1 /* 2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 3 * 4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 5 * Copyright (C) 2010 ST-Ericsson SA 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/interrupt.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/highmem.h> 23 #include <linux/log2.h> 24 #include <linux/mmc/pm.h> 25 #include <linux/mmc/host.h> 26 #include <linux/mmc/card.h> 27 #include <linux/mmc/slot-gpio.h> 28 #include <linux/amba/bus.h> 29 #include <linux/clk.h> 30 #include <linux/scatterlist.h> 31 #include <linux/gpio.h> 32 #include <linux/of_gpio.h> 33 #include <linux/regulator/consumer.h> 34 #include <linux/dmaengine.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/amba/mmci.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/types.h> 39 #include <linux/pinctrl/consumer.h> 40 41 #include <asm/div64.h> 42 #include <asm/io.h> 43 #include <asm/sizes.h> 44 45 #include "mmci.h" 46 #include "mmci_qcom_dml.h" 47 48 #define DRIVER_NAME "mmci-pl18x" 49 50 static unsigned int fmax = 515633; 51 52 /** 53 * struct variant_data - MMCI variant-specific quirks 54 * @clkreg: default value for MCICLOCK register 55 * @clkreg_enable: enable value for MMCICLOCK register 56 * @clkreg_8bit_bus_enable: enable value for 8 bit bus 57 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output 58 * @datalength_bits: number of bits in the MMCIDATALENGTH register 59 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY 60 * is asserted (likewise for RX) 61 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY 62 * is asserted (likewise for RX) 63 * @data_cmd_enable: enable value for data commands. 64 * @st_sdio: enable ST specific SDIO logic 65 * @st_clkdiv: true if using a ST-specific clock divider algorithm 66 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register. 67 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register 68 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl 69 * register 70 * @datactrl_mask_sdio: SDIO enable mask in datactrl register 71 * @pwrreg_powerup: power up value for MMCIPOWER register 72 * @f_max: maximum clk frequency supported by the controller. 73 * @signal_direction: input/out direction of bus signals can be indicated 74 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock 75 * @busy_detect: true if busy detection on dat0 is supported 76 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply 77 * @explicit_mclk_control: enable explicit mclk control in driver. 78 * @qcom_fifo: enables qcom specific fifo pio read logic. 79 * @qcom_dml: enables qcom specific dma glue for dma transfers. 80 * @reversed_irq_handling: handle data irq before cmd irq. 81 */ 82 struct variant_data { 83 unsigned int clkreg; 84 unsigned int clkreg_enable; 85 unsigned int clkreg_8bit_bus_enable; 86 unsigned int clkreg_neg_edge_enable; 87 unsigned int datalength_bits; 88 unsigned int fifosize; 89 unsigned int fifohalfsize; 90 unsigned int data_cmd_enable; 91 unsigned int datactrl_mask_ddrmode; 92 unsigned int datactrl_mask_sdio; 93 bool st_sdio; 94 bool st_clkdiv; 95 bool blksz_datactrl16; 96 bool blksz_datactrl4; 97 u32 pwrreg_powerup; 98 u32 f_max; 99 bool signal_direction; 100 bool pwrreg_clkgate; 101 bool busy_detect; 102 bool pwrreg_nopower; 103 bool explicit_mclk_control; 104 bool qcom_fifo; 105 bool qcom_dml; 106 bool reversed_irq_handling; 107 }; 108 109 static struct variant_data variant_arm = { 110 .fifosize = 16 * 4, 111 .fifohalfsize = 8 * 4, 112 .datalength_bits = 16, 113 .pwrreg_powerup = MCI_PWR_UP, 114 .f_max = 100000000, 115 .reversed_irq_handling = true, 116 }; 117 118 static struct variant_data variant_arm_extended_fifo = { 119 .fifosize = 128 * 4, 120 .fifohalfsize = 64 * 4, 121 .datalength_bits = 16, 122 .pwrreg_powerup = MCI_PWR_UP, 123 .f_max = 100000000, 124 }; 125 126 static struct variant_data variant_arm_extended_fifo_hwfc = { 127 .fifosize = 128 * 4, 128 .fifohalfsize = 64 * 4, 129 .clkreg_enable = MCI_ARM_HWFCEN, 130 .datalength_bits = 16, 131 .pwrreg_powerup = MCI_PWR_UP, 132 .f_max = 100000000, 133 }; 134 135 static struct variant_data variant_u300 = { 136 .fifosize = 16 * 4, 137 .fifohalfsize = 8 * 4, 138 .clkreg_enable = MCI_ST_U300_HWFCEN, 139 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 140 .datalength_bits = 16, 141 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, 142 .st_sdio = true, 143 .pwrreg_powerup = MCI_PWR_ON, 144 .f_max = 100000000, 145 .signal_direction = true, 146 .pwrreg_clkgate = true, 147 .pwrreg_nopower = true, 148 }; 149 150 static struct variant_data variant_nomadik = { 151 .fifosize = 16 * 4, 152 .fifohalfsize = 8 * 4, 153 .clkreg = MCI_CLK_ENABLE, 154 .datalength_bits = 24, 155 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, 156 .st_sdio = true, 157 .st_clkdiv = true, 158 .pwrreg_powerup = MCI_PWR_ON, 159 .f_max = 100000000, 160 .signal_direction = true, 161 .pwrreg_clkgate = true, 162 .pwrreg_nopower = true, 163 }; 164 165 static struct variant_data variant_ux500 = { 166 .fifosize = 30 * 4, 167 .fifohalfsize = 8 * 4, 168 .clkreg = MCI_CLK_ENABLE, 169 .clkreg_enable = MCI_ST_UX500_HWFCEN, 170 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 171 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 172 .datalength_bits = 24, 173 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, 174 .st_sdio = true, 175 .st_clkdiv = true, 176 .pwrreg_powerup = MCI_PWR_ON, 177 .f_max = 100000000, 178 .signal_direction = true, 179 .pwrreg_clkgate = true, 180 .busy_detect = true, 181 .pwrreg_nopower = true, 182 }; 183 184 static struct variant_data variant_ux500v2 = { 185 .fifosize = 30 * 4, 186 .fifohalfsize = 8 * 4, 187 .clkreg = MCI_CLK_ENABLE, 188 .clkreg_enable = MCI_ST_UX500_HWFCEN, 189 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 190 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 191 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE, 192 .datalength_bits = 24, 193 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, 194 .st_sdio = true, 195 .st_clkdiv = true, 196 .blksz_datactrl16 = true, 197 .pwrreg_powerup = MCI_PWR_ON, 198 .f_max = 100000000, 199 .signal_direction = true, 200 .pwrreg_clkgate = true, 201 .busy_detect = true, 202 .pwrreg_nopower = true, 203 }; 204 205 static struct variant_data variant_qcom = { 206 .fifosize = 16 * 4, 207 .fifohalfsize = 8 * 4, 208 .clkreg = MCI_CLK_ENABLE, 209 .clkreg_enable = MCI_QCOM_CLK_FLOWENA | 210 MCI_QCOM_CLK_SELECT_IN_FBCLK, 211 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, 212 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, 213 .data_cmd_enable = MCI_QCOM_CSPM_DATCMD, 214 .blksz_datactrl4 = true, 215 .datalength_bits = 24, 216 .pwrreg_powerup = MCI_PWR_UP, 217 .f_max = 208000000, 218 .explicit_mclk_control = true, 219 .qcom_fifo = true, 220 .qcom_dml = true, 221 }; 222 223 static int mmci_card_busy(struct mmc_host *mmc) 224 { 225 struct mmci_host *host = mmc_priv(mmc); 226 unsigned long flags; 227 int busy = 0; 228 229 pm_runtime_get_sync(mmc_dev(mmc)); 230 231 spin_lock_irqsave(&host->lock, flags); 232 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY) 233 busy = 1; 234 spin_unlock_irqrestore(&host->lock, flags); 235 236 pm_runtime_mark_last_busy(mmc_dev(mmc)); 237 pm_runtime_put_autosuspend(mmc_dev(mmc)); 238 239 return busy; 240 } 241 242 /* 243 * Validate mmc prerequisites 244 */ 245 static int mmci_validate_data(struct mmci_host *host, 246 struct mmc_data *data) 247 { 248 if (!data) 249 return 0; 250 251 if (!is_power_of_2(data->blksz)) { 252 dev_err(mmc_dev(host->mmc), 253 "unsupported block size (%d bytes)\n", data->blksz); 254 return -EINVAL; 255 } 256 257 return 0; 258 } 259 260 static void mmci_reg_delay(struct mmci_host *host) 261 { 262 /* 263 * According to the spec, at least three feedback clock cycles 264 * of max 52 MHz must pass between two writes to the MMCICLOCK reg. 265 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. 266 * Worst delay time during card init is at 100 kHz => 30 us. 267 * Worst delay time when up and running is at 25 MHz => 120 ns. 268 */ 269 if (host->cclk < 25000000) 270 udelay(30); 271 else 272 ndelay(120); 273 } 274 275 /* 276 * This must be called with host->lock held 277 */ 278 static void mmci_write_clkreg(struct mmci_host *host, u32 clk) 279 { 280 if (host->clk_reg != clk) { 281 host->clk_reg = clk; 282 writel(clk, host->base + MMCICLOCK); 283 } 284 } 285 286 /* 287 * This must be called with host->lock held 288 */ 289 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) 290 { 291 if (host->pwr_reg != pwr) { 292 host->pwr_reg = pwr; 293 writel(pwr, host->base + MMCIPOWER); 294 } 295 } 296 297 /* 298 * This must be called with host->lock held 299 */ 300 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) 301 { 302 /* Keep ST Micro busy mode if enabled */ 303 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE; 304 305 if (host->datactrl_reg != datactrl) { 306 host->datactrl_reg = datactrl; 307 writel(datactrl, host->base + MMCIDATACTRL); 308 } 309 } 310 311 /* 312 * This must be called with host->lock held 313 */ 314 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 315 { 316 struct variant_data *variant = host->variant; 317 u32 clk = variant->clkreg; 318 319 /* Make sure cclk reflects the current calculated clock */ 320 host->cclk = 0; 321 322 if (desired) { 323 if (variant->explicit_mclk_control) { 324 host->cclk = host->mclk; 325 } else if (desired >= host->mclk) { 326 clk = MCI_CLK_BYPASS; 327 if (variant->st_clkdiv) 328 clk |= MCI_ST_UX500_NEG_EDGE; 329 host->cclk = host->mclk; 330 } else if (variant->st_clkdiv) { 331 /* 332 * DB8500 TRM says f = mclk / (clkdiv + 2) 333 * => clkdiv = (mclk / f) - 2 334 * Round the divider up so we don't exceed the max 335 * frequency 336 */ 337 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 338 if (clk >= 256) 339 clk = 255; 340 host->cclk = host->mclk / (clk + 2); 341 } else { 342 /* 343 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 344 * => clkdiv = mclk / (2 * f) - 1 345 */ 346 clk = host->mclk / (2 * desired) - 1; 347 if (clk >= 256) 348 clk = 255; 349 host->cclk = host->mclk / (2 * (clk + 1)); 350 } 351 352 clk |= variant->clkreg_enable; 353 clk |= MCI_CLK_ENABLE; 354 /* This hasn't proven to be worthwhile */ 355 /* clk |= MCI_CLK_PWRSAVE; */ 356 } 357 358 /* Set actual clock for debug */ 359 host->mmc->actual_clock = host->cclk; 360 361 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 362 clk |= MCI_4BIT_BUS; 363 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 364 clk |= variant->clkreg_8bit_bus_enable; 365 366 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 367 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 368 clk |= variant->clkreg_neg_edge_enable; 369 370 mmci_write_clkreg(host, clk); 371 } 372 373 static void 374 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 375 { 376 writel(0, host->base + MMCICOMMAND); 377 378 BUG_ON(host->data); 379 380 host->mrq = NULL; 381 host->cmd = NULL; 382 383 mmc_request_done(host->mmc, mrq); 384 385 pm_runtime_mark_last_busy(mmc_dev(host->mmc)); 386 pm_runtime_put_autosuspend(mmc_dev(host->mmc)); 387 } 388 389 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 390 { 391 void __iomem *base = host->base; 392 393 if (host->singleirq) { 394 unsigned int mask0 = readl(base + MMCIMASK0); 395 396 mask0 &= ~MCI_IRQ1MASK; 397 mask0 |= mask; 398 399 writel(mask0, base + MMCIMASK0); 400 } 401 402 writel(mask, base + MMCIMASK1); 403 } 404 405 static void mmci_stop_data(struct mmci_host *host) 406 { 407 mmci_write_datactrlreg(host, 0); 408 mmci_set_mask1(host, 0); 409 host->data = NULL; 410 } 411 412 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 413 { 414 unsigned int flags = SG_MITER_ATOMIC; 415 416 if (data->flags & MMC_DATA_READ) 417 flags |= SG_MITER_TO_SG; 418 else 419 flags |= SG_MITER_FROM_SG; 420 421 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 422 } 423 424 /* 425 * All the DMA operation mode stuff goes inside this ifdef. 426 * This assumes that you have a generic DMA device interface, 427 * no custom DMA interfaces are supported. 428 */ 429 #ifdef CONFIG_DMA_ENGINE 430 static void mmci_dma_setup(struct mmci_host *host) 431 { 432 const char *rxname, *txname; 433 struct variant_data *variant = host->variant; 434 435 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx"); 436 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx"); 437 438 /* initialize pre request cookie */ 439 host->next_data.cookie = 1; 440 441 /* 442 * If only an RX channel is specified, the driver will 443 * attempt to use it bidirectionally, however if it is 444 * is specified but cannot be located, DMA will be disabled. 445 */ 446 if (host->dma_rx_channel && !host->dma_tx_channel) 447 host->dma_tx_channel = host->dma_rx_channel; 448 449 if (host->dma_rx_channel) 450 rxname = dma_chan_name(host->dma_rx_channel); 451 else 452 rxname = "none"; 453 454 if (host->dma_tx_channel) 455 txname = dma_chan_name(host->dma_tx_channel); 456 else 457 txname = "none"; 458 459 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 460 rxname, txname); 461 462 /* 463 * Limit the maximum segment size in any SG entry according to 464 * the parameters of the DMA engine device. 465 */ 466 if (host->dma_tx_channel) { 467 struct device *dev = host->dma_tx_channel->device->dev; 468 unsigned int max_seg_size = dma_get_max_seg_size(dev); 469 470 if (max_seg_size < host->mmc->max_seg_size) 471 host->mmc->max_seg_size = max_seg_size; 472 } 473 if (host->dma_rx_channel) { 474 struct device *dev = host->dma_rx_channel->device->dev; 475 unsigned int max_seg_size = dma_get_max_seg_size(dev); 476 477 if (max_seg_size < host->mmc->max_seg_size) 478 host->mmc->max_seg_size = max_seg_size; 479 } 480 481 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel) 482 if (dml_hw_init(host, host->mmc->parent->of_node)) 483 variant->qcom_dml = false; 484 } 485 486 /* 487 * This is used in or so inline it 488 * so it can be discarded. 489 */ 490 static inline void mmci_dma_release(struct mmci_host *host) 491 { 492 if (host->dma_rx_channel) 493 dma_release_channel(host->dma_rx_channel); 494 if (host->dma_tx_channel) 495 dma_release_channel(host->dma_tx_channel); 496 host->dma_rx_channel = host->dma_tx_channel = NULL; 497 } 498 499 static void mmci_dma_data_error(struct mmci_host *host) 500 { 501 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 502 dmaengine_terminate_all(host->dma_current); 503 host->dma_current = NULL; 504 host->dma_desc_current = NULL; 505 host->data->host_cookie = 0; 506 } 507 508 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 509 { 510 struct dma_chan *chan; 511 enum dma_data_direction dir; 512 513 if (data->flags & MMC_DATA_READ) { 514 dir = DMA_FROM_DEVICE; 515 chan = host->dma_rx_channel; 516 } else { 517 dir = DMA_TO_DEVICE; 518 chan = host->dma_tx_channel; 519 } 520 521 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); 522 } 523 524 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) 525 { 526 u32 status; 527 int i; 528 529 /* Wait up to 1ms for the DMA to complete */ 530 for (i = 0; ; i++) { 531 status = readl(host->base + MMCISTATUS); 532 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 533 break; 534 udelay(10); 535 } 536 537 /* 538 * Check to see whether we still have some data left in the FIFO - 539 * this catches DMA controllers which are unable to monitor the 540 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 541 * contiguous buffers. On TX, we'll get a FIFO underrun error. 542 */ 543 if (status & MCI_RXDATAAVLBLMASK) { 544 mmci_dma_data_error(host); 545 if (!data->error) 546 data->error = -EIO; 547 } 548 549 if (!data->host_cookie) 550 mmci_dma_unmap(host, data); 551 552 /* 553 * Use of DMA with scatter-gather is impossible. 554 * Give up with DMA and switch back to PIO mode. 555 */ 556 if (status & MCI_RXDATAAVLBLMASK) { 557 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 558 mmci_dma_release(host); 559 } 560 561 host->dma_current = NULL; 562 host->dma_desc_current = NULL; 563 } 564 565 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ 566 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, 567 struct dma_chan **dma_chan, 568 struct dma_async_tx_descriptor **dma_desc) 569 { 570 struct variant_data *variant = host->variant; 571 struct dma_slave_config conf = { 572 .src_addr = host->phybase + MMCIFIFO, 573 .dst_addr = host->phybase + MMCIFIFO, 574 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 575 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 576 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 577 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 578 .device_fc = false, 579 }; 580 struct dma_chan *chan; 581 struct dma_device *device; 582 struct dma_async_tx_descriptor *desc; 583 enum dma_data_direction buffer_dirn; 584 int nr_sg; 585 unsigned long flags = DMA_CTRL_ACK; 586 587 if (data->flags & MMC_DATA_READ) { 588 conf.direction = DMA_DEV_TO_MEM; 589 buffer_dirn = DMA_FROM_DEVICE; 590 chan = host->dma_rx_channel; 591 } else { 592 conf.direction = DMA_MEM_TO_DEV; 593 buffer_dirn = DMA_TO_DEVICE; 594 chan = host->dma_tx_channel; 595 } 596 597 /* If there's no DMA channel, fall back to PIO */ 598 if (!chan) 599 return -EINVAL; 600 601 /* If less than or equal to the fifo size, don't bother with DMA */ 602 if (data->blksz * data->blocks <= variant->fifosize) 603 return -EINVAL; 604 605 device = chan->device; 606 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 607 if (nr_sg == 0) 608 return -EINVAL; 609 610 if (host->variant->qcom_dml) 611 flags |= DMA_PREP_INTERRUPT; 612 613 dmaengine_slave_config(chan, &conf); 614 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, 615 conf.direction, flags); 616 if (!desc) 617 goto unmap_exit; 618 619 *dma_chan = chan; 620 *dma_desc = desc; 621 622 return 0; 623 624 unmap_exit: 625 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 626 return -ENOMEM; 627 } 628 629 static inline int mmci_dma_prep_data(struct mmci_host *host, 630 struct mmc_data *data) 631 { 632 /* Check if next job is already prepared. */ 633 if (host->dma_current && host->dma_desc_current) 634 return 0; 635 636 /* No job were prepared thus do it now. */ 637 return __mmci_dma_prep_data(host, data, &host->dma_current, 638 &host->dma_desc_current); 639 } 640 641 static inline int mmci_dma_prep_next(struct mmci_host *host, 642 struct mmc_data *data) 643 { 644 struct mmci_host_next *nd = &host->next_data; 645 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc); 646 } 647 648 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 649 { 650 int ret; 651 struct mmc_data *data = host->data; 652 653 ret = mmci_dma_prep_data(host, host->data); 654 if (ret) 655 return ret; 656 657 /* Okay, go for it. */ 658 dev_vdbg(mmc_dev(host->mmc), 659 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 660 data->sg_len, data->blksz, data->blocks, data->flags); 661 dmaengine_submit(host->dma_desc_current); 662 dma_async_issue_pending(host->dma_current); 663 664 if (host->variant->qcom_dml) 665 dml_start_xfer(host, data); 666 667 datactrl |= MCI_DPSM_DMAENABLE; 668 669 /* Trigger the DMA transfer */ 670 mmci_write_datactrlreg(host, datactrl); 671 672 /* 673 * Let the MMCI say when the data is ended and it's time 674 * to fire next DMA request. When that happens, MMCI will 675 * call mmci_data_end() 676 */ 677 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 678 host->base + MMCIMASK0); 679 return 0; 680 } 681 682 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 683 { 684 struct mmci_host_next *next = &host->next_data; 685 686 WARN_ON(data->host_cookie && data->host_cookie != next->cookie); 687 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan)); 688 689 host->dma_desc_current = next->dma_desc; 690 host->dma_current = next->dma_chan; 691 next->dma_desc = NULL; 692 next->dma_chan = NULL; 693 } 694 695 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, 696 bool is_first_req) 697 { 698 struct mmci_host *host = mmc_priv(mmc); 699 struct mmc_data *data = mrq->data; 700 struct mmci_host_next *nd = &host->next_data; 701 702 if (!data) 703 return; 704 705 BUG_ON(data->host_cookie); 706 707 if (mmci_validate_data(host, data)) 708 return; 709 710 if (!mmci_dma_prep_next(host, data)) 711 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; 712 } 713 714 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 715 int err) 716 { 717 struct mmci_host *host = mmc_priv(mmc); 718 struct mmc_data *data = mrq->data; 719 720 if (!data || !data->host_cookie) 721 return; 722 723 mmci_dma_unmap(host, data); 724 725 if (err) { 726 struct mmci_host_next *next = &host->next_data; 727 struct dma_chan *chan; 728 if (data->flags & MMC_DATA_READ) 729 chan = host->dma_rx_channel; 730 else 731 chan = host->dma_tx_channel; 732 dmaengine_terminate_all(chan); 733 734 if (host->dma_desc_current == next->dma_desc) 735 host->dma_desc_current = NULL; 736 737 if (host->dma_current == next->dma_chan) 738 host->dma_current = NULL; 739 740 next->dma_desc = NULL; 741 next->dma_chan = NULL; 742 data->host_cookie = 0; 743 } 744 } 745 746 #else 747 /* Blank functions if the DMA engine is not available */ 748 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 749 { 750 } 751 static inline void mmci_dma_setup(struct mmci_host *host) 752 { 753 } 754 755 static inline void mmci_dma_release(struct mmci_host *host) 756 { 757 } 758 759 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 760 { 761 } 762 763 static inline void mmci_dma_finalize(struct mmci_host *host, 764 struct mmc_data *data) 765 { 766 } 767 768 static inline void mmci_dma_data_error(struct mmci_host *host) 769 { 770 } 771 772 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 773 { 774 return -ENOSYS; 775 } 776 777 #define mmci_pre_request NULL 778 #define mmci_post_request NULL 779 780 #endif 781 782 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 783 { 784 struct variant_data *variant = host->variant; 785 unsigned int datactrl, timeout, irqmask; 786 unsigned long long clks; 787 void __iomem *base; 788 int blksz_bits; 789 790 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 791 data->blksz, data->blocks, data->flags); 792 793 host->data = data; 794 host->size = data->blksz * data->blocks; 795 data->bytes_xfered = 0; 796 797 clks = (unsigned long long)data->timeout_ns * host->cclk; 798 do_div(clks, NSEC_PER_SEC); 799 800 timeout = data->timeout_clks + (unsigned int)clks; 801 802 base = host->base; 803 writel(timeout, base + MMCIDATATIMER); 804 writel(host->size, base + MMCIDATALENGTH); 805 806 blksz_bits = ffs(data->blksz) - 1; 807 BUG_ON(1 << blksz_bits != data->blksz); 808 809 if (variant->blksz_datactrl16) 810 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); 811 else if (variant->blksz_datactrl4) 812 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4); 813 else 814 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; 815 816 if (data->flags & MMC_DATA_READ) 817 datactrl |= MCI_DPSM_DIRECTION; 818 819 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { 820 u32 clk; 821 822 datactrl |= variant->datactrl_mask_sdio; 823 824 /* 825 * The ST Micro variant for SDIO small write transfers 826 * needs to have clock H/W flow control disabled, 827 * otherwise the transfer will not start. The threshold 828 * depends on the rate of MCLK. 829 */ 830 if (variant->st_sdio && data->flags & MMC_DATA_WRITE && 831 (host->size < 8 || 832 (host->size <= 8 && host->mclk > 50000000))) 833 clk = host->clk_reg & ~variant->clkreg_enable; 834 else 835 clk = host->clk_reg | variant->clkreg_enable; 836 837 mmci_write_clkreg(host, clk); 838 } 839 840 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 841 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 842 datactrl |= variant->datactrl_mask_ddrmode; 843 844 /* 845 * Attempt to use DMA operation mode, if this 846 * should fail, fall back to PIO mode 847 */ 848 if (!mmci_dma_start_data(host, datactrl)) 849 return; 850 851 /* IRQ mode, map the SG list for CPU reading/writing */ 852 mmci_init_sg(host, data); 853 854 if (data->flags & MMC_DATA_READ) { 855 irqmask = MCI_RXFIFOHALFFULLMASK; 856 857 /* 858 * If we have less than the fifo 'half-full' threshold to 859 * transfer, trigger a PIO interrupt as soon as any data 860 * is available. 861 */ 862 if (host->size < variant->fifohalfsize) 863 irqmask |= MCI_RXDATAAVLBLMASK; 864 } else { 865 /* 866 * We don't actually need to include "FIFO empty" here 867 * since its implicit in "FIFO half empty". 868 */ 869 irqmask = MCI_TXFIFOHALFEMPTYMASK; 870 } 871 872 mmci_write_datactrlreg(host, datactrl); 873 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 874 mmci_set_mask1(host, irqmask); 875 } 876 877 static void 878 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 879 { 880 void __iomem *base = host->base; 881 882 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 883 cmd->opcode, cmd->arg, cmd->flags); 884 885 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { 886 writel(0, base + MMCICOMMAND); 887 mmci_reg_delay(host); 888 } 889 890 c |= cmd->opcode | MCI_CPSM_ENABLE; 891 if (cmd->flags & MMC_RSP_PRESENT) { 892 if (cmd->flags & MMC_RSP_136) 893 c |= MCI_CPSM_LONGRSP; 894 c |= MCI_CPSM_RESPONSE; 895 } 896 if (/*interrupt*/0) 897 c |= MCI_CPSM_INTERRUPT; 898 899 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) 900 c |= host->variant->data_cmd_enable; 901 902 host->cmd = cmd; 903 904 writel(cmd->arg, base + MMCIARGUMENT); 905 writel(c, base + MMCICOMMAND); 906 } 907 908 static void 909 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 910 unsigned int status) 911 { 912 /* Make sure we have data to handle */ 913 if (!data) 914 return; 915 916 /* First check for errors */ 917 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 918 MCI_TXUNDERRUN|MCI_RXOVERRUN)) { 919 u32 remain, success; 920 921 /* Terminate the DMA transfer */ 922 if (dma_inprogress(host)) { 923 mmci_dma_data_error(host); 924 mmci_dma_unmap(host, data); 925 } 926 927 /* 928 * Calculate how far we are into the transfer. Note that 929 * the data counter gives the number of bytes transferred 930 * on the MMC bus, not on the host side. On reads, this 931 * can be as much as a FIFO-worth of data ahead. This 932 * matters for FIFO overruns only. 933 */ 934 remain = readl(host->base + MMCIDATACNT); 935 success = data->blksz * data->blocks - remain; 936 937 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 938 status, success); 939 if (status & MCI_DATACRCFAIL) { 940 /* Last block was not successful */ 941 success -= 1; 942 data->error = -EILSEQ; 943 } else if (status & MCI_DATATIMEOUT) { 944 data->error = -ETIMEDOUT; 945 } else if (status & MCI_STARTBITERR) { 946 data->error = -ECOMM; 947 } else if (status & MCI_TXUNDERRUN) { 948 data->error = -EIO; 949 } else if (status & MCI_RXOVERRUN) { 950 if (success > host->variant->fifosize) 951 success -= host->variant->fifosize; 952 else 953 success = 0; 954 data->error = -EIO; 955 } 956 data->bytes_xfered = round_down(success, data->blksz); 957 } 958 959 if (status & MCI_DATABLOCKEND) 960 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 961 962 if (status & MCI_DATAEND || data->error) { 963 if (dma_inprogress(host)) 964 mmci_dma_finalize(host, data); 965 mmci_stop_data(host); 966 967 if (!data->error) 968 /* The error clause is handled above, success! */ 969 data->bytes_xfered = data->blksz * data->blocks; 970 971 if (!data->stop || host->mrq->sbc) { 972 mmci_request_end(host, data->mrq); 973 } else { 974 mmci_start_command(host, data->stop, 0); 975 } 976 } 977 } 978 979 static void 980 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 981 unsigned int status) 982 { 983 void __iomem *base = host->base; 984 bool sbc, busy_resp; 985 986 if (!cmd) 987 return; 988 989 sbc = (cmd == host->mrq->sbc); 990 busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY); 991 992 if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT| 993 MCI_CMDSENT|MCI_CMDRESPEND))) 994 return; 995 996 /* Check if we need to wait for busy completion. */ 997 if (host->busy_status && (status & MCI_ST_CARDBUSY)) 998 return; 999 1000 /* Enable busy completion if needed and supported. */ 1001 if (!host->busy_status && busy_resp && 1002 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) && 1003 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) { 1004 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND, 1005 base + MMCIMASK0); 1006 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND); 1007 return; 1008 } 1009 1010 /* At busy completion, mask the IRQ and complete the request. */ 1011 if (host->busy_status) { 1012 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND, 1013 base + MMCIMASK0); 1014 host->busy_status = 0; 1015 } 1016 1017 host->cmd = NULL; 1018 1019 if (status & MCI_CMDTIMEOUT) { 1020 cmd->error = -ETIMEDOUT; 1021 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 1022 cmd->error = -EILSEQ; 1023 } else { 1024 cmd->resp[0] = readl(base + MMCIRESPONSE0); 1025 cmd->resp[1] = readl(base + MMCIRESPONSE1); 1026 cmd->resp[2] = readl(base + MMCIRESPONSE2); 1027 cmd->resp[3] = readl(base + MMCIRESPONSE3); 1028 } 1029 1030 if ((!sbc && !cmd->data) || cmd->error) { 1031 if (host->data) { 1032 /* Terminate the DMA transfer */ 1033 if (dma_inprogress(host)) { 1034 mmci_dma_data_error(host); 1035 mmci_dma_unmap(host, host->data); 1036 } 1037 mmci_stop_data(host); 1038 } 1039 mmci_request_end(host, host->mrq); 1040 } else if (sbc) { 1041 mmci_start_command(host, host->mrq->cmd, 0); 1042 } else if (!(cmd->data->flags & MMC_DATA_READ)) { 1043 mmci_start_data(host, cmd->data); 1044 } 1045 } 1046 1047 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) 1048 { 1049 return remain - (readl(host->base + MMCIFIFOCNT) << 2); 1050 } 1051 1052 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) 1053 { 1054 /* 1055 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses 1056 * from the fifo range should be used 1057 */ 1058 if (status & MCI_RXFIFOHALFFULL) 1059 return host->variant->fifohalfsize; 1060 else if (status & MCI_RXDATAAVLBL) 1061 return 4; 1062 1063 return 0; 1064 } 1065 1066 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 1067 { 1068 void __iomem *base = host->base; 1069 char *ptr = buffer; 1070 u32 status = readl(host->base + MMCISTATUS); 1071 int host_remain = host->size; 1072 1073 do { 1074 int count = host->get_rx_fifocnt(host, status, host_remain); 1075 1076 if (count > remain) 1077 count = remain; 1078 1079 if (count <= 0) 1080 break; 1081 1082 /* 1083 * SDIO especially may want to send something that is 1084 * not divisible by 4 (as opposed to card sectors 1085 * etc). Therefore make sure to always read the last bytes 1086 * while only doing full 32-bit reads towards the FIFO. 1087 */ 1088 if (unlikely(count & 0x3)) { 1089 if (count < 4) { 1090 unsigned char buf[4]; 1091 ioread32_rep(base + MMCIFIFO, buf, 1); 1092 memcpy(ptr, buf, count); 1093 } else { 1094 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1095 count &= ~0x3; 1096 } 1097 } else { 1098 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1099 } 1100 1101 ptr += count; 1102 remain -= count; 1103 host_remain -= count; 1104 1105 if (remain == 0) 1106 break; 1107 1108 status = readl(base + MMCISTATUS); 1109 } while (status & MCI_RXDATAAVLBL); 1110 1111 return ptr - buffer; 1112 } 1113 1114 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 1115 { 1116 struct variant_data *variant = host->variant; 1117 void __iomem *base = host->base; 1118 char *ptr = buffer; 1119 1120 do { 1121 unsigned int count, maxcnt; 1122 1123 maxcnt = status & MCI_TXFIFOEMPTY ? 1124 variant->fifosize : variant->fifohalfsize; 1125 count = min(remain, maxcnt); 1126 1127 /* 1128 * SDIO especially may want to send something that is 1129 * not divisible by 4 (as opposed to card sectors 1130 * etc), and the FIFO only accept full 32-bit writes. 1131 * So compensate by adding +3 on the count, a single 1132 * byte become a 32bit write, 7 bytes will be two 1133 * 32bit writes etc. 1134 */ 1135 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); 1136 1137 ptr += count; 1138 remain -= count; 1139 1140 if (remain == 0) 1141 break; 1142 1143 status = readl(base + MMCISTATUS); 1144 } while (status & MCI_TXFIFOHALFEMPTY); 1145 1146 return ptr - buffer; 1147 } 1148 1149 /* 1150 * PIO data transfer IRQ handler. 1151 */ 1152 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 1153 { 1154 struct mmci_host *host = dev_id; 1155 struct sg_mapping_iter *sg_miter = &host->sg_miter; 1156 struct variant_data *variant = host->variant; 1157 void __iomem *base = host->base; 1158 unsigned long flags; 1159 u32 status; 1160 1161 status = readl(base + MMCISTATUS); 1162 1163 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 1164 1165 local_irq_save(flags); 1166 1167 do { 1168 unsigned int remain, len; 1169 char *buffer; 1170 1171 /* 1172 * For write, we only need to test the half-empty flag 1173 * here - if the FIFO is completely empty, then by 1174 * definition it is more than half empty. 1175 * 1176 * For read, check for data available. 1177 */ 1178 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 1179 break; 1180 1181 if (!sg_miter_next(sg_miter)) 1182 break; 1183 1184 buffer = sg_miter->addr; 1185 remain = sg_miter->length; 1186 1187 len = 0; 1188 if (status & MCI_RXACTIVE) 1189 len = mmci_pio_read(host, buffer, remain); 1190 if (status & MCI_TXACTIVE) 1191 len = mmci_pio_write(host, buffer, remain, status); 1192 1193 sg_miter->consumed = len; 1194 1195 host->size -= len; 1196 remain -= len; 1197 1198 if (remain) 1199 break; 1200 1201 status = readl(base + MMCISTATUS); 1202 } while (1); 1203 1204 sg_miter_stop(sg_miter); 1205 1206 local_irq_restore(flags); 1207 1208 /* 1209 * If we have less than the fifo 'half-full' threshold to transfer, 1210 * trigger a PIO interrupt as soon as any data is available. 1211 */ 1212 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 1213 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 1214 1215 /* 1216 * If we run out of data, disable the data IRQs; this 1217 * prevents a race where the FIFO becomes empty before 1218 * the chip itself has disabled the data path, and 1219 * stops us racing with our data end IRQ. 1220 */ 1221 if (host->size == 0) { 1222 mmci_set_mask1(host, 0); 1223 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 1224 } 1225 1226 return IRQ_HANDLED; 1227 } 1228 1229 /* 1230 * Handle completion of command and data transfers. 1231 */ 1232 static irqreturn_t mmci_irq(int irq, void *dev_id) 1233 { 1234 struct mmci_host *host = dev_id; 1235 u32 status; 1236 int ret = 0; 1237 1238 spin_lock(&host->lock); 1239 1240 do { 1241 status = readl(host->base + MMCISTATUS); 1242 1243 if (host->singleirq) { 1244 if (status & readl(host->base + MMCIMASK1)) 1245 mmci_pio_irq(irq, dev_id); 1246 1247 status &= ~MCI_IRQ1MASK; 1248 } 1249 1250 /* 1251 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's 1252 * enabled) since the HW seems to be triggering the IRQ on both 1253 * edges while monitoring DAT0 for busy completion. 1254 */ 1255 status &= readl(host->base + MMCIMASK0); 1256 writel(status, host->base + MMCICLEAR); 1257 1258 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 1259 1260 if (host->variant->reversed_irq_handling) { 1261 mmci_data_irq(host, host->data, status); 1262 mmci_cmd_irq(host, host->cmd, status); 1263 } else { 1264 mmci_cmd_irq(host, host->cmd, status); 1265 mmci_data_irq(host, host->data, status); 1266 } 1267 1268 /* Don't poll for busy completion in irq context. */ 1269 if (host->busy_status) 1270 status &= ~MCI_ST_CARDBUSY; 1271 1272 ret = 1; 1273 } while (status); 1274 1275 spin_unlock(&host->lock); 1276 1277 return IRQ_RETVAL(ret); 1278 } 1279 1280 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1281 { 1282 struct mmci_host *host = mmc_priv(mmc); 1283 unsigned long flags; 1284 1285 WARN_ON(host->mrq != NULL); 1286 1287 mrq->cmd->error = mmci_validate_data(host, mrq->data); 1288 if (mrq->cmd->error) { 1289 mmc_request_done(mmc, mrq); 1290 return; 1291 } 1292 1293 pm_runtime_get_sync(mmc_dev(mmc)); 1294 1295 spin_lock_irqsave(&host->lock, flags); 1296 1297 host->mrq = mrq; 1298 1299 if (mrq->data) 1300 mmci_get_next_data(host, mrq->data); 1301 1302 if (mrq->data && mrq->data->flags & MMC_DATA_READ) 1303 mmci_start_data(host, mrq->data); 1304 1305 if (mrq->sbc) 1306 mmci_start_command(host, mrq->sbc, 0); 1307 else 1308 mmci_start_command(host, mrq->cmd, 0); 1309 1310 spin_unlock_irqrestore(&host->lock, flags); 1311 } 1312 1313 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1314 { 1315 struct mmci_host *host = mmc_priv(mmc); 1316 struct variant_data *variant = host->variant; 1317 u32 pwr = 0; 1318 unsigned long flags; 1319 int ret; 1320 1321 pm_runtime_get_sync(mmc_dev(mmc)); 1322 1323 if (host->plat->ios_handler && 1324 host->plat->ios_handler(mmc_dev(mmc), ios)) 1325 dev_err(mmc_dev(mmc), "platform ios_handler failed\n"); 1326 1327 switch (ios->power_mode) { 1328 case MMC_POWER_OFF: 1329 if (!IS_ERR(mmc->supply.vmmc)) 1330 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1331 1332 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 1333 regulator_disable(mmc->supply.vqmmc); 1334 host->vqmmc_enabled = false; 1335 } 1336 1337 break; 1338 case MMC_POWER_UP: 1339 if (!IS_ERR(mmc->supply.vmmc)) 1340 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1341 1342 /* 1343 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP 1344 * and instead uses MCI_PWR_ON so apply whatever value is 1345 * configured in the variant data. 1346 */ 1347 pwr |= variant->pwrreg_powerup; 1348 1349 break; 1350 case MMC_POWER_ON: 1351 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 1352 ret = regulator_enable(mmc->supply.vqmmc); 1353 if (ret < 0) 1354 dev_err(mmc_dev(mmc), 1355 "failed to enable vqmmc regulator\n"); 1356 else 1357 host->vqmmc_enabled = true; 1358 } 1359 1360 pwr |= MCI_PWR_ON; 1361 break; 1362 } 1363 1364 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { 1365 /* 1366 * The ST Micro variant has some additional bits 1367 * indicating signal direction for the signals in 1368 * the SD/MMC bus and feedback-clock usage. 1369 */ 1370 pwr |= host->pwr_reg_add; 1371 1372 if (ios->bus_width == MMC_BUS_WIDTH_4) 1373 pwr &= ~MCI_ST_DATA74DIREN; 1374 else if (ios->bus_width == MMC_BUS_WIDTH_1) 1375 pwr &= (~MCI_ST_DATA74DIREN & 1376 ~MCI_ST_DATA31DIREN & 1377 ~MCI_ST_DATA2DIREN); 1378 } 1379 1380 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { 1381 if (host->hw_designer != AMBA_VENDOR_ST) 1382 pwr |= MCI_ROD; 1383 else { 1384 /* 1385 * The ST Micro variant use the ROD bit for something 1386 * else and only has OD (Open Drain). 1387 */ 1388 pwr |= MCI_OD; 1389 } 1390 } 1391 1392 /* 1393 * If clock = 0 and the variant requires the MMCIPOWER to be used for 1394 * gating the clock, the MCI_PWR_ON bit is cleared. 1395 */ 1396 if (!ios->clock && variant->pwrreg_clkgate) 1397 pwr &= ~MCI_PWR_ON; 1398 1399 if (host->variant->explicit_mclk_control && 1400 ios->clock != host->clock_cache) { 1401 ret = clk_set_rate(host->clk, ios->clock); 1402 if (ret < 0) 1403 dev_err(mmc_dev(host->mmc), 1404 "Error setting clock rate (%d)\n", ret); 1405 else 1406 host->mclk = clk_get_rate(host->clk); 1407 } 1408 host->clock_cache = ios->clock; 1409 1410 spin_lock_irqsave(&host->lock, flags); 1411 1412 mmci_set_clkreg(host, ios->clock); 1413 mmci_write_pwrreg(host, pwr); 1414 mmci_reg_delay(host); 1415 1416 spin_unlock_irqrestore(&host->lock, flags); 1417 1418 pm_runtime_mark_last_busy(mmc_dev(mmc)); 1419 pm_runtime_put_autosuspend(mmc_dev(mmc)); 1420 } 1421 1422 static int mmci_get_cd(struct mmc_host *mmc) 1423 { 1424 struct mmci_host *host = mmc_priv(mmc); 1425 struct mmci_platform_data *plat = host->plat; 1426 unsigned int status = mmc_gpio_get_cd(mmc); 1427 1428 if (status == -ENOSYS) { 1429 if (!plat->status) 1430 return 1; /* Assume always present */ 1431 1432 status = plat->status(mmc_dev(host->mmc)); 1433 } 1434 return status; 1435 } 1436 1437 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1438 { 1439 int ret = 0; 1440 1441 if (!IS_ERR(mmc->supply.vqmmc)) { 1442 1443 pm_runtime_get_sync(mmc_dev(mmc)); 1444 1445 switch (ios->signal_voltage) { 1446 case MMC_SIGNAL_VOLTAGE_330: 1447 ret = regulator_set_voltage(mmc->supply.vqmmc, 1448 2700000, 3600000); 1449 break; 1450 case MMC_SIGNAL_VOLTAGE_180: 1451 ret = regulator_set_voltage(mmc->supply.vqmmc, 1452 1700000, 1950000); 1453 break; 1454 case MMC_SIGNAL_VOLTAGE_120: 1455 ret = regulator_set_voltage(mmc->supply.vqmmc, 1456 1100000, 1300000); 1457 break; 1458 } 1459 1460 if (ret) 1461 dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); 1462 1463 pm_runtime_mark_last_busy(mmc_dev(mmc)); 1464 pm_runtime_put_autosuspend(mmc_dev(mmc)); 1465 } 1466 1467 return ret; 1468 } 1469 1470 static struct mmc_host_ops mmci_ops = { 1471 .request = mmci_request, 1472 .pre_req = mmci_pre_request, 1473 .post_req = mmci_post_request, 1474 .set_ios = mmci_set_ios, 1475 .get_ro = mmc_gpio_get_ro, 1476 .get_cd = mmci_get_cd, 1477 .start_signal_voltage_switch = mmci_sig_volt_switch, 1478 }; 1479 1480 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) 1481 { 1482 struct mmci_host *host = mmc_priv(mmc); 1483 int ret = mmc_of_parse(mmc); 1484 1485 if (ret) 1486 return ret; 1487 1488 if (of_get_property(np, "st,sig-dir-dat0", NULL)) 1489 host->pwr_reg_add |= MCI_ST_DATA0DIREN; 1490 if (of_get_property(np, "st,sig-dir-dat2", NULL)) 1491 host->pwr_reg_add |= MCI_ST_DATA2DIREN; 1492 if (of_get_property(np, "st,sig-dir-dat31", NULL)) 1493 host->pwr_reg_add |= MCI_ST_DATA31DIREN; 1494 if (of_get_property(np, "st,sig-dir-dat74", NULL)) 1495 host->pwr_reg_add |= MCI_ST_DATA74DIREN; 1496 if (of_get_property(np, "st,sig-dir-cmd", NULL)) 1497 host->pwr_reg_add |= MCI_ST_CMDDIREN; 1498 if (of_get_property(np, "st,sig-pin-fbclk", NULL)) 1499 host->pwr_reg_add |= MCI_ST_FBCLKEN; 1500 1501 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) 1502 mmc->caps |= MMC_CAP_MMC_HIGHSPEED; 1503 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) 1504 mmc->caps |= MMC_CAP_SD_HIGHSPEED; 1505 1506 return 0; 1507 } 1508 1509 static int mmci_probe(struct amba_device *dev, 1510 const struct amba_id *id) 1511 { 1512 struct mmci_platform_data *plat = dev->dev.platform_data; 1513 struct device_node *np = dev->dev.of_node; 1514 struct variant_data *variant = id->data; 1515 struct mmci_host *host; 1516 struct mmc_host *mmc; 1517 int ret; 1518 1519 /* Must have platform data or Device Tree. */ 1520 if (!plat && !np) { 1521 dev_err(&dev->dev, "No plat data or DT found\n"); 1522 return -EINVAL; 1523 } 1524 1525 if (!plat) { 1526 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); 1527 if (!plat) 1528 return -ENOMEM; 1529 } 1530 1531 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 1532 if (!mmc) 1533 return -ENOMEM; 1534 1535 ret = mmci_of_parse(np, mmc); 1536 if (ret) 1537 goto host_free; 1538 1539 host = mmc_priv(mmc); 1540 host->mmc = mmc; 1541 1542 host->hw_designer = amba_manf(dev); 1543 host->hw_revision = amba_rev(dev); 1544 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 1545 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 1546 1547 host->clk = devm_clk_get(&dev->dev, NULL); 1548 if (IS_ERR(host->clk)) { 1549 ret = PTR_ERR(host->clk); 1550 goto host_free; 1551 } 1552 1553 ret = clk_prepare_enable(host->clk); 1554 if (ret) 1555 goto host_free; 1556 1557 if (variant->qcom_fifo) 1558 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; 1559 else 1560 host->get_rx_fifocnt = mmci_get_rx_fifocnt; 1561 1562 host->plat = plat; 1563 host->variant = variant; 1564 host->mclk = clk_get_rate(host->clk); 1565 /* 1566 * According to the spec, mclk is max 100 MHz, 1567 * so we try to adjust the clock down to this, 1568 * (if possible). 1569 */ 1570 if (host->mclk > variant->f_max) { 1571 ret = clk_set_rate(host->clk, variant->f_max); 1572 if (ret < 0) 1573 goto clk_disable; 1574 host->mclk = clk_get_rate(host->clk); 1575 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 1576 host->mclk); 1577 } 1578 1579 host->phybase = dev->res.start; 1580 host->base = devm_ioremap_resource(&dev->dev, &dev->res); 1581 if (IS_ERR(host->base)) { 1582 ret = PTR_ERR(host->base); 1583 goto clk_disable; 1584 } 1585 1586 /* 1587 * The ARM and ST versions of the block have slightly different 1588 * clock divider equations which means that the minimum divider 1589 * differs too. 1590 * on Qualcomm like controllers get the nearest minimum clock to 100Khz 1591 */ 1592 if (variant->st_clkdiv) 1593 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 1594 else if (variant->explicit_mclk_control) 1595 mmc->f_min = clk_round_rate(host->clk, 100000); 1596 else 1597 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 1598 /* 1599 * If no maximum operating frequency is supplied, fall back to use 1600 * the module parameter, which has a (low) default value in case it 1601 * is not specified. Either value must not exceed the clock rate into 1602 * the block, of course. 1603 */ 1604 if (mmc->f_max) 1605 mmc->f_max = variant->explicit_mclk_control ? 1606 min(variant->f_max, mmc->f_max) : 1607 min(host->mclk, mmc->f_max); 1608 else 1609 mmc->f_max = variant->explicit_mclk_control ? 1610 fmax : min(host->mclk, fmax); 1611 1612 1613 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 1614 1615 /* Get regulators and the supported OCR mask */ 1616 ret = mmc_regulator_get_supply(mmc); 1617 if (ret == -EPROBE_DEFER) 1618 goto clk_disable; 1619 1620 if (!mmc->ocr_avail) 1621 mmc->ocr_avail = plat->ocr_mask; 1622 else if (plat->ocr_mask) 1623 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1624 1625 /* DT takes precedence over platform data. */ 1626 if (!np) { 1627 if (!plat->cd_invert) 1628 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH; 1629 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH; 1630 } 1631 1632 /* We support these capabilities. */ 1633 mmc->caps |= MMC_CAP_CMD23; 1634 1635 if (variant->busy_detect) { 1636 mmci_ops.card_busy = mmci_card_busy; 1637 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE); 1638 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; 1639 mmc->max_busy_timeout = 0; 1640 } 1641 1642 mmc->ops = &mmci_ops; 1643 1644 /* We support these PM capabilities. */ 1645 mmc->pm_caps |= MMC_PM_KEEP_POWER; 1646 1647 /* 1648 * We can do SGIO 1649 */ 1650 mmc->max_segs = NR_SG; 1651 1652 /* 1653 * Since only a certain number of bits are valid in the data length 1654 * register, we must ensure that we don't exceed 2^num-1 bytes in a 1655 * single request. 1656 */ 1657 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 1658 1659 /* 1660 * Set the maximum segment size. Since we aren't doing DMA 1661 * (yet) we are only limited by the data length register. 1662 */ 1663 mmc->max_seg_size = mmc->max_req_size; 1664 1665 /* 1666 * Block size can be up to 2048 bytes, but must be a power of two. 1667 */ 1668 mmc->max_blk_size = 1 << 11; 1669 1670 /* 1671 * Limit the number of blocks transferred so that we don't overflow 1672 * the maximum request size. 1673 */ 1674 mmc->max_blk_count = mmc->max_req_size >> 11; 1675 1676 spin_lock_init(&host->lock); 1677 1678 writel(0, host->base + MMCIMASK0); 1679 writel(0, host->base + MMCIMASK1); 1680 writel(0xfff, host->base + MMCICLEAR); 1681 1682 /* 1683 * If: 1684 * - not using DT but using a descriptor table, or 1685 * - using a table of descriptors ALONGSIDE DT, or 1686 * look up these descriptors named "cd" and "wp" right here, fail 1687 * silently of these do not exist and proceed to try platform data 1688 */ 1689 if (!np) { 1690 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL); 1691 if (ret < 0) { 1692 if (ret == -EPROBE_DEFER) 1693 goto clk_disable; 1694 else if (gpio_is_valid(plat->gpio_cd)) { 1695 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0); 1696 if (ret) 1697 goto clk_disable; 1698 } 1699 } 1700 1701 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL); 1702 if (ret < 0) { 1703 if (ret == -EPROBE_DEFER) 1704 goto clk_disable; 1705 else if (gpio_is_valid(plat->gpio_wp)) { 1706 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp); 1707 if (ret) 1708 goto clk_disable; 1709 } 1710 } 1711 } 1712 1713 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED, 1714 DRIVER_NAME " (cmd)", host); 1715 if (ret) 1716 goto clk_disable; 1717 1718 if (!dev->irq[1]) 1719 host->singleirq = true; 1720 else { 1721 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, 1722 IRQF_SHARED, DRIVER_NAME " (pio)", host); 1723 if (ret) 1724 goto clk_disable; 1725 } 1726 1727 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1728 1729 amba_set_drvdata(dev, mmc); 1730 1731 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 1732 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 1733 amba_rev(dev), (unsigned long long)dev->res.start, 1734 dev->irq[0], dev->irq[1]); 1735 1736 mmci_dma_setup(host); 1737 1738 pm_runtime_set_autosuspend_delay(&dev->dev, 50); 1739 pm_runtime_use_autosuspend(&dev->dev); 1740 1741 mmc_add_host(mmc); 1742 1743 pm_runtime_put(&dev->dev); 1744 return 0; 1745 1746 clk_disable: 1747 clk_disable_unprepare(host->clk); 1748 host_free: 1749 mmc_free_host(mmc); 1750 return ret; 1751 } 1752 1753 static int mmci_remove(struct amba_device *dev) 1754 { 1755 struct mmc_host *mmc = amba_get_drvdata(dev); 1756 1757 if (mmc) { 1758 struct mmci_host *host = mmc_priv(mmc); 1759 1760 /* 1761 * Undo pm_runtime_put() in probe. We use the _sync 1762 * version here so that we can access the primecell. 1763 */ 1764 pm_runtime_get_sync(&dev->dev); 1765 1766 mmc_remove_host(mmc); 1767 1768 writel(0, host->base + MMCIMASK0); 1769 writel(0, host->base + MMCIMASK1); 1770 1771 writel(0, host->base + MMCICOMMAND); 1772 writel(0, host->base + MMCIDATACTRL); 1773 1774 mmci_dma_release(host); 1775 clk_disable_unprepare(host->clk); 1776 mmc_free_host(mmc); 1777 } 1778 1779 return 0; 1780 } 1781 1782 #ifdef CONFIG_PM 1783 static void mmci_save(struct mmci_host *host) 1784 { 1785 unsigned long flags; 1786 1787 spin_lock_irqsave(&host->lock, flags); 1788 1789 writel(0, host->base + MMCIMASK0); 1790 if (host->variant->pwrreg_nopower) { 1791 writel(0, host->base + MMCIDATACTRL); 1792 writel(0, host->base + MMCIPOWER); 1793 writel(0, host->base + MMCICLOCK); 1794 } 1795 mmci_reg_delay(host); 1796 1797 spin_unlock_irqrestore(&host->lock, flags); 1798 } 1799 1800 static void mmci_restore(struct mmci_host *host) 1801 { 1802 unsigned long flags; 1803 1804 spin_lock_irqsave(&host->lock, flags); 1805 1806 if (host->variant->pwrreg_nopower) { 1807 writel(host->clk_reg, host->base + MMCICLOCK); 1808 writel(host->datactrl_reg, host->base + MMCIDATACTRL); 1809 writel(host->pwr_reg, host->base + MMCIPOWER); 1810 } 1811 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1812 mmci_reg_delay(host); 1813 1814 spin_unlock_irqrestore(&host->lock, flags); 1815 } 1816 1817 static int mmci_runtime_suspend(struct device *dev) 1818 { 1819 struct amba_device *adev = to_amba_device(dev); 1820 struct mmc_host *mmc = amba_get_drvdata(adev); 1821 1822 if (mmc) { 1823 struct mmci_host *host = mmc_priv(mmc); 1824 pinctrl_pm_select_sleep_state(dev); 1825 mmci_save(host); 1826 clk_disable_unprepare(host->clk); 1827 } 1828 1829 return 0; 1830 } 1831 1832 static int mmci_runtime_resume(struct device *dev) 1833 { 1834 struct amba_device *adev = to_amba_device(dev); 1835 struct mmc_host *mmc = amba_get_drvdata(adev); 1836 1837 if (mmc) { 1838 struct mmci_host *host = mmc_priv(mmc); 1839 clk_prepare_enable(host->clk); 1840 mmci_restore(host); 1841 pinctrl_pm_select_default_state(dev); 1842 } 1843 1844 return 0; 1845 } 1846 #endif 1847 1848 static const struct dev_pm_ops mmci_dev_pm_ops = { 1849 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1850 pm_runtime_force_resume) 1851 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) 1852 }; 1853 1854 static struct amba_id mmci_ids[] = { 1855 { 1856 .id = 0x00041180, 1857 .mask = 0xff0fffff, 1858 .data = &variant_arm, 1859 }, 1860 { 1861 .id = 0x01041180, 1862 .mask = 0xff0fffff, 1863 .data = &variant_arm_extended_fifo, 1864 }, 1865 { 1866 .id = 0x02041180, 1867 .mask = 0xff0fffff, 1868 .data = &variant_arm_extended_fifo_hwfc, 1869 }, 1870 { 1871 .id = 0x00041181, 1872 .mask = 0x000fffff, 1873 .data = &variant_arm, 1874 }, 1875 /* ST Micro variants */ 1876 { 1877 .id = 0x00180180, 1878 .mask = 0x00ffffff, 1879 .data = &variant_u300, 1880 }, 1881 { 1882 .id = 0x10180180, 1883 .mask = 0xf0ffffff, 1884 .data = &variant_nomadik, 1885 }, 1886 { 1887 .id = 0x00280180, 1888 .mask = 0x00ffffff, 1889 .data = &variant_u300, 1890 }, 1891 { 1892 .id = 0x00480180, 1893 .mask = 0xf0ffffff, 1894 .data = &variant_ux500, 1895 }, 1896 { 1897 .id = 0x10480180, 1898 .mask = 0xf0ffffff, 1899 .data = &variant_ux500v2, 1900 }, 1901 /* Qualcomm variants */ 1902 { 1903 .id = 0x00051180, 1904 .mask = 0x000fffff, 1905 .data = &variant_qcom, 1906 }, 1907 { 0, 0 }, 1908 }; 1909 1910 MODULE_DEVICE_TABLE(amba, mmci_ids); 1911 1912 static struct amba_driver mmci_driver = { 1913 .drv = { 1914 .name = DRIVER_NAME, 1915 .pm = &mmci_dev_pm_ops, 1916 }, 1917 .probe = mmci_probe, 1918 .remove = mmci_remove, 1919 .id_table = mmci_ids, 1920 }; 1921 1922 module_amba_driver(mmci_driver); 1923 1924 module_param(fmax, uint, 0444); 1925 1926 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 1927 MODULE_LICENSE("GPL"); 1928