xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 9a597016)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/amba/bus.h>
26 #include <linux/clk.h>
27 #include <linux/scatterlist.h>
28 #include <linux/gpio.h>
29 #include <linux/of_gpio.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 
37 #include <asm/div64.h>
38 #include <asm/io.h>
39 #include <asm/sizes.h>
40 
41 #include "mmci.h"
42 
43 #define DRIVER_NAME "mmci-pl18x"
44 
45 static unsigned int fmax = 515633;
46 
47 /**
48  * struct variant_data - MMCI variant-specific quirks
49  * @clkreg: default value for MCICLOCK register
50  * @clkreg_enable: enable value for MMCICLOCK register
51  * @datalength_bits: number of bits in the MMCIDATALENGTH register
52  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
53  *	      is asserted (likewise for RX)
54  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
55  *		  is asserted (likewise for RX)
56  * @sdio: variant supports SDIO
57  * @st_clkdiv: true if using a ST-specific clock divider algorithm
58  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
59  * @pwrreg_powerup: power up value for MMCIPOWER register
60  * @signal_direction: input/out direction of bus signals can be indicated
61  */
62 struct variant_data {
63 	unsigned int		clkreg;
64 	unsigned int		clkreg_enable;
65 	unsigned int		datalength_bits;
66 	unsigned int		fifosize;
67 	unsigned int		fifohalfsize;
68 	bool			sdio;
69 	bool			st_clkdiv;
70 	bool			blksz_datactrl16;
71 	u32			pwrreg_powerup;
72 	bool			signal_direction;
73 };
74 
75 static struct variant_data variant_arm = {
76 	.fifosize		= 16 * 4,
77 	.fifohalfsize		= 8 * 4,
78 	.datalength_bits	= 16,
79 	.pwrreg_powerup		= MCI_PWR_UP,
80 };
81 
82 static struct variant_data variant_arm_extended_fifo = {
83 	.fifosize		= 128 * 4,
84 	.fifohalfsize		= 64 * 4,
85 	.datalength_bits	= 16,
86 	.pwrreg_powerup		= MCI_PWR_UP,
87 };
88 
89 static struct variant_data variant_u300 = {
90 	.fifosize		= 16 * 4,
91 	.fifohalfsize		= 8 * 4,
92 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
93 	.datalength_bits	= 16,
94 	.sdio			= true,
95 	.pwrreg_powerup		= MCI_PWR_ON,
96 	.signal_direction	= true,
97 };
98 
99 static struct variant_data variant_ux500 = {
100 	.fifosize		= 30 * 4,
101 	.fifohalfsize		= 8 * 4,
102 	.clkreg			= MCI_CLK_ENABLE,
103 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
104 	.datalength_bits	= 24,
105 	.sdio			= true,
106 	.st_clkdiv		= true,
107 	.pwrreg_powerup		= MCI_PWR_ON,
108 	.signal_direction	= true,
109 };
110 
111 static struct variant_data variant_ux500v2 = {
112 	.fifosize		= 30 * 4,
113 	.fifohalfsize		= 8 * 4,
114 	.clkreg			= MCI_CLK_ENABLE,
115 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
116 	.datalength_bits	= 24,
117 	.sdio			= true,
118 	.st_clkdiv		= true,
119 	.blksz_datactrl16	= true,
120 	.pwrreg_powerup		= MCI_PWR_ON,
121 	.signal_direction	= true,
122 };
123 
124 /*
125  * This must be called with host->lock held
126  */
127 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
128 {
129 	if (host->clk_reg != clk) {
130 		host->clk_reg = clk;
131 		writel(clk, host->base + MMCICLOCK);
132 	}
133 }
134 
135 /*
136  * This must be called with host->lock held
137  */
138 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
139 {
140 	if (host->pwr_reg != pwr) {
141 		host->pwr_reg = pwr;
142 		writel(pwr, host->base + MMCIPOWER);
143 	}
144 }
145 
146 /*
147  * This must be called with host->lock held
148  */
149 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
150 {
151 	struct variant_data *variant = host->variant;
152 	u32 clk = variant->clkreg;
153 
154 	if (desired) {
155 		if (desired >= host->mclk) {
156 			clk = MCI_CLK_BYPASS;
157 			if (variant->st_clkdiv)
158 				clk |= MCI_ST_UX500_NEG_EDGE;
159 			host->cclk = host->mclk;
160 		} else if (variant->st_clkdiv) {
161 			/*
162 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
163 			 * => clkdiv = (mclk / f) - 2
164 			 * Round the divider up so we don't exceed the max
165 			 * frequency
166 			 */
167 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
168 			if (clk >= 256)
169 				clk = 255;
170 			host->cclk = host->mclk / (clk + 2);
171 		} else {
172 			/*
173 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
174 			 * => clkdiv = mclk / (2 * f) - 1
175 			 */
176 			clk = host->mclk / (2 * desired) - 1;
177 			if (clk >= 256)
178 				clk = 255;
179 			host->cclk = host->mclk / (2 * (clk + 1));
180 		}
181 
182 		clk |= variant->clkreg_enable;
183 		clk |= MCI_CLK_ENABLE;
184 		/* This hasn't proven to be worthwhile */
185 		/* clk |= MCI_CLK_PWRSAVE; */
186 	}
187 
188 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
189 		clk |= MCI_4BIT_BUS;
190 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
191 		clk |= MCI_ST_8BIT_BUS;
192 
193 	mmci_write_clkreg(host, clk);
194 }
195 
196 static void
197 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
198 {
199 	writel(0, host->base + MMCICOMMAND);
200 
201 	BUG_ON(host->data);
202 
203 	host->mrq = NULL;
204 	host->cmd = NULL;
205 
206 	mmc_request_done(host->mmc, mrq);
207 
208 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
209 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
210 }
211 
212 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
213 {
214 	void __iomem *base = host->base;
215 
216 	if (host->singleirq) {
217 		unsigned int mask0 = readl(base + MMCIMASK0);
218 
219 		mask0 &= ~MCI_IRQ1MASK;
220 		mask0 |= mask;
221 
222 		writel(mask0, base + MMCIMASK0);
223 	}
224 
225 	writel(mask, base + MMCIMASK1);
226 }
227 
228 static void mmci_stop_data(struct mmci_host *host)
229 {
230 	writel(0, host->base + MMCIDATACTRL);
231 	mmci_set_mask1(host, 0);
232 	host->data = NULL;
233 }
234 
235 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
236 {
237 	unsigned int flags = SG_MITER_ATOMIC;
238 
239 	if (data->flags & MMC_DATA_READ)
240 		flags |= SG_MITER_TO_SG;
241 	else
242 		flags |= SG_MITER_FROM_SG;
243 
244 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
245 }
246 
247 /*
248  * All the DMA operation mode stuff goes inside this ifdef.
249  * This assumes that you have a generic DMA device interface,
250  * no custom DMA interfaces are supported.
251  */
252 #ifdef CONFIG_DMA_ENGINE
253 static void __devinit mmci_dma_setup(struct mmci_host *host)
254 {
255 	struct mmci_platform_data *plat = host->plat;
256 	const char *rxname, *txname;
257 	dma_cap_mask_t mask;
258 
259 	if (!plat || !plat->dma_filter) {
260 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
261 		return;
262 	}
263 
264 	/* initialize pre request cookie */
265 	host->next_data.cookie = 1;
266 
267 	/* Try to acquire a generic DMA engine slave channel */
268 	dma_cap_zero(mask);
269 	dma_cap_set(DMA_SLAVE, mask);
270 
271 	/*
272 	 * If only an RX channel is specified, the driver will
273 	 * attempt to use it bidirectionally, however if it is
274 	 * is specified but cannot be located, DMA will be disabled.
275 	 */
276 	if (plat->dma_rx_param) {
277 		host->dma_rx_channel = dma_request_channel(mask,
278 							   plat->dma_filter,
279 							   plat->dma_rx_param);
280 		/* E.g if no DMA hardware is present */
281 		if (!host->dma_rx_channel)
282 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
283 	}
284 
285 	if (plat->dma_tx_param) {
286 		host->dma_tx_channel = dma_request_channel(mask,
287 							   plat->dma_filter,
288 							   plat->dma_tx_param);
289 		if (!host->dma_tx_channel)
290 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
291 	} else {
292 		host->dma_tx_channel = host->dma_rx_channel;
293 	}
294 
295 	if (host->dma_rx_channel)
296 		rxname = dma_chan_name(host->dma_rx_channel);
297 	else
298 		rxname = "none";
299 
300 	if (host->dma_tx_channel)
301 		txname = dma_chan_name(host->dma_tx_channel);
302 	else
303 		txname = "none";
304 
305 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
306 		 rxname, txname);
307 
308 	/*
309 	 * Limit the maximum segment size in any SG entry according to
310 	 * the parameters of the DMA engine device.
311 	 */
312 	if (host->dma_tx_channel) {
313 		struct device *dev = host->dma_tx_channel->device->dev;
314 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
315 
316 		if (max_seg_size < host->mmc->max_seg_size)
317 			host->mmc->max_seg_size = max_seg_size;
318 	}
319 	if (host->dma_rx_channel) {
320 		struct device *dev = host->dma_rx_channel->device->dev;
321 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
322 
323 		if (max_seg_size < host->mmc->max_seg_size)
324 			host->mmc->max_seg_size = max_seg_size;
325 	}
326 }
327 
328 /*
329  * This is used in __devinit or __devexit so inline it
330  * so it can be discarded.
331  */
332 static inline void mmci_dma_release(struct mmci_host *host)
333 {
334 	struct mmci_platform_data *plat = host->plat;
335 
336 	if (host->dma_rx_channel)
337 		dma_release_channel(host->dma_rx_channel);
338 	if (host->dma_tx_channel && plat->dma_tx_param)
339 		dma_release_channel(host->dma_tx_channel);
340 	host->dma_rx_channel = host->dma_tx_channel = NULL;
341 }
342 
343 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
344 {
345 	struct dma_chan *chan = host->dma_current;
346 	enum dma_data_direction dir;
347 	u32 status;
348 	int i;
349 
350 	/* Wait up to 1ms for the DMA to complete */
351 	for (i = 0; ; i++) {
352 		status = readl(host->base + MMCISTATUS);
353 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
354 			break;
355 		udelay(10);
356 	}
357 
358 	/*
359 	 * Check to see whether we still have some data left in the FIFO -
360 	 * this catches DMA controllers which are unable to monitor the
361 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
362 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
363 	 */
364 	if (status & MCI_RXDATAAVLBLMASK) {
365 		dmaengine_terminate_all(chan);
366 		if (!data->error)
367 			data->error = -EIO;
368 	}
369 
370 	if (data->flags & MMC_DATA_WRITE) {
371 		dir = DMA_TO_DEVICE;
372 	} else {
373 		dir = DMA_FROM_DEVICE;
374 	}
375 
376 	if (!data->host_cookie)
377 		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
378 
379 	/*
380 	 * Use of DMA with scatter-gather is impossible.
381 	 * Give up with DMA and switch back to PIO mode.
382 	 */
383 	if (status & MCI_RXDATAAVLBLMASK) {
384 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
385 		mmci_dma_release(host);
386 	}
387 }
388 
389 static void mmci_dma_data_error(struct mmci_host *host)
390 {
391 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
392 	dmaengine_terminate_all(host->dma_current);
393 }
394 
395 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
396 			      struct mmci_host_next *next)
397 {
398 	struct variant_data *variant = host->variant;
399 	struct dma_slave_config conf = {
400 		.src_addr = host->phybase + MMCIFIFO,
401 		.dst_addr = host->phybase + MMCIFIFO,
402 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
403 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
404 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
405 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
406 		.device_fc = false,
407 	};
408 	struct dma_chan *chan;
409 	struct dma_device *device;
410 	struct dma_async_tx_descriptor *desc;
411 	enum dma_data_direction buffer_dirn;
412 	int nr_sg;
413 
414 	/* Check if next job is already prepared */
415 	if (data->host_cookie && !next &&
416 	    host->dma_current && host->dma_desc_current)
417 		return 0;
418 
419 	if (!next) {
420 		host->dma_current = NULL;
421 		host->dma_desc_current = NULL;
422 	}
423 
424 	if (data->flags & MMC_DATA_READ) {
425 		conf.direction = DMA_DEV_TO_MEM;
426 		buffer_dirn = DMA_FROM_DEVICE;
427 		chan = host->dma_rx_channel;
428 	} else {
429 		conf.direction = DMA_MEM_TO_DEV;
430 		buffer_dirn = DMA_TO_DEVICE;
431 		chan = host->dma_tx_channel;
432 	}
433 
434 	/* If there's no DMA channel, fall back to PIO */
435 	if (!chan)
436 		return -EINVAL;
437 
438 	/* If less than or equal to the fifo size, don't bother with DMA */
439 	if (data->blksz * data->blocks <= variant->fifosize)
440 		return -EINVAL;
441 
442 	device = chan->device;
443 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
444 	if (nr_sg == 0)
445 		return -EINVAL;
446 
447 	dmaengine_slave_config(chan, &conf);
448 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
449 					    conf.direction, DMA_CTRL_ACK);
450 	if (!desc)
451 		goto unmap_exit;
452 
453 	if (next) {
454 		next->dma_chan = chan;
455 		next->dma_desc = desc;
456 	} else {
457 		host->dma_current = chan;
458 		host->dma_desc_current = desc;
459 	}
460 
461 	return 0;
462 
463  unmap_exit:
464 	if (!next)
465 		dmaengine_terminate_all(chan);
466 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
467 	return -ENOMEM;
468 }
469 
470 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
471 {
472 	int ret;
473 	struct mmc_data *data = host->data;
474 
475 	ret = mmci_dma_prep_data(host, host->data, NULL);
476 	if (ret)
477 		return ret;
478 
479 	/* Okay, go for it. */
480 	dev_vdbg(mmc_dev(host->mmc),
481 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
482 		 data->sg_len, data->blksz, data->blocks, data->flags);
483 	dmaengine_submit(host->dma_desc_current);
484 	dma_async_issue_pending(host->dma_current);
485 
486 	datactrl |= MCI_DPSM_DMAENABLE;
487 
488 	/* Trigger the DMA transfer */
489 	writel(datactrl, host->base + MMCIDATACTRL);
490 
491 	/*
492 	 * Let the MMCI say when the data is ended and it's time
493 	 * to fire next DMA request. When that happens, MMCI will
494 	 * call mmci_data_end()
495 	 */
496 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
497 	       host->base + MMCIMASK0);
498 	return 0;
499 }
500 
501 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
502 {
503 	struct mmci_host_next *next = &host->next_data;
504 
505 	if (data->host_cookie && data->host_cookie != next->cookie) {
506 		pr_warning("[%s] invalid cookie: data->host_cookie %d"
507 		       " host->next_data.cookie %d\n",
508 		       __func__, data->host_cookie, host->next_data.cookie);
509 		data->host_cookie = 0;
510 	}
511 
512 	if (!data->host_cookie)
513 		return;
514 
515 	host->dma_desc_current = next->dma_desc;
516 	host->dma_current = next->dma_chan;
517 
518 	next->dma_desc = NULL;
519 	next->dma_chan = NULL;
520 }
521 
522 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
523 			     bool is_first_req)
524 {
525 	struct mmci_host *host = mmc_priv(mmc);
526 	struct mmc_data *data = mrq->data;
527 	struct mmci_host_next *nd = &host->next_data;
528 
529 	if (!data)
530 		return;
531 
532 	if (data->host_cookie) {
533 		data->host_cookie = 0;
534 		return;
535 	}
536 
537 	/* if config for dma */
538 	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
539 	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
540 		if (mmci_dma_prep_data(host, data, nd))
541 			data->host_cookie = 0;
542 		else
543 			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
544 	}
545 }
546 
547 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
548 			      int err)
549 {
550 	struct mmci_host *host = mmc_priv(mmc);
551 	struct mmc_data *data = mrq->data;
552 	struct dma_chan *chan;
553 	enum dma_data_direction dir;
554 
555 	if (!data)
556 		return;
557 
558 	if (data->flags & MMC_DATA_READ) {
559 		dir = DMA_FROM_DEVICE;
560 		chan = host->dma_rx_channel;
561 	} else {
562 		dir = DMA_TO_DEVICE;
563 		chan = host->dma_tx_channel;
564 	}
565 
566 
567 	/* if config for dma */
568 	if (chan) {
569 		if (err)
570 			dmaengine_terminate_all(chan);
571 		if (data->host_cookie)
572 			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
573 				     data->sg_len, dir);
574 		mrq->data->host_cookie = 0;
575 	}
576 }
577 
578 #else
579 /* Blank functions if the DMA engine is not available */
580 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
581 {
582 }
583 static inline void mmci_dma_setup(struct mmci_host *host)
584 {
585 }
586 
587 static inline void mmci_dma_release(struct mmci_host *host)
588 {
589 }
590 
591 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
592 {
593 }
594 
595 static inline void mmci_dma_data_error(struct mmci_host *host)
596 {
597 }
598 
599 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
600 {
601 	return -ENOSYS;
602 }
603 
604 #define mmci_pre_request NULL
605 #define mmci_post_request NULL
606 
607 #endif
608 
609 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
610 {
611 	struct variant_data *variant = host->variant;
612 	unsigned int datactrl, timeout, irqmask;
613 	unsigned long long clks;
614 	void __iomem *base;
615 	int blksz_bits;
616 
617 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
618 		data->blksz, data->blocks, data->flags);
619 
620 	host->data = data;
621 	host->size = data->blksz * data->blocks;
622 	data->bytes_xfered = 0;
623 
624 	clks = (unsigned long long)data->timeout_ns * host->cclk;
625 	do_div(clks, 1000000000UL);
626 
627 	timeout = data->timeout_clks + (unsigned int)clks;
628 
629 	base = host->base;
630 	writel(timeout, base + MMCIDATATIMER);
631 	writel(host->size, base + MMCIDATALENGTH);
632 
633 	blksz_bits = ffs(data->blksz) - 1;
634 	BUG_ON(1 << blksz_bits != data->blksz);
635 
636 	if (variant->blksz_datactrl16)
637 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
638 	else
639 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
640 
641 	if (data->flags & MMC_DATA_READ)
642 		datactrl |= MCI_DPSM_DIRECTION;
643 
644 	/* The ST Micro variants has a special bit to enable SDIO */
645 	if (variant->sdio && host->mmc->card)
646 		if (mmc_card_sdio(host->mmc->card))
647 			datactrl |= MCI_ST_DPSM_SDIOEN;
648 
649 	/*
650 	 * Attempt to use DMA operation mode, if this
651 	 * should fail, fall back to PIO mode
652 	 */
653 	if (!mmci_dma_start_data(host, datactrl))
654 		return;
655 
656 	/* IRQ mode, map the SG list for CPU reading/writing */
657 	mmci_init_sg(host, data);
658 
659 	if (data->flags & MMC_DATA_READ) {
660 		irqmask = MCI_RXFIFOHALFFULLMASK;
661 
662 		/*
663 		 * If we have less than the fifo 'half-full' threshold to
664 		 * transfer, trigger a PIO interrupt as soon as any data
665 		 * is available.
666 		 */
667 		if (host->size < variant->fifohalfsize)
668 			irqmask |= MCI_RXDATAAVLBLMASK;
669 	} else {
670 		/*
671 		 * We don't actually need to include "FIFO empty" here
672 		 * since its implicit in "FIFO half empty".
673 		 */
674 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
675 	}
676 
677 	writel(datactrl, base + MMCIDATACTRL);
678 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
679 	mmci_set_mask1(host, irqmask);
680 }
681 
682 static void
683 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
684 {
685 	void __iomem *base = host->base;
686 
687 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
688 	    cmd->opcode, cmd->arg, cmd->flags);
689 
690 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
691 		writel(0, base + MMCICOMMAND);
692 		udelay(1);
693 	}
694 
695 	c |= cmd->opcode | MCI_CPSM_ENABLE;
696 	if (cmd->flags & MMC_RSP_PRESENT) {
697 		if (cmd->flags & MMC_RSP_136)
698 			c |= MCI_CPSM_LONGRSP;
699 		c |= MCI_CPSM_RESPONSE;
700 	}
701 	if (/*interrupt*/0)
702 		c |= MCI_CPSM_INTERRUPT;
703 
704 	host->cmd = cmd;
705 
706 	writel(cmd->arg, base + MMCIARGUMENT);
707 	writel(c, base + MMCICOMMAND);
708 }
709 
710 static void
711 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
712 	      unsigned int status)
713 {
714 	/* First check for errors */
715 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
716 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
717 		u32 remain, success;
718 
719 		/* Terminate the DMA transfer */
720 		if (dma_inprogress(host))
721 			mmci_dma_data_error(host);
722 
723 		/*
724 		 * Calculate how far we are into the transfer.  Note that
725 		 * the data counter gives the number of bytes transferred
726 		 * on the MMC bus, not on the host side.  On reads, this
727 		 * can be as much as a FIFO-worth of data ahead.  This
728 		 * matters for FIFO overruns only.
729 		 */
730 		remain = readl(host->base + MMCIDATACNT);
731 		success = data->blksz * data->blocks - remain;
732 
733 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
734 			status, success);
735 		if (status & MCI_DATACRCFAIL) {
736 			/* Last block was not successful */
737 			success -= 1;
738 			data->error = -EILSEQ;
739 		} else if (status & MCI_DATATIMEOUT) {
740 			data->error = -ETIMEDOUT;
741 		} else if (status & MCI_STARTBITERR) {
742 			data->error = -ECOMM;
743 		} else if (status & MCI_TXUNDERRUN) {
744 			data->error = -EIO;
745 		} else if (status & MCI_RXOVERRUN) {
746 			if (success > host->variant->fifosize)
747 				success -= host->variant->fifosize;
748 			else
749 				success = 0;
750 			data->error = -EIO;
751 		}
752 		data->bytes_xfered = round_down(success, data->blksz);
753 	}
754 
755 	if (status & MCI_DATABLOCKEND)
756 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
757 
758 	if (status & MCI_DATAEND || data->error) {
759 		if (dma_inprogress(host))
760 			mmci_dma_unmap(host, data);
761 		mmci_stop_data(host);
762 
763 		if (!data->error)
764 			/* The error clause is handled above, success! */
765 			data->bytes_xfered = data->blksz * data->blocks;
766 
767 		if (!data->stop) {
768 			mmci_request_end(host, data->mrq);
769 		} else {
770 			mmci_start_command(host, data->stop, 0);
771 		}
772 	}
773 }
774 
775 static void
776 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
777 	     unsigned int status)
778 {
779 	void __iomem *base = host->base;
780 
781 	host->cmd = NULL;
782 
783 	if (status & MCI_CMDTIMEOUT) {
784 		cmd->error = -ETIMEDOUT;
785 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
786 		cmd->error = -EILSEQ;
787 	} else {
788 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
789 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
790 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
791 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
792 	}
793 
794 	if (!cmd->data || cmd->error) {
795 		if (host->data) {
796 			/* Terminate the DMA transfer */
797 			if (dma_inprogress(host))
798 				mmci_dma_data_error(host);
799 			mmci_stop_data(host);
800 		}
801 		mmci_request_end(host, cmd->mrq);
802 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
803 		mmci_start_data(host, cmd->data);
804 	}
805 }
806 
807 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
808 {
809 	void __iomem *base = host->base;
810 	char *ptr = buffer;
811 	u32 status;
812 	int host_remain = host->size;
813 
814 	do {
815 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
816 
817 		if (count > remain)
818 			count = remain;
819 
820 		if (count <= 0)
821 			break;
822 
823 		/*
824 		 * SDIO especially may want to send something that is
825 		 * not divisible by 4 (as opposed to card sectors
826 		 * etc). Therefore make sure to always read the last bytes
827 		 * while only doing full 32-bit reads towards the FIFO.
828 		 */
829 		if (unlikely(count & 0x3)) {
830 			if (count < 4) {
831 				unsigned char buf[4];
832 				readsl(base + MMCIFIFO, buf, 1);
833 				memcpy(ptr, buf, count);
834 			} else {
835 				readsl(base + MMCIFIFO, ptr, count >> 2);
836 				count &= ~0x3;
837 			}
838 		} else {
839 			readsl(base + MMCIFIFO, ptr, count >> 2);
840 		}
841 
842 		ptr += count;
843 		remain -= count;
844 		host_remain -= count;
845 
846 		if (remain == 0)
847 			break;
848 
849 		status = readl(base + MMCISTATUS);
850 	} while (status & MCI_RXDATAAVLBL);
851 
852 	return ptr - buffer;
853 }
854 
855 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
856 {
857 	struct variant_data *variant = host->variant;
858 	void __iomem *base = host->base;
859 	char *ptr = buffer;
860 
861 	do {
862 		unsigned int count, maxcnt;
863 
864 		maxcnt = status & MCI_TXFIFOEMPTY ?
865 			 variant->fifosize : variant->fifohalfsize;
866 		count = min(remain, maxcnt);
867 
868 		/*
869 		 * The ST Micro variant for SDIO transfer sizes
870 		 * less then 8 bytes should have clock H/W flow
871 		 * control disabled.
872 		 */
873 		if (variant->sdio &&
874 		    mmc_card_sdio(host->mmc->card)) {
875 			u32 clk;
876 			if (count < 8)
877 				clk = host->clk_reg & ~variant->clkreg_enable;
878 			else
879 				clk = host->clk_reg | variant->clkreg_enable;
880 
881 			mmci_write_clkreg(host, clk);
882 		}
883 
884 		/*
885 		 * SDIO especially may want to send something that is
886 		 * not divisible by 4 (as opposed to card sectors
887 		 * etc), and the FIFO only accept full 32-bit writes.
888 		 * So compensate by adding +3 on the count, a single
889 		 * byte become a 32bit write, 7 bytes will be two
890 		 * 32bit writes etc.
891 		 */
892 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
893 
894 		ptr += count;
895 		remain -= count;
896 
897 		if (remain == 0)
898 			break;
899 
900 		status = readl(base + MMCISTATUS);
901 	} while (status & MCI_TXFIFOHALFEMPTY);
902 
903 	return ptr - buffer;
904 }
905 
906 /*
907  * PIO data transfer IRQ handler.
908  */
909 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
910 {
911 	struct mmci_host *host = dev_id;
912 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
913 	struct variant_data *variant = host->variant;
914 	void __iomem *base = host->base;
915 	unsigned long flags;
916 	u32 status;
917 
918 	status = readl(base + MMCISTATUS);
919 
920 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
921 
922 	local_irq_save(flags);
923 
924 	do {
925 		unsigned int remain, len;
926 		char *buffer;
927 
928 		/*
929 		 * For write, we only need to test the half-empty flag
930 		 * here - if the FIFO is completely empty, then by
931 		 * definition it is more than half empty.
932 		 *
933 		 * For read, check for data available.
934 		 */
935 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
936 			break;
937 
938 		if (!sg_miter_next(sg_miter))
939 			break;
940 
941 		buffer = sg_miter->addr;
942 		remain = sg_miter->length;
943 
944 		len = 0;
945 		if (status & MCI_RXACTIVE)
946 			len = mmci_pio_read(host, buffer, remain);
947 		if (status & MCI_TXACTIVE)
948 			len = mmci_pio_write(host, buffer, remain, status);
949 
950 		sg_miter->consumed = len;
951 
952 		host->size -= len;
953 		remain -= len;
954 
955 		if (remain)
956 			break;
957 
958 		status = readl(base + MMCISTATUS);
959 	} while (1);
960 
961 	sg_miter_stop(sg_miter);
962 
963 	local_irq_restore(flags);
964 
965 	/*
966 	 * If we have less than the fifo 'half-full' threshold to transfer,
967 	 * trigger a PIO interrupt as soon as any data is available.
968 	 */
969 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
970 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
971 
972 	/*
973 	 * If we run out of data, disable the data IRQs; this
974 	 * prevents a race where the FIFO becomes empty before
975 	 * the chip itself has disabled the data path, and
976 	 * stops us racing with our data end IRQ.
977 	 */
978 	if (host->size == 0) {
979 		mmci_set_mask1(host, 0);
980 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
981 	}
982 
983 	return IRQ_HANDLED;
984 }
985 
986 /*
987  * Handle completion of command and data transfers.
988  */
989 static irqreturn_t mmci_irq(int irq, void *dev_id)
990 {
991 	struct mmci_host *host = dev_id;
992 	u32 status;
993 	int ret = 0;
994 
995 	spin_lock(&host->lock);
996 
997 	do {
998 		struct mmc_command *cmd;
999 		struct mmc_data *data;
1000 
1001 		status = readl(host->base + MMCISTATUS);
1002 
1003 		if (host->singleirq) {
1004 			if (status & readl(host->base + MMCIMASK1))
1005 				mmci_pio_irq(irq, dev_id);
1006 
1007 			status &= ~MCI_IRQ1MASK;
1008 		}
1009 
1010 		status &= readl(host->base + MMCIMASK0);
1011 		writel(status, host->base + MMCICLEAR);
1012 
1013 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1014 
1015 		data = host->data;
1016 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1017 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1018 			      MCI_DATABLOCKEND) && data)
1019 			mmci_data_irq(host, data, status);
1020 
1021 		cmd = host->cmd;
1022 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1023 			mmci_cmd_irq(host, cmd, status);
1024 
1025 		ret = 1;
1026 	} while (status);
1027 
1028 	spin_unlock(&host->lock);
1029 
1030 	return IRQ_RETVAL(ret);
1031 }
1032 
1033 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1034 {
1035 	struct mmci_host *host = mmc_priv(mmc);
1036 	unsigned long flags;
1037 
1038 	WARN_ON(host->mrq != NULL);
1039 
1040 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1041 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1042 			mrq->data->blksz);
1043 		mrq->cmd->error = -EINVAL;
1044 		mmc_request_done(mmc, mrq);
1045 		return;
1046 	}
1047 
1048 	pm_runtime_get_sync(mmc_dev(mmc));
1049 
1050 	spin_lock_irqsave(&host->lock, flags);
1051 
1052 	host->mrq = mrq;
1053 
1054 	if (mrq->data)
1055 		mmci_get_next_data(host, mrq->data);
1056 
1057 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1058 		mmci_start_data(host, mrq->data);
1059 
1060 	mmci_start_command(host, mrq->cmd, 0);
1061 
1062 	spin_unlock_irqrestore(&host->lock, flags);
1063 }
1064 
1065 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1066 {
1067 	struct mmci_host *host = mmc_priv(mmc);
1068 	struct variant_data *variant = host->variant;
1069 	u32 pwr = 0;
1070 	unsigned long flags;
1071 	int ret;
1072 
1073 	pm_runtime_get_sync(mmc_dev(mmc));
1074 
1075 	if (host->plat->ios_handler &&
1076 		host->plat->ios_handler(mmc_dev(mmc), ios))
1077 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1078 
1079 	switch (ios->power_mode) {
1080 	case MMC_POWER_OFF:
1081 		if (host->vcc)
1082 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1083 		break;
1084 	case MMC_POWER_UP:
1085 		if (host->vcc) {
1086 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1087 			if (ret) {
1088 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1089 				/*
1090 				 * The .set_ios() function in the mmc_host_ops
1091 				 * struct return void, and failing to set the
1092 				 * power should be rare so we print an error
1093 				 * and return here.
1094 				 */
1095 				goto out;
1096 			}
1097 		}
1098 		/*
1099 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1100 		 * and instead uses MCI_PWR_ON so apply whatever value is
1101 		 * configured in the variant data.
1102 		 */
1103 		pwr |= variant->pwrreg_powerup;
1104 
1105 		break;
1106 	case MMC_POWER_ON:
1107 		pwr |= MCI_PWR_ON;
1108 		break;
1109 	}
1110 
1111 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1112 		/*
1113 		 * The ST Micro variant has some additional bits
1114 		 * indicating signal direction for the signals in
1115 		 * the SD/MMC bus and feedback-clock usage.
1116 		 */
1117 		pwr |= host->plat->sigdir;
1118 
1119 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1120 			pwr &= ~MCI_ST_DATA74DIREN;
1121 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1122 			pwr &= (~MCI_ST_DATA74DIREN &
1123 				~MCI_ST_DATA31DIREN &
1124 				~MCI_ST_DATA2DIREN);
1125 	}
1126 
1127 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1128 		if (host->hw_designer != AMBA_VENDOR_ST)
1129 			pwr |= MCI_ROD;
1130 		else {
1131 			/*
1132 			 * The ST Micro variant use the ROD bit for something
1133 			 * else and only has OD (Open Drain).
1134 			 */
1135 			pwr |= MCI_OD;
1136 		}
1137 	}
1138 
1139 	spin_lock_irqsave(&host->lock, flags);
1140 
1141 	mmci_set_clkreg(host, ios->clock);
1142 	mmci_write_pwrreg(host, pwr);
1143 
1144 	spin_unlock_irqrestore(&host->lock, flags);
1145 
1146  out:
1147 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1148 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1149 }
1150 
1151 static int mmci_get_ro(struct mmc_host *mmc)
1152 {
1153 	struct mmci_host *host = mmc_priv(mmc);
1154 
1155 	if (host->gpio_wp == -ENOSYS)
1156 		return -ENOSYS;
1157 
1158 	return gpio_get_value_cansleep(host->gpio_wp);
1159 }
1160 
1161 static int mmci_get_cd(struct mmc_host *mmc)
1162 {
1163 	struct mmci_host *host = mmc_priv(mmc);
1164 	struct mmci_platform_data *plat = host->plat;
1165 	unsigned int status;
1166 
1167 	if (host->gpio_cd == -ENOSYS) {
1168 		if (!plat->status)
1169 			return 1; /* Assume always present */
1170 
1171 		status = plat->status(mmc_dev(host->mmc));
1172 	} else
1173 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1174 			^ plat->cd_invert;
1175 
1176 	/*
1177 	 * Use positive logic throughout - status is zero for no card,
1178 	 * non-zero for card inserted.
1179 	 */
1180 	return status;
1181 }
1182 
1183 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1184 {
1185 	struct mmci_host *host = dev_id;
1186 
1187 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1188 
1189 	return IRQ_HANDLED;
1190 }
1191 
1192 static const struct mmc_host_ops mmci_ops = {
1193 	.request	= mmci_request,
1194 	.pre_req	= mmci_pre_request,
1195 	.post_req	= mmci_post_request,
1196 	.set_ios	= mmci_set_ios,
1197 	.get_ro		= mmci_get_ro,
1198 	.get_cd		= mmci_get_cd,
1199 };
1200 
1201 #ifdef CONFIG_OF
1202 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1203 					struct mmci_platform_data *pdata)
1204 {
1205 	int bus_width = 0;
1206 
1207 	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1208 	if (!pdata->gpio_wp)
1209 		pdata->gpio_wp = -1;
1210 
1211 	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1212 	if (!pdata->gpio_cd)
1213 		pdata->gpio_cd = -1;
1214 
1215 	if (of_get_property(np, "cd-inverted", NULL))
1216 		pdata->cd_invert = true;
1217 	else
1218 		pdata->cd_invert = false;
1219 
1220 	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1221 	if (!pdata->f_max)
1222 		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1223 
1224 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1225 		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1226 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1227 		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1228 
1229 	of_property_read_u32(np, "bus-width", &bus_width);
1230 	switch (bus_width) {
1231 	case 0 :
1232 		/* No bus-width supplied. */
1233 		break;
1234 	case 4 :
1235 		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1236 		break;
1237 	case 8 :
1238 		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1239 		break;
1240 	default :
1241 		pr_warn("%s: Unsupported bus width\n", np->full_name);
1242 	}
1243 }
1244 #endif
1245 
1246 static int __devinit mmci_probe(struct amba_device *dev,
1247 	const struct amba_id *id)
1248 {
1249 	struct mmci_platform_data *plat = dev->dev.platform_data;
1250 	struct device_node *np = dev->dev.of_node;
1251 	struct variant_data *variant = id->data;
1252 	struct mmci_host *host;
1253 	struct mmc_host *mmc;
1254 	int ret;
1255 
1256 	/* Must have platform data or Device Tree. */
1257 	if (!plat && !np) {
1258 		dev_err(&dev->dev, "No plat data or DT found\n");
1259 		return -EINVAL;
1260 	}
1261 
1262 	if (np)
1263 		mmci_dt_populate_generic_pdata(np, plat);
1264 
1265 	ret = amba_request_regions(dev, DRIVER_NAME);
1266 	if (ret)
1267 		goto out;
1268 
1269 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1270 	if (!mmc) {
1271 		ret = -ENOMEM;
1272 		goto rel_regions;
1273 	}
1274 
1275 	host = mmc_priv(mmc);
1276 	host->mmc = mmc;
1277 
1278 	host->gpio_wp = -ENOSYS;
1279 	host->gpio_cd = -ENOSYS;
1280 	host->gpio_cd_irq = -1;
1281 
1282 	host->hw_designer = amba_manf(dev);
1283 	host->hw_revision = amba_rev(dev);
1284 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1285 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1286 
1287 	host->clk = clk_get(&dev->dev, NULL);
1288 	if (IS_ERR(host->clk)) {
1289 		ret = PTR_ERR(host->clk);
1290 		host->clk = NULL;
1291 		goto host_free;
1292 	}
1293 
1294 	ret = clk_prepare(host->clk);
1295 	if (ret)
1296 		goto clk_free;
1297 
1298 	ret = clk_enable(host->clk);
1299 	if (ret)
1300 		goto clk_unprep;
1301 
1302 	host->plat = plat;
1303 	host->variant = variant;
1304 	host->mclk = clk_get_rate(host->clk);
1305 	/*
1306 	 * According to the spec, mclk is max 100 MHz,
1307 	 * so we try to adjust the clock down to this,
1308 	 * (if possible).
1309 	 */
1310 	if (host->mclk > 100000000) {
1311 		ret = clk_set_rate(host->clk, 100000000);
1312 		if (ret < 0)
1313 			goto clk_disable;
1314 		host->mclk = clk_get_rate(host->clk);
1315 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1316 			host->mclk);
1317 	}
1318 	host->phybase = dev->res.start;
1319 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1320 	if (!host->base) {
1321 		ret = -ENOMEM;
1322 		goto clk_disable;
1323 	}
1324 
1325 	mmc->ops = &mmci_ops;
1326 	/*
1327 	 * The ARM and ST versions of the block have slightly different
1328 	 * clock divider equations which means that the minimum divider
1329 	 * differs too.
1330 	 */
1331 	if (variant->st_clkdiv)
1332 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1333 	else
1334 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1335 	/*
1336 	 * If the platform data supplies a maximum operating
1337 	 * frequency, this takes precedence. Else, we fall back
1338 	 * to using the module parameter, which has a (low)
1339 	 * default value in case it is not specified. Either
1340 	 * value must not exceed the clock rate into the block,
1341 	 * of course.
1342 	 */
1343 	if (plat->f_max)
1344 		mmc->f_max = min(host->mclk, plat->f_max);
1345 	else
1346 		mmc->f_max = min(host->mclk, fmax);
1347 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1348 
1349 #ifdef CONFIG_REGULATOR
1350 	/* If we're using the regulator framework, try to fetch a regulator */
1351 	host->vcc = regulator_get(&dev->dev, "vmmc");
1352 	if (IS_ERR(host->vcc))
1353 		host->vcc = NULL;
1354 	else {
1355 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1356 
1357 		if (mask < 0)
1358 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1359 				mask);
1360 		else {
1361 			host->mmc->ocr_avail = (u32) mask;
1362 			if (plat->ocr_mask)
1363 				dev_warn(&dev->dev,
1364 				 "Provided ocr_mask/setpower will not be used "
1365 				 "(using regulator instead)\n");
1366 		}
1367 	}
1368 #endif
1369 	/* Fall back to platform data if no regulator is found */
1370 	if (host->vcc == NULL)
1371 		mmc->ocr_avail = plat->ocr_mask;
1372 	mmc->caps = plat->capabilities;
1373 	mmc->caps2 = plat->capabilities2;
1374 
1375 	/*
1376 	 * We can do SGIO
1377 	 */
1378 	mmc->max_segs = NR_SG;
1379 
1380 	/*
1381 	 * Since only a certain number of bits are valid in the data length
1382 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1383 	 * single request.
1384 	 */
1385 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1386 
1387 	/*
1388 	 * Set the maximum segment size.  Since we aren't doing DMA
1389 	 * (yet) we are only limited by the data length register.
1390 	 */
1391 	mmc->max_seg_size = mmc->max_req_size;
1392 
1393 	/*
1394 	 * Block size can be up to 2048 bytes, but must be a power of two.
1395 	 */
1396 	mmc->max_blk_size = 1 << 11;
1397 
1398 	/*
1399 	 * Limit the number of blocks transferred so that we don't overflow
1400 	 * the maximum request size.
1401 	 */
1402 	mmc->max_blk_count = mmc->max_req_size >> 11;
1403 
1404 	spin_lock_init(&host->lock);
1405 
1406 	writel(0, host->base + MMCIMASK0);
1407 	writel(0, host->base + MMCIMASK1);
1408 	writel(0xfff, host->base + MMCICLEAR);
1409 
1410 	if (gpio_is_valid(plat->gpio_cd)) {
1411 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1412 		if (ret == 0)
1413 			ret = gpio_direction_input(plat->gpio_cd);
1414 		if (ret == 0)
1415 			host->gpio_cd = plat->gpio_cd;
1416 		else if (ret != -ENOSYS)
1417 			goto err_gpio_cd;
1418 
1419 		/*
1420 		 * A gpio pin that will detect cards when inserted and removed
1421 		 * will most likely want to trigger on the edges if it is
1422 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1423 		 * for the inverted case) so we request triggers on both
1424 		 * edges.
1425 		 */
1426 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1427 				mmci_cd_irq,
1428 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1429 				DRIVER_NAME " (cd)", host);
1430 		if (ret >= 0)
1431 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1432 	}
1433 	if (gpio_is_valid(plat->gpio_wp)) {
1434 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1435 		if (ret == 0)
1436 			ret = gpio_direction_input(plat->gpio_wp);
1437 		if (ret == 0)
1438 			host->gpio_wp = plat->gpio_wp;
1439 		else if (ret != -ENOSYS)
1440 			goto err_gpio_wp;
1441 	}
1442 
1443 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1444 	    && host->gpio_cd_irq < 0)
1445 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1446 
1447 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1448 	if (ret)
1449 		goto unmap;
1450 
1451 	if (dev->irq[1] == NO_IRQ || !dev->irq[1])
1452 		host->singleirq = true;
1453 	else {
1454 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1455 				  DRIVER_NAME " (pio)", host);
1456 		if (ret)
1457 			goto irq0_free;
1458 	}
1459 
1460 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1461 
1462 	amba_set_drvdata(dev, mmc);
1463 
1464 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1465 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1466 		 amba_rev(dev), (unsigned long long)dev->res.start,
1467 		 dev->irq[0], dev->irq[1]);
1468 
1469 	mmci_dma_setup(host);
1470 
1471 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1472 	pm_runtime_use_autosuspend(&dev->dev);
1473 	pm_runtime_put(&dev->dev);
1474 
1475 	mmc_add_host(mmc);
1476 
1477 	return 0;
1478 
1479  irq0_free:
1480 	free_irq(dev->irq[0], host);
1481  unmap:
1482 	if (host->gpio_wp != -ENOSYS)
1483 		gpio_free(host->gpio_wp);
1484  err_gpio_wp:
1485 	if (host->gpio_cd_irq >= 0)
1486 		free_irq(host->gpio_cd_irq, host);
1487 	if (host->gpio_cd != -ENOSYS)
1488 		gpio_free(host->gpio_cd);
1489  err_gpio_cd:
1490 	iounmap(host->base);
1491  clk_disable:
1492 	clk_disable(host->clk);
1493  clk_unprep:
1494 	clk_unprepare(host->clk);
1495  clk_free:
1496 	clk_put(host->clk);
1497  host_free:
1498 	mmc_free_host(mmc);
1499  rel_regions:
1500 	amba_release_regions(dev);
1501  out:
1502 	return ret;
1503 }
1504 
1505 static int __devexit mmci_remove(struct amba_device *dev)
1506 {
1507 	struct mmc_host *mmc = amba_get_drvdata(dev);
1508 
1509 	amba_set_drvdata(dev, NULL);
1510 
1511 	if (mmc) {
1512 		struct mmci_host *host = mmc_priv(mmc);
1513 
1514 		/*
1515 		 * Undo pm_runtime_put() in probe.  We use the _sync
1516 		 * version here so that we can access the primecell.
1517 		 */
1518 		pm_runtime_get_sync(&dev->dev);
1519 
1520 		mmc_remove_host(mmc);
1521 
1522 		writel(0, host->base + MMCIMASK0);
1523 		writel(0, host->base + MMCIMASK1);
1524 
1525 		writel(0, host->base + MMCICOMMAND);
1526 		writel(0, host->base + MMCIDATACTRL);
1527 
1528 		mmci_dma_release(host);
1529 		free_irq(dev->irq[0], host);
1530 		if (!host->singleirq)
1531 			free_irq(dev->irq[1], host);
1532 
1533 		if (host->gpio_wp != -ENOSYS)
1534 			gpio_free(host->gpio_wp);
1535 		if (host->gpio_cd_irq >= 0)
1536 			free_irq(host->gpio_cd_irq, host);
1537 		if (host->gpio_cd != -ENOSYS)
1538 			gpio_free(host->gpio_cd);
1539 
1540 		iounmap(host->base);
1541 		clk_disable(host->clk);
1542 		clk_unprepare(host->clk);
1543 		clk_put(host->clk);
1544 
1545 		if (host->vcc)
1546 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1547 		regulator_put(host->vcc);
1548 
1549 		mmc_free_host(mmc);
1550 
1551 		amba_release_regions(dev);
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 #ifdef CONFIG_SUSPEND
1558 static int mmci_suspend(struct device *dev)
1559 {
1560 	struct amba_device *adev = to_amba_device(dev);
1561 	struct mmc_host *mmc = amba_get_drvdata(adev);
1562 	int ret = 0;
1563 
1564 	if (mmc) {
1565 		struct mmci_host *host = mmc_priv(mmc);
1566 
1567 		ret = mmc_suspend_host(mmc);
1568 		if (ret == 0) {
1569 			pm_runtime_get_sync(dev);
1570 			writel(0, host->base + MMCIMASK0);
1571 		}
1572 	}
1573 
1574 	return ret;
1575 }
1576 
1577 static int mmci_resume(struct device *dev)
1578 {
1579 	struct amba_device *adev = to_amba_device(dev);
1580 	struct mmc_host *mmc = amba_get_drvdata(adev);
1581 	int ret = 0;
1582 
1583 	if (mmc) {
1584 		struct mmci_host *host = mmc_priv(mmc);
1585 
1586 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1587 		pm_runtime_put(dev);
1588 
1589 		ret = mmc_resume_host(mmc);
1590 	}
1591 
1592 	return ret;
1593 }
1594 #endif
1595 
1596 static const struct dev_pm_ops mmci_dev_pm_ops = {
1597 	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1598 };
1599 
1600 static struct amba_id mmci_ids[] = {
1601 	{
1602 		.id	= 0x00041180,
1603 		.mask	= 0xff0fffff,
1604 		.data	= &variant_arm,
1605 	},
1606 	{
1607 		.id	= 0x01041180,
1608 		.mask	= 0xff0fffff,
1609 		.data	= &variant_arm_extended_fifo,
1610 	},
1611 	{
1612 		.id	= 0x00041181,
1613 		.mask	= 0x000fffff,
1614 		.data	= &variant_arm,
1615 	},
1616 	/* ST Micro variants */
1617 	{
1618 		.id     = 0x00180180,
1619 		.mask   = 0x00ffffff,
1620 		.data	= &variant_u300,
1621 	},
1622 	{
1623 		.id     = 0x00280180,
1624 		.mask   = 0x00ffffff,
1625 		.data	= &variant_u300,
1626 	},
1627 	{
1628 		.id     = 0x00480180,
1629 		.mask   = 0xf0ffffff,
1630 		.data	= &variant_ux500,
1631 	},
1632 	{
1633 		.id     = 0x10480180,
1634 		.mask   = 0xf0ffffff,
1635 		.data	= &variant_ux500v2,
1636 	},
1637 	{ 0, 0 },
1638 };
1639 
1640 MODULE_DEVICE_TABLE(amba, mmci_ids);
1641 
1642 static struct amba_driver mmci_driver = {
1643 	.drv		= {
1644 		.name	= DRIVER_NAME,
1645 		.pm	= &mmci_dev_pm_ops,
1646 	},
1647 	.probe		= mmci_probe,
1648 	.remove		= __devexit_p(mmci_remove),
1649 	.id_table	= mmci_ids,
1650 };
1651 
1652 module_amba_driver(mmci_driver);
1653 
1654 module_param(fmax, uint, 0444);
1655 
1656 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1657 MODULE_LICENSE("GPL");
1658