xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 97e6f135)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 #include <linux/workqueue.h>
41 
42 #include <asm/div64.h>
43 #include <asm/io.h>
44 
45 #include "mmci.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500_variant_init(struct mmci_host *host);
51 static void ux500v2_variant_init(struct mmci_host *host);
52 
53 static unsigned int fmax = 515633;
54 
55 static struct variant_data variant_arm = {
56 	.fifosize		= 16 * 4,
57 	.fifohalfsize		= 8 * 4,
58 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
59 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
61 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
62 	.datalength_bits	= 16,
63 	.datactrl_blocksz	= 11,
64 	.pwrreg_powerup		= MCI_PWR_UP,
65 	.f_max			= 100000000,
66 	.reversed_irq_handling	= true,
67 	.mmcimask1		= true,
68 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
69 	.start_err		= MCI_STARTBITERR,
70 	.opendrain		= MCI_ROD,
71 	.init			= mmci_variant_init,
72 };
73 
74 static struct variant_data variant_arm_extended_fifo = {
75 	.fifosize		= 128 * 4,
76 	.fifohalfsize		= 64 * 4,
77 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
78 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
80 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
81 	.datalength_bits	= 16,
82 	.datactrl_blocksz	= 11,
83 	.pwrreg_powerup		= MCI_PWR_UP,
84 	.f_max			= 100000000,
85 	.mmcimask1		= true,
86 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
87 	.start_err		= MCI_STARTBITERR,
88 	.opendrain		= MCI_ROD,
89 	.init			= mmci_variant_init,
90 };
91 
92 static struct variant_data variant_arm_extended_fifo_hwfc = {
93 	.fifosize		= 128 * 4,
94 	.fifohalfsize		= 64 * 4,
95 	.clkreg_enable		= MCI_ARM_HWFCEN,
96 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
97 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
99 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
100 	.datalength_bits	= 16,
101 	.datactrl_blocksz	= 11,
102 	.pwrreg_powerup		= MCI_PWR_UP,
103 	.f_max			= 100000000,
104 	.mmcimask1		= true,
105 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
106 	.start_err		= MCI_STARTBITERR,
107 	.opendrain		= MCI_ROD,
108 	.init			= mmci_variant_init,
109 };
110 
111 static struct variant_data variant_u300 = {
112 	.fifosize		= 16 * 4,
113 	.fifohalfsize		= 8 * 4,
114 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
115 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
117 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
119 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
120 	.datalength_bits	= 16,
121 	.datactrl_blocksz	= 11,
122 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
123 	.st_sdio			= true,
124 	.pwrreg_powerup		= MCI_PWR_ON,
125 	.f_max			= 100000000,
126 	.signal_direction	= true,
127 	.pwrreg_clkgate		= true,
128 	.pwrreg_nopower		= true,
129 	.mmcimask1		= true,
130 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
131 	.start_err		= MCI_STARTBITERR,
132 	.opendrain		= MCI_OD,
133 	.init			= mmci_variant_init,
134 };
135 
136 static struct variant_data variant_nomadik = {
137 	.fifosize		= 16 * 4,
138 	.fifohalfsize		= 8 * 4,
139 	.clkreg			= MCI_CLK_ENABLE,
140 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
142 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
144 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
145 	.datalength_bits	= 24,
146 	.datactrl_blocksz	= 11,
147 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
148 	.st_sdio		= true,
149 	.st_clkdiv		= true,
150 	.pwrreg_powerup		= MCI_PWR_ON,
151 	.f_max			= 100000000,
152 	.signal_direction	= true,
153 	.pwrreg_clkgate		= true,
154 	.pwrreg_nopower		= true,
155 	.mmcimask1		= true,
156 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
157 	.start_err		= MCI_STARTBITERR,
158 	.opendrain		= MCI_OD,
159 	.init			= mmci_variant_init,
160 };
161 
162 static struct variant_data variant_ux500 = {
163 	.fifosize		= 30 * 4,
164 	.fifohalfsize		= 8 * 4,
165 	.clkreg			= MCI_CLK_ENABLE,
166 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
167 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
169 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
170 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
172 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
173 	.datalength_bits	= 24,
174 	.datactrl_blocksz	= 11,
175 	.datactrl_any_blocksz	= true,
176 	.dma_power_of_2		= true,
177 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
178 	.st_sdio		= true,
179 	.st_clkdiv		= true,
180 	.pwrreg_powerup		= MCI_PWR_ON,
181 	.f_max			= 100000000,
182 	.signal_direction	= true,
183 	.pwrreg_clkgate		= true,
184 	.busy_detect		= true,
185 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
186 	.busy_detect_flag	= MCI_ST_CARDBUSY,
187 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
188 	.pwrreg_nopower		= true,
189 	.mmcimask1		= true,
190 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
191 	.start_err		= MCI_STARTBITERR,
192 	.opendrain		= MCI_OD,
193 	.init			= ux500_variant_init,
194 };
195 
196 static struct variant_data variant_ux500v2 = {
197 	.fifosize		= 30 * 4,
198 	.fifohalfsize		= 8 * 4,
199 	.clkreg			= MCI_CLK_ENABLE,
200 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
201 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
203 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
204 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
206 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
207 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
208 	.datalength_bits	= 24,
209 	.datactrl_blocksz	= 11,
210 	.datactrl_any_blocksz	= true,
211 	.dma_power_of_2		= true,
212 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
213 	.st_sdio		= true,
214 	.st_clkdiv		= true,
215 	.pwrreg_powerup		= MCI_PWR_ON,
216 	.f_max			= 100000000,
217 	.signal_direction	= true,
218 	.pwrreg_clkgate		= true,
219 	.busy_detect		= true,
220 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
221 	.busy_detect_flag	= MCI_ST_CARDBUSY,
222 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
223 	.pwrreg_nopower		= true,
224 	.mmcimask1		= true,
225 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
226 	.start_err		= MCI_STARTBITERR,
227 	.opendrain		= MCI_OD,
228 	.init			= ux500v2_variant_init,
229 };
230 
231 static struct variant_data variant_stm32 = {
232 	.fifosize		= 32 * 4,
233 	.fifohalfsize		= 8 * 4,
234 	.clkreg			= MCI_CLK_ENABLE,
235 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
236 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
238 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
239 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
241 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
242 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
243 	.datalength_bits	= 24,
244 	.datactrl_blocksz	= 11,
245 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
246 	.st_sdio		= true,
247 	.st_clkdiv		= true,
248 	.pwrreg_powerup		= MCI_PWR_ON,
249 	.f_max			= 48000000,
250 	.pwrreg_clkgate		= true,
251 	.pwrreg_nopower		= true,
252 	.init			= mmci_variant_init,
253 };
254 
255 static struct variant_data variant_stm32_sdmmc = {
256 	.fifosize		= 16 * 4,
257 	.fifohalfsize		= 8 * 4,
258 	.f_max			= 208000000,
259 	.stm32_clkdiv		= true,
260 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
261 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
262 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
263 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
264 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
265 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
266 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
267 	.datactrl_first		= true,
268 	.datacnt_useless	= true,
269 	.datalength_bits	= 25,
270 	.datactrl_blocksz	= 14,
271 	.datactrl_any_blocksz	= true,
272 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
273 	.stm32_idmabsize_mask	= GENMASK(12, 5),
274 	.stm32_idmabsize_align	= BIT(5),
275 	.busy_timeout		= true,
276 	.busy_detect		= true,
277 	.busy_detect_flag	= MCI_STM32_BUSYD0,
278 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
279 	.init			= sdmmc_variant_init,
280 };
281 
282 static struct variant_data variant_stm32_sdmmcv2 = {
283 	.fifosize		= 16 * 4,
284 	.fifohalfsize		= 8 * 4,
285 	.f_max			= 267000000,
286 	.stm32_clkdiv		= true,
287 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
288 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
289 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
290 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
291 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
292 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
293 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
294 	.datactrl_first		= true,
295 	.datacnt_useless	= true,
296 	.datalength_bits	= 25,
297 	.datactrl_blocksz	= 14,
298 	.datactrl_any_blocksz	= true,
299 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
300 	.stm32_idmabsize_mask	= GENMASK(16, 5),
301 	.stm32_idmabsize_align	= BIT(5),
302 	.dma_lli		= true,
303 	.busy_timeout		= true,
304 	.busy_detect		= true,
305 	.busy_detect_flag	= MCI_STM32_BUSYD0,
306 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
307 	.init			= sdmmc_variant_init,
308 };
309 
310 static struct variant_data variant_stm32_sdmmcv3 = {
311 	.fifosize		= 256 * 4,
312 	.fifohalfsize		= 128 * 4,
313 	.f_max			= 267000000,
314 	.stm32_clkdiv		= true,
315 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
316 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
317 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
318 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
319 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
320 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
321 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
322 	.datactrl_first		= true,
323 	.datacnt_useless	= true,
324 	.datalength_bits	= 25,
325 	.datactrl_blocksz	= 14,
326 	.datactrl_any_blocksz	= true,
327 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
328 	.stm32_idmabsize_mask	= GENMASK(16, 6),
329 	.stm32_idmabsize_align	= BIT(6),
330 	.dma_lli		= true,
331 	.busy_timeout		= true,
332 	.busy_detect		= true,
333 	.busy_detect_flag	= MCI_STM32_BUSYD0,
334 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
335 	.init			= sdmmc_variant_init,
336 };
337 
338 static struct variant_data variant_qcom = {
339 	.fifosize		= 16 * 4,
340 	.fifohalfsize		= 8 * 4,
341 	.clkreg			= MCI_CLK_ENABLE,
342 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
343 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
344 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
345 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
346 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
347 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
348 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
349 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
350 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
351 	.datalength_bits	= 24,
352 	.datactrl_blocksz	= 11,
353 	.datactrl_any_blocksz	= true,
354 	.pwrreg_powerup		= MCI_PWR_UP,
355 	.f_max			= 208000000,
356 	.explicit_mclk_control	= true,
357 	.qcom_fifo		= true,
358 	.qcom_dml		= true,
359 	.mmcimask1		= true,
360 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
361 	.start_err		= MCI_STARTBITERR,
362 	.opendrain		= MCI_ROD,
363 	.init			= qcom_variant_init,
364 };
365 
366 /* Busy detection for the ST Micro variant */
367 static int mmci_card_busy(struct mmc_host *mmc)
368 {
369 	struct mmci_host *host = mmc_priv(mmc);
370 	unsigned long flags;
371 	int busy = 0;
372 
373 	spin_lock_irqsave(&host->lock, flags);
374 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
375 		busy = 1;
376 	spin_unlock_irqrestore(&host->lock, flags);
377 
378 	return busy;
379 }
380 
381 static void mmci_reg_delay(struct mmci_host *host)
382 {
383 	/*
384 	 * According to the spec, at least three feedback clock cycles
385 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
386 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
387 	 * Worst delay time during card init is at 100 kHz => 30 us.
388 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
389 	 */
390 	if (host->cclk < 25000000)
391 		udelay(30);
392 	else
393 		ndelay(120);
394 }
395 
396 /*
397  * This must be called with host->lock held
398  */
399 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
400 {
401 	if (host->clk_reg != clk) {
402 		host->clk_reg = clk;
403 		writel(clk, host->base + MMCICLOCK);
404 	}
405 }
406 
407 /*
408  * This must be called with host->lock held
409  */
410 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
411 {
412 	if (host->pwr_reg != pwr) {
413 		host->pwr_reg = pwr;
414 		writel(pwr, host->base + MMCIPOWER);
415 	}
416 }
417 
418 /*
419  * This must be called with host->lock held
420  */
421 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
422 {
423 	/* Keep busy mode in DPSM if enabled */
424 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
425 
426 	if (host->datactrl_reg != datactrl) {
427 		host->datactrl_reg = datactrl;
428 		writel(datactrl, host->base + MMCIDATACTRL);
429 	}
430 }
431 
432 /*
433  * This must be called with host->lock held
434  */
435 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
436 {
437 	struct variant_data *variant = host->variant;
438 	u32 clk = variant->clkreg;
439 
440 	/* Make sure cclk reflects the current calculated clock */
441 	host->cclk = 0;
442 
443 	if (desired) {
444 		if (variant->explicit_mclk_control) {
445 			host->cclk = host->mclk;
446 		} else if (desired >= host->mclk) {
447 			clk = MCI_CLK_BYPASS;
448 			if (variant->st_clkdiv)
449 				clk |= MCI_ST_UX500_NEG_EDGE;
450 			host->cclk = host->mclk;
451 		} else if (variant->st_clkdiv) {
452 			/*
453 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
454 			 * => clkdiv = (mclk / f) - 2
455 			 * Round the divider up so we don't exceed the max
456 			 * frequency
457 			 */
458 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
459 			if (clk >= 256)
460 				clk = 255;
461 			host->cclk = host->mclk / (clk + 2);
462 		} else {
463 			/*
464 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
465 			 * => clkdiv = mclk / (2 * f) - 1
466 			 */
467 			clk = host->mclk / (2 * desired) - 1;
468 			if (clk >= 256)
469 				clk = 255;
470 			host->cclk = host->mclk / (2 * (clk + 1));
471 		}
472 
473 		clk |= variant->clkreg_enable;
474 		clk |= MCI_CLK_ENABLE;
475 		/* This hasn't proven to be worthwhile */
476 		/* clk |= MCI_CLK_PWRSAVE; */
477 	}
478 
479 	/* Set actual clock for debug */
480 	host->mmc->actual_clock = host->cclk;
481 
482 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
483 		clk |= MCI_4BIT_BUS;
484 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
485 		clk |= variant->clkreg_8bit_bus_enable;
486 
487 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
488 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
489 		clk |= variant->clkreg_neg_edge_enable;
490 
491 	mmci_write_clkreg(host, clk);
492 }
493 
494 static void mmci_dma_release(struct mmci_host *host)
495 {
496 	if (host->ops && host->ops->dma_release)
497 		host->ops->dma_release(host);
498 
499 	host->use_dma = false;
500 }
501 
502 static void mmci_dma_setup(struct mmci_host *host)
503 {
504 	if (!host->ops || !host->ops->dma_setup)
505 		return;
506 
507 	if (host->ops->dma_setup(host))
508 		return;
509 
510 	/* initialize pre request cookie */
511 	host->next_cookie = 1;
512 
513 	host->use_dma = true;
514 }
515 
516 /*
517  * Validate mmc prerequisites
518  */
519 static int mmci_validate_data(struct mmci_host *host,
520 			      struct mmc_data *data)
521 {
522 	struct variant_data *variant = host->variant;
523 
524 	if (!data)
525 		return 0;
526 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
527 		dev_err(mmc_dev(host->mmc),
528 			"unsupported block size (%d bytes)\n", data->blksz);
529 		return -EINVAL;
530 	}
531 
532 	if (host->ops && host->ops->validate_data)
533 		return host->ops->validate_data(host, data);
534 
535 	return 0;
536 }
537 
538 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
539 {
540 	int err;
541 
542 	if (!host->ops || !host->ops->prep_data)
543 		return 0;
544 
545 	err = host->ops->prep_data(host, data, next);
546 
547 	if (next && !err)
548 		data->host_cookie = ++host->next_cookie < 0 ?
549 			1 : host->next_cookie;
550 
551 	return err;
552 }
553 
554 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
555 		      int err)
556 {
557 	if (host->ops && host->ops->unprep_data)
558 		host->ops->unprep_data(host, data, err);
559 
560 	data->host_cookie = 0;
561 }
562 
563 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
564 {
565 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
566 
567 	if (host->ops && host->ops->get_next_data)
568 		host->ops->get_next_data(host, data);
569 }
570 
571 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
572 {
573 	struct mmc_data *data = host->data;
574 	int ret;
575 
576 	if (!host->use_dma)
577 		return -EINVAL;
578 
579 	ret = mmci_prep_data(host, data, false);
580 	if (ret)
581 		return ret;
582 
583 	if (!host->ops || !host->ops->dma_start)
584 		return -EINVAL;
585 
586 	/* Okay, go for it. */
587 	dev_vdbg(mmc_dev(host->mmc),
588 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
589 		 data->sg_len, data->blksz, data->blocks, data->flags);
590 
591 	ret = host->ops->dma_start(host, &datactrl);
592 	if (ret)
593 		return ret;
594 
595 	/* Trigger the DMA transfer */
596 	mmci_write_datactrlreg(host, datactrl);
597 
598 	/*
599 	 * Let the MMCI say when the data is ended and it's time
600 	 * to fire next DMA request. When that happens, MMCI will
601 	 * call mmci_data_end()
602 	 */
603 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
604 	       host->base + MMCIMASK0);
605 	return 0;
606 }
607 
608 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
609 {
610 	if (!host->use_dma)
611 		return;
612 
613 	if (host->ops && host->ops->dma_finalize)
614 		host->ops->dma_finalize(host, data);
615 }
616 
617 static void mmci_dma_error(struct mmci_host *host)
618 {
619 	if (!host->use_dma)
620 		return;
621 
622 	if (host->ops && host->ops->dma_error)
623 		host->ops->dma_error(host);
624 }
625 
626 static void
627 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
628 {
629 	writel(0, host->base + MMCICOMMAND);
630 
631 	BUG_ON(host->data);
632 
633 	host->mrq = NULL;
634 	host->cmd = NULL;
635 
636 	mmc_request_done(host->mmc, mrq);
637 }
638 
639 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
640 {
641 	void __iomem *base = host->base;
642 	struct variant_data *variant = host->variant;
643 
644 	if (host->singleirq) {
645 		unsigned int mask0 = readl(base + MMCIMASK0);
646 
647 		mask0 &= ~variant->irq_pio_mask;
648 		mask0 |= mask;
649 
650 		writel(mask0, base + MMCIMASK0);
651 	}
652 
653 	if (variant->mmcimask1)
654 		writel(mask, base + MMCIMASK1);
655 
656 	host->mask1_reg = mask;
657 }
658 
659 static void mmci_stop_data(struct mmci_host *host)
660 {
661 	mmci_write_datactrlreg(host, 0);
662 	mmci_set_mask1(host, 0);
663 	host->data = NULL;
664 }
665 
666 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
667 {
668 	unsigned int flags = SG_MITER_ATOMIC;
669 
670 	if (data->flags & MMC_DATA_READ)
671 		flags |= SG_MITER_TO_SG;
672 	else
673 		flags |= SG_MITER_FROM_SG;
674 
675 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
676 }
677 
678 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
679 {
680 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
681 }
682 
683 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
684 {
685 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
686 }
687 
688 static void ux500_busy_clear_mask_done(struct mmci_host *host)
689 {
690 	void __iomem *base = host->base;
691 
692 	writel(host->variant->busy_detect_mask, base + MMCICLEAR);
693 	writel(readl(base + MMCIMASK0) &
694 	       ~host->variant->busy_detect_mask, base + MMCIMASK0);
695 	host->busy_state = MMCI_BUSY_DONE;
696 	host->busy_status = 0;
697 }
698 
699 /*
700  * ux500_busy_complete() - this will wait until the busy status
701  * goes off, saving any status that occur in the meantime into
702  * host->busy_status until we know the card is not busy any more.
703  * The function returns true when the busy detection is ended
704  * and we should continue processing the command.
705  *
706  * The Ux500 typically fires two IRQs over a busy cycle like this:
707  *
708  *  DAT0 busy          +-----------------+
709  *                     |                 |
710  *  DAT0 not busy  ----+                 +--------
711  *
712  *                     ^                 ^
713  *                     |                 |
714  *                    IRQ1              IRQ2
715  */
716 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
717 				u32 status, u32 err_msk)
718 {
719 	void __iomem *base = host->base;
720 	int retries = 10;
721 
722 	if (status & err_msk) {
723 		/* Stop any ongoing busy detection if an error occurs */
724 		ux500_busy_clear_mask_done(host);
725 		goto out_ret_state;
726 	}
727 
728 	/*
729 	 * The state transitions are encoded in a state machine crossing
730 	 * the edges in this switch statement.
731 	 */
732 	switch (host->busy_state) {
733 
734 	/*
735 	 * Before unmasking for the busy end IRQ, confirm that the
736 	 * command was sent successfully. To keep track of having a
737 	 * command in-progress, waiting for busy signaling to end,
738 	 * store the status in host->busy_status.
739 	 *
740 	 * Note that, the card may need a couple of clock cycles before
741 	 * it starts signaling busy on DAT0, hence re-read the
742 	 * MMCISTATUS register here, to allow the busy bit to be set.
743 	 */
744 	case MMCI_BUSY_DONE:
745 		/*
746 		 * Save the first status register read to be sure to catch
747 		 * all bits that may be lost will retrying. If the command
748 		 * is still busy this will result in assigning 0 to
749 		 * host->busy_status, which is what it should be in IDLE.
750 		 */
751 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
752 		while (retries) {
753 			status = readl(base + MMCISTATUS);
754 			/* Keep accumulating status bits */
755 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
756 			if (status & host->variant->busy_detect_flag) {
757 				writel(readl(base + MMCIMASK0) |
758 				       host->variant->busy_detect_mask,
759 				       base + MMCIMASK0);
760 				host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
761 				schedule_delayed_work(&host->ux500_busy_timeout_work,
762 				      msecs_to_jiffies(cmd->busy_timeout));
763 				goto out_ret_state;
764 			}
765 			retries--;
766 		}
767 		dev_dbg(mmc_dev(host->mmc), "no busy signalling in time\n");
768 		ux500_busy_clear_mask_done(host);
769 		break;
770 
771 	/*
772 	 * If there is a command in-progress that has been successfully
773 	 * sent, then bail out if busy status is set and wait for the
774 	 * busy end IRQ.
775 	 *
776 	 * Note that, the HW triggers an IRQ on both edges while
777 	 * monitoring DAT0 for busy completion, but there is only one
778 	 * status bit in MMCISTATUS for the busy state. Therefore
779 	 * both the start and the end interrupts needs to be cleared,
780 	 * one after the other. So, clear the busy start IRQ here.
781 	 */
782 	case MMCI_BUSY_WAITING_FOR_START_IRQ:
783 		if (status & host->variant->busy_detect_flag) {
784 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
785 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
786 			host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
787 		} else {
788 			dev_dbg(mmc_dev(host->mmc),
789 				"lost busy status when waiting for busy start IRQ\n");
790 			cancel_delayed_work(&host->ux500_busy_timeout_work);
791 			ux500_busy_clear_mask_done(host);
792 		}
793 		break;
794 
795 	case MMCI_BUSY_WAITING_FOR_END_IRQ:
796 		if (!(status & host->variant->busy_detect_flag)) {
797 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
798 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
799 			cancel_delayed_work(&host->ux500_busy_timeout_work);
800 			ux500_busy_clear_mask_done(host);
801 		} else {
802 			dev_dbg(mmc_dev(host->mmc),
803 				"busy status still asserted when handling busy end IRQ - will keep waiting\n");
804 		}
805 		break;
806 
807 	default:
808 		dev_dbg(mmc_dev(host->mmc), "fell through on state %d\n",
809 			host->busy_state);
810 		break;
811 	}
812 
813 out_ret_state:
814 	return (host->busy_state == MMCI_BUSY_DONE);
815 }
816 
817 /*
818  * All the DMA operation mode stuff goes inside this ifdef.
819  * This assumes that you have a generic DMA device interface,
820  * no custom DMA interfaces are supported.
821  */
822 #ifdef CONFIG_DMA_ENGINE
823 struct mmci_dmae_next {
824 	struct dma_async_tx_descriptor *desc;
825 	struct dma_chan	*chan;
826 };
827 
828 struct mmci_dmae_priv {
829 	struct dma_chan	*cur;
830 	struct dma_chan	*rx_channel;
831 	struct dma_chan	*tx_channel;
832 	struct dma_async_tx_descriptor	*desc_current;
833 	struct mmci_dmae_next next_data;
834 };
835 
836 int mmci_dmae_setup(struct mmci_host *host)
837 {
838 	const char *rxname, *txname;
839 	struct mmci_dmae_priv *dmae;
840 
841 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
842 	if (!dmae)
843 		return -ENOMEM;
844 
845 	host->dma_priv = dmae;
846 
847 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
848 	if (IS_ERR(dmae->rx_channel)) {
849 		int ret = PTR_ERR(dmae->rx_channel);
850 		dmae->rx_channel = NULL;
851 		return ret;
852 	}
853 
854 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
855 	if (IS_ERR(dmae->tx_channel)) {
856 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
857 			dev_warn(mmc_dev(host->mmc),
858 				 "Deferred probe for TX channel ignored\n");
859 		dmae->tx_channel = NULL;
860 	}
861 
862 	/*
863 	 * If only an RX channel is specified, the driver will
864 	 * attempt to use it bidirectionally, however if it
865 	 * is specified but cannot be located, DMA will be disabled.
866 	 */
867 	if (dmae->rx_channel && !dmae->tx_channel)
868 		dmae->tx_channel = dmae->rx_channel;
869 
870 	if (dmae->rx_channel)
871 		rxname = dma_chan_name(dmae->rx_channel);
872 	else
873 		rxname = "none";
874 
875 	if (dmae->tx_channel)
876 		txname = dma_chan_name(dmae->tx_channel);
877 	else
878 		txname = "none";
879 
880 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
881 		 rxname, txname);
882 
883 	/*
884 	 * Limit the maximum segment size in any SG entry according to
885 	 * the parameters of the DMA engine device.
886 	 */
887 	if (dmae->tx_channel) {
888 		struct device *dev = dmae->tx_channel->device->dev;
889 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
890 
891 		if (max_seg_size < host->mmc->max_seg_size)
892 			host->mmc->max_seg_size = max_seg_size;
893 	}
894 	if (dmae->rx_channel) {
895 		struct device *dev = dmae->rx_channel->device->dev;
896 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
897 
898 		if (max_seg_size < host->mmc->max_seg_size)
899 			host->mmc->max_seg_size = max_seg_size;
900 	}
901 
902 	if (!dmae->tx_channel || !dmae->rx_channel) {
903 		mmci_dmae_release(host);
904 		return -EINVAL;
905 	}
906 
907 	return 0;
908 }
909 
910 /*
911  * This is used in or so inline it
912  * so it can be discarded.
913  */
914 void mmci_dmae_release(struct mmci_host *host)
915 {
916 	struct mmci_dmae_priv *dmae = host->dma_priv;
917 
918 	if (dmae->rx_channel)
919 		dma_release_channel(dmae->rx_channel);
920 	if (dmae->tx_channel)
921 		dma_release_channel(dmae->tx_channel);
922 	dmae->rx_channel = dmae->tx_channel = NULL;
923 }
924 
925 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
926 {
927 	struct mmci_dmae_priv *dmae = host->dma_priv;
928 	struct dma_chan *chan;
929 
930 	if (data->flags & MMC_DATA_READ)
931 		chan = dmae->rx_channel;
932 	else
933 		chan = dmae->tx_channel;
934 
935 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
936 		     mmc_get_dma_dir(data));
937 }
938 
939 void mmci_dmae_error(struct mmci_host *host)
940 {
941 	struct mmci_dmae_priv *dmae = host->dma_priv;
942 
943 	if (!dma_inprogress(host))
944 		return;
945 
946 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
947 	dmaengine_terminate_all(dmae->cur);
948 	host->dma_in_progress = false;
949 	dmae->cur = NULL;
950 	dmae->desc_current = NULL;
951 	host->data->host_cookie = 0;
952 
953 	mmci_dma_unmap(host, host->data);
954 }
955 
956 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
957 {
958 	struct mmci_dmae_priv *dmae = host->dma_priv;
959 	u32 status;
960 	int i;
961 
962 	if (!dma_inprogress(host))
963 		return;
964 
965 	/* Wait up to 1ms for the DMA to complete */
966 	for (i = 0; ; i++) {
967 		status = readl(host->base + MMCISTATUS);
968 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
969 			break;
970 		udelay(10);
971 	}
972 
973 	/*
974 	 * Check to see whether we still have some data left in the FIFO -
975 	 * this catches DMA controllers which are unable to monitor the
976 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
977 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
978 	 */
979 	if (status & MCI_RXDATAAVLBLMASK) {
980 		mmci_dma_error(host);
981 		if (!data->error)
982 			data->error = -EIO;
983 	} else if (!data->host_cookie) {
984 		mmci_dma_unmap(host, data);
985 	}
986 
987 	/*
988 	 * Use of DMA with scatter-gather is impossible.
989 	 * Give up with DMA and switch back to PIO mode.
990 	 */
991 	if (status & MCI_RXDATAAVLBLMASK) {
992 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
993 		mmci_dma_release(host);
994 	}
995 
996 	host->dma_in_progress = false;
997 	dmae->cur = NULL;
998 	dmae->desc_current = NULL;
999 }
1000 
1001 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1002 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1003 				struct dma_chan **dma_chan,
1004 				struct dma_async_tx_descriptor **dma_desc)
1005 {
1006 	struct mmci_dmae_priv *dmae = host->dma_priv;
1007 	struct variant_data *variant = host->variant;
1008 	struct dma_slave_config conf = {
1009 		.src_addr = host->phybase + MMCIFIFO,
1010 		.dst_addr = host->phybase + MMCIFIFO,
1011 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1012 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1013 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1014 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1015 		.device_fc = false,
1016 	};
1017 	struct dma_chan *chan;
1018 	struct dma_device *device;
1019 	struct dma_async_tx_descriptor *desc;
1020 	int nr_sg;
1021 	unsigned long flags = DMA_CTRL_ACK;
1022 
1023 	if (data->flags & MMC_DATA_READ) {
1024 		conf.direction = DMA_DEV_TO_MEM;
1025 		chan = dmae->rx_channel;
1026 	} else {
1027 		conf.direction = DMA_MEM_TO_DEV;
1028 		chan = dmae->tx_channel;
1029 	}
1030 
1031 	/* If there's no DMA channel, fall back to PIO */
1032 	if (!chan)
1033 		return -EINVAL;
1034 
1035 	/* If less than or equal to the fifo size, don't bother with DMA */
1036 	if (data->blksz * data->blocks <= variant->fifosize)
1037 		return -EINVAL;
1038 
1039 	/*
1040 	 * This is necessary to get SDIO working on the Ux500. We do not yet
1041 	 * know if this is a bug in:
1042 	 * - The Ux500 DMA controller (DMA40)
1043 	 * - The MMCI DMA interface on the Ux500
1044 	 * some power of two blocks (such as 64 bytes) are sent regularly
1045 	 * during SDIO traffic and those work fine so for these we enable DMA
1046 	 * transfers.
1047 	 */
1048 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1049 		return -EINVAL;
1050 
1051 	device = chan->device;
1052 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1053 			   mmc_get_dma_dir(data));
1054 	if (nr_sg == 0)
1055 		return -EINVAL;
1056 
1057 	if (host->variant->qcom_dml)
1058 		flags |= DMA_PREP_INTERRUPT;
1059 
1060 	dmaengine_slave_config(chan, &conf);
1061 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1062 					    conf.direction, flags);
1063 	if (!desc)
1064 		goto unmap_exit;
1065 
1066 	*dma_chan = chan;
1067 	*dma_desc = desc;
1068 
1069 	return 0;
1070 
1071  unmap_exit:
1072 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
1073 		     mmc_get_dma_dir(data));
1074 	return -ENOMEM;
1075 }
1076 
1077 int mmci_dmae_prep_data(struct mmci_host *host,
1078 			struct mmc_data *data,
1079 			bool next)
1080 {
1081 	struct mmci_dmae_priv *dmae = host->dma_priv;
1082 	struct mmci_dmae_next *nd = &dmae->next_data;
1083 
1084 	if (!host->use_dma)
1085 		return -EINVAL;
1086 
1087 	if (next)
1088 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1089 	/* Check if next job is already prepared. */
1090 	if (dmae->cur && dmae->desc_current)
1091 		return 0;
1092 
1093 	/* No job were prepared thus do it now. */
1094 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
1095 				    &dmae->desc_current);
1096 }
1097 
1098 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1099 {
1100 	struct mmci_dmae_priv *dmae = host->dma_priv;
1101 	int ret;
1102 
1103 	host->dma_in_progress = true;
1104 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1105 	if (ret < 0) {
1106 		host->dma_in_progress = false;
1107 		return ret;
1108 	}
1109 	dma_async_issue_pending(dmae->cur);
1110 
1111 	*datactrl |= MCI_DPSM_DMAENABLE;
1112 
1113 	return 0;
1114 }
1115 
1116 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1117 {
1118 	struct mmci_dmae_priv *dmae = host->dma_priv;
1119 	struct mmci_dmae_next *next = &dmae->next_data;
1120 
1121 	if (!host->use_dma)
1122 		return;
1123 
1124 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1125 
1126 	dmae->desc_current = next->desc;
1127 	dmae->cur = next->chan;
1128 	next->desc = NULL;
1129 	next->chan = NULL;
1130 }
1131 
1132 void mmci_dmae_unprep_data(struct mmci_host *host,
1133 			   struct mmc_data *data, int err)
1134 
1135 {
1136 	struct mmci_dmae_priv *dmae = host->dma_priv;
1137 
1138 	if (!host->use_dma)
1139 		return;
1140 
1141 	mmci_dma_unmap(host, data);
1142 
1143 	if (err) {
1144 		struct mmci_dmae_next *next = &dmae->next_data;
1145 		struct dma_chan *chan;
1146 		if (data->flags & MMC_DATA_READ)
1147 			chan = dmae->rx_channel;
1148 		else
1149 			chan = dmae->tx_channel;
1150 		dmaengine_terminate_all(chan);
1151 
1152 		if (dmae->desc_current == next->desc)
1153 			dmae->desc_current = NULL;
1154 
1155 		if (dmae->cur == next->chan) {
1156 			host->dma_in_progress = false;
1157 			dmae->cur = NULL;
1158 		}
1159 
1160 		next->desc = NULL;
1161 		next->chan = NULL;
1162 	}
1163 }
1164 
1165 static struct mmci_host_ops mmci_variant_ops = {
1166 	.prep_data = mmci_dmae_prep_data,
1167 	.unprep_data = mmci_dmae_unprep_data,
1168 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1169 	.get_next_data = mmci_dmae_get_next_data,
1170 	.dma_setup = mmci_dmae_setup,
1171 	.dma_release = mmci_dmae_release,
1172 	.dma_start = mmci_dmae_start,
1173 	.dma_finalize = mmci_dmae_finalize,
1174 	.dma_error = mmci_dmae_error,
1175 };
1176 #else
1177 static struct mmci_host_ops mmci_variant_ops = {
1178 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1179 };
1180 #endif
1181 
1182 static void mmci_variant_init(struct mmci_host *host)
1183 {
1184 	host->ops = &mmci_variant_ops;
1185 }
1186 
1187 static void ux500_variant_init(struct mmci_host *host)
1188 {
1189 	host->ops = &mmci_variant_ops;
1190 	host->ops->busy_complete = ux500_busy_complete;
1191 }
1192 
1193 static void ux500v2_variant_init(struct mmci_host *host)
1194 {
1195 	host->ops = &mmci_variant_ops;
1196 	host->ops->busy_complete = ux500_busy_complete;
1197 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1198 }
1199 
1200 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1201 {
1202 	struct mmci_host *host = mmc_priv(mmc);
1203 	struct mmc_data *data = mrq->data;
1204 
1205 	if (!data)
1206 		return;
1207 
1208 	WARN_ON(data->host_cookie);
1209 
1210 	if (mmci_validate_data(host, data))
1211 		return;
1212 
1213 	mmci_prep_data(host, data, true);
1214 }
1215 
1216 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1217 			      int err)
1218 {
1219 	struct mmci_host *host = mmc_priv(mmc);
1220 	struct mmc_data *data = mrq->data;
1221 
1222 	if (!data || !data->host_cookie)
1223 		return;
1224 
1225 	mmci_unprep_data(host, data, err);
1226 }
1227 
1228 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1229 {
1230 	struct variant_data *variant = host->variant;
1231 	unsigned int datactrl, timeout, irqmask;
1232 	unsigned long long clks;
1233 	void __iomem *base;
1234 
1235 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1236 		data->blksz, data->blocks, data->flags);
1237 
1238 	host->data = data;
1239 	host->size = data->blksz * data->blocks;
1240 	data->bytes_xfered = 0;
1241 
1242 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1243 	do_div(clks, NSEC_PER_SEC);
1244 
1245 	timeout = data->timeout_clks + (unsigned int)clks;
1246 
1247 	base = host->base;
1248 	writel(timeout, base + MMCIDATATIMER);
1249 	writel(host->size, base + MMCIDATALENGTH);
1250 
1251 	datactrl = host->ops->get_datactrl_cfg(host);
1252 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1253 
1254 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1255 		u32 clk;
1256 
1257 		datactrl |= variant->datactrl_mask_sdio;
1258 
1259 		/*
1260 		 * The ST Micro variant for SDIO small write transfers
1261 		 * needs to have clock H/W flow control disabled,
1262 		 * otherwise the transfer will not start. The threshold
1263 		 * depends on the rate of MCLK.
1264 		 */
1265 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1266 		    (host->size < 8 ||
1267 		     (host->size <= 8 && host->mclk > 50000000)))
1268 			clk = host->clk_reg & ~variant->clkreg_enable;
1269 		else
1270 			clk = host->clk_reg | variant->clkreg_enable;
1271 
1272 		mmci_write_clkreg(host, clk);
1273 	}
1274 
1275 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1276 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1277 		datactrl |= variant->datactrl_mask_ddrmode;
1278 
1279 	/*
1280 	 * Attempt to use DMA operation mode, if this
1281 	 * should fail, fall back to PIO mode
1282 	 */
1283 	if (!mmci_dma_start(host, datactrl))
1284 		return;
1285 
1286 	/* IRQ mode, map the SG list for CPU reading/writing */
1287 	mmci_init_sg(host, data);
1288 
1289 	if (data->flags & MMC_DATA_READ) {
1290 		irqmask = MCI_RXFIFOHALFFULLMASK;
1291 
1292 		/*
1293 		 * If we have less than the fifo 'half-full' threshold to
1294 		 * transfer, trigger a PIO interrupt as soon as any data
1295 		 * is available.
1296 		 */
1297 		if (host->size < variant->fifohalfsize)
1298 			irqmask |= MCI_RXDATAAVLBLMASK;
1299 	} else {
1300 		/*
1301 		 * We don't actually need to include "FIFO empty" here
1302 		 * since its implicit in "FIFO half empty".
1303 		 */
1304 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1305 	}
1306 
1307 	mmci_write_datactrlreg(host, datactrl);
1308 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1309 	mmci_set_mask1(host, irqmask);
1310 }
1311 
1312 static void
1313 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1314 {
1315 	void __iomem *base = host->base;
1316 	bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1317 	unsigned long long clks;
1318 
1319 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1320 	    cmd->opcode, cmd->arg, cmd->flags);
1321 
1322 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1323 		writel(0, base + MMCICOMMAND);
1324 		mmci_reg_delay(host);
1325 	}
1326 
1327 	if (host->variant->cmdreg_stop &&
1328 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1329 		c |= host->variant->cmdreg_stop;
1330 
1331 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1332 	if (cmd->flags & MMC_RSP_PRESENT) {
1333 		if (cmd->flags & MMC_RSP_136)
1334 			c |= host->variant->cmdreg_lrsp_crc;
1335 		else if (cmd->flags & MMC_RSP_CRC)
1336 			c |= host->variant->cmdreg_srsp_crc;
1337 		else
1338 			c |= host->variant->cmdreg_srsp;
1339 	}
1340 
1341 	host->busy_status = 0;
1342 	host->busy_state = MMCI_BUSY_DONE;
1343 
1344 	/* Assign a default timeout if the core does not provide one */
1345 	if (busy_resp && !cmd->busy_timeout)
1346 		cmd->busy_timeout = 10 * MSEC_PER_SEC;
1347 
1348 	if (busy_resp && host->variant->busy_timeout) {
1349 		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1350 			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1351 		else
1352 			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1353 
1354 		do_div(clks, MSEC_PER_SEC);
1355 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1356 	}
1357 
1358 	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1359 		host->ops->pre_sig_volt_switch(host);
1360 
1361 	if (/*interrupt*/0)
1362 		c |= MCI_CPSM_INTERRUPT;
1363 
1364 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1365 		c |= host->variant->data_cmd_enable;
1366 
1367 	host->cmd = cmd;
1368 
1369 	writel(cmd->arg, base + MMCIARGUMENT);
1370 	writel(c, base + MMCICOMMAND);
1371 }
1372 
1373 static void mmci_stop_command(struct mmci_host *host)
1374 {
1375 	host->stop_abort.error = 0;
1376 	mmci_start_command(host, &host->stop_abort, 0);
1377 }
1378 
1379 static void
1380 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1381 	      unsigned int status)
1382 {
1383 	unsigned int status_err;
1384 
1385 	/* Make sure we have data to handle */
1386 	if (!data)
1387 		return;
1388 
1389 	/* First check for errors */
1390 	status_err = status & (host->variant->start_err |
1391 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1392 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1393 
1394 	if (status_err) {
1395 		u32 remain, success;
1396 
1397 		/* Terminate the DMA transfer */
1398 		mmci_dma_error(host);
1399 
1400 		/*
1401 		 * Calculate how far we are into the transfer.  Note that
1402 		 * the data counter gives the number of bytes transferred
1403 		 * on the MMC bus, not on the host side.  On reads, this
1404 		 * can be as much as a FIFO-worth of data ahead.  This
1405 		 * matters for FIFO overruns only.
1406 		 */
1407 		if (!host->variant->datacnt_useless) {
1408 			remain = readl(host->base + MMCIDATACNT);
1409 			success = data->blksz * data->blocks - remain;
1410 		} else {
1411 			success = 0;
1412 		}
1413 
1414 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1415 			status_err, success);
1416 		if (status_err & MCI_DATACRCFAIL) {
1417 			/* Last block was not successful */
1418 			success -= 1;
1419 			data->error = -EILSEQ;
1420 		} else if (status_err & MCI_DATATIMEOUT) {
1421 			data->error = -ETIMEDOUT;
1422 		} else if (status_err & MCI_STARTBITERR) {
1423 			data->error = -ECOMM;
1424 		} else if (status_err & MCI_TXUNDERRUN) {
1425 			data->error = -EIO;
1426 		} else if (status_err & MCI_RXOVERRUN) {
1427 			if (success > host->variant->fifosize)
1428 				success -= host->variant->fifosize;
1429 			else
1430 				success = 0;
1431 			data->error = -EIO;
1432 		}
1433 		data->bytes_xfered = round_down(success, data->blksz);
1434 	}
1435 
1436 	if (status & MCI_DATABLOCKEND)
1437 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1438 
1439 	if (status & MCI_DATAEND || data->error) {
1440 		mmci_dma_finalize(host, data);
1441 
1442 		mmci_stop_data(host);
1443 
1444 		if (!data->error)
1445 			/* The error clause is handled above, success! */
1446 			data->bytes_xfered = data->blksz * data->blocks;
1447 
1448 		if (!data->stop) {
1449 			if (host->variant->cmdreg_stop && data->error)
1450 				mmci_stop_command(host);
1451 			else
1452 				mmci_request_end(host, data->mrq);
1453 		} else if (host->mrq->sbc && !data->error) {
1454 			mmci_request_end(host, data->mrq);
1455 		} else {
1456 			mmci_start_command(host, data->stop, 0);
1457 		}
1458 	}
1459 }
1460 
1461 static void
1462 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1463 	     unsigned int status)
1464 {
1465 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1466 	void __iomem *base = host->base;
1467 	bool sbc, busy_resp;
1468 
1469 	if (!cmd)
1470 		return;
1471 
1472 	sbc = (cmd == host->mrq->sbc);
1473 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1474 
1475 	/*
1476 	 * We need to be one of these interrupts to be considered worth
1477 	 * handling. Note that we tag on any latent IRQs postponed
1478 	 * due to waiting for busy status.
1479 	 */
1480 	if (host->variant->busy_timeout && busy_resp)
1481 		err_msk |= MCI_DATATIMEOUT;
1482 
1483 	if (!((status | host->busy_status) &
1484 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1485 		return;
1486 
1487 	/* Handle busy detection on DAT0 if the variant supports it. */
1488 	if (busy_resp && host->variant->busy_detect)
1489 		if (!host->ops->busy_complete(host, cmd, status, err_msk))
1490 			return;
1491 
1492 	host->cmd = NULL;
1493 
1494 	if (status & MCI_CMDTIMEOUT) {
1495 		cmd->error = -ETIMEDOUT;
1496 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1497 		cmd->error = -EILSEQ;
1498 	} else if (host->variant->busy_timeout && busy_resp &&
1499 		   status & MCI_DATATIMEOUT) {
1500 		cmd->error = -ETIMEDOUT;
1501 		/*
1502 		 * This will wake up mmci_irq_thread() which will issue
1503 		 * a hardware reset of the MMCI block.
1504 		 */
1505 		host->irq_action = IRQ_WAKE_THREAD;
1506 	} else {
1507 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1508 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1509 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1510 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1511 	}
1512 
1513 	if ((!sbc && !cmd->data) || cmd->error) {
1514 		if (host->data) {
1515 			/* Terminate the DMA transfer */
1516 			mmci_dma_error(host);
1517 
1518 			mmci_stop_data(host);
1519 			if (host->variant->cmdreg_stop && cmd->error) {
1520 				mmci_stop_command(host);
1521 				return;
1522 			}
1523 		}
1524 
1525 		if (host->irq_action != IRQ_WAKE_THREAD)
1526 			mmci_request_end(host, host->mrq);
1527 
1528 	} else if (sbc) {
1529 		mmci_start_command(host, host->mrq->cmd, 0);
1530 	} else if (!host->variant->datactrl_first &&
1531 		   !(cmd->data->flags & MMC_DATA_READ)) {
1532 		mmci_start_data(host, cmd->data);
1533 	}
1534 }
1535 
1536 /*
1537  * This busy timeout worker is used to "kick" the command IRQ if a
1538  * busy detect IRQ fails to appear in reasonable time. Only used on
1539  * variants with busy detection IRQ delivery.
1540  */
1541 static void ux500_busy_timeout_work(struct work_struct *work)
1542 {
1543 	struct mmci_host *host = container_of(work, struct mmci_host,
1544 					ux500_busy_timeout_work.work);
1545 	unsigned long flags;
1546 	u32 status;
1547 
1548 	spin_lock_irqsave(&host->lock, flags);
1549 
1550 	if (host->cmd) {
1551 		dev_dbg(mmc_dev(host->mmc), "timeout waiting for busy IRQ\n");
1552 
1553 		/* If we are still busy let's tag on a cmd-timeout error. */
1554 		status = readl(host->base + MMCISTATUS);
1555 		if (status & host->variant->busy_detect_flag)
1556 			status |= MCI_CMDTIMEOUT;
1557 
1558 		mmci_cmd_irq(host, host->cmd, status);
1559 	}
1560 
1561 	spin_unlock_irqrestore(&host->lock, flags);
1562 }
1563 
1564 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1565 {
1566 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1567 }
1568 
1569 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1570 {
1571 	/*
1572 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1573 	 * from the fifo range should be used
1574 	 */
1575 	if (status & MCI_RXFIFOHALFFULL)
1576 		return host->variant->fifohalfsize;
1577 	else if (status & MCI_RXDATAAVLBL)
1578 		return 4;
1579 
1580 	return 0;
1581 }
1582 
1583 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1584 {
1585 	void __iomem *base = host->base;
1586 	char *ptr = buffer;
1587 	u32 status = readl(host->base + MMCISTATUS);
1588 	int host_remain = host->size;
1589 
1590 	do {
1591 		int count = host->get_rx_fifocnt(host, status, host_remain);
1592 
1593 		if (count > remain)
1594 			count = remain;
1595 
1596 		if (count <= 0)
1597 			break;
1598 
1599 		/*
1600 		 * SDIO especially may want to send something that is
1601 		 * not divisible by 4 (as opposed to card sectors
1602 		 * etc). Therefore make sure to always read the last bytes
1603 		 * while only doing full 32-bit reads towards the FIFO.
1604 		 */
1605 		if (unlikely(count & 0x3)) {
1606 			if (count < 4) {
1607 				unsigned char buf[4];
1608 				ioread32_rep(base + MMCIFIFO, buf, 1);
1609 				memcpy(ptr, buf, count);
1610 			} else {
1611 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1612 				count &= ~0x3;
1613 			}
1614 		} else {
1615 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1616 		}
1617 
1618 		ptr += count;
1619 		remain -= count;
1620 		host_remain -= count;
1621 
1622 		if (remain == 0)
1623 			break;
1624 
1625 		status = readl(base + MMCISTATUS);
1626 	} while (status & MCI_RXDATAAVLBL);
1627 
1628 	return ptr - buffer;
1629 }
1630 
1631 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1632 {
1633 	struct variant_data *variant = host->variant;
1634 	void __iomem *base = host->base;
1635 	char *ptr = buffer;
1636 
1637 	do {
1638 		unsigned int count, maxcnt;
1639 
1640 		maxcnt = status & MCI_TXFIFOEMPTY ?
1641 			 variant->fifosize : variant->fifohalfsize;
1642 		count = min(remain, maxcnt);
1643 
1644 		/*
1645 		 * SDIO especially may want to send something that is
1646 		 * not divisible by 4 (as opposed to card sectors
1647 		 * etc), and the FIFO only accept full 32-bit writes.
1648 		 * So compensate by adding +3 on the count, a single
1649 		 * byte become a 32bit write, 7 bytes will be two
1650 		 * 32bit writes etc.
1651 		 */
1652 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1653 
1654 		ptr += count;
1655 		remain -= count;
1656 
1657 		if (remain == 0)
1658 			break;
1659 
1660 		status = readl(base + MMCISTATUS);
1661 	} while (status & MCI_TXFIFOHALFEMPTY);
1662 
1663 	return ptr - buffer;
1664 }
1665 
1666 /*
1667  * PIO data transfer IRQ handler.
1668  */
1669 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1670 {
1671 	struct mmci_host *host = dev_id;
1672 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1673 	struct variant_data *variant = host->variant;
1674 	void __iomem *base = host->base;
1675 	u32 status;
1676 
1677 	status = readl(base + MMCISTATUS);
1678 
1679 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1680 
1681 	do {
1682 		unsigned int remain, len;
1683 		char *buffer;
1684 
1685 		/*
1686 		 * For write, we only need to test the half-empty flag
1687 		 * here - if the FIFO is completely empty, then by
1688 		 * definition it is more than half empty.
1689 		 *
1690 		 * For read, check for data available.
1691 		 */
1692 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1693 			break;
1694 
1695 		if (!sg_miter_next(sg_miter))
1696 			break;
1697 
1698 		buffer = sg_miter->addr;
1699 		remain = sg_miter->length;
1700 
1701 		len = 0;
1702 		if (status & MCI_RXACTIVE)
1703 			len = mmci_pio_read(host, buffer, remain);
1704 		if (status & MCI_TXACTIVE)
1705 			len = mmci_pio_write(host, buffer, remain, status);
1706 
1707 		sg_miter->consumed = len;
1708 
1709 		host->size -= len;
1710 		remain -= len;
1711 
1712 		if (remain)
1713 			break;
1714 
1715 		status = readl(base + MMCISTATUS);
1716 	} while (1);
1717 
1718 	sg_miter_stop(sg_miter);
1719 
1720 	/*
1721 	 * If we have less than the fifo 'half-full' threshold to transfer,
1722 	 * trigger a PIO interrupt as soon as any data is available.
1723 	 */
1724 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1725 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1726 
1727 	/*
1728 	 * If we run out of data, disable the data IRQs; this
1729 	 * prevents a race where the FIFO becomes empty before
1730 	 * the chip itself has disabled the data path, and
1731 	 * stops us racing with our data end IRQ.
1732 	 */
1733 	if (host->size == 0) {
1734 		mmci_set_mask1(host, 0);
1735 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1736 	}
1737 
1738 	return IRQ_HANDLED;
1739 }
1740 
1741 /*
1742  * Handle completion of command and data transfers.
1743  */
1744 static irqreturn_t mmci_irq(int irq, void *dev_id)
1745 {
1746 	struct mmci_host *host = dev_id;
1747 	u32 status;
1748 
1749 	spin_lock(&host->lock);
1750 	host->irq_action = IRQ_HANDLED;
1751 
1752 	do {
1753 		status = readl(host->base + MMCISTATUS);
1754 		if (!status)
1755 			break;
1756 
1757 		if (host->singleirq) {
1758 			if (status & host->mask1_reg)
1759 				mmci_pio_irq(irq, dev_id);
1760 
1761 			status &= ~host->variant->irq_pio_mask;
1762 		}
1763 
1764 		/*
1765 		 * Busy detection is managed by mmci_cmd_irq(), including to
1766 		 * clear the corresponding IRQ.
1767 		 */
1768 		status &= readl(host->base + MMCIMASK0);
1769 		if (host->variant->busy_detect)
1770 			writel(status & ~host->variant->busy_detect_mask,
1771 			       host->base + MMCICLEAR);
1772 		else
1773 			writel(status, host->base + MMCICLEAR);
1774 
1775 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1776 
1777 		if (host->variant->reversed_irq_handling) {
1778 			mmci_data_irq(host, host->data, status);
1779 			mmci_cmd_irq(host, host->cmd, status);
1780 		} else {
1781 			mmci_cmd_irq(host, host->cmd, status);
1782 			mmci_data_irq(host, host->data, status);
1783 		}
1784 
1785 		/*
1786 		 * Busy detection has been handled by mmci_cmd_irq() above.
1787 		 * Clear the status bit to prevent polling in IRQ context.
1788 		 */
1789 		if (host->variant->busy_detect_flag)
1790 			status &= ~host->variant->busy_detect_flag;
1791 
1792 	} while (status);
1793 
1794 	spin_unlock(&host->lock);
1795 
1796 	return host->irq_action;
1797 }
1798 
1799 /*
1800  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1801  *
1802  * A reset is needed for some variants, where a datatimeout for a R1B request
1803  * causes the DPSM to stay busy (non-functional).
1804  */
1805 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1806 {
1807 	struct mmci_host *host = dev_id;
1808 	unsigned long flags;
1809 
1810 	if (host->rst) {
1811 		reset_control_assert(host->rst);
1812 		udelay(2);
1813 		reset_control_deassert(host->rst);
1814 	}
1815 
1816 	spin_lock_irqsave(&host->lock, flags);
1817 	writel(host->clk_reg, host->base + MMCICLOCK);
1818 	writel(host->pwr_reg, host->base + MMCIPOWER);
1819 	writel(MCI_IRQENABLE | host->variant->start_err,
1820 	       host->base + MMCIMASK0);
1821 
1822 	host->irq_action = IRQ_HANDLED;
1823 	mmci_request_end(host, host->mrq);
1824 	spin_unlock_irqrestore(&host->lock, flags);
1825 
1826 	return host->irq_action;
1827 }
1828 
1829 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1830 {
1831 	struct mmci_host *host = mmc_priv(mmc);
1832 	unsigned long flags;
1833 
1834 	WARN_ON(host->mrq != NULL);
1835 
1836 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1837 	if (mrq->cmd->error) {
1838 		mmc_request_done(mmc, mrq);
1839 		return;
1840 	}
1841 
1842 	spin_lock_irqsave(&host->lock, flags);
1843 
1844 	host->mrq = mrq;
1845 
1846 	if (mrq->data)
1847 		mmci_get_next_data(host, mrq->data);
1848 
1849 	if (mrq->data &&
1850 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1851 		mmci_start_data(host, mrq->data);
1852 
1853 	if (mrq->sbc)
1854 		mmci_start_command(host, mrq->sbc, 0);
1855 	else
1856 		mmci_start_command(host, mrq->cmd, 0);
1857 
1858 	spin_unlock_irqrestore(&host->lock, flags);
1859 }
1860 
1861 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1862 {
1863 	struct mmci_host *host = mmc_priv(mmc);
1864 	u32 max_busy_timeout = 0;
1865 
1866 	if (!host->variant->busy_detect)
1867 		return;
1868 
1869 	if (host->variant->busy_timeout && mmc->actual_clock)
1870 		max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1871 							  MSEC_PER_SEC);
1872 
1873 	mmc->max_busy_timeout = max_busy_timeout;
1874 }
1875 
1876 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1877 {
1878 	struct mmci_host *host = mmc_priv(mmc);
1879 	struct variant_data *variant = host->variant;
1880 	u32 pwr = 0;
1881 	unsigned long flags;
1882 	int ret;
1883 
1884 	switch (ios->power_mode) {
1885 	case MMC_POWER_OFF:
1886 		if (!IS_ERR(mmc->supply.vmmc))
1887 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1888 
1889 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1890 			regulator_disable(mmc->supply.vqmmc);
1891 			host->vqmmc_enabled = false;
1892 		}
1893 
1894 		break;
1895 	case MMC_POWER_UP:
1896 		if (!IS_ERR(mmc->supply.vmmc))
1897 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1898 
1899 		/*
1900 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1901 		 * and instead uses MCI_PWR_ON so apply whatever value is
1902 		 * configured in the variant data.
1903 		 */
1904 		pwr |= variant->pwrreg_powerup;
1905 
1906 		break;
1907 	case MMC_POWER_ON:
1908 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1909 			ret = regulator_enable(mmc->supply.vqmmc);
1910 			if (ret < 0)
1911 				dev_err(mmc_dev(mmc),
1912 					"failed to enable vqmmc regulator\n");
1913 			else
1914 				host->vqmmc_enabled = true;
1915 		}
1916 
1917 		pwr |= MCI_PWR_ON;
1918 		break;
1919 	}
1920 
1921 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1922 		/*
1923 		 * The ST Micro variant has some additional bits
1924 		 * indicating signal direction for the signals in
1925 		 * the SD/MMC bus and feedback-clock usage.
1926 		 */
1927 		pwr |= host->pwr_reg_add;
1928 
1929 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1930 			pwr &= ~MCI_ST_DATA74DIREN;
1931 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1932 			pwr &= (~MCI_ST_DATA74DIREN &
1933 				~MCI_ST_DATA31DIREN &
1934 				~MCI_ST_DATA2DIREN);
1935 	}
1936 
1937 	if (variant->opendrain) {
1938 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1939 			pwr |= variant->opendrain;
1940 	} else {
1941 		/*
1942 		 * If the variant cannot configure the pads by its own, then we
1943 		 * expect the pinctrl to be able to do that for us
1944 		 */
1945 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1946 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1947 		else
1948 			pinctrl_select_default_state(mmc_dev(mmc));
1949 	}
1950 
1951 	/*
1952 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1953 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1954 	 */
1955 	if (!ios->clock && variant->pwrreg_clkgate)
1956 		pwr &= ~MCI_PWR_ON;
1957 
1958 	if (host->variant->explicit_mclk_control &&
1959 	    ios->clock != host->clock_cache) {
1960 		ret = clk_set_rate(host->clk, ios->clock);
1961 		if (ret < 0)
1962 			dev_err(mmc_dev(host->mmc),
1963 				"Error setting clock rate (%d)\n", ret);
1964 		else
1965 			host->mclk = clk_get_rate(host->clk);
1966 	}
1967 	host->clock_cache = ios->clock;
1968 
1969 	spin_lock_irqsave(&host->lock, flags);
1970 
1971 	if (host->ops && host->ops->set_clkreg)
1972 		host->ops->set_clkreg(host, ios->clock);
1973 	else
1974 		mmci_set_clkreg(host, ios->clock);
1975 
1976 	mmci_set_max_busy_timeout(mmc);
1977 
1978 	if (host->ops && host->ops->set_pwrreg)
1979 		host->ops->set_pwrreg(host, pwr);
1980 	else
1981 		mmci_write_pwrreg(host, pwr);
1982 
1983 	mmci_reg_delay(host);
1984 
1985 	spin_unlock_irqrestore(&host->lock, flags);
1986 }
1987 
1988 static int mmci_get_cd(struct mmc_host *mmc)
1989 {
1990 	struct mmci_host *host = mmc_priv(mmc);
1991 	struct mmci_platform_data *plat = host->plat;
1992 	unsigned int status = mmc_gpio_get_cd(mmc);
1993 
1994 	if (status == -ENOSYS) {
1995 		if (!plat->status)
1996 			return 1; /* Assume always present */
1997 
1998 		status = plat->status(mmc_dev(host->mmc));
1999 	}
2000 	return status;
2001 }
2002 
2003 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2004 {
2005 	struct mmci_host *host = mmc_priv(mmc);
2006 	int ret;
2007 
2008 	ret = mmc_regulator_set_vqmmc(mmc, ios);
2009 
2010 	if (!ret && host->ops && host->ops->post_sig_volt_switch)
2011 		ret = host->ops->post_sig_volt_switch(host, ios);
2012 	else if (ret)
2013 		ret = 0;
2014 
2015 	if (ret < 0)
2016 		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2017 
2018 	return ret;
2019 }
2020 
2021 static struct mmc_host_ops mmci_ops = {
2022 	.request	= mmci_request,
2023 	.pre_req	= mmci_pre_request,
2024 	.post_req	= mmci_post_request,
2025 	.set_ios	= mmci_set_ios,
2026 	.get_ro		= mmc_gpio_get_ro,
2027 	.get_cd		= mmci_get_cd,
2028 	.start_signal_voltage_switch = mmci_sig_volt_switch,
2029 };
2030 
2031 static void mmci_probe_level_translator(struct mmc_host *mmc)
2032 {
2033 	struct device *dev = mmc_dev(mmc);
2034 	struct mmci_host *host = mmc_priv(mmc);
2035 	struct gpio_desc *cmd_gpio;
2036 	struct gpio_desc *ck_gpio;
2037 	struct gpio_desc *ckin_gpio;
2038 	int clk_hi, clk_lo;
2039 
2040 	/*
2041 	 * Assume the level translator is present if st,use-ckin is set.
2042 	 * This is to cater for DTs which do not implement this test.
2043 	 */
2044 	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2045 
2046 	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2047 	if (IS_ERR(cmd_gpio))
2048 		goto exit_cmd;
2049 
2050 	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2051 	if (IS_ERR(ck_gpio))
2052 		goto exit_ck;
2053 
2054 	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2055 	if (IS_ERR(ckin_gpio))
2056 		goto exit_ckin;
2057 
2058 	/* All GPIOs are valid, test whether level translator works */
2059 
2060 	/* Sample CKIN */
2061 	clk_hi = !!gpiod_get_value(ckin_gpio);
2062 
2063 	/* Set CK low */
2064 	gpiod_set_value(ck_gpio, 0);
2065 
2066 	/* Sample CKIN */
2067 	clk_lo = !!gpiod_get_value(ckin_gpio);
2068 
2069 	/* Tristate all */
2070 	gpiod_direction_input(cmd_gpio);
2071 	gpiod_direction_input(ck_gpio);
2072 
2073 	/* Level translator is present if CK signal is propagated to CKIN */
2074 	if (!clk_hi || clk_lo) {
2075 		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2076 		dev_warn(dev,
2077 			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2078 	}
2079 
2080 	gpiod_put(ckin_gpio);
2081 
2082 exit_ckin:
2083 	gpiod_put(ck_gpio);
2084 exit_ck:
2085 	gpiod_put(cmd_gpio);
2086 exit_cmd:
2087 	pinctrl_select_default_state(dev);
2088 }
2089 
2090 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2091 {
2092 	struct mmci_host *host = mmc_priv(mmc);
2093 	int ret = mmc_of_parse(mmc);
2094 
2095 	if (ret)
2096 		return ret;
2097 
2098 	if (of_property_read_bool(np, "st,sig-dir-dat0"))
2099 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2100 	if (of_property_read_bool(np, "st,sig-dir-dat2"))
2101 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2102 	if (of_property_read_bool(np, "st,sig-dir-dat31"))
2103 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2104 	if (of_property_read_bool(np, "st,sig-dir-dat74"))
2105 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2106 	if (of_property_read_bool(np, "st,sig-dir-cmd"))
2107 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
2108 	if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2109 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
2110 	if (of_property_read_bool(np, "st,sig-dir"))
2111 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
2112 	if (of_property_read_bool(np, "st,neg-edge"))
2113 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2114 	if (of_property_read_bool(np, "st,use-ckin"))
2115 		mmci_probe_level_translator(mmc);
2116 
2117 	if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2118 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2119 	if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2120 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2121 
2122 	return 0;
2123 }
2124 
2125 static int mmci_probe(struct amba_device *dev,
2126 	const struct amba_id *id)
2127 {
2128 	struct mmci_platform_data *plat = dev->dev.platform_data;
2129 	struct device_node *np = dev->dev.of_node;
2130 	struct variant_data *variant = id->data;
2131 	struct mmci_host *host;
2132 	struct mmc_host *mmc;
2133 	int ret;
2134 
2135 	/* Must have platform data or Device Tree. */
2136 	if (!plat && !np) {
2137 		dev_err(&dev->dev, "No plat data or DT found\n");
2138 		return -EINVAL;
2139 	}
2140 
2141 	if (!plat) {
2142 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2143 		if (!plat)
2144 			return -ENOMEM;
2145 	}
2146 
2147 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2148 	if (!mmc)
2149 		return -ENOMEM;
2150 
2151 	host = mmc_priv(mmc);
2152 	host->mmc = mmc;
2153 	host->mmc_ops = &mmci_ops;
2154 	mmc->ops = &mmci_ops;
2155 
2156 	ret = mmci_of_parse(np, mmc);
2157 	if (ret)
2158 		goto host_free;
2159 
2160 	/*
2161 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2162 	 * pins can be set accordingly using pinctrl
2163 	 */
2164 	if (!variant->opendrain) {
2165 		host->pinctrl = devm_pinctrl_get(&dev->dev);
2166 		if (IS_ERR(host->pinctrl)) {
2167 			dev_err(&dev->dev, "failed to get pinctrl");
2168 			ret = PTR_ERR(host->pinctrl);
2169 			goto host_free;
2170 		}
2171 
2172 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2173 							    MMCI_PINCTRL_STATE_OPENDRAIN);
2174 		if (IS_ERR(host->pins_opendrain)) {
2175 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2176 			ret = PTR_ERR(host->pins_opendrain);
2177 			goto host_free;
2178 		}
2179 	}
2180 
2181 	host->hw_designer = amba_manf(dev);
2182 	host->hw_revision = amba_rev(dev);
2183 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2184 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2185 
2186 	host->clk = devm_clk_get(&dev->dev, NULL);
2187 	if (IS_ERR(host->clk)) {
2188 		ret = PTR_ERR(host->clk);
2189 		goto host_free;
2190 	}
2191 
2192 	ret = clk_prepare_enable(host->clk);
2193 	if (ret)
2194 		goto host_free;
2195 
2196 	if (variant->qcom_fifo)
2197 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2198 	else
2199 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2200 
2201 	host->plat = plat;
2202 	host->variant = variant;
2203 	host->mclk = clk_get_rate(host->clk);
2204 	/*
2205 	 * According to the spec, mclk is max 100 MHz,
2206 	 * so we try to adjust the clock down to this,
2207 	 * (if possible).
2208 	 */
2209 	if (host->mclk > variant->f_max) {
2210 		ret = clk_set_rate(host->clk, variant->f_max);
2211 		if (ret < 0)
2212 			goto clk_disable;
2213 		host->mclk = clk_get_rate(host->clk);
2214 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2215 			host->mclk);
2216 	}
2217 
2218 	host->phybase = dev->res.start;
2219 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2220 	if (IS_ERR(host->base)) {
2221 		ret = PTR_ERR(host->base);
2222 		goto clk_disable;
2223 	}
2224 
2225 	if (variant->init)
2226 		variant->init(host);
2227 
2228 	/*
2229 	 * The ARM and ST versions of the block have slightly different
2230 	 * clock divider equations which means that the minimum divider
2231 	 * differs too.
2232 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2233 	 */
2234 	if (variant->st_clkdiv)
2235 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2236 	else if (variant->stm32_clkdiv)
2237 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2238 	else if (variant->explicit_mclk_control)
2239 		mmc->f_min = clk_round_rate(host->clk, 100000);
2240 	else
2241 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2242 	/*
2243 	 * If no maximum operating frequency is supplied, fall back to use
2244 	 * the module parameter, which has a (low) default value in case it
2245 	 * is not specified. Either value must not exceed the clock rate into
2246 	 * the block, of course.
2247 	 */
2248 	if (mmc->f_max)
2249 		mmc->f_max = variant->explicit_mclk_control ?
2250 				min(variant->f_max, mmc->f_max) :
2251 				min(host->mclk, mmc->f_max);
2252 	else
2253 		mmc->f_max = variant->explicit_mclk_control ?
2254 				fmax : min(host->mclk, fmax);
2255 
2256 
2257 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2258 
2259 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2260 	if (IS_ERR(host->rst)) {
2261 		ret = PTR_ERR(host->rst);
2262 		goto clk_disable;
2263 	}
2264 	ret = reset_control_deassert(host->rst);
2265 	if (ret)
2266 		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2267 
2268 	/* Get regulators and the supported OCR mask */
2269 	ret = mmc_regulator_get_supply(mmc);
2270 	if (ret)
2271 		goto clk_disable;
2272 
2273 	if (!mmc->ocr_avail)
2274 		mmc->ocr_avail = plat->ocr_mask;
2275 	else if (plat->ocr_mask)
2276 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2277 
2278 	/* We support these capabilities. */
2279 	mmc->caps |= MMC_CAP_CMD23;
2280 
2281 	/*
2282 	 * Enable busy detection.
2283 	 */
2284 	if (variant->busy_detect) {
2285 		mmci_ops.card_busy = mmci_card_busy;
2286 		/*
2287 		 * Not all variants have a flag to enable busy detection
2288 		 * in the DPSM, but if they do, set it here.
2289 		 */
2290 		if (variant->busy_dpsm_flag)
2291 			mmci_write_datactrlreg(host,
2292 					       host->variant->busy_dpsm_flag);
2293 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2294 	}
2295 
2296 	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2297 	if (variant->busy_timeout)
2298 		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2299 
2300 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2301 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2302 	host->stop_abort.arg = 0;
2303 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2304 
2305 	/* We support these PM capabilities. */
2306 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2307 
2308 	/*
2309 	 * We can do SGIO
2310 	 */
2311 	mmc->max_segs = NR_SG;
2312 
2313 	/*
2314 	 * Since only a certain number of bits are valid in the data length
2315 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2316 	 * single request.
2317 	 */
2318 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2319 
2320 	/*
2321 	 * Set the maximum segment size.  Since we aren't doing DMA
2322 	 * (yet) we are only limited by the data length register.
2323 	 */
2324 	mmc->max_seg_size = mmc->max_req_size;
2325 
2326 	/*
2327 	 * Block size can be up to 2048 bytes, but must be a power of two.
2328 	 */
2329 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2330 
2331 	/*
2332 	 * Limit the number of blocks transferred so that we don't overflow
2333 	 * the maximum request size.
2334 	 */
2335 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2336 
2337 	spin_lock_init(&host->lock);
2338 
2339 	writel(0, host->base + MMCIMASK0);
2340 
2341 	if (variant->mmcimask1)
2342 		writel(0, host->base + MMCIMASK1);
2343 
2344 	writel(0xfff, host->base + MMCICLEAR);
2345 
2346 	/*
2347 	 * If:
2348 	 * - not using DT but using a descriptor table, or
2349 	 * - using a table of descriptors ALONGSIDE DT, or
2350 	 * look up these descriptors named "cd" and "wp" right here, fail
2351 	 * silently of these do not exist
2352 	 */
2353 	if (!np) {
2354 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2355 		if (ret == -EPROBE_DEFER)
2356 			goto clk_disable;
2357 
2358 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2359 		if (ret == -EPROBE_DEFER)
2360 			goto clk_disable;
2361 	}
2362 
2363 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2364 					mmci_irq_thread, IRQF_SHARED,
2365 					DRIVER_NAME " (cmd)", host);
2366 	if (ret)
2367 		goto clk_disable;
2368 
2369 	if (!dev->irq[1])
2370 		host->singleirq = true;
2371 	else {
2372 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2373 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2374 		if (ret)
2375 			goto clk_disable;
2376 	}
2377 
2378 	if (host->variant->busy_detect)
2379 		INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2380 				  ux500_busy_timeout_work);
2381 
2382 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2383 
2384 	amba_set_drvdata(dev, mmc);
2385 
2386 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2387 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2388 		 amba_rev(dev), (unsigned long long)dev->res.start,
2389 		 dev->irq[0], dev->irq[1]);
2390 
2391 	mmci_dma_setup(host);
2392 
2393 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2394 	pm_runtime_use_autosuspend(&dev->dev);
2395 
2396 	ret = mmc_add_host(mmc);
2397 	if (ret)
2398 		goto clk_disable;
2399 
2400 	pm_runtime_put(&dev->dev);
2401 	return 0;
2402 
2403  clk_disable:
2404 	clk_disable_unprepare(host->clk);
2405  host_free:
2406 	mmc_free_host(mmc);
2407 	return ret;
2408 }
2409 
2410 static void mmci_remove(struct amba_device *dev)
2411 {
2412 	struct mmc_host *mmc = amba_get_drvdata(dev);
2413 
2414 	if (mmc) {
2415 		struct mmci_host *host = mmc_priv(mmc);
2416 		struct variant_data *variant = host->variant;
2417 
2418 		/*
2419 		 * Undo pm_runtime_put() in probe.  We use the _sync
2420 		 * version here so that we can access the primecell.
2421 		 */
2422 		pm_runtime_get_sync(&dev->dev);
2423 
2424 		mmc_remove_host(mmc);
2425 
2426 		writel(0, host->base + MMCIMASK0);
2427 
2428 		if (variant->mmcimask1)
2429 			writel(0, host->base + MMCIMASK1);
2430 
2431 		writel(0, host->base + MMCICOMMAND);
2432 		writel(0, host->base + MMCIDATACTRL);
2433 
2434 		mmci_dma_release(host);
2435 		clk_disable_unprepare(host->clk);
2436 		mmc_free_host(mmc);
2437 	}
2438 }
2439 
2440 #ifdef CONFIG_PM
2441 static void mmci_save(struct mmci_host *host)
2442 {
2443 	unsigned long flags;
2444 
2445 	spin_lock_irqsave(&host->lock, flags);
2446 
2447 	writel(0, host->base + MMCIMASK0);
2448 	if (host->variant->pwrreg_nopower) {
2449 		writel(0, host->base + MMCIDATACTRL);
2450 		writel(0, host->base + MMCIPOWER);
2451 		writel(0, host->base + MMCICLOCK);
2452 	}
2453 	mmci_reg_delay(host);
2454 
2455 	spin_unlock_irqrestore(&host->lock, flags);
2456 }
2457 
2458 static void mmci_restore(struct mmci_host *host)
2459 {
2460 	unsigned long flags;
2461 
2462 	spin_lock_irqsave(&host->lock, flags);
2463 
2464 	if (host->variant->pwrreg_nopower) {
2465 		writel(host->clk_reg, host->base + MMCICLOCK);
2466 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2467 		writel(host->pwr_reg, host->base + MMCIPOWER);
2468 	}
2469 	writel(MCI_IRQENABLE | host->variant->start_err,
2470 	       host->base + MMCIMASK0);
2471 	mmci_reg_delay(host);
2472 
2473 	spin_unlock_irqrestore(&host->lock, flags);
2474 }
2475 
2476 static int mmci_runtime_suspend(struct device *dev)
2477 {
2478 	struct amba_device *adev = to_amba_device(dev);
2479 	struct mmc_host *mmc = amba_get_drvdata(adev);
2480 
2481 	if (mmc) {
2482 		struct mmci_host *host = mmc_priv(mmc);
2483 		pinctrl_pm_select_sleep_state(dev);
2484 		mmci_save(host);
2485 		clk_disable_unprepare(host->clk);
2486 	}
2487 
2488 	return 0;
2489 }
2490 
2491 static int mmci_runtime_resume(struct device *dev)
2492 {
2493 	struct amba_device *adev = to_amba_device(dev);
2494 	struct mmc_host *mmc = amba_get_drvdata(adev);
2495 
2496 	if (mmc) {
2497 		struct mmci_host *host = mmc_priv(mmc);
2498 		clk_prepare_enable(host->clk);
2499 		mmci_restore(host);
2500 		pinctrl_select_default_state(dev);
2501 	}
2502 
2503 	return 0;
2504 }
2505 #endif
2506 
2507 static const struct dev_pm_ops mmci_dev_pm_ops = {
2508 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2509 				pm_runtime_force_resume)
2510 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2511 };
2512 
2513 static const struct amba_id mmci_ids[] = {
2514 	{
2515 		.id	= 0x00041180,
2516 		.mask	= 0xff0fffff,
2517 		.data	= &variant_arm,
2518 	},
2519 	{
2520 		.id	= 0x01041180,
2521 		.mask	= 0xff0fffff,
2522 		.data	= &variant_arm_extended_fifo,
2523 	},
2524 	{
2525 		.id	= 0x02041180,
2526 		.mask	= 0xff0fffff,
2527 		.data	= &variant_arm_extended_fifo_hwfc,
2528 	},
2529 	{
2530 		.id	= 0x00041181,
2531 		.mask	= 0x000fffff,
2532 		.data	= &variant_arm,
2533 	},
2534 	/* ST Micro variants */
2535 	{
2536 		.id     = 0x00180180,
2537 		.mask   = 0x00ffffff,
2538 		.data	= &variant_u300,
2539 	},
2540 	{
2541 		.id     = 0x10180180,
2542 		.mask   = 0xf0ffffff,
2543 		.data	= &variant_nomadik,
2544 	},
2545 	{
2546 		.id     = 0x00280180,
2547 		.mask   = 0x00ffffff,
2548 		.data	= &variant_nomadik,
2549 	},
2550 	{
2551 		.id     = 0x00480180,
2552 		.mask   = 0xf0ffffff,
2553 		.data	= &variant_ux500,
2554 	},
2555 	{
2556 		.id     = 0x10480180,
2557 		.mask   = 0xf0ffffff,
2558 		.data	= &variant_ux500v2,
2559 	},
2560 	{
2561 		.id     = 0x00880180,
2562 		.mask   = 0x00ffffff,
2563 		.data	= &variant_stm32,
2564 	},
2565 	{
2566 		.id     = 0x10153180,
2567 		.mask	= 0xf0ffffff,
2568 		.data	= &variant_stm32_sdmmc,
2569 	},
2570 	{
2571 		.id     = 0x00253180,
2572 		.mask	= 0xf0ffffff,
2573 		.data	= &variant_stm32_sdmmcv2,
2574 	},
2575 	{
2576 		.id     = 0x20253180,
2577 		.mask	= 0xf0ffffff,
2578 		.data	= &variant_stm32_sdmmcv2,
2579 	},
2580 	{
2581 		.id     = 0x00353180,
2582 		.mask	= 0xf0ffffff,
2583 		.data	= &variant_stm32_sdmmcv3,
2584 	},
2585 	/* Qualcomm variants */
2586 	{
2587 		.id     = 0x00051180,
2588 		.mask	= 0x000fffff,
2589 		.data	= &variant_qcom,
2590 	},
2591 	{ 0, 0 },
2592 };
2593 
2594 MODULE_DEVICE_TABLE(amba, mmci_ids);
2595 
2596 static struct amba_driver mmci_driver = {
2597 	.drv		= {
2598 		.name	= DRIVER_NAME,
2599 		.pm	= &mmci_dev_pm_ops,
2600 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2601 	},
2602 	.probe		= mmci_probe,
2603 	.remove		= mmci_remove,
2604 	.id_table	= mmci_ids,
2605 };
2606 
2607 module_amba_driver(mmci_driver);
2608 
2609 module_param(fmax, uint, 0444);
2610 
2611 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2612 MODULE_LICENSE("GPL");
2613