1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 4 * 5 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 6 * Copyright (C) 2010 ST-Ericsson SA 7 */ 8 #include <linux/module.h> 9 #include <linux/moduleparam.h> 10 #include <linux/init.h> 11 #include <linux/ioport.h> 12 #include <linux/device.h> 13 #include <linux/io.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/delay.h> 18 #include <linux/err.h> 19 #include <linux/highmem.h> 20 #include <linux/log2.h> 21 #include <linux/mmc/mmc.h> 22 #include <linux/mmc/pm.h> 23 #include <linux/mmc/host.h> 24 #include <linux/mmc/card.h> 25 #include <linux/mmc/sd.h> 26 #include <linux/mmc/slot-gpio.h> 27 #include <linux/amba/bus.h> 28 #include <linux/clk.h> 29 #include <linux/scatterlist.h> 30 #include <linux/of.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/dmaengine.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/amba/mmci.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/types.h> 37 #include <linux/pinctrl/consumer.h> 38 #include <linux/reset.h> 39 #include <linux/gpio/consumer.h> 40 #include <linux/workqueue.h> 41 42 #include <asm/div64.h> 43 #include <asm/io.h> 44 45 #include "mmci.h" 46 47 #define DRIVER_NAME "mmci-pl18x" 48 49 static void mmci_variant_init(struct mmci_host *host); 50 static void ux500_variant_init(struct mmci_host *host); 51 static void ux500v2_variant_init(struct mmci_host *host); 52 53 static unsigned int fmax = 515633; 54 55 static struct variant_data variant_arm = { 56 .fifosize = 16 * 4, 57 .fifohalfsize = 8 * 4, 58 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 59 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 60 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 61 .cmdreg_srsp = MCI_CPSM_RESPONSE, 62 .datalength_bits = 16, 63 .datactrl_blocksz = 11, 64 .pwrreg_powerup = MCI_PWR_UP, 65 .f_max = 100000000, 66 .reversed_irq_handling = true, 67 .mmcimask1 = true, 68 .irq_pio_mask = MCI_IRQ_PIO_MASK, 69 .start_err = MCI_STARTBITERR, 70 .opendrain = MCI_ROD, 71 .init = mmci_variant_init, 72 }; 73 74 static struct variant_data variant_arm_extended_fifo = { 75 .fifosize = 128 * 4, 76 .fifohalfsize = 64 * 4, 77 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 78 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 79 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 80 .cmdreg_srsp = MCI_CPSM_RESPONSE, 81 .datalength_bits = 16, 82 .datactrl_blocksz = 11, 83 .pwrreg_powerup = MCI_PWR_UP, 84 .f_max = 100000000, 85 .mmcimask1 = true, 86 .irq_pio_mask = MCI_IRQ_PIO_MASK, 87 .start_err = MCI_STARTBITERR, 88 .opendrain = MCI_ROD, 89 .init = mmci_variant_init, 90 }; 91 92 static struct variant_data variant_arm_extended_fifo_hwfc = { 93 .fifosize = 128 * 4, 94 .fifohalfsize = 64 * 4, 95 .clkreg_enable = MCI_ARM_HWFCEN, 96 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 97 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 98 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 99 .cmdreg_srsp = MCI_CPSM_RESPONSE, 100 .datalength_bits = 16, 101 .datactrl_blocksz = 11, 102 .pwrreg_powerup = MCI_PWR_UP, 103 .f_max = 100000000, 104 .mmcimask1 = true, 105 .irq_pio_mask = MCI_IRQ_PIO_MASK, 106 .start_err = MCI_STARTBITERR, 107 .opendrain = MCI_ROD, 108 .init = mmci_variant_init, 109 }; 110 111 static struct variant_data variant_u300 = { 112 .fifosize = 16 * 4, 113 .fifohalfsize = 8 * 4, 114 .clkreg_enable = MCI_ST_U300_HWFCEN, 115 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 116 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 117 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 118 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 119 .cmdreg_srsp = MCI_CPSM_RESPONSE, 120 .datalength_bits = 16, 121 .datactrl_blocksz = 11, 122 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 123 .st_sdio = true, 124 .pwrreg_powerup = MCI_PWR_ON, 125 .f_max = 100000000, 126 .signal_direction = true, 127 .pwrreg_clkgate = true, 128 .pwrreg_nopower = true, 129 .mmcimask1 = true, 130 .irq_pio_mask = MCI_IRQ_PIO_MASK, 131 .start_err = MCI_STARTBITERR, 132 .opendrain = MCI_OD, 133 .init = mmci_variant_init, 134 }; 135 136 static struct variant_data variant_nomadik = { 137 .fifosize = 16 * 4, 138 .fifohalfsize = 8 * 4, 139 .clkreg = MCI_CLK_ENABLE, 140 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 141 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 142 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 143 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 144 .cmdreg_srsp = MCI_CPSM_RESPONSE, 145 .datalength_bits = 24, 146 .datactrl_blocksz = 11, 147 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 148 .st_sdio = true, 149 .st_clkdiv = true, 150 .pwrreg_powerup = MCI_PWR_ON, 151 .f_max = 100000000, 152 .signal_direction = true, 153 .pwrreg_clkgate = true, 154 .pwrreg_nopower = true, 155 .mmcimask1 = true, 156 .irq_pio_mask = MCI_IRQ_PIO_MASK, 157 .start_err = MCI_STARTBITERR, 158 .opendrain = MCI_OD, 159 .init = mmci_variant_init, 160 }; 161 162 static struct variant_data variant_ux500 = { 163 .fifosize = 30 * 4, 164 .fifohalfsize = 8 * 4, 165 .clkreg = MCI_CLK_ENABLE, 166 .clkreg_enable = MCI_ST_UX500_HWFCEN, 167 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 168 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 169 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 170 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 171 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 172 .cmdreg_srsp = MCI_CPSM_RESPONSE, 173 .datalength_bits = 24, 174 .datactrl_blocksz = 11, 175 .datactrl_any_blocksz = true, 176 .dma_power_of_2 = true, 177 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 178 .st_sdio = true, 179 .st_clkdiv = true, 180 .pwrreg_powerup = MCI_PWR_ON, 181 .f_max = 100000000, 182 .signal_direction = true, 183 .pwrreg_clkgate = true, 184 .busy_detect = true, 185 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 186 .busy_detect_flag = MCI_ST_CARDBUSY, 187 .busy_detect_mask = MCI_ST_BUSYENDMASK, 188 .pwrreg_nopower = true, 189 .mmcimask1 = true, 190 .irq_pio_mask = MCI_IRQ_PIO_MASK, 191 .start_err = MCI_STARTBITERR, 192 .opendrain = MCI_OD, 193 .init = ux500_variant_init, 194 }; 195 196 static struct variant_data variant_ux500v2 = { 197 .fifosize = 30 * 4, 198 .fifohalfsize = 8 * 4, 199 .clkreg = MCI_CLK_ENABLE, 200 .clkreg_enable = MCI_ST_UX500_HWFCEN, 201 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 202 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 203 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 204 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 205 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 206 .cmdreg_srsp = MCI_CPSM_RESPONSE, 207 .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE, 208 .datalength_bits = 24, 209 .datactrl_blocksz = 11, 210 .datactrl_any_blocksz = true, 211 .dma_power_of_2 = true, 212 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 213 .st_sdio = true, 214 .st_clkdiv = true, 215 .pwrreg_powerup = MCI_PWR_ON, 216 .f_max = 100000000, 217 .signal_direction = true, 218 .pwrreg_clkgate = true, 219 .busy_detect = true, 220 .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, 221 .busy_detect_flag = MCI_ST_CARDBUSY, 222 .busy_detect_mask = MCI_ST_BUSYENDMASK, 223 .pwrreg_nopower = true, 224 .mmcimask1 = true, 225 .irq_pio_mask = MCI_IRQ_PIO_MASK, 226 .start_err = MCI_STARTBITERR, 227 .opendrain = MCI_OD, 228 .init = ux500v2_variant_init, 229 }; 230 231 static struct variant_data variant_stm32 = { 232 .fifosize = 32 * 4, 233 .fifohalfsize = 8 * 4, 234 .clkreg = MCI_CLK_ENABLE, 235 .clkreg_enable = MCI_ST_UX500_HWFCEN, 236 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, 237 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, 238 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 239 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 240 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 241 .cmdreg_srsp = MCI_CPSM_RESPONSE, 242 .irq_pio_mask = MCI_IRQ_PIO_MASK, 243 .datalength_bits = 24, 244 .datactrl_blocksz = 11, 245 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 246 .st_sdio = true, 247 .st_clkdiv = true, 248 .pwrreg_powerup = MCI_PWR_ON, 249 .f_max = 48000000, 250 .pwrreg_clkgate = true, 251 .pwrreg_nopower = true, 252 .init = mmci_variant_init, 253 }; 254 255 static struct variant_data variant_stm32_sdmmc = { 256 .fifosize = 16 * 4, 257 .fifohalfsize = 8 * 4, 258 .f_max = 208000000, 259 .stm32_clkdiv = true, 260 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 261 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 262 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 263 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 264 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 265 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 266 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 267 .datactrl_first = true, 268 .datacnt_useless = true, 269 .datalength_bits = 25, 270 .datactrl_blocksz = 14, 271 .datactrl_any_blocksz = true, 272 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 273 .stm32_idmabsize_mask = GENMASK(12, 5), 274 .stm32_idmabsize_align = BIT(5), 275 .busy_timeout = true, 276 .busy_detect = true, 277 .busy_detect_flag = MCI_STM32_BUSYD0, 278 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 279 .init = sdmmc_variant_init, 280 }; 281 282 static struct variant_data variant_stm32_sdmmcv2 = { 283 .fifosize = 16 * 4, 284 .fifohalfsize = 8 * 4, 285 .f_max = 267000000, 286 .stm32_clkdiv = true, 287 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 288 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 289 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 290 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 291 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 292 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 293 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 294 .datactrl_first = true, 295 .datacnt_useless = true, 296 .datalength_bits = 25, 297 .datactrl_blocksz = 14, 298 .datactrl_any_blocksz = true, 299 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 300 .stm32_idmabsize_mask = GENMASK(16, 5), 301 .stm32_idmabsize_align = BIT(5), 302 .dma_lli = true, 303 .busy_timeout = true, 304 .busy_detect = true, 305 .busy_detect_flag = MCI_STM32_BUSYD0, 306 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 307 .init = sdmmc_variant_init, 308 }; 309 310 static struct variant_data variant_stm32_sdmmcv3 = { 311 .fifosize = 256 * 4, 312 .fifohalfsize = 128 * 4, 313 .f_max = 267000000, 314 .stm32_clkdiv = true, 315 .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, 316 .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, 317 .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, 318 .cmdreg_srsp = MCI_CPSM_STM32_SRSP, 319 .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, 320 .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, 321 .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, 322 .datactrl_first = true, 323 .datacnt_useless = true, 324 .datalength_bits = 25, 325 .datactrl_blocksz = 14, 326 .datactrl_any_blocksz = true, 327 .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, 328 .stm32_idmabsize_mask = GENMASK(16, 6), 329 .stm32_idmabsize_align = BIT(6), 330 .dma_lli = true, 331 .busy_timeout = true, 332 .busy_detect = true, 333 .busy_detect_flag = MCI_STM32_BUSYD0, 334 .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, 335 .init = sdmmc_variant_init, 336 }; 337 338 static struct variant_data variant_qcom = { 339 .fifosize = 16 * 4, 340 .fifohalfsize = 8 * 4, 341 .clkreg = MCI_CLK_ENABLE, 342 .clkreg_enable = MCI_QCOM_CLK_FLOWENA | 343 MCI_QCOM_CLK_SELECT_IN_FBCLK, 344 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, 345 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, 346 .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, 347 .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, 348 .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, 349 .cmdreg_srsp = MCI_CPSM_RESPONSE, 350 .data_cmd_enable = MCI_CPSM_QCOM_DATCMD, 351 .datalength_bits = 24, 352 .datactrl_blocksz = 11, 353 .datactrl_any_blocksz = true, 354 .pwrreg_powerup = MCI_PWR_UP, 355 .f_max = 208000000, 356 .explicit_mclk_control = true, 357 .qcom_fifo = true, 358 .qcom_dml = true, 359 .mmcimask1 = true, 360 .irq_pio_mask = MCI_IRQ_PIO_MASK, 361 .start_err = MCI_STARTBITERR, 362 .opendrain = MCI_ROD, 363 .init = qcom_variant_init, 364 }; 365 366 /* Busy detection for the ST Micro variant */ 367 static int mmci_card_busy(struct mmc_host *mmc) 368 { 369 struct mmci_host *host = mmc_priv(mmc); 370 unsigned long flags; 371 int busy = 0; 372 373 spin_lock_irqsave(&host->lock, flags); 374 if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag) 375 busy = 1; 376 spin_unlock_irqrestore(&host->lock, flags); 377 378 return busy; 379 } 380 381 static void mmci_reg_delay(struct mmci_host *host) 382 { 383 /* 384 * According to the spec, at least three feedback clock cycles 385 * of max 52 MHz must pass between two writes to the MMCICLOCK reg. 386 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. 387 * Worst delay time during card init is at 100 kHz => 30 us. 388 * Worst delay time when up and running is at 25 MHz => 120 ns. 389 */ 390 if (host->cclk < 25000000) 391 udelay(30); 392 else 393 ndelay(120); 394 } 395 396 /* 397 * This must be called with host->lock held 398 */ 399 void mmci_write_clkreg(struct mmci_host *host, u32 clk) 400 { 401 if (host->clk_reg != clk) { 402 host->clk_reg = clk; 403 writel(clk, host->base + MMCICLOCK); 404 } 405 } 406 407 /* 408 * This must be called with host->lock held 409 */ 410 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) 411 { 412 if (host->pwr_reg != pwr) { 413 host->pwr_reg = pwr; 414 writel(pwr, host->base + MMCIPOWER); 415 } 416 } 417 418 /* 419 * This must be called with host->lock held 420 */ 421 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) 422 { 423 /* Keep busy mode in DPSM if enabled */ 424 datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag; 425 426 if (host->datactrl_reg != datactrl) { 427 host->datactrl_reg = datactrl; 428 writel(datactrl, host->base + MMCIDATACTRL); 429 } 430 } 431 432 /* 433 * This must be called with host->lock held 434 */ 435 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 436 { 437 struct variant_data *variant = host->variant; 438 u32 clk = variant->clkreg; 439 440 /* Make sure cclk reflects the current calculated clock */ 441 host->cclk = 0; 442 443 if (desired) { 444 if (variant->explicit_mclk_control) { 445 host->cclk = host->mclk; 446 } else if (desired >= host->mclk) { 447 clk = MCI_CLK_BYPASS; 448 if (variant->st_clkdiv) 449 clk |= MCI_ST_UX500_NEG_EDGE; 450 host->cclk = host->mclk; 451 } else if (variant->st_clkdiv) { 452 /* 453 * DB8500 TRM says f = mclk / (clkdiv + 2) 454 * => clkdiv = (mclk / f) - 2 455 * Round the divider up so we don't exceed the max 456 * frequency 457 */ 458 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 459 if (clk >= 256) 460 clk = 255; 461 host->cclk = host->mclk / (clk + 2); 462 } else { 463 /* 464 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 465 * => clkdiv = mclk / (2 * f) - 1 466 */ 467 clk = host->mclk / (2 * desired) - 1; 468 if (clk >= 256) 469 clk = 255; 470 host->cclk = host->mclk / (2 * (clk + 1)); 471 } 472 473 clk |= variant->clkreg_enable; 474 clk |= MCI_CLK_ENABLE; 475 /* This hasn't proven to be worthwhile */ 476 /* clk |= MCI_CLK_PWRSAVE; */ 477 } 478 479 /* Set actual clock for debug */ 480 host->mmc->actual_clock = host->cclk; 481 482 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 483 clk |= MCI_4BIT_BUS; 484 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 485 clk |= variant->clkreg_8bit_bus_enable; 486 487 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 488 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 489 clk |= variant->clkreg_neg_edge_enable; 490 491 mmci_write_clkreg(host, clk); 492 } 493 494 static void mmci_dma_release(struct mmci_host *host) 495 { 496 if (host->ops && host->ops->dma_release) 497 host->ops->dma_release(host); 498 499 host->use_dma = false; 500 } 501 502 static void mmci_dma_setup(struct mmci_host *host) 503 { 504 if (!host->ops || !host->ops->dma_setup) 505 return; 506 507 if (host->ops->dma_setup(host)) 508 return; 509 510 /* initialize pre request cookie */ 511 host->next_cookie = 1; 512 513 host->use_dma = true; 514 } 515 516 /* 517 * Validate mmc prerequisites 518 */ 519 static int mmci_validate_data(struct mmci_host *host, 520 struct mmc_data *data) 521 { 522 struct variant_data *variant = host->variant; 523 524 if (!data) 525 return 0; 526 if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) { 527 dev_err(mmc_dev(host->mmc), 528 "unsupported block size (%d bytes)\n", data->blksz); 529 return -EINVAL; 530 } 531 532 if (host->ops && host->ops->validate_data) 533 return host->ops->validate_data(host, data); 534 535 return 0; 536 } 537 538 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) 539 { 540 int err; 541 542 if (!host->ops || !host->ops->prep_data) 543 return 0; 544 545 err = host->ops->prep_data(host, data, next); 546 547 if (next && !err) 548 data->host_cookie = ++host->next_cookie < 0 ? 549 1 : host->next_cookie; 550 551 return err; 552 } 553 554 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data, 555 int err) 556 { 557 if (host->ops && host->ops->unprep_data) 558 host->ops->unprep_data(host, data, err); 559 560 data->host_cookie = 0; 561 } 562 563 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 564 { 565 WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie); 566 567 if (host->ops && host->ops->get_next_data) 568 host->ops->get_next_data(host, data); 569 } 570 571 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl) 572 { 573 struct mmc_data *data = host->data; 574 int ret; 575 576 if (!host->use_dma) 577 return -EINVAL; 578 579 ret = mmci_prep_data(host, data, false); 580 if (ret) 581 return ret; 582 583 if (!host->ops || !host->ops->dma_start) 584 return -EINVAL; 585 586 /* Okay, go for it. */ 587 dev_vdbg(mmc_dev(host->mmc), 588 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 589 data->sg_len, data->blksz, data->blocks, data->flags); 590 591 ret = host->ops->dma_start(host, &datactrl); 592 if (ret) 593 return ret; 594 595 /* Trigger the DMA transfer */ 596 mmci_write_datactrlreg(host, datactrl); 597 598 /* 599 * Let the MMCI say when the data is ended and it's time 600 * to fire next DMA request. When that happens, MMCI will 601 * call mmci_data_end() 602 */ 603 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 604 host->base + MMCIMASK0); 605 return 0; 606 } 607 608 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) 609 { 610 if (!host->use_dma) 611 return; 612 613 if (host->ops && host->ops->dma_finalize) 614 host->ops->dma_finalize(host, data); 615 } 616 617 static void mmci_dma_error(struct mmci_host *host) 618 { 619 if (!host->use_dma) 620 return; 621 622 if (host->ops && host->ops->dma_error) 623 host->ops->dma_error(host); 624 } 625 626 static void 627 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 628 { 629 writel(0, host->base + MMCICOMMAND); 630 631 BUG_ON(host->data); 632 633 host->mrq = NULL; 634 host->cmd = NULL; 635 636 mmc_request_done(host->mmc, mrq); 637 } 638 639 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 640 { 641 void __iomem *base = host->base; 642 struct variant_data *variant = host->variant; 643 644 if (host->singleirq) { 645 unsigned int mask0 = readl(base + MMCIMASK0); 646 647 mask0 &= ~variant->irq_pio_mask; 648 mask0 |= mask; 649 650 writel(mask0, base + MMCIMASK0); 651 } 652 653 if (variant->mmcimask1) 654 writel(mask, base + MMCIMASK1); 655 656 host->mask1_reg = mask; 657 } 658 659 static void mmci_stop_data(struct mmci_host *host) 660 { 661 mmci_write_datactrlreg(host, 0); 662 mmci_set_mask1(host, 0); 663 host->data = NULL; 664 } 665 666 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 667 { 668 unsigned int flags = SG_MITER_ATOMIC; 669 670 if (data->flags & MMC_DATA_READ) 671 flags |= SG_MITER_TO_SG; 672 else 673 flags |= SG_MITER_FROM_SG; 674 675 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 676 } 677 678 static u32 mmci_get_dctrl_cfg(struct mmci_host *host) 679 { 680 return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host); 681 } 682 683 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host) 684 { 685 return MCI_DPSM_ENABLE | (host->data->blksz << 16); 686 } 687 688 static void ux500_busy_clear_mask_done(struct mmci_host *host) 689 { 690 void __iomem *base = host->base; 691 692 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 693 writel(readl(base + MMCIMASK0) & 694 ~host->variant->busy_detect_mask, base + MMCIMASK0); 695 host->busy_state = MMCI_BUSY_DONE; 696 host->busy_status = 0; 697 } 698 699 /* 700 * ux500_busy_complete() - this will wait until the busy status 701 * goes off, saving any status that occur in the meantime into 702 * host->busy_status until we know the card is not busy any more. 703 * The function returns true when the busy detection is ended 704 * and we should continue processing the command. 705 * 706 * The Ux500 typically fires two IRQs over a busy cycle like this: 707 * 708 * DAT0 busy +-----------------+ 709 * | | 710 * DAT0 not busy ----+ +-------- 711 * 712 * ^ ^ 713 * | | 714 * IRQ1 IRQ2 715 */ 716 static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd, 717 u32 status, u32 err_msk) 718 { 719 void __iomem *base = host->base; 720 int retries = 10; 721 722 if (status & err_msk) { 723 /* Stop any ongoing busy detection if an error occurs */ 724 ux500_busy_clear_mask_done(host); 725 goto out_ret_state; 726 } 727 728 /* 729 * The state transitions are encoded in a state machine crossing 730 * the edges in this switch statement. 731 */ 732 switch (host->busy_state) { 733 734 /* 735 * Before unmasking for the busy end IRQ, confirm that the 736 * command was sent successfully. To keep track of having a 737 * command in-progress, waiting for busy signaling to end, 738 * store the status in host->busy_status. 739 * 740 * Note that, the card may need a couple of clock cycles before 741 * it starts signaling busy on DAT0, hence re-read the 742 * MMCISTATUS register here, to allow the busy bit to be set. 743 */ 744 case MMCI_BUSY_DONE: 745 /* 746 * Save the first status register read to be sure to catch 747 * all bits that may be lost will retrying. If the command 748 * is still busy this will result in assigning 0 to 749 * host->busy_status, which is what it should be in IDLE. 750 */ 751 host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND); 752 while (retries) { 753 status = readl(base + MMCISTATUS); 754 /* Keep accumulating status bits */ 755 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); 756 if (status & host->variant->busy_detect_flag) { 757 writel(readl(base + MMCIMASK0) | 758 host->variant->busy_detect_mask, 759 base + MMCIMASK0); 760 host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ; 761 schedule_delayed_work(&host->ux500_busy_timeout_work, 762 msecs_to_jiffies(cmd->busy_timeout)); 763 goto out_ret_state; 764 } 765 retries--; 766 } 767 dev_dbg(mmc_dev(host->mmc), 768 "no busy signalling in time CMD%02x\n", cmd->opcode); 769 ux500_busy_clear_mask_done(host); 770 break; 771 772 /* 773 * If there is a command in-progress that has been successfully 774 * sent, then bail out if busy status is set and wait for the 775 * busy end IRQ. 776 * 777 * Note that, the HW triggers an IRQ on both edges while 778 * monitoring DAT0 for busy completion, but there is only one 779 * status bit in MMCISTATUS for the busy state. Therefore 780 * both the start and the end interrupts needs to be cleared, 781 * one after the other. So, clear the busy start IRQ here. 782 */ 783 case MMCI_BUSY_WAITING_FOR_START_IRQ: 784 if (status & host->variant->busy_detect_flag) { 785 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); 786 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 787 host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ; 788 } else { 789 dev_dbg(mmc_dev(host->mmc), 790 "lost busy status when waiting for busy start IRQ CMD%02x\n", 791 cmd->opcode); 792 cancel_delayed_work(&host->ux500_busy_timeout_work); 793 ux500_busy_clear_mask_done(host); 794 } 795 break; 796 797 case MMCI_BUSY_WAITING_FOR_END_IRQ: 798 if (!(status & host->variant->busy_detect_flag)) { 799 host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); 800 writel(host->variant->busy_detect_mask, base + MMCICLEAR); 801 cancel_delayed_work(&host->ux500_busy_timeout_work); 802 ux500_busy_clear_mask_done(host); 803 } else { 804 dev_dbg(mmc_dev(host->mmc), 805 "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n", 806 cmd->opcode); 807 } 808 break; 809 810 default: 811 dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n", 812 host->busy_state, cmd->opcode); 813 break; 814 } 815 816 out_ret_state: 817 return (host->busy_state == MMCI_BUSY_DONE); 818 } 819 820 /* 821 * All the DMA operation mode stuff goes inside this ifdef. 822 * This assumes that you have a generic DMA device interface, 823 * no custom DMA interfaces are supported. 824 */ 825 #ifdef CONFIG_DMA_ENGINE 826 struct mmci_dmae_next { 827 struct dma_async_tx_descriptor *desc; 828 struct dma_chan *chan; 829 }; 830 831 struct mmci_dmae_priv { 832 struct dma_chan *cur; 833 struct dma_chan *rx_channel; 834 struct dma_chan *tx_channel; 835 struct dma_async_tx_descriptor *desc_current; 836 struct mmci_dmae_next next_data; 837 }; 838 839 int mmci_dmae_setup(struct mmci_host *host) 840 { 841 const char *rxname, *txname; 842 struct mmci_dmae_priv *dmae; 843 844 dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL); 845 if (!dmae) 846 return -ENOMEM; 847 848 host->dma_priv = dmae; 849 850 dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx"); 851 if (IS_ERR(dmae->rx_channel)) { 852 int ret = PTR_ERR(dmae->rx_channel); 853 dmae->rx_channel = NULL; 854 return ret; 855 } 856 857 dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx"); 858 if (IS_ERR(dmae->tx_channel)) { 859 if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER) 860 dev_warn(mmc_dev(host->mmc), 861 "Deferred probe for TX channel ignored\n"); 862 dmae->tx_channel = NULL; 863 } 864 865 /* 866 * If only an RX channel is specified, the driver will 867 * attempt to use it bidirectionally, however if it 868 * is specified but cannot be located, DMA will be disabled. 869 */ 870 if (dmae->rx_channel && !dmae->tx_channel) 871 dmae->tx_channel = dmae->rx_channel; 872 873 if (dmae->rx_channel) 874 rxname = dma_chan_name(dmae->rx_channel); 875 else 876 rxname = "none"; 877 878 if (dmae->tx_channel) 879 txname = dma_chan_name(dmae->tx_channel); 880 else 881 txname = "none"; 882 883 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 884 rxname, txname); 885 886 /* 887 * Limit the maximum segment size in any SG entry according to 888 * the parameters of the DMA engine device. 889 */ 890 if (dmae->tx_channel) { 891 struct device *dev = dmae->tx_channel->device->dev; 892 unsigned int max_seg_size = dma_get_max_seg_size(dev); 893 894 if (max_seg_size < host->mmc->max_seg_size) 895 host->mmc->max_seg_size = max_seg_size; 896 } 897 if (dmae->rx_channel) { 898 struct device *dev = dmae->rx_channel->device->dev; 899 unsigned int max_seg_size = dma_get_max_seg_size(dev); 900 901 if (max_seg_size < host->mmc->max_seg_size) 902 host->mmc->max_seg_size = max_seg_size; 903 } 904 905 if (!dmae->tx_channel || !dmae->rx_channel) { 906 mmci_dmae_release(host); 907 return -EINVAL; 908 } 909 910 return 0; 911 } 912 913 /* 914 * This is used in or so inline it 915 * so it can be discarded. 916 */ 917 void mmci_dmae_release(struct mmci_host *host) 918 { 919 struct mmci_dmae_priv *dmae = host->dma_priv; 920 921 if (dmae->rx_channel) 922 dma_release_channel(dmae->rx_channel); 923 if (dmae->tx_channel) 924 dma_release_channel(dmae->tx_channel); 925 dmae->rx_channel = dmae->tx_channel = NULL; 926 } 927 928 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 929 { 930 struct mmci_dmae_priv *dmae = host->dma_priv; 931 struct dma_chan *chan; 932 933 if (data->flags & MMC_DATA_READ) 934 chan = dmae->rx_channel; 935 else 936 chan = dmae->tx_channel; 937 938 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, 939 mmc_get_dma_dir(data)); 940 } 941 942 void mmci_dmae_error(struct mmci_host *host) 943 { 944 struct mmci_dmae_priv *dmae = host->dma_priv; 945 946 if (!dma_inprogress(host)) 947 return; 948 949 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 950 dmaengine_terminate_all(dmae->cur); 951 host->dma_in_progress = false; 952 dmae->cur = NULL; 953 dmae->desc_current = NULL; 954 host->data->host_cookie = 0; 955 956 mmci_dma_unmap(host, host->data); 957 } 958 959 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data) 960 { 961 struct mmci_dmae_priv *dmae = host->dma_priv; 962 u32 status; 963 int i; 964 965 if (!dma_inprogress(host)) 966 return; 967 968 /* Wait up to 1ms for the DMA to complete */ 969 for (i = 0; ; i++) { 970 status = readl(host->base + MMCISTATUS); 971 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 972 break; 973 udelay(10); 974 } 975 976 /* 977 * Check to see whether we still have some data left in the FIFO - 978 * this catches DMA controllers which are unable to monitor the 979 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 980 * contiguous buffers. On TX, we'll get a FIFO underrun error. 981 */ 982 if (status & MCI_RXDATAAVLBLMASK) { 983 mmci_dma_error(host); 984 if (!data->error) 985 data->error = -EIO; 986 } else if (!data->host_cookie) { 987 mmci_dma_unmap(host, data); 988 } 989 990 /* 991 * Use of DMA with scatter-gather is impossible. 992 * Give up with DMA and switch back to PIO mode. 993 */ 994 if (status & MCI_RXDATAAVLBLMASK) { 995 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 996 mmci_dma_release(host); 997 } 998 999 host->dma_in_progress = false; 1000 dmae->cur = NULL; 1001 dmae->desc_current = NULL; 1002 } 1003 1004 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ 1005 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data, 1006 struct dma_chan **dma_chan, 1007 struct dma_async_tx_descriptor **dma_desc) 1008 { 1009 struct mmci_dmae_priv *dmae = host->dma_priv; 1010 struct variant_data *variant = host->variant; 1011 struct dma_slave_config conf = { 1012 .src_addr = host->phybase + MMCIFIFO, 1013 .dst_addr = host->phybase + MMCIFIFO, 1014 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 1015 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 1016 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 1017 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 1018 .device_fc = false, 1019 }; 1020 struct dma_chan *chan; 1021 struct dma_device *device; 1022 struct dma_async_tx_descriptor *desc; 1023 int nr_sg; 1024 unsigned long flags = DMA_CTRL_ACK; 1025 1026 if (data->flags & MMC_DATA_READ) { 1027 conf.direction = DMA_DEV_TO_MEM; 1028 chan = dmae->rx_channel; 1029 } else { 1030 conf.direction = DMA_MEM_TO_DEV; 1031 chan = dmae->tx_channel; 1032 } 1033 1034 /* If there's no DMA channel, fall back to PIO */ 1035 if (!chan) 1036 return -EINVAL; 1037 1038 /* If less than or equal to the fifo size, don't bother with DMA */ 1039 if (data->blksz * data->blocks <= variant->fifosize) 1040 return -EINVAL; 1041 1042 /* 1043 * This is necessary to get SDIO working on the Ux500. We do not yet 1044 * know if this is a bug in: 1045 * - The Ux500 DMA controller (DMA40) 1046 * - The MMCI DMA interface on the Ux500 1047 * some power of two blocks (such as 64 bytes) are sent regularly 1048 * during SDIO traffic and those work fine so for these we enable DMA 1049 * transfers. 1050 */ 1051 if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz)) 1052 return -EINVAL; 1053 1054 device = chan->device; 1055 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, 1056 mmc_get_dma_dir(data)); 1057 if (nr_sg == 0) 1058 return -EINVAL; 1059 1060 if (host->variant->qcom_dml) 1061 flags |= DMA_PREP_INTERRUPT; 1062 1063 dmaengine_slave_config(chan, &conf); 1064 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, 1065 conf.direction, flags); 1066 if (!desc) 1067 goto unmap_exit; 1068 1069 *dma_chan = chan; 1070 *dma_desc = desc; 1071 1072 return 0; 1073 1074 unmap_exit: 1075 dma_unmap_sg(device->dev, data->sg, data->sg_len, 1076 mmc_get_dma_dir(data)); 1077 return -ENOMEM; 1078 } 1079 1080 int mmci_dmae_prep_data(struct mmci_host *host, 1081 struct mmc_data *data, 1082 bool next) 1083 { 1084 struct mmci_dmae_priv *dmae = host->dma_priv; 1085 struct mmci_dmae_next *nd = &dmae->next_data; 1086 1087 if (!host->use_dma) 1088 return -EINVAL; 1089 1090 if (next) 1091 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc); 1092 /* Check if next job is already prepared. */ 1093 if (dmae->cur && dmae->desc_current) 1094 return 0; 1095 1096 /* No job were prepared thus do it now. */ 1097 return _mmci_dmae_prep_data(host, data, &dmae->cur, 1098 &dmae->desc_current); 1099 } 1100 1101 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl) 1102 { 1103 struct mmci_dmae_priv *dmae = host->dma_priv; 1104 int ret; 1105 1106 host->dma_in_progress = true; 1107 ret = dma_submit_error(dmaengine_submit(dmae->desc_current)); 1108 if (ret < 0) { 1109 host->dma_in_progress = false; 1110 return ret; 1111 } 1112 dma_async_issue_pending(dmae->cur); 1113 1114 *datactrl |= MCI_DPSM_DMAENABLE; 1115 1116 return 0; 1117 } 1118 1119 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data) 1120 { 1121 struct mmci_dmae_priv *dmae = host->dma_priv; 1122 struct mmci_dmae_next *next = &dmae->next_data; 1123 1124 if (!host->use_dma) 1125 return; 1126 1127 WARN_ON(!data->host_cookie && (next->desc || next->chan)); 1128 1129 dmae->desc_current = next->desc; 1130 dmae->cur = next->chan; 1131 next->desc = NULL; 1132 next->chan = NULL; 1133 } 1134 1135 void mmci_dmae_unprep_data(struct mmci_host *host, 1136 struct mmc_data *data, int err) 1137 1138 { 1139 struct mmci_dmae_priv *dmae = host->dma_priv; 1140 1141 if (!host->use_dma) 1142 return; 1143 1144 mmci_dma_unmap(host, data); 1145 1146 if (err) { 1147 struct mmci_dmae_next *next = &dmae->next_data; 1148 struct dma_chan *chan; 1149 if (data->flags & MMC_DATA_READ) 1150 chan = dmae->rx_channel; 1151 else 1152 chan = dmae->tx_channel; 1153 dmaengine_terminate_all(chan); 1154 1155 if (dmae->desc_current == next->desc) 1156 dmae->desc_current = NULL; 1157 1158 if (dmae->cur == next->chan) { 1159 host->dma_in_progress = false; 1160 dmae->cur = NULL; 1161 } 1162 1163 next->desc = NULL; 1164 next->chan = NULL; 1165 } 1166 } 1167 1168 static struct mmci_host_ops mmci_variant_ops = { 1169 .prep_data = mmci_dmae_prep_data, 1170 .unprep_data = mmci_dmae_unprep_data, 1171 .get_datactrl_cfg = mmci_get_dctrl_cfg, 1172 .get_next_data = mmci_dmae_get_next_data, 1173 .dma_setup = mmci_dmae_setup, 1174 .dma_release = mmci_dmae_release, 1175 .dma_start = mmci_dmae_start, 1176 .dma_finalize = mmci_dmae_finalize, 1177 .dma_error = mmci_dmae_error, 1178 }; 1179 #else 1180 static struct mmci_host_ops mmci_variant_ops = { 1181 .get_datactrl_cfg = mmci_get_dctrl_cfg, 1182 }; 1183 #endif 1184 1185 static void mmci_variant_init(struct mmci_host *host) 1186 { 1187 host->ops = &mmci_variant_ops; 1188 } 1189 1190 static void ux500_variant_init(struct mmci_host *host) 1191 { 1192 host->ops = &mmci_variant_ops; 1193 host->ops->busy_complete = ux500_busy_complete; 1194 } 1195 1196 static void ux500v2_variant_init(struct mmci_host *host) 1197 { 1198 host->ops = &mmci_variant_ops; 1199 host->ops->busy_complete = ux500_busy_complete; 1200 host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg; 1201 } 1202 1203 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq) 1204 { 1205 struct mmci_host *host = mmc_priv(mmc); 1206 struct mmc_data *data = mrq->data; 1207 1208 if (!data) 1209 return; 1210 1211 WARN_ON(data->host_cookie); 1212 1213 if (mmci_validate_data(host, data)) 1214 return; 1215 1216 mmci_prep_data(host, data, true); 1217 } 1218 1219 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 1220 int err) 1221 { 1222 struct mmci_host *host = mmc_priv(mmc); 1223 struct mmc_data *data = mrq->data; 1224 1225 if (!data || !data->host_cookie) 1226 return; 1227 1228 mmci_unprep_data(host, data, err); 1229 } 1230 1231 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 1232 { 1233 struct variant_data *variant = host->variant; 1234 unsigned int datactrl, timeout, irqmask; 1235 unsigned long long clks; 1236 void __iomem *base; 1237 1238 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 1239 data->blksz, data->blocks, data->flags); 1240 1241 host->data = data; 1242 host->size = data->blksz * data->blocks; 1243 data->bytes_xfered = 0; 1244 1245 clks = (unsigned long long)data->timeout_ns * host->cclk; 1246 do_div(clks, NSEC_PER_SEC); 1247 1248 timeout = data->timeout_clks + (unsigned int)clks; 1249 1250 base = host->base; 1251 writel(timeout, base + MMCIDATATIMER); 1252 writel(host->size, base + MMCIDATALENGTH); 1253 1254 datactrl = host->ops->get_datactrl_cfg(host); 1255 datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0; 1256 1257 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { 1258 u32 clk; 1259 1260 datactrl |= variant->datactrl_mask_sdio; 1261 1262 /* 1263 * The ST Micro variant for SDIO small write transfers 1264 * needs to have clock H/W flow control disabled, 1265 * otherwise the transfer will not start. The threshold 1266 * depends on the rate of MCLK. 1267 */ 1268 if (variant->st_sdio && data->flags & MMC_DATA_WRITE && 1269 (host->size < 8 || 1270 (host->size <= 8 && host->mclk > 50000000))) 1271 clk = host->clk_reg & ~variant->clkreg_enable; 1272 else 1273 clk = host->clk_reg | variant->clkreg_enable; 1274 1275 mmci_write_clkreg(host, clk); 1276 } 1277 1278 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || 1279 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) 1280 datactrl |= variant->datactrl_mask_ddrmode; 1281 1282 /* 1283 * Attempt to use DMA operation mode, if this 1284 * should fail, fall back to PIO mode 1285 */ 1286 if (!mmci_dma_start(host, datactrl)) 1287 return; 1288 1289 /* IRQ mode, map the SG list for CPU reading/writing */ 1290 mmci_init_sg(host, data); 1291 1292 if (data->flags & MMC_DATA_READ) { 1293 irqmask = MCI_RXFIFOHALFFULLMASK; 1294 1295 /* 1296 * If we have less than the fifo 'half-full' threshold to 1297 * transfer, trigger a PIO interrupt as soon as any data 1298 * is available. 1299 */ 1300 if (host->size < variant->fifohalfsize) 1301 irqmask |= MCI_RXDATAAVLBLMASK; 1302 } else { 1303 /* 1304 * We don't actually need to include "FIFO empty" here 1305 * since its implicit in "FIFO half empty". 1306 */ 1307 irqmask = MCI_TXFIFOHALFEMPTYMASK; 1308 } 1309 1310 mmci_write_datactrlreg(host, datactrl); 1311 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 1312 mmci_set_mask1(host, irqmask); 1313 } 1314 1315 static void 1316 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 1317 { 1318 void __iomem *base = host->base; 1319 bool busy_resp = cmd->flags & MMC_RSP_BUSY; 1320 unsigned long long clks; 1321 1322 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 1323 cmd->opcode, cmd->arg, cmd->flags); 1324 1325 if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) { 1326 writel(0, base + MMCICOMMAND); 1327 mmci_reg_delay(host); 1328 } 1329 1330 if (host->variant->cmdreg_stop && 1331 cmd->opcode == MMC_STOP_TRANSMISSION) 1332 c |= host->variant->cmdreg_stop; 1333 1334 c |= cmd->opcode | host->variant->cmdreg_cpsm_enable; 1335 if (cmd->flags & MMC_RSP_PRESENT) { 1336 if (cmd->flags & MMC_RSP_136) 1337 c |= host->variant->cmdreg_lrsp_crc; 1338 else if (cmd->flags & MMC_RSP_CRC) 1339 c |= host->variant->cmdreg_srsp_crc; 1340 else 1341 c |= host->variant->cmdreg_srsp; 1342 } 1343 1344 host->busy_status = 0; 1345 host->busy_state = MMCI_BUSY_DONE; 1346 1347 /* Assign a default timeout if the core does not provide one */ 1348 if (busy_resp && !cmd->busy_timeout) 1349 cmd->busy_timeout = 10 * MSEC_PER_SEC; 1350 1351 if (busy_resp && host->variant->busy_timeout) { 1352 if (cmd->busy_timeout > host->mmc->max_busy_timeout) 1353 clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk; 1354 else 1355 clks = (unsigned long long)cmd->busy_timeout * host->cclk; 1356 1357 do_div(clks, MSEC_PER_SEC); 1358 writel_relaxed(clks, host->base + MMCIDATATIMER); 1359 } 1360 1361 if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE) 1362 host->ops->pre_sig_volt_switch(host); 1363 1364 if (/*interrupt*/0) 1365 c |= MCI_CPSM_INTERRUPT; 1366 1367 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) 1368 c |= host->variant->data_cmd_enable; 1369 1370 host->cmd = cmd; 1371 1372 writel(cmd->arg, base + MMCIARGUMENT); 1373 writel(c, base + MMCICOMMAND); 1374 } 1375 1376 static void mmci_stop_command(struct mmci_host *host) 1377 { 1378 host->stop_abort.error = 0; 1379 mmci_start_command(host, &host->stop_abort, 0); 1380 } 1381 1382 static void 1383 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 1384 unsigned int status) 1385 { 1386 unsigned int status_err; 1387 1388 /* Make sure we have data to handle */ 1389 if (!data) 1390 return; 1391 1392 /* First check for errors */ 1393 status_err = status & (host->variant->start_err | 1394 MCI_DATACRCFAIL | MCI_DATATIMEOUT | 1395 MCI_TXUNDERRUN | MCI_RXOVERRUN); 1396 1397 if (status_err) { 1398 u32 remain, success; 1399 1400 /* Terminate the DMA transfer */ 1401 mmci_dma_error(host); 1402 1403 /* 1404 * Calculate how far we are into the transfer. Note that 1405 * the data counter gives the number of bytes transferred 1406 * on the MMC bus, not on the host side. On reads, this 1407 * can be as much as a FIFO-worth of data ahead. This 1408 * matters for FIFO overruns only. 1409 */ 1410 if (!host->variant->datacnt_useless) { 1411 remain = readl(host->base + MMCIDATACNT); 1412 success = data->blksz * data->blocks - remain; 1413 } else { 1414 success = 0; 1415 } 1416 1417 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 1418 status_err, success); 1419 if (status_err & MCI_DATACRCFAIL) { 1420 /* Last block was not successful */ 1421 success -= 1; 1422 data->error = -EILSEQ; 1423 } else if (status_err & MCI_DATATIMEOUT) { 1424 data->error = -ETIMEDOUT; 1425 } else if (status_err & MCI_STARTBITERR) { 1426 data->error = -ECOMM; 1427 } else if (status_err & MCI_TXUNDERRUN) { 1428 data->error = -EIO; 1429 } else if (status_err & MCI_RXOVERRUN) { 1430 if (success > host->variant->fifosize) 1431 success -= host->variant->fifosize; 1432 else 1433 success = 0; 1434 data->error = -EIO; 1435 } 1436 data->bytes_xfered = round_down(success, data->blksz); 1437 } 1438 1439 if (status & MCI_DATABLOCKEND) 1440 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 1441 1442 if (status & MCI_DATAEND || data->error) { 1443 mmci_dma_finalize(host, data); 1444 1445 mmci_stop_data(host); 1446 1447 if (!data->error) 1448 /* The error clause is handled above, success! */ 1449 data->bytes_xfered = data->blksz * data->blocks; 1450 1451 if (!data->stop) { 1452 if (host->variant->cmdreg_stop && data->error) 1453 mmci_stop_command(host); 1454 else 1455 mmci_request_end(host, data->mrq); 1456 } else if (host->mrq->sbc && !data->error) { 1457 mmci_request_end(host, data->mrq); 1458 } else { 1459 mmci_start_command(host, data->stop, 0); 1460 } 1461 } 1462 } 1463 1464 static void 1465 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 1466 unsigned int status) 1467 { 1468 u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT; 1469 void __iomem *base = host->base; 1470 bool sbc, busy_resp; 1471 1472 if (!cmd) 1473 return; 1474 1475 sbc = (cmd == host->mrq->sbc); 1476 busy_resp = !!(cmd->flags & MMC_RSP_BUSY); 1477 1478 /* 1479 * We need to be one of these interrupts to be considered worth 1480 * handling. Note that we tag on any latent IRQs postponed 1481 * due to waiting for busy status. 1482 */ 1483 if (host->variant->busy_timeout && busy_resp) 1484 err_msk |= MCI_DATATIMEOUT; 1485 1486 if (!((status | host->busy_status) & 1487 (err_msk | MCI_CMDSENT | MCI_CMDRESPEND))) 1488 return; 1489 1490 /* Handle busy detection on DAT0 if the variant supports it. */ 1491 if (busy_resp && host->variant->busy_detect) 1492 if (!host->ops->busy_complete(host, cmd, status, err_msk)) 1493 return; 1494 1495 host->cmd = NULL; 1496 1497 if (status & MCI_CMDTIMEOUT) { 1498 cmd->error = -ETIMEDOUT; 1499 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 1500 cmd->error = -EILSEQ; 1501 } else if (host->variant->busy_timeout && busy_resp && 1502 status & MCI_DATATIMEOUT) { 1503 cmd->error = -ETIMEDOUT; 1504 /* 1505 * This will wake up mmci_irq_thread() which will issue 1506 * a hardware reset of the MMCI block. 1507 */ 1508 host->irq_action = IRQ_WAKE_THREAD; 1509 } else { 1510 cmd->resp[0] = readl(base + MMCIRESPONSE0); 1511 cmd->resp[1] = readl(base + MMCIRESPONSE1); 1512 cmd->resp[2] = readl(base + MMCIRESPONSE2); 1513 cmd->resp[3] = readl(base + MMCIRESPONSE3); 1514 } 1515 1516 if ((!sbc && !cmd->data) || cmd->error) { 1517 if (host->data) { 1518 /* Terminate the DMA transfer */ 1519 mmci_dma_error(host); 1520 1521 mmci_stop_data(host); 1522 if (host->variant->cmdreg_stop && cmd->error) { 1523 mmci_stop_command(host); 1524 return; 1525 } 1526 } 1527 1528 if (host->irq_action != IRQ_WAKE_THREAD) 1529 mmci_request_end(host, host->mrq); 1530 1531 } else if (sbc) { 1532 mmci_start_command(host, host->mrq->cmd, 0); 1533 } else if (!host->variant->datactrl_first && 1534 !(cmd->data->flags & MMC_DATA_READ)) { 1535 mmci_start_data(host, cmd->data); 1536 } 1537 } 1538 1539 static char *ux500_state_str(struct mmci_host *host) 1540 { 1541 switch (host->busy_state) { 1542 case MMCI_BUSY_WAITING_FOR_START_IRQ: 1543 return "waiting for start IRQ"; 1544 case MMCI_BUSY_WAITING_FOR_END_IRQ: 1545 return "waiting for end IRQ"; 1546 case MMCI_BUSY_DONE: 1547 return "not waiting for IRQs"; 1548 default: 1549 return "unknown"; 1550 } 1551 } 1552 1553 /* 1554 * This busy timeout worker is used to "kick" the command IRQ if a 1555 * busy detect IRQ fails to appear in reasonable time. Only used on 1556 * variants with busy detection IRQ delivery. 1557 */ 1558 static void ux500_busy_timeout_work(struct work_struct *work) 1559 { 1560 struct mmci_host *host = container_of(work, struct mmci_host, 1561 ux500_busy_timeout_work.work); 1562 unsigned long flags; 1563 u32 status; 1564 1565 spin_lock_irqsave(&host->lock, flags); 1566 1567 if (host->cmd) { 1568 /* If we are still busy let's tag on a cmd-timeout error. */ 1569 status = readl(host->base + MMCISTATUS); 1570 if (status & host->variant->busy_detect_flag) { 1571 status |= MCI_CMDTIMEOUT; 1572 dev_err(mmc_dev(host->mmc), 1573 "timeout in state %s still busy with CMD%02x\n", 1574 ux500_state_str(host), host->cmd->opcode); 1575 } else { 1576 dev_err(mmc_dev(host->mmc), 1577 "timeout in state %s waiting for busy CMD%02x\n", 1578 ux500_state_str(host), host->cmd->opcode); 1579 } 1580 1581 mmci_cmd_irq(host, host->cmd, status); 1582 } 1583 1584 spin_unlock_irqrestore(&host->lock, flags); 1585 } 1586 1587 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) 1588 { 1589 return remain - (readl(host->base + MMCIFIFOCNT) << 2); 1590 } 1591 1592 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) 1593 { 1594 /* 1595 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses 1596 * from the fifo range should be used 1597 */ 1598 if (status & MCI_RXFIFOHALFFULL) 1599 return host->variant->fifohalfsize; 1600 else if (status & MCI_RXDATAAVLBL) 1601 return 4; 1602 1603 return 0; 1604 } 1605 1606 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 1607 { 1608 void __iomem *base = host->base; 1609 char *ptr = buffer; 1610 u32 status = readl(host->base + MMCISTATUS); 1611 int host_remain = host->size; 1612 1613 do { 1614 int count = host->get_rx_fifocnt(host, status, host_remain); 1615 1616 if (count > remain) 1617 count = remain; 1618 1619 if (count <= 0) 1620 break; 1621 1622 /* 1623 * SDIO especially may want to send something that is 1624 * not divisible by 4 (as opposed to card sectors 1625 * etc). Therefore make sure to always read the last bytes 1626 * while only doing full 32-bit reads towards the FIFO. 1627 */ 1628 if (unlikely(count & 0x3)) { 1629 if (count < 4) { 1630 unsigned char buf[4]; 1631 ioread32_rep(base + MMCIFIFO, buf, 1); 1632 memcpy(ptr, buf, count); 1633 } else { 1634 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1635 count &= ~0x3; 1636 } 1637 } else { 1638 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 1639 } 1640 1641 ptr += count; 1642 remain -= count; 1643 host_remain -= count; 1644 1645 if (remain == 0) 1646 break; 1647 1648 status = readl(base + MMCISTATUS); 1649 } while (status & MCI_RXDATAAVLBL); 1650 1651 return ptr - buffer; 1652 } 1653 1654 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 1655 { 1656 struct variant_data *variant = host->variant; 1657 void __iomem *base = host->base; 1658 char *ptr = buffer; 1659 1660 do { 1661 unsigned int count, maxcnt; 1662 1663 maxcnt = status & MCI_TXFIFOEMPTY ? 1664 variant->fifosize : variant->fifohalfsize; 1665 count = min(remain, maxcnt); 1666 1667 /* 1668 * SDIO especially may want to send something that is 1669 * not divisible by 4 (as opposed to card sectors 1670 * etc), and the FIFO only accept full 32-bit writes. 1671 * So compensate by adding +3 on the count, a single 1672 * byte become a 32bit write, 7 bytes will be two 1673 * 32bit writes etc. 1674 */ 1675 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); 1676 1677 ptr += count; 1678 remain -= count; 1679 1680 if (remain == 0) 1681 break; 1682 1683 status = readl(base + MMCISTATUS); 1684 } while (status & MCI_TXFIFOHALFEMPTY); 1685 1686 return ptr - buffer; 1687 } 1688 1689 /* 1690 * PIO data transfer IRQ handler. 1691 */ 1692 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 1693 { 1694 struct mmci_host *host = dev_id; 1695 struct sg_mapping_iter *sg_miter = &host->sg_miter; 1696 struct variant_data *variant = host->variant; 1697 void __iomem *base = host->base; 1698 u32 status; 1699 1700 status = readl(base + MMCISTATUS); 1701 1702 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 1703 1704 do { 1705 unsigned int remain, len; 1706 char *buffer; 1707 1708 /* 1709 * For write, we only need to test the half-empty flag 1710 * here - if the FIFO is completely empty, then by 1711 * definition it is more than half empty. 1712 * 1713 * For read, check for data available. 1714 */ 1715 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 1716 break; 1717 1718 if (!sg_miter_next(sg_miter)) 1719 break; 1720 1721 buffer = sg_miter->addr; 1722 remain = sg_miter->length; 1723 1724 len = 0; 1725 if (status & MCI_RXACTIVE) 1726 len = mmci_pio_read(host, buffer, remain); 1727 if (status & MCI_TXACTIVE) 1728 len = mmci_pio_write(host, buffer, remain, status); 1729 1730 sg_miter->consumed = len; 1731 1732 host->size -= len; 1733 remain -= len; 1734 1735 if (remain) 1736 break; 1737 1738 status = readl(base + MMCISTATUS); 1739 } while (1); 1740 1741 sg_miter_stop(sg_miter); 1742 1743 /* 1744 * If we have less than the fifo 'half-full' threshold to transfer, 1745 * trigger a PIO interrupt as soon as any data is available. 1746 */ 1747 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 1748 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 1749 1750 /* 1751 * If we run out of data, disable the data IRQs; this 1752 * prevents a race where the FIFO becomes empty before 1753 * the chip itself has disabled the data path, and 1754 * stops us racing with our data end IRQ. 1755 */ 1756 if (host->size == 0) { 1757 mmci_set_mask1(host, 0); 1758 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 1759 } 1760 1761 return IRQ_HANDLED; 1762 } 1763 1764 /* 1765 * Handle completion of command and data transfers. 1766 */ 1767 static irqreturn_t mmci_irq(int irq, void *dev_id) 1768 { 1769 struct mmci_host *host = dev_id; 1770 u32 status; 1771 1772 spin_lock(&host->lock); 1773 host->irq_action = IRQ_HANDLED; 1774 1775 do { 1776 status = readl(host->base + MMCISTATUS); 1777 if (!status) 1778 break; 1779 1780 if (host->singleirq) { 1781 if (status & host->mask1_reg) 1782 mmci_pio_irq(irq, dev_id); 1783 1784 status &= ~host->variant->irq_pio_mask; 1785 } 1786 1787 /* 1788 * Busy detection is managed by mmci_cmd_irq(), including to 1789 * clear the corresponding IRQ. 1790 */ 1791 status &= readl(host->base + MMCIMASK0); 1792 if (host->variant->busy_detect) 1793 writel(status & ~host->variant->busy_detect_mask, 1794 host->base + MMCICLEAR); 1795 else 1796 writel(status, host->base + MMCICLEAR); 1797 1798 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 1799 1800 if (host->variant->reversed_irq_handling) { 1801 mmci_data_irq(host, host->data, status); 1802 mmci_cmd_irq(host, host->cmd, status); 1803 } else { 1804 mmci_cmd_irq(host, host->cmd, status); 1805 mmci_data_irq(host, host->data, status); 1806 } 1807 1808 /* 1809 * Busy detection has been handled by mmci_cmd_irq() above. 1810 * Clear the status bit to prevent polling in IRQ context. 1811 */ 1812 if (host->variant->busy_detect_flag) 1813 status &= ~host->variant->busy_detect_flag; 1814 1815 } while (status); 1816 1817 spin_unlock(&host->lock); 1818 1819 return host->irq_action; 1820 } 1821 1822 /* 1823 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW. 1824 * 1825 * A reset is needed for some variants, where a datatimeout for a R1B request 1826 * causes the DPSM to stay busy (non-functional). 1827 */ 1828 static irqreturn_t mmci_irq_thread(int irq, void *dev_id) 1829 { 1830 struct mmci_host *host = dev_id; 1831 unsigned long flags; 1832 1833 if (host->rst) { 1834 reset_control_assert(host->rst); 1835 udelay(2); 1836 reset_control_deassert(host->rst); 1837 } 1838 1839 spin_lock_irqsave(&host->lock, flags); 1840 writel(host->clk_reg, host->base + MMCICLOCK); 1841 writel(host->pwr_reg, host->base + MMCIPOWER); 1842 writel(MCI_IRQENABLE | host->variant->start_err, 1843 host->base + MMCIMASK0); 1844 1845 host->irq_action = IRQ_HANDLED; 1846 mmci_request_end(host, host->mrq); 1847 spin_unlock_irqrestore(&host->lock, flags); 1848 1849 return host->irq_action; 1850 } 1851 1852 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1853 { 1854 struct mmci_host *host = mmc_priv(mmc); 1855 unsigned long flags; 1856 1857 WARN_ON(host->mrq != NULL); 1858 1859 mrq->cmd->error = mmci_validate_data(host, mrq->data); 1860 if (mrq->cmd->error) { 1861 mmc_request_done(mmc, mrq); 1862 return; 1863 } 1864 1865 spin_lock_irqsave(&host->lock, flags); 1866 1867 host->mrq = mrq; 1868 1869 if (mrq->data) 1870 mmci_get_next_data(host, mrq->data); 1871 1872 if (mrq->data && 1873 (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ)) 1874 mmci_start_data(host, mrq->data); 1875 1876 if (mrq->sbc) 1877 mmci_start_command(host, mrq->sbc, 0); 1878 else 1879 mmci_start_command(host, mrq->cmd, 0); 1880 1881 spin_unlock_irqrestore(&host->lock, flags); 1882 } 1883 1884 static void mmci_set_max_busy_timeout(struct mmc_host *mmc) 1885 { 1886 struct mmci_host *host = mmc_priv(mmc); 1887 u32 max_busy_timeout = 0; 1888 1889 if (!host->variant->busy_detect) 1890 return; 1891 1892 if (host->variant->busy_timeout && mmc->actual_clock) 1893 max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock, 1894 MSEC_PER_SEC); 1895 1896 mmc->max_busy_timeout = max_busy_timeout; 1897 } 1898 1899 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1900 { 1901 struct mmci_host *host = mmc_priv(mmc); 1902 struct variant_data *variant = host->variant; 1903 u32 pwr = 0; 1904 unsigned long flags; 1905 int ret; 1906 1907 switch (ios->power_mode) { 1908 case MMC_POWER_OFF: 1909 if (!IS_ERR(mmc->supply.vmmc)) 1910 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1911 1912 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 1913 regulator_disable(mmc->supply.vqmmc); 1914 host->vqmmc_enabled = false; 1915 } 1916 1917 break; 1918 case MMC_POWER_UP: 1919 if (!IS_ERR(mmc->supply.vmmc)) 1920 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1921 1922 /* 1923 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP 1924 * and instead uses MCI_PWR_ON so apply whatever value is 1925 * configured in the variant data. 1926 */ 1927 pwr |= variant->pwrreg_powerup; 1928 1929 break; 1930 case MMC_POWER_ON: 1931 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 1932 ret = regulator_enable(mmc->supply.vqmmc); 1933 if (ret < 0) 1934 dev_err(mmc_dev(mmc), 1935 "failed to enable vqmmc regulator\n"); 1936 else 1937 host->vqmmc_enabled = true; 1938 } 1939 1940 pwr |= MCI_PWR_ON; 1941 break; 1942 } 1943 1944 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { 1945 /* 1946 * The ST Micro variant has some additional bits 1947 * indicating signal direction for the signals in 1948 * the SD/MMC bus and feedback-clock usage. 1949 */ 1950 pwr |= host->pwr_reg_add; 1951 1952 if (ios->bus_width == MMC_BUS_WIDTH_4) 1953 pwr &= ~MCI_ST_DATA74DIREN; 1954 else if (ios->bus_width == MMC_BUS_WIDTH_1) 1955 pwr &= (~MCI_ST_DATA74DIREN & 1956 ~MCI_ST_DATA31DIREN & 1957 ~MCI_ST_DATA2DIREN); 1958 } 1959 1960 if (variant->opendrain) { 1961 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 1962 pwr |= variant->opendrain; 1963 } else { 1964 /* 1965 * If the variant cannot configure the pads by its own, then we 1966 * expect the pinctrl to be able to do that for us 1967 */ 1968 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) 1969 pinctrl_select_state(host->pinctrl, host->pins_opendrain); 1970 else 1971 pinctrl_select_default_state(mmc_dev(mmc)); 1972 } 1973 1974 /* 1975 * If clock = 0 and the variant requires the MMCIPOWER to be used for 1976 * gating the clock, the MCI_PWR_ON bit is cleared. 1977 */ 1978 if (!ios->clock && variant->pwrreg_clkgate) 1979 pwr &= ~MCI_PWR_ON; 1980 1981 if (host->variant->explicit_mclk_control && 1982 ios->clock != host->clock_cache) { 1983 ret = clk_set_rate(host->clk, ios->clock); 1984 if (ret < 0) 1985 dev_err(mmc_dev(host->mmc), 1986 "Error setting clock rate (%d)\n", ret); 1987 else 1988 host->mclk = clk_get_rate(host->clk); 1989 } 1990 host->clock_cache = ios->clock; 1991 1992 spin_lock_irqsave(&host->lock, flags); 1993 1994 if (host->ops && host->ops->set_clkreg) 1995 host->ops->set_clkreg(host, ios->clock); 1996 else 1997 mmci_set_clkreg(host, ios->clock); 1998 1999 mmci_set_max_busy_timeout(mmc); 2000 2001 if (host->ops && host->ops->set_pwrreg) 2002 host->ops->set_pwrreg(host, pwr); 2003 else 2004 mmci_write_pwrreg(host, pwr); 2005 2006 mmci_reg_delay(host); 2007 2008 spin_unlock_irqrestore(&host->lock, flags); 2009 } 2010 2011 static int mmci_get_cd(struct mmc_host *mmc) 2012 { 2013 struct mmci_host *host = mmc_priv(mmc); 2014 struct mmci_platform_data *plat = host->plat; 2015 unsigned int status = mmc_gpio_get_cd(mmc); 2016 2017 if (status == -ENOSYS) { 2018 if (!plat->status) 2019 return 1; /* Assume always present */ 2020 2021 status = plat->status(mmc_dev(host->mmc)); 2022 } 2023 return status; 2024 } 2025 2026 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 2027 { 2028 struct mmci_host *host = mmc_priv(mmc); 2029 int ret; 2030 2031 ret = mmc_regulator_set_vqmmc(mmc, ios); 2032 2033 if (!ret && host->ops && host->ops->post_sig_volt_switch) 2034 ret = host->ops->post_sig_volt_switch(host, ios); 2035 else if (ret) 2036 ret = 0; 2037 2038 if (ret < 0) 2039 dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); 2040 2041 return ret; 2042 } 2043 2044 static struct mmc_host_ops mmci_ops = { 2045 .request = mmci_request, 2046 .pre_req = mmci_pre_request, 2047 .post_req = mmci_post_request, 2048 .set_ios = mmci_set_ios, 2049 .get_ro = mmc_gpio_get_ro, 2050 .get_cd = mmci_get_cd, 2051 .start_signal_voltage_switch = mmci_sig_volt_switch, 2052 }; 2053 2054 static void mmci_probe_level_translator(struct mmc_host *mmc) 2055 { 2056 struct device *dev = mmc_dev(mmc); 2057 struct mmci_host *host = mmc_priv(mmc); 2058 struct gpio_desc *cmd_gpio; 2059 struct gpio_desc *ck_gpio; 2060 struct gpio_desc *ckin_gpio; 2061 int clk_hi, clk_lo; 2062 2063 /* 2064 * Assume the level translator is present if st,use-ckin is set. 2065 * This is to cater for DTs which do not implement this test. 2066 */ 2067 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN; 2068 2069 cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH); 2070 if (IS_ERR(cmd_gpio)) 2071 goto exit_cmd; 2072 2073 ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH); 2074 if (IS_ERR(ck_gpio)) 2075 goto exit_ck; 2076 2077 ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN); 2078 if (IS_ERR(ckin_gpio)) 2079 goto exit_ckin; 2080 2081 /* All GPIOs are valid, test whether level translator works */ 2082 2083 /* Sample CKIN */ 2084 clk_hi = !!gpiod_get_value(ckin_gpio); 2085 2086 /* Set CK low */ 2087 gpiod_set_value(ck_gpio, 0); 2088 2089 /* Sample CKIN */ 2090 clk_lo = !!gpiod_get_value(ckin_gpio); 2091 2092 /* Tristate all */ 2093 gpiod_direction_input(cmd_gpio); 2094 gpiod_direction_input(ck_gpio); 2095 2096 /* Level translator is present if CK signal is propagated to CKIN */ 2097 if (!clk_hi || clk_lo) { 2098 host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN; 2099 dev_warn(dev, 2100 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n"); 2101 } 2102 2103 gpiod_put(ckin_gpio); 2104 2105 exit_ckin: 2106 gpiod_put(ck_gpio); 2107 exit_ck: 2108 gpiod_put(cmd_gpio); 2109 exit_cmd: 2110 pinctrl_select_default_state(dev); 2111 } 2112 2113 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) 2114 { 2115 struct mmci_host *host = mmc_priv(mmc); 2116 int ret = mmc_of_parse(mmc); 2117 2118 if (ret) 2119 return ret; 2120 2121 if (of_property_read_bool(np, "st,sig-dir-dat0")) 2122 host->pwr_reg_add |= MCI_ST_DATA0DIREN; 2123 if (of_property_read_bool(np, "st,sig-dir-dat2")) 2124 host->pwr_reg_add |= MCI_ST_DATA2DIREN; 2125 if (of_property_read_bool(np, "st,sig-dir-dat31")) 2126 host->pwr_reg_add |= MCI_ST_DATA31DIREN; 2127 if (of_property_read_bool(np, "st,sig-dir-dat74")) 2128 host->pwr_reg_add |= MCI_ST_DATA74DIREN; 2129 if (of_property_read_bool(np, "st,sig-dir-cmd")) 2130 host->pwr_reg_add |= MCI_ST_CMDDIREN; 2131 if (of_property_read_bool(np, "st,sig-pin-fbclk")) 2132 host->pwr_reg_add |= MCI_ST_FBCLKEN; 2133 if (of_property_read_bool(np, "st,sig-dir")) 2134 host->pwr_reg_add |= MCI_STM32_DIRPOL; 2135 if (of_property_read_bool(np, "st,neg-edge")) 2136 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE; 2137 if (of_property_read_bool(np, "st,use-ckin")) 2138 mmci_probe_level_translator(mmc); 2139 2140 if (of_property_read_bool(np, "mmc-cap-mmc-highspeed")) 2141 mmc->caps |= MMC_CAP_MMC_HIGHSPEED; 2142 if (of_property_read_bool(np, "mmc-cap-sd-highspeed")) 2143 mmc->caps |= MMC_CAP_SD_HIGHSPEED; 2144 2145 return 0; 2146 } 2147 2148 static int mmci_probe(struct amba_device *dev, 2149 const struct amba_id *id) 2150 { 2151 struct mmci_platform_data *plat = dev->dev.platform_data; 2152 struct device_node *np = dev->dev.of_node; 2153 struct variant_data *variant = id->data; 2154 struct mmci_host *host; 2155 struct mmc_host *mmc; 2156 int ret; 2157 2158 /* Must have platform data or Device Tree. */ 2159 if (!plat && !np) { 2160 dev_err(&dev->dev, "No plat data or DT found\n"); 2161 return -EINVAL; 2162 } 2163 2164 if (!plat) { 2165 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); 2166 if (!plat) 2167 return -ENOMEM; 2168 } 2169 2170 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 2171 if (!mmc) 2172 return -ENOMEM; 2173 2174 host = mmc_priv(mmc); 2175 host->mmc = mmc; 2176 host->mmc_ops = &mmci_ops; 2177 mmc->ops = &mmci_ops; 2178 2179 ret = mmci_of_parse(np, mmc); 2180 if (ret) 2181 goto host_free; 2182 2183 /* 2184 * Some variant (STM32) doesn't have opendrain bit, nevertheless 2185 * pins can be set accordingly using pinctrl 2186 */ 2187 if (!variant->opendrain) { 2188 host->pinctrl = devm_pinctrl_get(&dev->dev); 2189 if (IS_ERR(host->pinctrl)) { 2190 dev_err(&dev->dev, "failed to get pinctrl"); 2191 ret = PTR_ERR(host->pinctrl); 2192 goto host_free; 2193 } 2194 2195 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl, 2196 MMCI_PINCTRL_STATE_OPENDRAIN); 2197 if (IS_ERR(host->pins_opendrain)) { 2198 dev_err(mmc_dev(mmc), "Can't select opendrain pins\n"); 2199 ret = PTR_ERR(host->pins_opendrain); 2200 goto host_free; 2201 } 2202 } 2203 2204 host->hw_designer = amba_manf(dev); 2205 host->hw_revision = amba_rev(dev); 2206 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 2207 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 2208 2209 host->clk = devm_clk_get(&dev->dev, NULL); 2210 if (IS_ERR(host->clk)) { 2211 ret = PTR_ERR(host->clk); 2212 goto host_free; 2213 } 2214 2215 ret = clk_prepare_enable(host->clk); 2216 if (ret) 2217 goto host_free; 2218 2219 if (variant->qcom_fifo) 2220 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; 2221 else 2222 host->get_rx_fifocnt = mmci_get_rx_fifocnt; 2223 2224 host->plat = plat; 2225 host->variant = variant; 2226 host->mclk = clk_get_rate(host->clk); 2227 /* 2228 * According to the spec, mclk is max 100 MHz, 2229 * so we try to adjust the clock down to this, 2230 * (if possible). 2231 */ 2232 if (host->mclk > variant->f_max) { 2233 ret = clk_set_rate(host->clk, variant->f_max); 2234 if (ret < 0) 2235 goto clk_disable; 2236 host->mclk = clk_get_rate(host->clk); 2237 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 2238 host->mclk); 2239 } 2240 2241 host->phybase = dev->res.start; 2242 host->base = devm_ioremap_resource(&dev->dev, &dev->res); 2243 if (IS_ERR(host->base)) { 2244 ret = PTR_ERR(host->base); 2245 goto clk_disable; 2246 } 2247 2248 if (variant->init) 2249 variant->init(host); 2250 2251 /* 2252 * The ARM and ST versions of the block have slightly different 2253 * clock divider equations which means that the minimum divider 2254 * differs too. 2255 * on Qualcomm like controllers get the nearest minimum clock to 100Khz 2256 */ 2257 if (variant->st_clkdiv) 2258 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 2259 else if (variant->stm32_clkdiv) 2260 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046); 2261 else if (variant->explicit_mclk_control) 2262 mmc->f_min = clk_round_rate(host->clk, 100000); 2263 else 2264 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 2265 /* 2266 * If no maximum operating frequency is supplied, fall back to use 2267 * the module parameter, which has a (low) default value in case it 2268 * is not specified. Either value must not exceed the clock rate into 2269 * the block, of course. 2270 */ 2271 if (mmc->f_max) 2272 mmc->f_max = variant->explicit_mclk_control ? 2273 min(variant->f_max, mmc->f_max) : 2274 min(host->mclk, mmc->f_max); 2275 else 2276 mmc->f_max = variant->explicit_mclk_control ? 2277 fmax : min(host->mclk, fmax); 2278 2279 2280 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 2281 2282 host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL); 2283 if (IS_ERR(host->rst)) { 2284 ret = PTR_ERR(host->rst); 2285 goto clk_disable; 2286 } 2287 ret = reset_control_deassert(host->rst); 2288 if (ret) 2289 dev_err(mmc_dev(mmc), "failed to de-assert reset\n"); 2290 2291 /* Get regulators and the supported OCR mask */ 2292 ret = mmc_regulator_get_supply(mmc); 2293 if (ret) 2294 goto clk_disable; 2295 2296 if (!mmc->ocr_avail) 2297 mmc->ocr_avail = plat->ocr_mask; 2298 else if (plat->ocr_mask) 2299 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 2300 2301 /* We support these capabilities. */ 2302 mmc->caps |= MMC_CAP_CMD23; 2303 2304 /* 2305 * Enable busy detection. 2306 */ 2307 if (variant->busy_detect) { 2308 mmci_ops.card_busy = mmci_card_busy; 2309 /* 2310 * Not all variants have a flag to enable busy detection 2311 * in the DPSM, but if they do, set it here. 2312 */ 2313 if (variant->busy_dpsm_flag) 2314 mmci_write_datactrlreg(host, 2315 host->variant->busy_dpsm_flag); 2316 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; 2317 } 2318 2319 /* Variants with mandatory busy timeout in HW needs R1B responses. */ 2320 if (variant->busy_timeout) 2321 mmc->caps |= MMC_CAP_NEED_RSP_BUSY; 2322 2323 /* Prepare a CMD12 - needed to clear the DPSM on some variants. */ 2324 host->stop_abort.opcode = MMC_STOP_TRANSMISSION; 2325 host->stop_abort.arg = 0; 2326 host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC; 2327 2328 /* We support these PM capabilities. */ 2329 mmc->pm_caps |= MMC_PM_KEEP_POWER; 2330 2331 /* 2332 * We can do SGIO 2333 */ 2334 mmc->max_segs = NR_SG; 2335 2336 /* 2337 * Since only a certain number of bits are valid in the data length 2338 * register, we must ensure that we don't exceed 2^num-1 bytes in a 2339 * single request. 2340 */ 2341 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 2342 2343 /* 2344 * Set the maximum segment size. Since we aren't doing DMA 2345 * (yet) we are only limited by the data length register. 2346 */ 2347 mmc->max_seg_size = mmc->max_req_size; 2348 2349 /* 2350 * Block size can be up to 2048 bytes, but must be a power of two. 2351 */ 2352 mmc->max_blk_size = 1 << variant->datactrl_blocksz; 2353 2354 /* 2355 * Limit the number of blocks transferred so that we don't overflow 2356 * the maximum request size. 2357 */ 2358 mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz; 2359 2360 spin_lock_init(&host->lock); 2361 2362 writel(0, host->base + MMCIMASK0); 2363 2364 if (variant->mmcimask1) 2365 writel(0, host->base + MMCIMASK1); 2366 2367 writel(0xfff, host->base + MMCICLEAR); 2368 2369 /* 2370 * If: 2371 * - not using DT but using a descriptor table, or 2372 * - using a table of descriptors ALONGSIDE DT, or 2373 * look up these descriptors named "cd" and "wp" right here, fail 2374 * silently of these do not exist 2375 */ 2376 if (!np) { 2377 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0); 2378 if (ret == -EPROBE_DEFER) 2379 goto clk_disable; 2380 2381 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0); 2382 if (ret == -EPROBE_DEFER) 2383 goto clk_disable; 2384 } 2385 2386 ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq, 2387 mmci_irq_thread, IRQF_SHARED, 2388 DRIVER_NAME " (cmd)", host); 2389 if (ret) 2390 goto clk_disable; 2391 2392 if (!dev->irq[1]) 2393 host->singleirq = true; 2394 else { 2395 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, 2396 IRQF_SHARED, DRIVER_NAME " (pio)", host); 2397 if (ret) 2398 goto clk_disable; 2399 } 2400 2401 if (host->variant->busy_detect) 2402 INIT_DELAYED_WORK(&host->ux500_busy_timeout_work, 2403 ux500_busy_timeout_work); 2404 2405 writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0); 2406 2407 amba_set_drvdata(dev, mmc); 2408 2409 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 2410 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 2411 amba_rev(dev), (unsigned long long)dev->res.start, 2412 dev->irq[0], dev->irq[1]); 2413 2414 mmci_dma_setup(host); 2415 2416 pm_runtime_set_autosuspend_delay(&dev->dev, 50); 2417 pm_runtime_use_autosuspend(&dev->dev); 2418 2419 ret = mmc_add_host(mmc); 2420 if (ret) 2421 goto clk_disable; 2422 2423 pm_runtime_put(&dev->dev); 2424 return 0; 2425 2426 clk_disable: 2427 clk_disable_unprepare(host->clk); 2428 host_free: 2429 mmc_free_host(mmc); 2430 return ret; 2431 } 2432 2433 static void mmci_remove(struct amba_device *dev) 2434 { 2435 struct mmc_host *mmc = amba_get_drvdata(dev); 2436 2437 if (mmc) { 2438 struct mmci_host *host = mmc_priv(mmc); 2439 struct variant_data *variant = host->variant; 2440 2441 /* 2442 * Undo pm_runtime_put() in probe. We use the _sync 2443 * version here so that we can access the primecell. 2444 */ 2445 pm_runtime_get_sync(&dev->dev); 2446 2447 mmc_remove_host(mmc); 2448 2449 writel(0, host->base + MMCIMASK0); 2450 2451 if (variant->mmcimask1) 2452 writel(0, host->base + MMCIMASK1); 2453 2454 writel(0, host->base + MMCICOMMAND); 2455 writel(0, host->base + MMCIDATACTRL); 2456 2457 mmci_dma_release(host); 2458 clk_disable_unprepare(host->clk); 2459 mmc_free_host(mmc); 2460 } 2461 } 2462 2463 #ifdef CONFIG_PM 2464 static void mmci_save(struct mmci_host *host) 2465 { 2466 unsigned long flags; 2467 2468 spin_lock_irqsave(&host->lock, flags); 2469 2470 writel(0, host->base + MMCIMASK0); 2471 if (host->variant->pwrreg_nopower) { 2472 writel(0, host->base + MMCIDATACTRL); 2473 writel(0, host->base + MMCIPOWER); 2474 writel(0, host->base + MMCICLOCK); 2475 } 2476 mmci_reg_delay(host); 2477 2478 spin_unlock_irqrestore(&host->lock, flags); 2479 } 2480 2481 static void mmci_restore(struct mmci_host *host) 2482 { 2483 unsigned long flags; 2484 2485 spin_lock_irqsave(&host->lock, flags); 2486 2487 if (host->variant->pwrreg_nopower) { 2488 writel(host->clk_reg, host->base + MMCICLOCK); 2489 writel(host->datactrl_reg, host->base + MMCIDATACTRL); 2490 writel(host->pwr_reg, host->base + MMCIPOWER); 2491 } 2492 writel(MCI_IRQENABLE | host->variant->start_err, 2493 host->base + MMCIMASK0); 2494 mmci_reg_delay(host); 2495 2496 spin_unlock_irqrestore(&host->lock, flags); 2497 } 2498 2499 static int mmci_runtime_suspend(struct device *dev) 2500 { 2501 struct amba_device *adev = to_amba_device(dev); 2502 struct mmc_host *mmc = amba_get_drvdata(adev); 2503 2504 if (mmc) { 2505 struct mmci_host *host = mmc_priv(mmc); 2506 pinctrl_pm_select_sleep_state(dev); 2507 mmci_save(host); 2508 clk_disable_unprepare(host->clk); 2509 } 2510 2511 return 0; 2512 } 2513 2514 static int mmci_runtime_resume(struct device *dev) 2515 { 2516 struct amba_device *adev = to_amba_device(dev); 2517 struct mmc_host *mmc = amba_get_drvdata(adev); 2518 2519 if (mmc) { 2520 struct mmci_host *host = mmc_priv(mmc); 2521 clk_prepare_enable(host->clk); 2522 mmci_restore(host); 2523 pinctrl_select_default_state(dev); 2524 } 2525 2526 return 0; 2527 } 2528 #endif 2529 2530 static const struct dev_pm_ops mmci_dev_pm_ops = { 2531 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 2532 pm_runtime_force_resume) 2533 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) 2534 }; 2535 2536 static const struct amba_id mmci_ids[] = { 2537 { 2538 .id = 0x00041180, 2539 .mask = 0xff0fffff, 2540 .data = &variant_arm, 2541 }, 2542 { 2543 .id = 0x01041180, 2544 .mask = 0xff0fffff, 2545 .data = &variant_arm_extended_fifo, 2546 }, 2547 { 2548 .id = 0x02041180, 2549 .mask = 0xff0fffff, 2550 .data = &variant_arm_extended_fifo_hwfc, 2551 }, 2552 { 2553 .id = 0x00041181, 2554 .mask = 0x000fffff, 2555 .data = &variant_arm, 2556 }, 2557 /* ST Micro variants */ 2558 { 2559 .id = 0x00180180, 2560 .mask = 0x00ffffff, 2561 .data = &variant_u300, 2562 }, 2563 { 2564 .id = 0x10180180, 2565 .mask = 0xf0ffffff, 2566 .data = &variant_nomadik, 2567 }, 2568 { 2569 .id = 0x00280180, 2570 .mask = 0x00ffffff, 2571 .data = &variant_nomadik, 2572 }, 2573 { 2574 .id = 0x00480180, 2575 .mask = 0xf0ffffff, 2576 .data = &variant_ux500, 2577 }, 2578 { 2579 .id = 0x10480180, 2580 .mask = 0xf0ffffff, 2581 .data = &variant_ux500v2, 2582 }, 2583 { 2584 .id = 0x00880180, 2585 .mask = 0x00ffffff, 2586 .data = &variant_stm32, 2587 }, 2588 { 2589 .id = 0x10153180, 2590 .mask = 0xf0ffffff, 2591 .data = &variant_stm32_sdmmc, 2592 }, 2593 { 2594 .id = 0x00253180, 2595 .mask = 0xf0ffffff, 2596 .data = &variant_stm32_sdmmcv2, 2597 }, 2598 { 2599 .id = 0x20253180, 2600 .mask = 0xf0ffffff, 2601 .data = &variant_stm32_sdmmcv2, 2602 }, 2603 { 2604 .id = 0x00353180, 2605 .mask = 0xf0ffffff, 2606 .data = &variant_stm32_sdmmcv3, 2607 }, 2608 /* Qualcomm variants */ 2609 { 2610 .id = 0x00051180, 2611 .mask = 0x000fffff, 2612 .data = &variant_qcom, 2613 }, 2614 { 0, 0 }, 2615 }; 2616 2617 MODULE_DEVICE_TABLE(amba, mmci_ids); 2618 2619 static struct amba_driver mmci_driver = { 2620 .drv = { 2621 .name = DRIVER_NAME, 2622 .pm = &mmci_dev_pm_ops, 2623 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2624 }, 2625 .probe = mmci_probe, 2626 .remove = mmci_remove, 2627 .id_table = mmci_ids, 2628 }; 2629 2630 module_amba_driver(mmci_driver); 2631 2632 module_param(fmax, uint, 0444); 2633 2634 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 2635 MODULE_LICENSE("GPL"); 2636