static inline void mmci_variant_init(struct mmci_host *host) {}
54 #endif
55 
56 #ifdef CONFIG_MMC_STM32_SDMMC
57 void sdmmc_variant_init(struct mmci_host *host);
58 #else
59 static inline void sdmmc_variant_init(struct mmci_host *host) {}
60 #endif
61 
62 static unsigned int fmax = 515633;
63 
64 static struct variant_data variant_arm = {
65 	.fifosize		= 16 * 4,
66 	.fifohalfsize		= 8 * 4,
67 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
68 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
69 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
70 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
71 	.datalength_bits	= 16,
72 	.datactrl_blocksz	= 11,
73 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
74 	.pwrreg_powerup		= MCI_PWR_UP,
75 	.f_max			= 100000000,
76 	.reversed_irq_handling	= true,
77 	.mmcimask1		= true,
78 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
79 	.start_err		= MCI_STARTBITERR,
80 	.opendrain		= MCI_ROD,
81 	.init			= mmci_variant_init,
82 };
83 
84 static struct variant_data variant_arm_extended_fifo = {
85 	.fifosize		= 128 * 4,
86 	.fifohalfsize		= 64 * 4,
87 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
88 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
89 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
90 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
91 	.datalength_bits	= 16,
92 	.datactrl_blocksz	= 11,
93 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
94 	.pwrreg_powerup		= MCI_PWR_UP,
95 	.f_max			= 100000000,
96 	.mmcimask1		= true,
97 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
98 	.start_err		= MCI_STARTBITERR,
99 	.opendrain		= MCI_ROD,
100 	.init			= mmci_variant_init,
101 };
102 
103 static struct variant_data variant_arm_extended_fifo_hwfc = {
104 	.fifosize		= 128 * 4,
105 	.fifohalfsize		= 64 * 4,
106 	.clkreg_enable		= MCI_ARM_HWFCEN,
107 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
108 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
109 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
110 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
111 	.datalength_bits	= 16,
112 	.datactrl_blocksz	= 11,
113 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
114 	.pwrreg_powerup		= MCI_PWR_UP,
115 	.f_max			= 100000000,
116 	.mmcimask1		= true,
117 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
118 	.start_err		= MCI_STARTBITERR,
119 	.opendrain		= MCI_ROD,
120 	.init			= mmci_variant_init,
121 };
122 
123 static struct variant_data variant_u300 = {
124 	.fifosize		= 16 * 4,
125 	.fifohalfsize		= 8 * 4,
126 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
127 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
128 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
129 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
130 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
131 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
132 	.datalength_bits	= 16,
133 	.datactrl_blocksz	= 11,
134 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
135 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
136 	.st_sdio			= true,
137 	.pwrreg_powerup		= MCI_PWR_ON,
138 	.f_max			= 100000000,
139 	.signal_direction	= true,
140 	.pwrreg_clkgate		= true,
141 	.pwrreg_nopower		= true,
142 	.mmcimask1		= true,
143 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
144 	.start_err		= MCI_STARTBITERR,
145 	.opendrain		= MCI_OD,
146 	.init			= mmci_variant_init,
147 };
148 
149 static struct variant_data variant_nomadik = {
150 	.fifosize		= 16 * 4,
151 	.fifohalfsize		= 8 * 4,
152 	.clkreg			= MCI_CLK_ENABLE,
153 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
154 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
155 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
156 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
157 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
158 	.datalength_bits	= 24,
159 	.datactrl_blocksz	= 11,
160 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
161 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
162 	.st_sdio		= true,
163 	.st_clkdiv		= true,
164 	.pwrreg_powerup		= MCI_PWR_ON,
165 	.f_max			= 100000000,
166 	.signal_direction	= true,
167 	.pwrreg_clkgate		= true,
168 	.pwrreg_nopower		= true,
169 	.mmcimask1		= true,
170 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
171 	.start_err		= MCI_STARTBITERR,
172 	.opendrain		= MCI_OD,
173 	.init			= mmci_variant_init,
174 };
175 
176 static struct variant_data variant_ux500 = {
177 	.fifosize		= 30 * 4,
178 	.fifohalfsize		= 8 * 4,
179 	.clkreg			= MCI_CLK_ENABLE,
180 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
181 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
182 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
183 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
184 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
185 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
186 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
187 	.datalength_bits	= 24,
188 	.datactrl_blocksz	= 11,
189 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
190 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
191 	.st_sdio		= true,
192 	.st_clkdiv		= true,
193 	.pwrreg_powerup		= MCI_PWR_ON,
194 	.f_max			= 100000000,
195 	.signal_direction	= true,
196 	.pwrreg_clkgate		= true,
197 	.busy_detect		= true,
198 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
199 	.busy_detect_flag	= MCI_ST_CARDBUSY,
200 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
201 	.pwrreg_nopower		= true,
202 	.mmcimask1		= true,
203 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
204 	.start_err		= MCI_STARTBITERR,
205 	.opendrain		= MCI_OD,
206 	.init			= mmci_variant_init,
207 };
208 
209 static struct variant_data variant_ux500v2 = {
210 	.fifosize		= 30 * 4,
211 	.fifohalfsize		= 8 * 4,
212 	.clkreg			= MCI_CLK_ENABLE,
213 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
214 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
215 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
216 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
217 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
218 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
219 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
220 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
221 	.datalength_bits	= 24,
222 	.datactrl_blocksz	= 11,
223 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
224 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
225 	.st_sdio		= true,
226 	.st_clkdiv		= true,
227 	.blksz_datactrl16	= true,
228 	.pwrreg_powerup		= MCI_PWR_ON,
229 	.f_max			= 100000000,
230 	.signal_direction	= true,
231 	.pwrreg_clkgate		= true,
232 	.busy_detect		= true,
233 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
234 	.busy_detect_flag	= MCI_ST_CARDBUSY,
235 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
236 	.pwrreg_nopower		= true,
237 	.mmcimask1		= true,
238 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
239 	.start_err		= MCI_STARTBITERR,
240 	.opendrain		= MCI_OD,
241 	.init			= mmci_variant_init,
242 };
243 
244 static struct variant_data variant_stm32 = {
245 	.fifosize		= 32 * 4,
246 	.fifohalfsize		= 8 * 4,
247 	.clkreg			= MCI_CLK_ENABLE,
248 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
249 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
250 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
251 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
252 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
253 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
254 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
255 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
256 	.datalength_bits	= 24,
257 	.datactrl_blocksz	= 11,
258 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
259 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
260 	.st_sdio		= true,
261 	.st_clkdiv		= true,
262 	.pwrreg_powerup		= MCI_PWR_ON,
263 	.f_max			= 48000000,
264 	.pwrreg_clkgate		= true,
265 	.pwrreg_nopower		= true,
266 	.init			= mmci_variant_init,
267 };
268 
269 static struct variant_data variant_stm32_sdmmc = {
270 	.fifosize		= 16 * 4,
271 	.fifohalfsize		= 8 * 4,
272 	.f_max			= 208000000,
273 	.stm32_clkdiv		= true,
274 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
275 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
276 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
277 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
278 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
279 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
280 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
281 	.datactrl_first		= true,
282 	.datacnt_useless	= true,
283 	.datalength_bits	= 25,
284 	.datactrl_blocksz	= 14,
285 	.stm32_idmabsize_mask	= GENMASK(12, 5),
286 	.init			= sdmmc_variant_init,
287 };
288 
289 static struct variant_data variant_qcom = {
290 	.fifosize		= 16 * 4,
291 	.fifohalfsize		= 8 * 4,
292 	.clkreg			= MCI_CLK_ENABLE,
293 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
294 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
295 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
296 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
297 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
298 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
299 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
300 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
301 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
302 	.blksz_datactrl4	= true,
303 	.datalength_bits	= 24,
304 	.datactrl_blocksz	= 11,
305 	.datactrl_dpsm_enable	= MCI_DPSM_ENABLE,
306 	.pwrreg_powerup		= MCI_PWR_UP,
307 	.f_max			= 208000000,
308 	.explicit_mclk_control	= true,
309 	.qcom_fifo		= true,
310 	.qcom_dml		= true,
311 	.mmcimask1		= true,
312 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
313 	.start_err		= MCI_STARTBITERR,
314 	.opendrain		= MCI_ROD,
315 	.init			= qcom_variant_init,
316 };
317 
318 /* Busy detection for the ST Micro variant */
319 static int mmci_card_busy(struct mmc_host *mmc)
320 {
321 	struct mmci_host *host = mmc_priv(mmc);
322 	unsigned long flags;
323 	int busy = 0;
324 
325 	spin_lock_irqsave(&host->lock, flags);
326 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
327 		busy = 1;
328 	spin_unlock_irqrestore(&host->lock, flags);
329 
330 	return busy;
331 }
332 
333 static void mmci_reg_delay(struct mmci_host *host)
334 {
335 	/*
336 	 * According to the spec, at least three feedback clock cycles
337 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
338 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
339 	 * Worst delay time during card init is at 100 kHz => 30 us.
340 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
341 	 */
342 	if (host->cclk < 25000000)
343 		udelay(30);
344 	else
345 		ndelay(120);
346 }
347 
348 /*
349  * This must be called with host->lock held
350  */
351 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
352 {
353 	if (host->clk_reg != clk) {
354 		host->clk_reg = clk;
355 		writel(clk, host->base + MMCICLOCK);
356 	}
357 }
358 
359 /*
360  * This must be called with host->lock held
361  */
362 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
363 {
364 	if (host->pwr_reg != pwr) {
365 		host->pwr_reg = pwr;
366 		writel(pwr, host->base + MMCIPOWER);
367 	}
368 }
369 
370 /*
371  * This must be called with host->lock held
372  */
373 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
374 {
375 	/* Keep busy mode in DPSM if enabled */
376 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
377 
378 	if (host->datactrl_reg != datactrl) {
379 		host->datactrl_reg = datactrl;
380 		writel(datactrl, host->base + MMCIDATACTRL);
381 	}
382 }
383 
384 /*
385  * This must be called with host->lock held
386  */
387 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
388 {
389 	struct variant_data *variant = host->variant;
390 	u32 clk = variant->clkreg;
391 
392 	/* Make sure cclk reflects the current calculated clock */
393 	host->cclk = 0;
394 
395 	if (desired) {
396 		if (variant->explicit_mclk_control) {
397 			host->cclk = host->mclk;
398 		} else if (desired >= host->mclk) {
399 			clk = MCI_CLK_BYPASS;
400 			if (variant->st_clkdiv)
401 				clk |= MCI_ST_UX500_NEG_EDGE;
402 			host->cclk = host->mclk;
403 		} else if (variant->st_clkdiv) {
404 			/*
405 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
406 			 * => clkdiv = (mclk / f) - 2
407 			 * Round the divider up so we don't exceed the max
408 			 * frequency
409 			 */
410 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
411 			if (clk >= 256)
412 				clk = 255;
413 			host->cclk = host->mclk / (clk + 2);
414 		} else {
415 			/*
416 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
417 			 * => clkdiv = mclk / (2 * f) - 1
418 			 */
419 			clk = host->mclk / (2 * desired) - 1;
420 			if (clk >= 256)
421 				clk = 255;
422 			host->cclk = host->mclk / (2 * (clk + 1));
423 		}
424 
425 		clk |= variant->clkreg_enable;
426 		clk |= MCI_CLK_ENABLE;
427 		/* This hasn't proven to be worthwhile */
428 		/* clk |= MCI_CLK_PWRSAVE; */
429 	}
430 
431 	/* Set actual clock for debug */
432 	host->mmc->actual_clock = host->cclk;
433 
434 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
435 		clk |= MCI_4BIT_BUS;
436 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
437 		clk |= variant->clkreg_8bit_bus_enable;
438 
439 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
440 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
441 		clk |= variant->clkreg_neg_edge_enable;
442 
443 	mmci_write_clkreg(host, clk);
444 }
445 
446 void mmci_dma_release(struct mmci_host *host)
447 {
448 	if (host->ops && host->ops->dma_release)
449 		host->ops->dma_release(host);
450 
451 	host->use_dma = false;
452 }
453 
454 void mmci_dma_setup(struct mmci_host *host)
455 {
456 	if (!host->ops || !host->ops->dma_setup)
457 		return;
458 
459 	if (host->ops->dma_setup(host))
460 		return;
461 
462 	/* initialize pre request cookie */
463 	host->next_cookie = 1;
464 
465 	host->use_dma = true;
466 }
467 
468 /*
469  * Validate mmc prerequisites
470  */
471 static int mmci_validate_data(struct mmci_host *host,
472 			      struct mmc_data *data)
473 {
474 	if (!data)
475 		return 0;
476 
477 	if (!is_power_of_2(data->blksz)) {
478 		dev_err(mmc_dev(host->mmc),
479 			"unsupported block size (%d bytes)\n", data->blksz);
480 		return -EINVAL;
481 	}
482 
483 	if (host->ops && host->ops->validate_data)
484 		return host->ops->validate_data(host, data);
485 
486 	return 0;
487 }
488 
489 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
490 {
491 	int err;
492 
493 	if (!host->ops || !host->ops->prep_data)
494 		return 0;
495 
496 	err = host->ops->prep_data(host, data, next);
497 
498 	if (next && !err)
499 		data->host_cookie = ++host->next_cookie < 0 ?
500 			1 : host->next_cookie;
501 
502 	return err;
503 }
504 
505 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
506 		      int err)
507 {
508 	if (host->ops && host->ops->unprep_data)
509 		host->ops->unprep_data(host, data, err);
510 
511 	data->host_cookie = 0;
512 }
513 
514 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
515 {
516 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
517 
518 	if (host->ops && host->ops->get_next_data)
519 		host->ops->get_next_data(host, data);
520 }
521 
522 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
523 {
524 	struct mmc_data *data = host->data;
525 	int ret;
526 
527 	if (!host->use_dma)
528 		return -EINVAL;
529 
530 	ret = mmci_prep_data(host, data, false);
531 	if (ret)
532 		return ret;
533 
534 	if (!host->ops || !host->ops->dma_start)
535 		return -EINVAL;
536 
537 	/* Okay, go for it. */
538 	dev_vdbg(mmc_dev(host->mmc),
539 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
540 		 data->sg_len, data->blksz, data->blocks, data->flags);
541 
542 	host->ops->dma_start(host, &datactrl);
543 
544 	/* Trigger the DMA transfer */
545 	mmci_write_datactrlreg(host, datactrl);
546 
547 	/*
548 	 * Let the MMCI say when the data is ended and it's time
549 	 * to fire next DMA request. When that happens, MMCI will
550 	 * call mmci_data_end()
551 	 */
552 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
553 	       host->base + MMCIMASK0);
554 	return 0;
555 }
556 
557 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
558 {
559 	if (!host->use_dma)
560 		return;
561 
562 	if (host->ops && host->ops->dma_finalize)
563 		host->ops->dma_finalize(host, data);
564 }
565 
566 void mmci_dma_error(struct mmci_host *host)
567 {
568 	if (!host->use_dma)
569 		return;
570 
571 	if (host->ops && host->ops->dma_error)
572 		host->ops->dma_error(host);
573 }
574 
575 static void
576 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
577 {
578 	writel(0, host->base + MMCICOMMAND);
579 
580 	BUG_ON(host->data);
581 
582 	host->mrq = NULL;
583 	host->cmd = NULL;
584 
585 	mmc_request_done(host->mmc, mrq);
586 }
587 
588 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
589 {
590 	void __iomem *base = host->base;
591 	struct variant_data *variant = host->variant;
592 
593 	if (host->singleirq) {
594 		unsigned int mask0 = readl(base + MMCIMASK0);
595 
596 		mask0 &= ~variant->irq_pio_mask;
597 		mask0 |= mask;
598 
599 		writel(mask0, base + MMCIMASK0);
600 	}
601 
602 	if (variant->mmcimask1)
603 		writel(mask, base + MMCIMASK1);
604 
605 	host->mask1_reg = mask;
606 }
607 
608 static void mmci_stop_data(struct mmci_host *host)
609 {
610 	mmci_write_datactrlreg(host, 0);
611 	mmci_set_mask1(host, 0);
612 	host->data = NULL;
613 }
614 
615 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
616 {
617 	unsigned int flags = SG_MITER_ATOMIC;
618 
619 	if (data->flags & MMC_DATA_READ)
620 		flags |= SG_MITER_TO_SG;
621 	else
622 		flags |= SG_MITER_FROM_SG;
623 
624 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
625 }
626 
627 /*
628  * All the DMA operation mode stuff goes inside this ifdef.
629  * This assumes that you have a generic DMA device interface,
630  * no custom DMA interfaces are supported.
631  */
632 #ifdef CONFIG_DMA_ENGINE
633 struct mmci_dmae_next {
634 	struct dma_async_tx_descriptor *desc;
635 	struct dma_chan	*chan;
636 };
637 
638 struct mmci_dmae_priv {
639 	struct dma_chan	*cur;
640 	struct dma_chan	*rx_channel;
641 	struct dma_chan	*tx_channel;
642 	struct dma_async_tx_descriptor	*desc_current;
643 	struct mmci_dmae_next next_data;
644 };
645 
646 int mmci_dmae_setup(struct mmci_host *host)
647 {
648 	const char *rxname, *txname;
649 	struct mmci_dmae_priv *dmae;
650 
651 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
652 	if (!dmae)
653 		return -ENOMEM;
654 
655 	host->dma_priv = dmae;
656 
657 	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
658 						     "rx");
659 	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
660 						     "tx");
661 
662 	/*
663 	 * If only an RX channel is specified, the driver will
664 	 * attempt to use it bidirectionally, however if it is
665 	 * is specified but cannot be located, DMA will be disabled.
666 	 */
667 	if (dmae->rx_channel && !dmae->tx_channel)
668 		dmae->tx_channel = dmae->rx_channel;
669 
670 	if (dmae->rx_channel)
671 		rxname = dma_chan_name(dmae->rx_channel);
672 	else
673 		rxname = "none";
674 
675 	if (dmae->tx_channel)
676 		txname = dma_chan_name(dmae->tx_channel);
677 	else
678 		txname = "none";
679 
680 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
681 		 rxname, txname);
682 
683 	/*
684 	 * Limit the maximum segment size in any SG entry according to
685 	 * the parameters of the DMA engine device.
686 	 */
687 	if (dmae->tx_channel) {
688 		struct device *dev = dmae->tx_channel->device->dev;
689 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
690 
691 		if (max_seg_size < host->mmc->max_seg_size)
692 			host->mmc->max_seg_size = max_seg_size;
693 	}
694 	if (dmae->rx_channel) {
695 		struct device *dev = dmae->rx_channel->device->dev;
696 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
697 
698 		if (max_seg_size < host->mmc->max_seg_size)
699 			host->mmc->max_seg_size = max_seg_size;
700 	}
701 
702 	if (!dmae->tx_channel || !dmae->rx_channel) {
703 		mmci_dmae_release(host);
704 		return -EINVAL;
705 	}
706 
707 	return 0;
708 }
709 
710 /*
711  * This is used in or so inline it
712  * so it can be discarded.
713  */
714 void mmci_dmae_release(struct mmci_host *host)
715 {
716 	struct mmci_dmae_priv *dmae = host->dma_priv;
717 
718 	if (dmae->rx_channel)
719 		dma_release_channel(dmae->rx_channel);
720 	if (dmae->tx_channel)
721 		dma_release_channel(dmae->tx_channel);
722 	dmae->rx_channel = dmae->tx_channel = NULL;
723 }
724 
725 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
726 {
727 	struct mmci_dmae_priv *dmae = host->dma_priv;
728 	struct dma_chan *chan;
729 
730 	if (data->flags & MMC_DATA_READ)
731 		chan = dmae->rx_channel;
732 	else
733 		chan = dmae->tx_channel;
734 
735 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
736 		     mmc_get_dma_dir(data));
737 }
738 
739 void mmci_dmae_error(struct mmci_host *host)
740 {
741 	struct mmci_dmae_priv *dmae = host->dma_priv;
742 
743 	if (!dma_inprogress(host))
744 		return;
745 
746 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
747 	dmaengine_terminate_all(dmae->cur);
748 	host->dma_in_progress = false;
749 	dmae->cur = NULL;
750 	dmae->desc_current = NULL;
751 	host->data->host_cookie = 0;
752 
753 	mmci_dma_unmap(host, host->data);
754 }
755 
756 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
757 {
758 	struct mmci_dmae_priv *dmae = host->dma_priv;
759 	u32 status;
760 	int i;
761 
762 	if (!dma_inprogress(host))
763 		return;
764 
765 	/* Wait up to 1ms for the DMA to complete */
766 	for (i = 0; ; i++) {
767 		status = readl(host->base + MMCISTATUS);
768 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
769 			break;
770 		udelay(10);
771 	}
772 
773 	/*
774 	 * Check to see whether we still have some data left in the FIFO -
775 	 * this catches DMA controllers which are unable to monitor the
776 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
777 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
778 	 */
779 	if (status & MCI_RXDATAAVLBLMASK) {
780 		mmci_dma_error(host);
781 		if (!data->error)
782 			data->error = -EIO;
783 	} else if (!data->host_cookie) {
784 		mmci_dma_unmap(host, data);
785 	}
786 
787 	/*
788 	 * Use of DMA with scatter-gather is impossible.
789 	 * Give up with DMA and switch back to PIO mode.
790 	 */
791 	if (status & MCI_RXDATAAVLBLMASK) {
792 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
793 		mmci_dma_release(host);
794 	}
795 
796 	host->dma_in_progress = false;
797 	dmae->cur = NULL;
798 	dmae->desc_current = NULL;
799 }
800 
801 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
802 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
803 				struct dma_chan **dma_chan,
804 				struct dma_async_tx_descriptor **dma_desc)
805 {
806 	struct mmci_dmae_priv *dmae = host->dma_priv;
807 	struct variant_data *variant = host->variant;
808 	struct dma_slave_config conf = {
809 		.src_addr = host->phybase + MMCIFIFO,
810 		.dst_addr = host->phybase + MMCIFIFO,
811 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
812 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
813 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
814 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
815 		.device_fc = false,
816 	};
817 	struct dma_chan *chan;
818 	struct dma_device *device;
819 	struct dma_async_tx_descriptor *desc;
820 	int nr_sg;
821 	unsigned long flags = DMA_CTRL_ACK;
822 
823 	if (data->flags & MMC_DATA_READ) {
824 		conf.direction = DMA_DEV_TO_MEM;
825 		chan = dmae->rx_channel;
826 	} else {
827 		conf.direction = DMA_MEM_TO_DEV;
828 		chan = dmae->tx_channel;
829 	}
830 
831 	/* If there's no DMA channel, fall back to PIO */
832 	if (!chan)
833 		return -EINVAL;
834 
835 	/* If less than or equal to the fifo size, don't bother with DMA */
836 	if (data->blksz * data->blocks <= variant->fifosize)
837 		return -EINVAL;
838 
839 	device = chan->device;
840 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
841 			   mmc_get_dma_dir(data));
842 	if (nr_sg == 0)
843 		return -EINVAL;
844 
845 	if (host->variant->qcom_dml)
846 		flags |= DMA_PREP_INTERRUPT;
847 
848 	dmaengine_slave_config(chan, &conf);
849 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
850 					    conf.direction, flags);
851 	if (!desc)
852 		goto unmap_exit;
853 
854 	*dma_chan = chan;
855 	*dma_desc = desc;
856 
857 	return 0;
858 
859  unmap_exit:
860 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
861 		     mmc_get_dma_dir(data));
862 	return -ENOMEM;
863 }
864 
865 int mmci_dmae_prep_data(struct mmci_host *host,
866 			struct mmc_data *data,
867 			bool next)
868 {
869 	struct mmci_dmae_priv *dmae = host->dma_priv;
870 	struct mmci_dmae_next *nd = &dmae->next_data;
871 
872 	if (!host->use_dma)
873 		return -EINVAL;
874 
875 	if (next)
876 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
877 	/* Check if next job is already prepared. */
878 	if (dmae->cur && dmae->desc_current)
879 		return 0;
880 
881 	/* No job were prepared thus do it now. */
882 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
883 				    &dmae->desc_current);
884 }
885 
886 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
887 {
888 	struct mmci_dmae_priv *dmae = host->dma_priv;
889 	struct mmc_data *data = host->data;
890 
891 	host->dma_in_progress = true;
892 	dmaengine_submit(dmae->desc_current);
893 	dma_async_issue_pending(dmae->cur);
894 
895 	if (host->variant->qcom_dml)
896 		dml_start_xfer(host, data);
897 
898 	*datactrl |= MCI_DPSM_DMAENABLE;
899 
900 	return 0;
901 }
902 
903 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
904 {
905 	struct mmci_dmae_priv *dmae = host->dma_priv;
906 	struct mmci_dmae_next *next = &dmae->next_data;
907 
908 	if (!host->use_dma)
909 		return;
910 
911 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
912 
913 	dmae->desc_current = next->desc;
914 	dmae->cur = next->chan;
915 	next->desc = NULL;
916 	next->chan = NULL;
917 }
918 
919 void mmci_dmae_unprep_data(struct mmci_host *host,
920 			   struct mmc_data *data, int err)
921 
922 {
923 	struct mmci_dmae_priv *dmae = host->dma_priv;
924 
925 	if (!host->use_dma)
926 		return;
927 
928 	mmci_dma_unmap(host, data);
929 
930 	if (err) {
931 		struct mmci_dmae_next *next = &dmae->next_data;
932 		struct dma_chan *chan;
933 		if (data->flags & MMC_DATA_READ)
934 			chan = dmae->rx_channel;
935 		else
936 			chan = dmae->tx_channel;
937 		dmaengine_terminate_all(chan);
938 
939 		if (dmae->desc_current == next->desc)
940 			dmae->desc_current = NULL;
941 
942 		if (dmae->cur == next->chan) {
943 			host->dma_in_progress = false;
944 			dmae->cur = NULL;
945 		}
946 
947 		next->desc = NULL;
948 		next->chan = NULL;
949 	}
950 }
951 
952 static struct mmci_host_ops mmci_variant_ops = {
953 	.prep_data = mmci_dmae_prep_data,
954 	.unprep_data = mmci_dmae_unprep_data,
955 	.get_next_data = mmci_dmae_get_next_data,
956 	.dma_setup = mmci_dmae_setup,
957 	.dma_release = mmci_dmae_release,
958 	.dma_start = mmci_dmae_start,
959 	.dma_finalize = mmci_dmae_finalize,
960 	.dma_error = mmci_dmae_error,
961 };
962 
963 void mmci_variant_init(struct mmci_host *host)
964 {
965 	host->ops = &mmci_variant_ops;
966 }
967 #endif
968 
969 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
970 {
971 	struct mmci_host *host = mmc_priv(mmc);
972 	struct mmc_data *data = mrq->data;
973 
974 	if (!data)
975 		return;
976 
977 	WARN_ON(data->host_cookie);
978 
979 	if (mmci_validate_data(host, data))
980 		return;
981 
982 	mmci_prep_data(host, data, true);
983 }
984 
985 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
986 			      int err)
987 {
988 	struct mmci_host *host = mmc_priv(mmc);
989 	struct mmc_data *data = mrq->data;
990 
991 	if (!data || !data->host_cookie)
992 		return;
993 
994 	mmci_unprep_data(host, data, err);
995 }
996 
997 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
998 {
999 	struct variant_data *variant = host->variant;
1000 	unsigned int datactrl, timeout, irqmask;
1001 	unsigned long long clks;
1002 	void __iomem *base;
1003 	int blksz_bits;
1004 
1005 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1006 		data->blksz, data->blocks, data->flags);
1007 
1008 	host->data = data;
1009 	host->size = data->blksz * data->blocks;
1010 	data->bytes_xfered = 0;
1011 
1012 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1013 	do_div(clks, NSEC_PER_SEC);
1014 
1015 	timeout = data->timeout_clks + (unsigned int)clks;
1016 
1017 	base = host->base;
1018 	writel(timeout, base + MMCIDATATIMER);
1019 	writel(host->size, base + MMCIDATALENGTH);
1020 
1021 	blksz_bits = ffs(data->blksz) - 1;
1022 	BUG_ON(1 << blksz_bits != data->blksz);
1023 
1024 	if (variant->blksz_datactrl16)
1025 		datactrl = variant->datactrl_dpsm_enable | (data->blksz << 16);
1026 	else if (variant->blksz_datactrl4)
1027 		datactrl = variant->datactrl_dpsm_enable | (data->blksz << 4);
1028 	else
1029 		datactrl = variant->datactrl_dpsm_enable | blksz_bits << 4;
1030 
1031 	if (data->flags & MMC_DATA_READ)
1032 		datactrl |= MCI_DPSM_DIRECTION;
1033 
1034 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1035 		u32 clk;
1036 
1037 		datactrl |= variant->datactrl_mask_sdio;
1038 
1039 		/*
1040 		 * The ST Micro variant for SDIO small write transfers
1041 		 * needs to have clock H/W flow control disabled,
1042 		 * otherwise the transfer will not start. The threshold
1043 		 * depends on the rate of MCLK.
1044 		 */
1045 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1046 		    (host->size < 8 ||
1047 		     (host->size <= 8 && host->mclk > 50000000)))
1048 			clk = host->clk_reg & ~variant->clkreg_enable;
1049 		else
1050 			clk = host->clk_reg | variant->clkreg_enable;
1051 
1052 		mmci_write_clkreg(host, clk);
1053 	}
1054 
1055 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1056 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1057 		datactrl |= variant->datactrl_mask_ddrmode;
1058 
1059 	/*
1060 	 * Attempt to use DMA operation mode, if this
1061 	 * should fail, fall back to PIO mode
1062 	 */
1063 	if (!mmci_dma_start(host, datactrl))
1064 		return;
1065 
1066 	/* IRQ mode, map the SG list for CPU reading/writing */
1067 	mmci_init_sg(host, data);
1068 
1069 	if (data->flags & MMC_DATA_READ) {
1070 		irqmask = MCI_RXFIFOHALFFULLMASK;
1071 
1072 		/*
1073 		 * If we have less than the fifo 'half-full' threshold to
1074 		 * transfer, trigger a PIO interrupt as soon as any data
1075 		 * is available.
1076 		 */
1077 		if (host->size < variant->fifohalfsize)
1078 			irqmask |= MCI_RXDATAAVLBLMASK;
1079 	} else {
1080 		/*
1081 		 * We don't actually need to include "FIFO empty" here
1082 		 * since its implicit in "FIFO half empty".
1083 		 */
1084 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1085 	}
1086 
1087 	mmci_write_datactrlreg(host, datactrl);
1088 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1089 	mmci_set_mask1(host, irqmask);
1090 }
1091 
1092 static void
1093 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1094 {
1095 	void __iomem *base = host->base;
1096 
1097 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1098 	    cmd->opcode, cmd->arg, cmd->flags);
1099 
1100 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1101 		writel(0, base + MMCICOMMAND);
1102 		mmci_reg_delay(host);
1103 	}
1104 
1105 	if (host->variant->cmdreg_stop &&
1106 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1107 		c |= host->variant->cmdreg_stop;
1108 
1109 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1110 	if (cmd->flags & MMC_RSP_PRESENT) {
1111 		if (cmd->flags & MMC_RSP_136)
1112 			c |= host->variant->cmdreg_lrsp_crc;
1113 		else if (cmd->flags & MMC_RSP_CRC)
1114 			c |= host->variant->cmdreg_srsp_crc;
1115 		else
1116 			c |= host->variant->cmdreg_srsp;
1117 	}
1118 	if (/*interrupt*/0)
1119 		c |= MCI_CPSM_INTERRUPT;
1120 
1121 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1122 		c |= host->variant->data_cmd_enable;
1123 
1124 	host->cmd = cmd;
1125 
1126 	writel(cmd->arg, base + MMCIARGUMENT);
1127 	writel(c, base + MMCICOMMAND);
1128 }
1129 
1130 static void mmci_stop_command(struct mmci_host *host)
1131 {
1132 	host->stop_abort.error = 0;
1133 	mmci_start_command(host, &host->stop_abort, 0);
1134 }
1135 
1136 static void
1137 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1138 	      unsigned int status)
1139 {
1140 	unsigned int status_err;
1141 
1142 	/* Make sure we have data to handle */
1143 	if (!data)
1144 		return;
1145 
1146 	/* First check for errors */
1147 	status_err = status & (host->variant->start_err |
1148 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1149 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1150 
1151 	if (status_err) {
1152 		u32 remain, success;
1153 
1154 		/* Terminate the DMA transfer */
1155 		mmci_dma_error(host);
1156 
1157 		/*
1158 		 * Calculate how far we are into the transfer.  Note that
1159 		 * the data counter gives the number of bytes transferred
1160 		 * on the MMC bus, not on the host side.  On reads, this
1161 		 * can be as much as a FIFO-worth of data ahead.  This
1162 		 * matters for FIFO overruns only.
1163 		 */
1164 		if (!host->variant->datacnt_useless) {
1165 			remain = readl(host->base + MMCIDATACNT);
1166 			success = data->blksz * data->blocks - remain;
1167 		} else {
1168 			success = 0;
1169 		}
1170 
1171 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1172 			status_err, success);
1173 		if (status_err & MCI_DATACRCFAIL) {
1174 			/* Last block was not successful */
1175 			success -= 1;
1176 			data->error = -EILSEQ;
1177 		} else if (status_err & MCI_DATATIMEOUT) {
1178 			data->error = -ETIMEDOUT;
1179 		} else if (status_err & MCI_STARTBITERR) {
1180 			data->error = -ECOMM;
1181 		} else if (status_err & MCI_TXUNDERRUN) {
1182 			data->error = -EIO;
1183 		} else if (status_err & MCI_RXOVERRUN) {
1184 			if (success > host->variant->fifosize)
1185 				success -= host->variant->fifosize;
1186 			else
1187 				success = 0;
1188 			data->error = -EIO;
1189 		}
1190 		data->bytes_xfered = round_down(success, data->blksz);
1191 	}
1192 
1193 	if (status & MCI_DATABLOCKEND)
1194 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1195 
1196 	if (status & MCI_DATAEND || data->error) {
1197 		mmci_dma_finalize(host, data);
1198 
1199 		mmci_stop_data(host);
1200 
1201 		if (!data->error)
1202 			/* The error clause is handled above, success! */
1203 			data->bytes_xfered = data->blksz * data->blocks;
1204 
1205 		if (!data->stop) {
1206 			if (host->variant->cmdreg_stop && data->error)
1207 				mmci_stop_command(host);
1208 			else
1209 				mmci_request_end(host, data->mrq);
1210 		} else if (host->mrq->sbc && !data->error) {
1211 			mmci_request_end(host, data->mrq);
1212 		} else {
1213 			mmci_start_command(host, data->stop, 0);
1214 		}
1215 	}
1216 }
1217 
1218 static void
1219 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1220 	     unsigned int status)
1221 {
1222 	void __iomem *base = host->base;
1223 	bool sbc;
1224 
1225 	if (!cmd)
1226 		return;
1227 
1228 	sbc = (cmd == host->mrq->sbc);
1229 
1230 	/*
1231 	 * We need to be one of these interrupts to be considered worth
1232 	 * handling. Note that we tag on any latent IRQs postponed
1233 	 * due to waiting for busy status.
1234 	 */
1235 	if (!((status|host->busy_status) &
1236 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1237 		return;
1238 
1239 	/*
1240 	 * ST Micro variant: handle busy detection.
1241 	 */
1242 	if (host->variant->busy_detect) {
1243 		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1244 
1245 		/* We are busy with a command, return */
1246 		if (host->busy_status &&
1247 		    (status & host->variant->busy_detect_flag))
1248 			return;
1249 
1250 		/*
1251 		 * We were not busy, but we now got a busy response on
1252 		 * something that was not an error, and we double-check
1253 		 * that the special busy status bit is still set before
1254 		 * proceeding.
1255 		 */
1256 		if (!host->busy_status && busy_resp &&
1257 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1258 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1259 
1260 			/* Clear the busy start IRQ */
1261 			writel(host->variant->busy_detect_mask,
1262 			       host->base + MMCICLEAR);
1263 
1264 			/* Unmask the busy end IRQ */
1265 			writel(readl(base + MMCIMASK0) |
1266 			       host->variant->busy_detect_mask,
1267 			       base + MMCIMASK0);
1268 			/*
1269 			 * Now cache the last response status code (until
1270 			 * the busy bit goes low), and return.
1271 			 */
1272 			host->busy_status =
1273 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1274 			return;
1275 		}
1276 
1277 		/*
1278 		 * At this point we are not busy with a command, we have
1279 		 * not received a new busy request, clear and mask the busy
1280 		 * end IRQ and fall through to process the IRQ.
1281 		 */
1282 		if (host->busy_status) {
1283 
1284 			writel(host->variant->busy_detect_mask,
1285 			       host->base + MMCICLEAR);
1286 
1287 			writel(readl(base + MMCIMASK0) &
1288 			       ~host->variant->busy_detect_mask,
1289 			       base + MMCIMASK0);
1290 			host->busy_status = 0;
1291 		}
1292 	}
1293 
1294 	host->cmd = NULL;
1295 
1296 	if (status & MCI_CMDTIMEOUT) {
1297 		cmd->error = -ETIMEDOUT;
1298 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1299 		cmd->error = -EILSEQ;
1300 	} else {
1301 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1302 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1303 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1304 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1305 	}
1306 
1307 	if ((!sbc && !cmd->data) || cmd->error) {
1308 		if (host->data) {
1309 			/* Terminate the DMA transfer */
1310 			mmci_dma_error(host);
1311 
1312 			mmci_stop_data(host);
1313 			if (host->variant->cmdreg_stop && cmd->error) {
1314 				mmci_stop_command(host);
1315 				return;
1316 			}
1317 		}
1318 		mmci_request_end(host, host->mrq);
1319 	} else if (sbc) {
1320 		mmci_start_command(host, host->mrq->cmd, 0);
1321 	} else if (!host->variant->datactrl_first &&
1322 		   !(cmd->data->flags & MMC_DATA_READ)) {
1323 		mmci_start_data(host, cmd->data);
1324 	}
1325 }
1326 
1327 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1328 {
1329 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1330 }
1331 
1332 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1333 {
1334 	/*
1335 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1336 	 * from the fifo range should be used
1337 	 */
1338 	if (status & MCI_RXFIFOHALFFULL)
1339 		return host->variant->fifohalfsize;
1340 	else if (status & MCI_RXDATAAVLBL)
1341 		return 4;
1342 
1343 	return 0;
1344 }
1345 
1346 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1347 {
1348 	void __iomem *base = host->base;
1349 	char *ptr = buffer;
1350 	u32 status = readl(host->base + MMCISTATUS);
1351 	int host_remain = host->size;
1352 
1353 	do {
1354 		int count = host->get_rx_fifocnt(host, status, host_remain);
1355 
1356 		if (count > remain)
1357 			count = remain;
1358 
1359 		if (count <= 0)
1360 			break;
1361 
1362 		/*
1363 		 * SDIO especially may want to send something that is
1364 		 * not divisible by 4 (as opposed to card sectors
1365 		 * etc). Therefore make sure to always read the last bytes
1366 		 * while only doing full 32-bit reads towards the FIFO.
1367 		 */
1368 		if (unlikely(count & 0x3)) {
1369 			if (count < 4) {
1370 				unsigned char buf[4];
1371 				ioread32_rep(base + MMCIFIFO, buf, 1);
1372 				memcpy(ptr, buf, count);
1373 			} else {
1374 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1375 				count &= ~0x3;
1376 			}
1377 		} else {
1378 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1379 		}
1380 
1381 		ptr += count;
1382 		remain -= count;
1383 		host_remain -= count;
1384 
1385 		if (remain == 0)
1386 			break;
1387 
1388 		status = readl(base + MMCISTATUS);
1389 	} while (status & MCI_RXDATAAVLBL);
1390 
1391 	return ptr - buffer;
1392 }
1393 
1394 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1395 {
1396 	struct variant_data *variant = host->variant;
1397 	void __iomem *base = host->base;
1398 	char *ptr = buffer;
1399 
1400 	do {
1401 		unsigned int count, maxcnt;
1402 
1403 		maxcnt = status & MCI_TXFIFOEMPTY ?
1404 			 variant->fifosize : variant->fifohalfsize;
1405 		count = min(remain, maxcnt);
1406 
1407 		/*
1408 		 * SDIO especially may want to send something that is
1409 		 * not divisible by 4 (as opposed to card sectors
1410 		 * etc), and the FIFO only accept full 32-bit writes.
1411 		 * So compensate by adding +3 on the count, a single
1412 		 * byte become a 32bit write, 7 bytes will be two
1413 		 * 32bit writes etc.
1414 		 */
1415 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1416 
1417 		ptr += count;
1418 		remain -= count;
1419 
1420 		if (remain == 0)
1421 			break;
1422 
1423 		status = readl(base + MMCISTATUS);
1424 	} while (status & MCI_TXFIFOHALFEMPTY);
1425 
1426 	return ptr - buffer;
1427 }
1428 
1429 /*
1430  * PIO data transfer IRQ handler.
1431  */
1432 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1433 {
1434 	struct mmci_host *host = dev_id;
1435 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1436 	struct variant_data *variant = host->variant;
1437 	void __iomem *base = host->base;
1438 	u32 status;
1439 
1440 	status = readl(base + MMCISTATUS);
1441 
1442 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1443 
1444 	do {
1445 		unsigned int remain, len;
1446 		char *buffer;
1447 
1448 		/*
1449 		 * For write, we only need to test the half-empty flag
1450 		 * here - if the FIFO is completely empty, then by
1451 		 * definition it is more than half empty.
1452 		 *
1453 		 * For read, check for data available.
1454 		 */
1455 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1456 			break;
1457 
1458 		if (!sg_miter_next(sg_miter))
1459 			break;
1460 
1461 		buffer = sg_miter->addr;
1462 		remain = sg_miter->length;
1463 
1464 		len = 0;
1465 		if (status & MCI_RXACTIVE)
1466 			len = mmci_pio_read(host, buffer, remain);
1467 		if (status & MCI_TXACTIVE)
1468 			len = mmci_pio_write(host, buffer, remain, status);
1469 
1470 		sg_miter->consumed = len;
1471 
1472 		host->size -= len;
1473 		remain -= len;
1474 
1475 		if (remain)
1476 			break;
1477 
1478 		status = readl(base + MMCISTATUS);
1479 	} while (1);
1480 
1481 	sg_miter_stop(sg_miter);
1482 
1483 	/*
1484 	 * If we have less than the fifo 'half-full' threshold to transfer,
1485 	 * trigger a PIO interrupt as soon as any data is available.
1486 	 */
1487 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1488 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1489 
1490 	/*
1491 	 * If we run out of data, disable the data IRQs; this
1492 	 * prevents a race where the FIFO becomes empty before
1493 	 * the chip itself has disabled the data path, and
1494 	 * stops us racing with our data end IRQ.
1495 	 */
1496 	if (host->size == 0) {
1497 		mmci_set_mask1(host, 0);
1498 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1499 	}
1500 
1501 	return IRQ_HANDLED;
1502 }
1503 
1504 /*
1505  * Handle completion of command and data transfers.
1506  */
1507 static irqreturn_t mmci_irq(int irq, void *dev_id)
1508 {
1509 	struct mmci_host *host = dev_id;
1510 	u32 status;
1511 	int ret = 0;
1512 
1513 	spin_lock(&host->lock);
1514 
1515 	do {
1516 		status = readl(host->base + MMCISTATUS);
1517 
1518 		if (host->singleirq) {
1519 			if (status & host->mask1_reg)
1520 				mmci_pio_irq(irq, dev_id);
1521 
1522 			status &= ~host->variant->irq_pio_mask;
1523 		}
1524 
1525 		/*
1526 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1527 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1528 		 * detection variant is handled. Considering the HW seems to be
1529 		 * triggering the IRQ on both edges while monitoring DAT0 for
1530 		 * busy completion and that same status bit is used to monitor
1531 		 * start and end of busy detection, special care must be taken
1532 		 * to make sure that both start and end interrupts are always
1533 		 * cleared one after the other.
1534 		 */
1535 		status &= readl(host->base + MMCIMASK0);
1536 		if (host->variant->busy_detect)
1537 			writel(status & ~host->variant->busy_detect_mask,
1538 			       host->base + MMCICLEAR);
1539 		else
1540 			writel(status, host->base + MMCICLEAR);
1541 
1542 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1543 
1544 		if (host->variant->reversed_irq_handling) {
1545 			mmci_data_irq(host, host->data, status);
1546 			mmci_cmd_irq(host, host->cmd, status);
1547 		} else {
1548 			mmci_cmd_irq(host, host->cmd, status);
1549 			mmci_data_irq(host, host->data, status);
1550 		}
1551 
1552 		/*
1553 		 * Don't poll for busy completion in irq context.
1554 		 */
1555 		if (host->variant->busy_detect && host->busy_status)
1556 			status &= ~host->variant->busy_detect_flag;
1557 
1558 		ret = 1;
1559 	} while (status);
1560 
1561 	spin_unlock(&host->lock);
1562 
1563 	return IRQ_RETVAL(ret);
1564 }
1565 
1566 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1567 {
1568 	struct mmci_host *host = mmc_priv(mmc);
1569 	unsigned long flags;
1570 
1571 	WARN_ON(host->mrq != NULL);
1572 
1573 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1574 	if (mrq->cmd->error) {
1575 		mmc_request_done(mmc, mrq);
1576 		return;
1577 	}
1578 
1579 	spin_lock_irqsave(&host->lock, flags);
1580 
1581 	host->mrq = mrq;
1582 
1583 	if (mrq->data)
1584 		mmci_get_next_data(host, mrq->data);
1585 
1586 	if (mrq->data &&
1587 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1588 		mmci_start_data(host, mrq->data);
1589 
1590 	if (mrq->sbc)
1591 		mmci_start_command(host, mrq->sbc, 0);
1592 	else
1593 		mmci_start_command(host, mrq->cmd, 0);
1594 
1595 	spin_unlock_irqrestore(&host->lock, flags);
1596 }
1597 
1598 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1599 {
1600 	struct mmci_host *host = mmc_priv(mmc);
1601 	struct variant_data *variant = host->variant;
1602 	u32 pwr = 0;
1603 	unsigned long flags;
1604 	int ret;
1605 
1606 	if (host->plat->ios_handler &&
1607 		host->plat->ios_handler(mmc_dev(mmc), ios))
1608 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1609 
1610 	switch (ios->power_mode) {
1611 	case MMC_POWER_OFF:
1612 		if (!IS_ERR(mmc->supply.vmmc))
1613 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1614 
1615 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1616 			regulator_disable(mmc->supply.vqmmc);
1617 			host->vqmmc_enabled = false;
1618 		}
1619 
1620 		break;
1621 	case MMC_POWER_UP:
1622 		if (!IS_ERR(mmc->supply.vmmc))
1623 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1624 
1625 		/*
1626 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1627 		 * and instead uses MCI_PWR_ON so apply whatever value is
1628 		 * configured in the variant data.
1629 		 */
1630 		pwr |= variant->pwrreg_powerup;
1631 
1632 		break;
1633 	case MMC_POWER_ON:
1634 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1635 			ret = regulator_enable(mmc->supply.vqmmc);
1636 			if (ret < 0)
1637 				dev_err(mmc_dev(mmc),
1638 					"failed to enable vqmmc regulator\n");
1639 			else
1640 				host->vqmmc_enabled = true;
1641 		}
1642 
1643 		pwr |= MCI_PWR_ON;
1644 		break;
1645 	}
1646 
1647 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1648 		/*
1649 		 * The ST Micro variant has some additional bits
1650 		 * indicating signal direction for the signals in
1651 		 * the SD/MMC bus and feedback-clock usage.
1652 		 */
1653 		pwr |= host->pwr_reg_add;
1654 
1655 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1656 			pwr &= ~MCI_ST_DATA74DIREN;
1657 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1658 			pwr &= (~MCI_ST_DATA74DIREN &
1659 				~MCI_ST_DATA31DIREN &
1660 				~MCI_ST_DATA2DIREN);
1661 	}
1662 
1663 	if (variant->opendrain) {
1664 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1665 			pwr |= variant->opendrain;
1666 	} else {
1667 		/*
1668 		 * If the variant cannot configure the pads by its own, then we
1669 		 * expect the pinctrl to be able to do that for us
1670 		 */
1671 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1672 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1673 		else
1674 			pinctrl_select_state(host->pinctrl, host->pins_default);
1675 	}
1676 
1677 	/*
1678 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1679 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1680 	 */
1681 	if (!ios->clock && variant->pwrreg_clkgate)
1682 		pwr &= ~MCI_PWR_ON;
1683 
1684 	if (host->variant->explicit_mclk_control &&
1685 	    ios->clock != host->clock_cache) {
1686 		ret = clk_set_rate(host->clk, ios->clock);
1687 		if (ret < 0)
1688 			dev_err(mmc_dev(host->mmc),
1689 				"Error setting clock rate (%d)\n", ret);
1690 		else
1691 			host->mclk = clk_get_rate(host->clk);
1692 	}
1693 	host->clock_cache = ios->clock;
1694 
1695 	spin_lock_irqsave(&host->lock, flags);
1696 
1697 	if (host->ops && host->ops->set_clkreg)
1698 		host->ops->set_clkreg(host, ios->clock);
1699 	else
1700 		mmci_set_clkreg(host, ios->clock);
1701 
1702 	if (host->ops && host->ops->set_pwrreg)
1703 		host->ops->set_pwrreg(host, pwr);
1704 	else
1705 		mmci_write_pwrreg(host, pwr);
1706 
1707 	mmci_reg_delay(host);
1708 
1709 	spin_unlock_irqrestore(&host->lock, flags);
1710 }
1711 
1712 static int mmci_get_cd(struct mmc_host *mmc)
1713 {
1714 	struct mmci_host *host = mmc_priv(mmc);
1715 	struct mmci_platform_data *plat = host->plat;
1716 	unsigned int status = mmc_gpio_get_cd(mmc);
1717 
1718 	if (status == -ENOSYS) {
1719 		if (!plat->status)
1720 			return 1; /* Assume always present */
1721 
1722 		status = plat->status(mmc_dev(host->mmc));
1723 	}
1724 	return status;
1725 }
1726 
1727 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1728 {
1729 	int ret = 0;
1730 
1731 	if (!IS_ERR(mmc->supply.vqmmc)) {
1732 
1733 		switch (ios->signal_voltage) {
1734 		case MMC_SIGNAL_VOLTAGE_330:
1735 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1736 						2700000, 3600000);
1737 			break;
1738 		case MMC_SIGNAL_VOLTAGE_180:
1739 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1740 						1700000, 1950000);
1741 			break;
1742 		case MMC_SIGNAL_VOLTAGE_120:
1743 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1744 						1100000, 1300000);
1745 			break;
1746 		}
1747 
1748 		if (ret)
1749 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1750 	}
1751 
1752 	return ret;
1753 }
1754 
1755 static struct mmc_host_ops mmci_ops = {
1756 	.request	= mmci_request,
1757 	.pre_req	= mmci_pre_request,
1758 	.post_req	= mmci_post_request,
1759 	.set_ios	= mmci_set_ios,
1760 	.get_ro		= mmc_gpio_get_ro,
1761 	.get_cd		= mmci_get_cd,
1762 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1763 };
1764 
1765 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1766 {
1767 	struct mmci_host *host = mmc_priv(mmc);
1768 	int ret = mmc_of_parse(mmc);
1769 
1770 	if (ret)
1771 		return ret;
1772 
1773 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1774 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1775 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1776 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1777 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1778 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1779 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1780 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1781 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1782 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1783 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1784 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1785 	if (of_get_property(np, "st,sig-dir", NULL))
1786 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1787 	if (of_get_property(np, "st,neg-edge", NULL))
1788 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1789 	if (of_get_property(np, "st,use-ckin", NULL))
1790 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1791 
1792 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1793 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1794 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1795 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1796 
1797 	return 0;
1798 }
1799 
1800 static int mmci_probe(struct amba_device *dev,
1801 	const struct amba_id *id)
1802 {
1803 	struct mmci_platform_data *plat = dev->dev.platform_data;
1804 	struct device_node *np = dev->dev.of_node;
1805 	struct variant_data *variant = id->data;
1806 	struct mmci_host *host;
1807 	struct mmc_host *mmc;
1808 	int ret;
1809 
1810 	/* Must have platform data or Device Tree. */
1811 	if (!plat && !np) {
1812 		dev_err(&dev->dev, "No plat data or DT found\n");
1813 		return -EINVAL;
1814 	}
1815 
1816 	if (!plat) {
1817 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1818 		if (!plat)
1819 			return -ENOMEM;
1820 	}
1821 
1822 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1823 	if (!mmc)
1824 		return -ENOMEM;
1825 
1826 	ret = mmci_of_parse(np, mmc);
1827 	if (ret)
1828 		goto host_free;
1829 
1830 	host = mmc_priv(mmc);
1831 	host->mmc = mmc;
1832 
1833 	/*
1834 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1835 	 * pins can be set accordingly using pinctrl
1836 	 */
1837 	if (!variant->opendrain) {
1838 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1839 		if (IS_ERR(host->pinctrl)) {
1840 			dev_err(&dev->dev, "failed to get pinctrl");
1841 			ret = PTR_ERR(host->pinctrl);
1842 			goto host_free;
1843 		}
1844 
1845 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1846 							  PINCTRL_STATE_DEFAULT);
1847 		if (IS_ERR(host->pins_default)) {
1848 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1849 			ret = PTR_ERR(host->pins_default);
1850 			goto host_free;
1851 		}
1852 
1853 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1854 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1855 		if (IS_ERR(host->pins_opendrain)) {
1856 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1857 			ret = PTR_ERR(host->pins_opendrain);
1858 			goto host_free;
1859 		}
1860 	}
1861 
1862 	host->hw_designer = amba_manf(dev);
1863 	host->hw_revision = amba_rev(dev);
1864 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1865 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1866 
1867 	host->clk = devm_clk_get(&dev->dev, NULL);
1868 	if (IS_ERR(host->clk)) {
1869 		ret = PTR_ERR(host->clk);
1870 		goto host_free;
1871 	}
1872 
1873 	ret = clk_prepare_enable(host->clk);
1874 	if (ret)
1875 		goto host_free;
1876 
1877 	if (variant->qcom_fifo)
1878 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1879 	else
1880 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1881 
1882 	host->plat = plat;
1883 	host->variant = variant;
1884 	host->mclk = clk_get_rate(host->clk);
1885 	/*
1886 	 * According to the spec, mclk is max 100 MHz,
1887 	 * so we try to adjust the clock down to this,
1888 	 * (if possible).
1889 	 */
1890 	if (host->mclk > variant->f_max) {
1891 		ret = clk_set_rate(host->clk, variant->f_max);
1892 		if (ret < 0)
1893 			goto clk_disable;
1894 		host->mclk = clk_get_rate(host->clk);
1895 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1896 			host->mclk);
1897 	}
1898 
1899 	host->phybase = dev->res.start;
1900 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1901 	if (IS_ERR(host->base)) {
1902 		ret = PTR_ERR(host->base);
1903 		goto clk_disable;
1904 	}
1905 
1906 	if (variant->init)
1907 		variant->init(host);
1908 
1909 	/*
1910 	 * The ARM and ST versions of the block have slightly different
1911 	 * clock divider equations which means that the minimum divider
1912 	 * differs too.
1913 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1914 	 */
1915 	if (variant->st_clkdiv)
1916 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1917 	else if (variant->stm32_clkdiv)
1918 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1919 	else if (variant->explicit_mclk_control)
1920 		mmc->f_min = clk_round_rate(host->clk, 100000);
1921 	else
1922 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1923 	/*
1924 	 * If no maximum operating frequency is supplied, fall back to use
1925 	 * the module parameter, which has a (low) default value in case it
1926 	 * is not specified. Either value must not exceed the clock rate into
1927 	 * the block, of course.
1928 	 */
1929 	if (mmc->f_max)
1930 		mmc->f_max = variant->explicit_mclk_control ?
1931 				min(variant->f_max, mmc->f_max) :
1932 				min(host->mclk, mmc->f_max);
1933 	else
1934 		mmc->f_max = variant->explicit_mclk_control ?
1935 				fmax : min(host->mclk, fmax);
1936 
1937 
1938 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1939 
1940 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1941 	if (IS_ERR(host->rst)) {
1942 		ret = PTR_ERR(host->rst);
1943 		goto clk_disable;
1944 	}
1945 
1946 	/* Get regulators and the supported OCR mask */
1947 	ret = mmc_regulator_get_supply(mmc);
1948 	if (ret)
1949 		goto clk_disable;
1950 
1951 	if (!mmc->ocr_avail)
1952 		mmc->ocr_avail = plat->ocr_mask;
1953 	else if (plat->ocr_mask)
1954 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1955 
1956 	/* We support these capabilities. */
1957 	mmc->caps |= MMC_CAP_CMD23;
1958 
1959 	/*
1960 	 * Enable busy detection.
1961 	 */
1962 	if (variant->busy_detect) {
1963 		mmci_ops.card_busy = mmci_card_busy;
1964 		/*
1965 		 * Not all variants have a flag to enable busy detection
1966 		 * in the DPSM, but if they do, set it here.
1967 		 */
1968 		if (variant->busy_dpsm_flag)
1969 			mmci_write_datactrlreg(host,
1970 					       host->variant->busy_dpsm_flag);
1971 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1972 		mmc->max_busy_timeout = 0;
1973 	}
1974 
1975 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1976 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1977 	host->stop_abort.arg = 0;
1978 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1979 
1980 	mmc->ops = &mmci_ops;
1981 
1982 	/* We support these PM capabilities. */
1983 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1984 
1985 	/*
1986 	 * We can do SGIO
1987 	 */
1988 	mmc->max_segs = NR_SG;
1989 
1990 	/*
1991 	 * Since only a certain number of bits are valid in the data length
1992 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1993 	 * single request.
1994 	 */
1995 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1996 
1997 	/*
1998 	 * Set the maximum segment size.  Since we aren't doing DMA
1999 	 * (yet) we are only limited by the data length register.
2000 	 */
2001 	mmc->max_seg_size = mmc->max_req_size;
2002 
2003 	/*
2004 	 * Block size can be up to 2048 bytes, but must be a power of two.
2005 	 */
2006 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2007 
2008 	/*
2009 	 * Limit the number of blocks transferred so that we don't overflow
2010 	 * the maximum request size.
2011 	 */
2012 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2013 
2014 	spin_lock_init(&host->lock);
2015 
2016 	writel(0, host->base + MMCIMASK0);
2017 
2018 	if (variant->mmcimask1)
2019 		writel(0, host->base + MMCIMASK1);
2020 
2021 	writel(0xfff, host->base + MMCICLEAR);
2022 
2023 	/*
2024 	 * If:
2025 	 * - not using DT but using a descriptor table, or
2026 	 * - using a table of descriptors ALONGSIDE DT, or
2027 	 * look up these descriptors named "cd" and "wp" right here, fail
2028 	 * silently of these do not exist
2029 	 */
2030 	if (!np) {
2031 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2032 		if (ret == -EPROBE_DEFER)
2033 			goto clk_disable;
2034 
2035 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2036 		if (ret == -EPROBE_DEFER)
2037 			goto clk_disable;
2038 	}
2039 
2040 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2041 			DRIVER_NAME " (cmd)", host);
2042 	if (ret)
2043 		goto clk_disable;
2044 
2045 	if (!dev->irq[1])
2046 		host->singleirq = true;
2047 	else {
2048 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2049 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2050 		if (ret)
2051 			goto clk_disable;
2052 	}
2053 
2054 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2055 
2056 	amba_set_drvdata(dev, mmc);
2057 
2058 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2059 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2060 		 amba_rev(dev), (unsigned long long)dev->res.start,
2061 		 dev->irq[0], dev->irq[1]);
2062 
2063 	mmci_dma_setup(host);
2064 
2065 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2066 	pm_runtime_use_autosuspend(&dev->dev);
2067 
2068 	mmc_add_host(mmc);
2069 
2070 	pm_runtime_put(&dev->dev);
2071 	return 0;
2072 
2073  clk_disable:
2074 	clk_disable_unprepare(host->clk);
2075  host_free:
2076 	mmc_free_host(mmc);
2077 	return ret;
2078 }
2079 
2080 static int mmci_remove(struct amba_device *dev)
2081 {
2082 	struct mmc_host *mmc = amba_get_drvdata(dev);
2083 
2084 	if (mmc) {
2085 		struct mmci_host *host = mmc_priv(mmc);
2086 		struct variant_data *variant = host->variant;
2087 
2088 		/*
2089 		 * Undo pm_runtime_put() in probe.  We use the _sync
2090 		 * version here so that we can access the primecell.
2091 		 */
2092 		pm_runtime_get_sync(&dev->dev);
2093 
2094 		mmc_remove_host(mmc);
2095 
2096 		writel(0, host->base + MMCIMASK0);
2097 
2098 		if (variant->mmcimask1)
2099 			writel(0, host->base + MMCIMASK1);
2100 
2101 		writel(0, host->base + MMCICOMMAND);
2102 		writel(0, host->base + MMCIDATACTRL);
2103 
2104 		mmci_dma_release(host);
2105 		clk_disable_unprepare(host->clk);
2106 		mmc_free_host(mmc);
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 #ifdef CONFIG_PM
2113 static void mmci_save(struct mmci_host *host)
2114 {
2115 	unsigned long flags;
2116 
2117 	spin_lock_irqsave(&host->lock, flags);
2118 
2119 	writel(0, host->base + MMCIMASK0);
2120 	if (host->variant->pwrreg_nopower) {
2121 		writel(0, host->base + MMCIDATACTRL);
2122 		writel(0, host->base + MMCIPOWER);
2123 		writel(0, host->base + MMCICLOCK);
2124 	}
2125 	mmci_reg_delay(host);
2126 
2127 	spin_unlock_irqrestore(&host->lock, flags);
2128 }
2129 
2130 static void mmci_restore(struct mmci_host *host)
2131 {
2132 	unsigned long flags;
2133 
2134 	spin_lock_irqsave(&host->lock, flags);
2135 
2136 	if (host->variant->pwrreg_nopower) {
2137 		writel(host->clk_reg, host->base + MMCICLOCK);
2138 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2139 		writel(host->pwr_reg, host->base + MMCIPOWER);
2140 	}
2141 	writel(MCI_IRQENABLE | host->variant->start_err,
2142 	       host->base + MMCIMASK0);
2143 	mmci_reg_delay(host);
2144 
2145 	spin_unlock_irqrestore(&host->lock, flags);
2146 }
2147 
2148 static int mmci_runtime_suspend(struct device *dev)
2149 {
2150 	struct amba_device *adev = to_amba_device(dev);
2151 	struct mmc_host *mmc = amba_get_drvdata(adev);
2152 
2153 	if (mmc) {
2154 		struct mmci_host *host = mmc_priv(mmc);
2155 		pinctrl_pm_select_sleep_state(dev);
2156 		mmci_save(host);
2157 		clk_disable_unprepare(host->clk);
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static int mmci_runtime_resume(struct device *dev)
2164 {
2165 	struct amba_device *adev = to_amba_device(dev);
2166 	struct mmc_host *mmc = amba_get_drvdata(adev);
2167 
2168 	if (mmc) {
2169 		struct mmci_host *host = mmc_priv(mmc);
2170 		clk_prepare_enable(host->clk);
2171 		mmci_restore(host);
2172 		pinctrl_pm_select_default_state(dev);
2173 	}
2174 
2175 	return 0;
2176 }
2177 #endif
2178 
2179 static const struct dev_pm_ops mmci_dev_pm_ops = {
2180 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2181 				pm_runtime_force_resume)
2182 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2183 };
2184 
2185 static const struct amba_id mmci_ids[] = {
2186 	{
2187 		.id	= 0x00041180,
2188 		.mask	= 0xff0fffff,
2189 		.data	= &variant_arm,
2190 	},
2191 	{
2192 		.id	= 0x01041180,
2193 		.mask	= 0xff0fffff,
2194 		.data	= &variant_arm_extended_fifo,
2195 	},
2196 	{
2197 		.id	= 0x02041180,
2198 		.mask	= 0xff0fffff,
2199 		.data	= &variant_arm_extended_fifo_hwfc,
2200 	},
2201 	{
2202 		.id	= 0x00041181,
2203 		.mask	= 0x000fffff,
2204 		.data	= &variant_arm,
2205 	},
2206 	/* ST Micro variants */
2207 	{
2208 		.id     = 0x00180180,
2209 		.mask   = 0x00ffffff,
2210 		.data	= &variant_u300,
2211 	},
2212 	{
2213 		.id     = 0x10180180,
2214 		.mask   = 0xf0ffffff,
2215 		.data	= &variant_nomadik,
2216 	},
2217 	{
2218 		.id     = 0x00280180,
2219 		.mask   = 0x00ffffff,
2220 		.data	= &variant_nomadik,
2221 	},
2222 	{
2223 		.id     = 0x00480180,
2224 		.mask   = 0xf0ffffff,
2225 		.data	= &variant_ux500,
2226 	},
2227 	{
2228 		.id     = 0x10480180,
2229 		.mask   = 0xf0ffffff,
2230 		.data	= &variant_ux500v2,
2231 	},
2232 	{
2233 		.id     = 0x00880180,
2234 		.mask   = 0x00ffffff,
2235 		.data	= &variant_stm32,
2236 	},
2237 	{
2238 		.id     = 0x10153180,
2239 		.mask	= 0xf0ffffff,
2240 		.data	= &variant_stm32_sdmmc,
2241 	},
2242 	/* Qualcomm variants */
2243 	{
2244 		.id     = 0x00051180,
2245 		.mask	= 0x000fffff,
2246 		.data	= &variant_qcom,
2247 	},
2248 	{ 0, 0 },
2249 };
2250 
2251 MODULE_DEVICE_TABLE(amba, mmci_ids);
2252 
2253 static struct amba_driver mmci_driver = {
2254 	.drv		= {
2255 		.name	= DRIVER_NAME,
2256 		.pm	= &mmci_dev_pm_ops,
2257 	},
2258 	.probe		= mmci_probe,
2259 	.remove		= mmci_remove,
2260 	.id_table	= mmci_ids,
2261 };
2262 
2263 module_amba_driver(mmci_driver);
2264 
2265 module_param(fmax, uint, 0444);
2266 
2267 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2268 MODULE_LICENSE("GPL");
2269