xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 7c0136ef)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 #include <asm/sizes.h>
42 
43 #include "mmci.h"
44 
45 #define DRIVER_NAME "mmci-pl18x"
46 
47 static unsigned int fmax = 515633;
48 
49 /**
50  * struct variant_data - MMCI variant-specific quirks
51  * @clkreg: default value for MCICLOCK register
52  * @clkreg_enable: enable value for MMCICLOCK register
53  * @datalength_bits: number of bits in the MMCIDATALENGTH register
54  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55  *	      is asserted (likewise for RX)
56  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57  *		  is asserted (likewise for RX)
58  * @sdio: variant supports SDIO
59  * @st_clkdiv: true if using a ST-specific clock divider algorithm
60  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61  * @pwrreg_powerup: power up value for MMCIPOWER register
62  * @signal_direction: input/out direction of bus signals can be indicated
63  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64  */
65 struct variant_data {
66 	unsigned int		clkreg;
67 	unsigned int		clkreg_enable;
68 	unsigned int		datalength_bits;
69 	unsigned int		fifosize;
70 	unsigned int		fifohalfsize;
71 	bool			sdio;
72 	bool			st_clkdiv;
73 	bool			blksz_datactrl16;
74 	u32			pwrreg_powerup;
75 	bool			signal_direction;
76 	bool			pwrreg_clkgate;
77 };
78 
79 static struct variant_data variant_arm = {
80 	.fifosize		= 16 * 4,
81 	.fifohalfsize		= 8 * 4,
82 	.datalength_bits	= 16,
83 	.pwrreg_powerup		= MCI_PWR_UP,
84 };
85 
86 static struct variant_data variant_arm_extended_fifo = {
87 	.fifosize		= 128 * 4,
88 	.fifohalfsize		= 64 * 4,
89 	.datalength_bits	= 16,
90 	.pwrreg_powerup		= MCI_PWR_UP,
91 };
92 
93 static struct variant_data variant_arm_extended_fifo_hwfc = {
94 	.fifosize		= 128 * 4,
95 	.fifohalfsize		= 64 * 4,
96 	.clkreg_enable		= MCI_ARM_HWFCEN,
97 	.datalength_bits	= 16,
98 	.pwrreg_powerup		= MCI_PWR_UP,
99 };
100 
101 static struct variant_data variant_u300 = {
102 	.fifosize		= 16 * 4,
103 	.fifohalfsize		= 8 * 4,
104 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
105 	.datalength_bits	= 16,
106 	.sdio			= true,
107 	.pwrreg_powerup		= MCI_PWR_ON,
108 	.signal_direction	= true,
109 	.pwrreg_clkgate		= true,
110 };
111 
112 static struct variant_data variant_nomadik = {
113 	.fifosize		= 16 * 4,
114 	.fifohalfsize		= 8 * 4,
115 	.clkreg			= MCI_CLK_ENABLE,
116 	.datalength_bits	= 24,
117 	.sdio			= true,
118 	.st_clkdiv		= true,
119 	.pwrreg_powerup		= MCI_PWR_ON,
120 	.signal_direction	= true,
121 	.pwrreg_clkgate		= true,
122 };
123 
124 static struct variant_data variant_ux500 = {
125 	.fifosize		= 30 * 4,
126 	.fifohalfsize		= 8 * 4,
127 	.clkreg			= MCI_CLK_ENABLE,
128 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
129 	.datalength_bits	= 24,
130 	.sdio			= true,
131 	.st_clkdiv		= true,
132 	.pwrreg_powerup		= MCI_PWR_ON,
133 	.signal_direction	= true,
134 	.pwrreg_clkgate		= true,
135 };
136 
137 static struct variant_data variant_ux500v2 = {
138 	.fifosize		= 30 * 4,
139 	.fifohalfsize		= 8 * 4,
140 	.clkreg			= MCI_CLK_ENABLE,
141 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
142 	.datalength_bits	= 24,
143 	.sdio			= true,
144 	.st_clkdiv		= true,
145 	.blksz_datactrl16	= true,
146 	.pwrreg_powerup		= MCI_PWR_ON,
147 	.signal_direction	= true,
148 	.pwrreg_clkgate		= true,
149 };
150 
151 /*
152  * Validate mmc prerequisites
153  */
154 static int mmci_validate_data(struct mmci_host *host,
155 			      struct mmc_data *data)
156 {
157 	if (!data)
158 		return 0;
159 
160 	if (!is_power_of_2(data->blksz)) {
161 		dev_err(mmc_dev(host->mmc),
162 			"unsupported block size (%d bytes)\n", data->blksz);
163 		return -EINVAL;
164 	}
165 
166 	return 0;
167 }
168 
169 /*
170  * This must be called with host->lock held
171  */
172 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
173 {
174 	if (host->clk_reg != clk) {
175 		host->clk_reg = clk;
176 		writel(clk, host->base + MMCICLOCK);
177 	}
178 }
179 
180 /*
181  * This must be called with host->lock held
182  */
183 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
184 {
185 	if (host->pwr_reg != pwr) {
186 		host->pwr_reg = pwr;
187 		writel(pwr, host->base + MMCIPOWER);
188 	}
189 }
190 
191 /*
192  * This must be called with host->lock held
193  */
194 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
195 {
196 	struct variant_data *variant = host->variant;
197 	u32 clk = variant->clkreg;
198 
199 	/* Make sure cclk reflects the current calculated clock */
200 	host->cclk = 0;
201 
202 	if (desired) {
203 		if (desired >= host->mclk) {
204 			clk = MCI_CLK_BYPASS;
205 			if (variant->st_clkdiv)
206 				clk |= MCI_ST_UX500_NEG_EDGE;
207 			host->cclk = host->mclk;
208 		} else if (variant->st_clkdiv) {
209 			/*
210 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
211 			 * => clkdiv = (mclk / f) - 2
212 			 * Round the divider up so we don't exceed the max
213 			 * frequency
214 			 */
215 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
216 			if (clk >= 256)
217 				clk = 255;
218 			host->cclk = host->mclk / (clk + 2);
219 		} else {
220 			/*
221 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
222 			 * => clkdiv = mclk / (2 * f) - 1
223 			 */
224 			clk = host->mclk / (2 * desired) - 1;
225 			if (clk >= 256)
226 				clk = 255;
227 			host->cclk = host->mclk / (2 * (clk + 1));
228 		}
229 
230 		clk |= variant->clkreg_enable;
231 		clk |= MCI_CLK_ENABLE;
232 		/* This hasn't proven to be worthwhile */
233 		/* clk |= MCI_CLK_PWRSAVE; */
234 	}
235 
236 	/* Set actual clock for debug */
237 	host->mmc->actual_clock = host->cclk;
238 
239 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
240 		clk |= MCI_4BIT_BUS;
241 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
242 		clk |= MCI_ST_8BIT_BUS;
243 
244 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
245 		clk |= MCI_ST_UX500_NEG_EDGE;
246 
247 	mmci_write_clkreg(host, clk);
248 }
249 
250 static void
251 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
252 {
253 	writel(0, host->base + MMCICOMMAND);
254 
255 	BUG_ON(host->data);
256 
257 	host->mrq = NULL;
258 	host->cmd = NULL;
259 
260 	mmc_request_done(host->mmc, mrq);
261 
262 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
263 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
264 }
265 
266 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
267 {
268 	void __iomem *base = host->base;
269 
270 	if (host->singleirq) {
271 		unsigned int mask0 = readl(base + MMCIMASK0);
272 
273 		mask0 &= ~MCI_IRQ1MASK;
274 		mask0 |= mask;
275 
276 		writel(mask0, base + MMCIMASK0);
277 	}
278 
279 	writel(mask, base + MMCIMASK1);
280 }
281 
282 static void mmci_stop_data(struct mmci_host *host)
283 {
284 	writel(0, host->base + MMCIDATACTRL);
285 	mmci_set_mask1(host, 0);
286 	host->data = NULL;
287 }
288 
289 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
290 {
291 	unsigned int flags = SG_MITER_ATOMIC;
292 
293 	if (data->flags & MMC_DATA_READ)
294 		flags |= SG_MITER_TO_SG;
295 	else
296 		flags |= SG_MITER_FROM_SG;
297 
298 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
299 }
300 
301 /*
302  * All the DMA operation mode stuff goes inside this ifdef.
303  * This assumes that you have a generic DMA device interface,
304  * no custom DMA interfaces are supported.
305  */
306 #ifdef CONFIG_DMA_ENGINE
307 static void mmci_dma_setup(struct mmci_host *host)
308 {
309 	struct mmci_platform_data *plat = host->plat;
310 	const char *rxname, *txname;
311 	dma_cap_mask_t mask;
312 
313 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
314 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
315 
316 	/* initialize pre request cookie */
317 	host->next_data.cookie = 1;
318 
319 	/* Try to acquire a generic DMA engine slave channel */
320 	dma_cap_zero(mask);
321 	dma_cap_set(DMA_SLAVE, mask);
322 
323 	if (plat && plat->dma_filter) {
324 		if (!host->dma_rx_channel && plat->dma_rx_param) {
325 			host->dma_rx_channel = dma_request_channel(mask,
326 							   plat->dma_filter,
327 							   plat->dma_rx_param);
328 			/* E.g if no DMA hardware is present */
329 			if (!host->dma_rx_channel)
330 				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
331 		}
332 
333 		if (!host->dma_tx_channel && plat->dma_tx_param) {
334 			host->dma_tx_channel = dma_request_channel(mask,
335 							   plat->dma_filter,
336 							   plat->dma_tx_param);
337 			if (!host->dma_tx_channel)
338 				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
339 		}
340 	}
341 
342 	/*
343 	 * If only an RX channel is specified, the driver will
344 	 * attempt to use it bidirectionally, however if it is
345 	 * is specified but cannot be located, DMA will be disabled.
346 	 */
347 	if (host->dma_rx_channel && !host->dma_tx_channel)
348 		host->dma_tx_channel = host->dma_rx_channel;
349 
350 	if (host->dma_rx_channel)
351 		rxname = dma_chan_name(host->dma_rx_channel);
352 	else
353 		rxname = "none";
354 
355 	if (host->dma_tx_channel)
356 		txname = dma_chan_name(host->dma_tx_channel);
357 	else
358 		txname = "none";
359 
360 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
361 		 rxname, txname);
362 
363 	/*
364 	 * Limit the maximum segment size in any SG entry according to
365 	 * the parameters of the DMA engine device.
366 	 */
367 	if (host->dma_tx_channel) {
368 		struct device *dev = host->dma_tx_channel->device->dev;
369 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
370 
371 		if (max_seg_size < host->mmc->max_seg_size)
372 			host->mmc->max_seg_size = max_seg_size;
373 	}
374 	if (host->dma_rx_channel) {
375 		struct device *dev = host->dma_rx_channel->device->dev;
376 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
377 
378 		if (max_seg_size < host->mmc->max_seg_size)
379 			host->mmc->max_seg_size = max_seg_size;
380 	}
381 }
382 
383 /*
384  * This is used in or so inline it
385  * so it can be discarded.
386  */
387 static inline void mmci_dma_release(struct mmci_host *host)
388 {
389 	struct mmci_platform_data *plat = host->plat;
390 
391 	if (host->dma_rx_channel)
392 		dma_release_channel(host->dma_rx_channel);
393 	if (host->dma_tx_channel && plat->dma_tx_param)
394 		dma_release_channel(host->dma_tx_channel);
395 	host->dma_rx_channel = host->dma_tx_channel = NULL;
396 }
397 
398 static void mmci_dma_data_error(struct mmci_host *host)
399 {
400 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
401 	dmaengine_terminate_all(host->dma_current);
402 	host->dma_current = NULL;
403 	host->dma_desc_current = NULL;
404 	host->data->host_cookie = 0;
405 }
406 
407 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
408 {
409 	struct dma_chan *chan;
410 	enum dma_data_direction dir;
411 
412 	if (data->flags & MMC_DATA_READ) {
413 		dir = DMA_FROM_DEVICE;
414 		chan = host->dma_rx_channel;
415 	} else {
416 		dir = DMA_TO_DEVICE;
417 		chan = host->dma_tx_channel;
418 	}
419 
420 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
421 }
422 
423 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
424 {
425 	u32 status;
426 	int i;
427 
428 	/* Wait up to 1ms for the DMA to complete */
429 	for (i = 0; ; i++) {
430 		status = readl(host->base + MMCISTATUS);
431 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
432 			break;
433 		udelay(10);
434 	}
435 
436 	/*
437 	 * Check to see whether we still have some data left in the FIFO -
438 	 * this catches DMA controllers which are unable to monitor the
439 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
440 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
441 	 */
442 	if (status & MCI_RXDATAAVLBLMASK) {
443 		mmci_dma_data_error(host);
444 		if (!data->error)
445 			data->error = -EIO;
446 	}
447 
448 	if (!data->host_cookie)
449 		mmci_dma_unmap(host, data);
450 
451 	/*
452 	 * Use of DMA with scatter-gather is impossible.
453 	 * Give up with DMA and switch back to PIO mode.
454 	 */
455 	if (status & MCI_RXDATAAVLBLMASK) {
456 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
457 		mmci_dma_release(host);
458 	}
459 
460 	host->dma_current = NULL;
461 	host->dma_desc_current = NULL;
462 }
463 
464 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
465 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
466 				struct dma_chan **dma_chan,
467 				struct dma_async_tx_descriptor **dma_desc)
468 {
469 	struct variant_data *variant = host->variant;
470 	struct dma_slave_config conf = {
471 		.src_addr = host->phybase + MMCIFIFO,
472 		.dst_addr = host->phybase + MMCIFIFO,
473 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
474 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
475 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
476 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
477 		.device_fc = false,
478 	};
479 	struct dma_chan *chan;
480 	struct dma_device *device;
481 	struct dma_async_tx_descriptor *desc;
482 	enum dma_data_direction buffer_dirn;
483 	int nr_sg;
484 
485 	if (data->flags & MMC_DATA_READ) {
486 		conf.direction = DMA_DEV_TO_MEM;
487 		buffer_dirn = DMA_FROM_DEVICE;
488 		chan = host->dma_rx_channel;
489 	} else {
490 		conf.direction = DMA_MEM_TO_DEV;
491 		buffer_dirn = DMA_TO_DEVICE;
492 		chan = host->dma_tx_channel;
493 	}
494 
495 	/* If there's no DMA channel, fall back to PIO */
496 	if (!chan)
497 		return -EINVAL;
498 
499 	/* If less than or equal to the fifo size, don't bother with DMA */
500 	if (data->blksz * data->blocks <= variant->fifosize)
501 		return -EINVAL;
502 
503 	device = chan->device;
504 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
505 	if (nr_sg == 0)
506 		return -EINVAL;
507 
508 	dmaengine_slave_config(chan, &conf);
509 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
510 					    conf.direction, DMA_CTRL_ACK);
511 	if (!desc)
512 		goto unmap_exit;
513 
514 	*dma_chan = chan;
515 	*dma_desc = desc;
516 
517 	return 0;
518 
519  unmap_exit:
520 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
521 	return -ENOMEM;
522 }
523 
524 static inline int mmci_dma_prep_data(struct mmci_host *host,
525 				     struct mmc_data *data)
526 {
527 	/* Check if next job is already prepared. */
528 	if (host->dma_current && host->dma_desc_current)
529 		return 0;
530 
531 	/* No job were prepared thus do it now. */
532 	return __mmci_dma_prep_data(host, data, &host->dma_current,
533 				    &host->dma_desc_current);
534 }
535 
536 static inline int mmci_dma_prep_next(struct mmci_host *host,
537 				     struct mmc_data *data)
538 {
539 	struct mmci_host_next *nd = &host->next_data;
540 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
541 }
542 
543 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
544 {
545 	int ret;
546 	struct mmc_data *data = host->data;
547 
548 	ret = mmci_dma_prep_data(host, host->data);
549 	if (ret)
550 		return ret;
551 
552 	/* Okay, go for it. */
553 	dev_vdbg(mmc_dev(host->mmc),
554 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
555 		 data->sg_len, data->blksz, data->blocks, data->flags);
556 	dmaengine_submit(host->dma_desc_current);
557 	dma_async_issue_pending(host->dma_current);
558 
559 	datactrl |= MCI_DPSM_DMAENABLE;
560 
561 	/* Trigger the DMA transfer */
562 	writel(datactrl, host->base + MMCIDATACTRL);
563 
564 	/*
565 	 * Let the MMCI say when the data is ended and it's time
566 	 * to fire next DMA request. When that happens, MMCI will
567 	 * call mmci_data_end()
568 	 */
569 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
570 	       host->base + MMCIMASK0);
571 	return 0;
572 }
573 
574 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
575 {
576 	struct mmci_host_next *next = &host->next_data;
577 
578 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
579 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
580 
581 	host->dma_desc_current = next->dma_desc;
582 	host->dma_current = next->dma_chan;
583 	next->dma_desc = NULL;
584 	next->dma_chan = NULL;
585 }
586 
587 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
588 			     bool is_first_req)
589 {
590 	struct mmci_host *host = mmc_priv(mmc);
591 	struct mmc_data *data = mrq->data;
592 	struct mmci_host_next *nd = &host->next_data;
593 
594 	if (!data)
595 		return;
596 
597 	BUG_ON(data->host_cookie);
598 
599 	if (mmci_validate_data(host, data))
600 		return;
601 
602 	if (!mmci_dma_prep_next(host, data))
603 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
604 }
605 
606 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
607 			      int err)
608 {
609 	struct mmci_host *host = mmc_priv(mmc);
610 	struct mmc_data *data = mrq->data;
611 
612 	if (!data || !data->host_cookie)
613 		return;
614 
615 	mmci_dma_unmap(host, data);
616 
617 	if (err) {
618 		struct mmci_host_next *next = &host->next_data;
619 		struct dma_chan *chan;
620 		if (data->flags & MMC_DATA_READ)
621 			chan = host->dma_rx_channel;
622 		else
623 			chan = host->dma_tx_channel;
624 		dmaengine_terminate_all(chan);
625 
626 		next->dma_desc = NULL;
627 		next->dma_chan = NULL;
628 	}
629 }
630 
631 #else
632 /* Blank functions if the DMA engine is not available */
633 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
634 {
635 }
636 static inline void mmci_dma_setup(struct mmci_host *host)
637 {
638 }
639 
640 static inline void mmci_dma_release(struct mmci_host *host)
641 {
642 }
643 
644 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
645 {
646 }
647 
648 static inline void mmci_dma_finalize(struct mmci_host *host,
649 				     struct mmc_data *data)
650 {
651 }
652 
653 static inline void mmci_dma_data_error(struct mmci_host *host)
654 {
655 }
656 
657 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
658 {
659 	return -ENOSYS;
660 }
661 
662 #define mmci_pre_request NULL
663 #define mmci_post_request NULL
664 
665 #endif
666 
667 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
668 {
669 	struct variant_data *variant = host->variant;
670 	unsigned int datactrl, timeout, irqmask;
671 	unsigned long long clks;
672 	void __iomem *base;
673 	int blksz_bits;
674 
675 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
676 		data->blksz, data->blocks, data->flags);
677 
678 	host->data = data;
679 	host->size = data->blksz * data->blocks;
680 	data->bytes_xfered = 0;
681 
682 	clks = (unsigned long long)data->timeout_ns * host->cclk;
683 	do_div(clks, 1000000000UL);
684 
685 	timeout = data->timeout_clks + (unsigned int)clks;
686 
687 	base = host->base;
688 	writel(timeout, base + MMCIDATATIMER);
689 	writel(host->size, base + MMCIDATALENGTH);
690 
691 	blksz_bits = ffs(data->blksz) - 1;
692 	BUG_ON(1 << blksz_bits != data->blksz);
693 
694 	if (variant->blksz_datactrl16)
695 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
696 	else
697 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
698 
699 	if (data->flags & MMC_DATA_READ)
700 		datactrl |= MCI_DPSM_DIRECTION;
701 
702 	/* The ST Micro variants has a special bit to enable SDIO */
703 	if (variant->sdio && host->mmc->card)
704 		if (mmc_card_sdio(host->mmc->card)) {
705 			/*
706 			 * The ST Micro variants has a special bit
707 			 * to enable SDIO.
708 			 */
709 			u32 clk;
710 
711 			datactrl |= MCI_ST_DPSM_SDIOEN;
712 
713 			/*
714 			 * The ST Micro variant for SDIO small write transfers
715 			 * needs to have clock H/W flow control disabled,
716 			 * otherwise the transfer will not start. The threshold
717 			 * depends on the rate of MCLK.
718 			 */
719 			if (data->flags & MMC_DATA_WRITE &&
720 			    (host->size < 8 ||
721 			     (host->size <= 8 && host->mclk > 50000000)))
722 				clk = host->clk_reg & ~variant->clkreg_enable;
723 			else
724 				clk = host->clk_reg | variant->clkreg_enable;
725 
726 			mmci_write_clkreg(host, clk);
727 		}
728 
729 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
730 		datactrl |= MCI_ST_DPSM_DDRMODE;
731 
732 	/*
733 	 * Attempt to use DMA operation mode, if this
734 	 * should fail, fall back to PIO mode
735 	 */
736 	if (!mmci_dma_start_data(host, datactrl))
737 		return;
738 
739 	/* IRQ mode, map the SG list for CPU reading/writing */
740 	mmci_init_sg(host, data);
741 
742 	if (data->flags & MMC_DATA_READ) {
743 		irqmask = MCI_RXFIFOHALFFULLMASK;
744 
745 		/*
746 		 * If we have less than the fifo 'half-full' threshold to
747 		 * transfer, trigger a PIO interrupt as soon as any data
748 		 * is available.
749 		 */
750 		if (host->size < variant->fifohalfsize)
751 			irqmask |= MCI_RXDATAAVLBLMASK;
752 	} else {
753 		/*
754 		 * We don't actually need to include "FIFO empty" here
755 		 * since its implicit in "FIFO half empty".
756 		 */
757 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
758 	}
759 
760 	writel(datactrl, base + MMCIDATACTRL);
761 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
762 	mmci_set_mask1(host, irqmask);
763 }
764 
765 static void
766 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
767 {
768 	void __iomem *base = host->base;
769 
770 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
771 	    cmd->opcode, cmd->arg, cmd->flags);
772 
773 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
774 		writel(0, base + MMCICOMMAND);
775 		udelay(1);
776 	}
777 
778 	c |= cmd->opcode | MCI_CPSM_ENABLE;
779 	if (cmd->flags & MMC_RSP_PRESENT) {
780 		if (cmd->flags & MMC_RSP_136)
781 			c |= MCI_CPSM_LONGRSP;
782 		c |= MCI_CPSM_RESPONSE;
783 	}
784 	if (/*interrupt*/0)
785 		c |= MCI_CPSM_INTERRUPT;
786 
787 	host->cmd = cmd;
788 
789 	writel(cmd->arg, base + MMCIARGUMENT);
790 	writel(c, base + MMCICOMMAND);
791 }
792 
793 static void
794 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
795 	      unsigned int status)
796 {
797 	/* First check for errors */
798 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
799 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
800 		u32 remain, success;
801 
802 		/* Terminate the DMA transfer */
803 		if (dma_inprogress(host)) {
804 			mmci_dma_data_error(host);
805 			mmci_dma_unmap(host, data);
806 		}
807 
808 		/*
809 		 * Calculate how far we are into the transfer.  Note that
810 		 * the data counter gives the number of bytes transferred
811 		 * on the MMC bus, not on the host side.  On reads, this
812 		 * can be as much as a FIFO-worth of data ahead.  This
813 		 * matters for FIFO overruns only.
814 		 */
815 		remain = readl(host->base + MMCIDATACNT);
816 		success = data->blksz * data->blocks - remain;
817 
818 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
819 			status, success);
820 		if (status & MCI_DATACRCFAIL) {
821 			/* Last block was not successful */
822 			success -= 1;
823 			data->error = -EILSEQ;
824 		} else if (status & MCI_DATATIMEOUT) {
825 			data->error = -ETIMEDOUT;
826 		} else if (status & MCI_STARTBITERR) {
827 			data->error = -ECOMM;
828 		} else if (status & MCI_TXUNDERRUN) {
829 			data->error = -EIO;
830 		} else if (status & MCI_RXOVERRUN) {
831 			if (success > host->variant->fifosize)
832 				success -= host->variant->fifosize;
833 			else
834 				success = 0;
835 			data->error = -EIO;
836 		}
837 		data->bytes_xfered = round_down(success, data->blksz);
838 	}
839 
840 	if (status & MCI_DATABLOCKEND)
841 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
842 
843 	if (status & MCI_DATAEND || data->error) {
844 		if (dma_inprogress(host))
845 			mmci_dma_finalize(host, data);
846 		mmci_stop_data(host);
847 
848 		if (!data->error)
849 			/* The error clause is handled above, success! */
850 			data->bytes_xfered = data->blksz * data->blocks;
851 
852 		if (!data->stop || host->mrq->sbc) {
853 			mmci_request_end(host, data->mrq);
854 		} else {
855 			mmci_start_command(host, data->stop, 0);
856 		}
857 	}
858 }
859 
860 static void
861 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
862 	     unsigned int status)
863 {
864 	void __iomem *base = host->base;
865 	bool sbc = (cmd == host->mrq->sbc);
866 
867 	host->cmd = NULL;
868 
869 	if (status & MCI_CMDTIMEOUT) {
870 		cmd->error = -ETIMEDOUT;
871 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
872 		cmd->error = -EILSEQ;
873 	} else {
874 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
875 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
876 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
877 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
878 	}
879 
880 	if ((!sbc && !cmd->data) || cmd->error) {
881 		if (host->data) {
882 			/* Terminate the DMA transfer */
883 			if (dma_inprogress(host)) {
884 				mmci_dma_data_error(host);
885 				mmci_dma_unmap(host, host->data);
886 			}
887 			mmci_stop_data(host);
888 		}
889 		mmci_request_end(host, host->mrq);
890 	} else if (sbc) {
891 		mmci_start_command(host, host->mrq->cmd, 0);
892 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
893 		mmci_start_data(host, cmd->data);
894 	}
895 }
896 
897 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
898 {
899 	void __iomem *base = host->base;
900 	char *ptr = buffer;
901 	u32 status;
902 	int host_remain = host->size;
903 
904 	do {
905 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
906 
907 		if (count > remain)
908 			count = remain;
909 
910 		if (count <= 0)
911 			break;
912 
913 		/*
914 		 * SDIO especially may want to send something that is
915 		 * not divisible by 4 (as opposed to card sectors
916 		 * etc). Therefore make sure to always read the last bytes
917 		 * while only doing full 32-bit reads towards the FIFO.
918 		 */
919 		if (unlikely(count & 0x3)) {
920 			if (count < 4) {
921 				unsigned char buf[4];
922 				ioread32_rep(base + MMCIFIFO, buf, 1);
923 				memcpy(ptr, buf, count);
924 			} else {
925 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
926 				count &= ~0x3;
927 			}
928 		} else {
929 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
930 		}
931 
932 		ptr += count;
933 		remain -= count;
934 		host_remain -= count;
935 
936 		if (remain == 0)
937 			break;
938 
939 		status = readl(base + MMCISTATUS);
940 	} while (status & MCI_RXDATAAVLBL);
941 
942 	return ptr - buffer;
943 }
944 
945 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
946 {
947 	struct variant_data *variant = host->variant;
948 	void __iomem *base = host->base;
949 	char *ptr = buffer;
950 
951 	do {
952 		unsigned int count, maxcnt;
953 
954 		maxcnt = status & MCI_TXFIFOEMPTY ?
955 			 variant->fifosize : variant->fifohalfsize;
956 		count = min(remain, maxcnt);
957 
958 		/*
959 		 * SDIO especially may want to send something that is
960 		 * not divisible by 4 (as opposed to card sectors
961 		 * etc), and the FIFO only accept full 32-bit writes.
962 		 * So compensate by adding +3 on the count, a single
963 		 * byte become a 32bit write, 7 bytes will be two
964 		 * 32bit writes etc.
965 		 */
966 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
967 
968 		ptr += count;
969 		remain -= count;
970 
971 		if (remain == 0)
972 			break;
973 
974 		status = readl(base + MMCISTATUS);
975 	} while (status & MCI_TXFIFOHALFEMPTY);
976 
977 	return ptr - buffer;
978 }
979 
980 /*
981  * PIO data transfer IRQ handler.
982  */
983 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
984 {
985 	struct mmci_host *host = dev_id;
986 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
987 	struct variant_data *variant = host->variant;
988 	void __iomem *base = host->base;
989 	unsigned long flags;
990 	u32 status;
991 
992 	status = readl(base + MMCISTATUS);
993 
994 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
995 
996 	local_irq_save(flags);
997 
998 	do {
999 		unsigned int remain, len;
1000 		char *buffer;
1001 
1002 		/*
1003 		 * For write, we only need to test the half-empty flag
1004 		 * here - if the FIFO is completely empty, then by
1005 		 * definition it is more than half empty.
1006 		 *
1007 		 * For read, check for data available.
1008 		 */
1009 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1010 			break;
1011 
1012 		if (!sg_miter_next(sg_miter))
1013 			break;
1014 
1015 		buffer = sg_miter->addr;
1016 		remain = sg_miter->length;
1017 
1018 		len = 0;
1019 		if (status & MCI_RXACTIVE)
1020 			len = mmci_pio_read(host, buffer, remain);
1021 		if (status & MCI_TXACTIVE)
1022 			len = mmci_pio_write(host, buffer, remain, status);
1023 
1024 		sg_miter->consumed = len;
1025 
1026 		host->size -= len;
1027 		remain -= len;
1028 
1029 		if (remain)
1030 			break;
1031 
1032 		status = readl(base + MMCISTATUS);
1033 	} while (1);
1034 
1035 	sg_miter_stop(sg_miter);
1036 
1037 	local_irq_restore(flags);
1038 
1039 	/*
1040 	 * If we have less than the fifo 'half-full' threshold to transfer,
1041 	 * trigger a PIO interrupt as soon as any data is available.
1042 	 */
1043 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1044 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1045 
1046 	/*
1047 	 * If we run out of data, disable the data IRQs; this
1048 	 * prevents a race where the FIFO becomes empty before
1049 	 * the chip itself has disabled the data path, and
1050 	 * stops us racing with our data end IRQ.
1051 	 */
1052 	if (host->size == 0) {
1053 		mmci_set_mask1(host, 0);
1054 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1055 	}
1056 
1057 	return IRQ_HANDLED;
1058 }
1059 
1060 /*
1061  * Handle completion of command and data transfers.
1062  */
1063 static irqreturn_t mmci_irq(int irq, void *dev_id)
1064 {
1065 	struct mmci_host *host = dev_id;
1066 	u32 status;
1067 	int ret = 0;
1068 
1069 	spin_lock(&host->lock);
1070 
1071 	do {
1072 		struct mmc_command *cmd;
1073 		struct mmc_data *data;
1074 
1075 		status = readl(host->base + MMCISTATUS);
1076 
1077 		if (host->singleirq) {
1078 			if (status & readl(host->base + MMCIMASK1))
1079 				mmci_pio_irq(irq, dev_id);
1080 
1081 			status &= ~MCI_IRQ1MASK;
1082 		}
1083 
1084 		status &= readl(host->base + MMCIMASK0);
1085 		writel(status, host->base + MMCICLEAR);
1086 
1087 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1088 
1089 		data = host->data;
1090 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1091 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1092 			      MCI_DATABLOCKEND) && data)
1093 			mmci_data_irq(host, data, status);
1094 
1095 		cmd = host->cmd;
1096 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1097 			mmci_cmd_irq(host, cmd, status);
1098 
1099 		ret = 1;
1100 	} while (status);
1101 
1102 	spin_unlock(&host->lock);
1103 
1104 	return IRQ_RETVAL(ret);
1105 }
1106 
1107 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1108 {
1109 	struct mmci_host *host = mmc_priv(mmc);
1110 	unsigned long flags;
1111 
1112 	WARN_ON(host->mrq != NULL);
1113 
1114 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1115 	if (mrq->cmd->error) {
1116 		mmc_request_done(mmc, mrq);
1117 		return;
1118 	}
1119 
1120 	pm_runtime_get_sync(mmc_dev(mmc));
1121 
1122 	spin_lock_irqsave(&host->lock, flags);
1123 
1124 	host->mrq = mrq;
1125 
1126 	if (mrq->data)
1127 		mmci_get_next_data(host, mrq->data);
1128 
1129 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1130 		mmci_start_data(host, mrq->data);
1131 
1132 	if (mrq->sbc)
1133 		mmci_start_command(host, mrq->sbc, 0);
1134 	else
1135 		mmci_start_command(host, mrq->cmd, 0);
1136 
1137 	spin_unlock_irqrestore(&host->lock, flags);
1138 }
1139 
1140 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1141 {
1142 	struct mmci_host *host = mmc_priv(mmc);
1143 	struct variant_data *variant = host->variant;
1144 	u32 pwr = 0;
1145 	unsigned long flags;
1146 	int ret;
1147 
1148 	pm_runtime_get_sync(mmc_dev(mmc));
1149 
1150 	if (host->plat->ios_handler &&
1151 		host->plat->ios_handler(mmc_dev(mmc), ios))
1152 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1153 
1154 	switch (ios->power_mode) {
1155 	case MMC_POWER_OFF:
1156 		if (!IS_ERR(mmc->supply.vmmc))
1157 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1158 
1159 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1160 			regulator_disable(mmc->supply.vqmmc);
1161 			host->vqmmc_enabled = false;
1162 		}
1163 
1164 		break;
1165 	case MMC_POWER_UP:
1166 		if (!IS_ERR(mmc->supply.vmmc))
1167 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1168 
1169 		/*
1170 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1171 		 * and instead uses MCI_PWR_ON so apply whatever value is
1172 		 * configured in the variant data.
1173 		 */
1174 		pwr |= variant->pwrreg_powerup;
1175 
1176 		break;
1177 	case MMC_POWER_ON:
1178 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1179 			ret = regulator_enable(mmc->supply.vqmmc);
1180 			if (ret < 0)
1181 				dev_err(mmc_dev(mmc),
1182 					"failed to enable vqmmc regulator\n");
1183 			else
1184 				host->vqmmc_enabled = true;
1185 		}
1186 
1187 		pwr |= MCI_PWR_ON;
1188 		break;
1189 	}
1190 
1191 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1192 		/*
1193 		 * The ST Micro variant has some additional bits
1194 		 * indicating signal direction for the signals in
1195 		 * the SD/MMC bus and feedback-clock usage.
1196 		 */
1197 		pwr |= host->plat->sigdir;
1198 
1199 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1200 			pwr &= ~MCI_ST_DATA74DIREN;
1201 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1202 			pwr &= (~MCI_ST_DATA74DIREN &
1203 				~MCI_ST_DATA31DIREN &
1204 				~MCI_ST_DATA2DIREN);
1205 	}
1206 
1207 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1208 		if (host->hw_designer != AMBA_VENDOR_ST)
1209 			pwr |= MCI_ROD;
1210 		else {
1211 			/*
1212 			 * The ST Micro variant use the ROD bit for something
1213 			 * else and only has OD (Open Drain).
1214 			 */
1215 			pwr |= MCI_OD;
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1221 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1222 	 */
1223 	if (!ios->clock && variant->pwrreg_clkgate)
1224 		pwr &= ~MCI_PWR_ON;
1225 
1226 	spin_lock_irqsave(&host->lock, flags);
1227 
1228 	mmci_set_clkreg(host, ios->clock);
1229 	mmci_write_pwrreg(host, pwr);
1230 
1231 	spin_unlock_irqrestore(&host->lock, flags);
1232 
1233 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1234 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1235 }
1236 
1237 static int mmci_get_ro(struct mmc_host *mmc)
1238 {
1239 	struct mmci_host *host = mmc_priv(mmc);
1240 
1241 	if (host->gpio_wp == -ENOSYS)
1242 		return -ENOSYS;
1243 
1244 	return gpio_get_value_cansleep(host->gpio_wp);
1245 }
1246 
1247 static int mmci_get_cd(struct mmc_host *mmc)
1248 {
1249 	struct mmci_host *host = mmc_priv(mmc);
1250 	struct mmci_platform_data *plat = host->plat;
1251 	unsigned int status;
1252 
1253 	if (host->gpio_cd == -ENOSYS) {
1254 		if (!plat->status)
1255 			return 1; /* Assume always present */
1256 
1257 		status = plat->status(mmc_dev(host->mmc));
1258 	} else
1259 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1260 			^ plat->cd_invert;
1261 
1262 	/*
1263 	 * Use positive logic throughout - status is zero for no card,
1264 	 * non-zero for card inserted.
1265 	 */
1266 	return status;
1267 }
1268 
1269 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1270 {
1271 	struct mmci_host *host = dev_id;
1272 
1273 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1274 
1275 	return IRQ_HANDLED;
1276 }
1277 
1278 static const struct mmc_host_ops mmci_ops = {
1279 	.request	= mmci_request,
1280 	.pre_req	= mmci_pre_request,
1281 	.post_req	= mmci_post_request,
1282 	.set_ios	= mmci_set_ios,
1283 	.get_ro		= mmci_get_ro,
1284 	.get_cd		= mmci_get_cd,
1285 };
1286 
1287 #ifdef CONFIG_OF
1288 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1289 					struct mmci_platform_data *pdata)
1290 {
1291 	int bus_width = 0;
1292 
1293 	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1294 	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1295 
1296 	if (of_get_property(np, "cd-inverted", NULL))
1297 		pdata->cd_invert = true;
1298 	else
1299 		pdata->cd_invert = false;
1300 
1301 	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1302 	if (!pdata->f_max)
1303 		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1304 
1305 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1306 		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1307 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1308 		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1309 
1310 	of_property_read_u32(np, "bus-width", &bus_width);
1311 	switch (bus_width) {
1312 	case 0 :
1313 		/* No bus-width supplied. */
1314 		break;
1315 	case 4 :
1316 		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1317 		break;
1318 	case 8 :
1319 		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1320 		break;
1321 	default :
1322 		pr_warn("%s: Unsupported bus width\n", np->full_name);
1323 	}
1324 }
1325 #else
1326 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1327 					struct mmci_platform_data *pdata)
1328 {
1329 	return;
1330 }
1331 #endif
1332 
1333 static int mmci_probe(struct amba_device *dev,
1334 	const struct amba_id *id)
1335 {
1336 	struct mmci_platform_data *plat = dev->dev.platform_data;
1337 	struct device_node *np = dev->dev.of_node;
1338 	struct variant_data *variant = id->data;
1339 	struct mmci_host *host;
1340 	struct mmc_host *mmc;
1341 	int ret;
1342 
1343 	/* Must have platform data or Device Tree. */
1344 	if (!plat && !np) {
1345 		dev_err(&dev->dev, "No plat data or DT found\n");
1346 		return -EINVAL;
1347 	}
1348 
1349 	if (!plat) {
1350 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1351 		if (!plat)
1352 			return -ENOMEM;
1353 	}
1354 
1355 	if (np)
1356 		mmci_dt_populate_generic_pdata(np, plat);
1357 
1358 	ret = amba_request_regions(dev, DRIVER_NAME);
1359 	if (ret)
1360 		goto out;
1361 
1362 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1363 	if (!mmc) {
1364 		ret = -ENOMEM;
1365 		goto rel_regions;
1366 	}
1367 
1368 	host = mmc_priv(mmc);
1369 	host->mmc = mmc;
1370 
1371 	host->gpio_wp = -ENOSYS;
1372 	host->gpio_cd = -ENOSYS;
1373 	host->gpio_cd_irq = -1;
1374 
1375 	host->hw_designer = amba_manf(dev);
1376 	host->hw_revision = amba_rev(dev);
1377 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1378 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1379 
1380 	host->clk = devm_clk_get(&dev->dev, NULL);
1381 	if (IS_ERR(host->clk)) {
1382 		ret = PTR_ERR(host->clk);
1383 		goto host_free;
1384 	}
1385 
1386 	ret = clk_prepare_enable(host->clk);
1387 	if (ret)
1388 		goto host_free;
1389 
1390 	host->plat = plat;
1391 	host->variant = variant;
1392 	host->mclk = clk_get_rate(host->clk);
1393 	/*
1394 	 * According to the spec, mclk is max 100 MHz,
1395 	 * so we try to adjust the clock down to this,
1396 	 * (if possible).
1397 	 */
1398 	if (host->mclk > 100000000) {
1399 		ret = clk_set_rate(host->clk, 100000000);
1400 		if (ret < 0)
1401 			goto clk_disable;
1402 		host->mclk = clk_get_rate(host->clk);
1403 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1404 			host->mclk);
1405 	}
1406 	host->phybase = dev->res.start;
1407 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1408 	if (!host->base) {
1409 		ret = -ENOMEM;
1410 		goto clk_disable;
1411 	}
1412 
1413 	mmc->ops = &mmci_ops;
1414 	/*
1415 	 * The ARM and ST versions of the block have slightly different
1416 	 * clock divider equations which means that the minimum divider
1417 	 * differs too.
1418 	 */
1419 	if (variant->st_clkdiv)
1420 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1421 	else
1422 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1423 	/*
1424 	 * If the platform data supplies a maximum operating
1425 	 * frequency, this takes precedence. Else, we fall back
1426 	 * to using the module parameter, which has a (low)
1427 	 * default value in case it is not specified. Either
1428 	 * value must not exceed the clock rate into the block,
1429 	 * of course.
1430 	 */
1431 	if (plat->f_max)
1432 		mmc->f_max = min(host->mclk, plat->f_max);
1433 	else
1434 		mmc->f_max = min(host->mclk, fmax);
1435 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1436 
1437 	host->pinctrl = devm_pinctrl_get(&dev->dev);
1438 	if (IS_ERR(host->pinctrl)) {
1439 		ret = PTR_ERR(host->pinctrl);
1440 		goto clk_disable;
1441 	}
1442 
1443 	host->pins_default = pinctrl_lookup_state(host->pinctrl,
1444 			PINCTRL_STATE_DEFAULT);
1445 
1446 	/* enable pins to be muxed in and configured */
1447 	if (!IS_ERR(host->pins_default)) {
1448 		ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1449 		if (ret)
1450 			dev_warn(&dev->dev, "could not set default pins\n");
1451 	} else
1452 		dev_warn(&dev->dev, "could not get default pinstate\n");
1453 
1454 	/* Get regulators and the supported OCR mask */
1455 	mmc_regulator_get_supply(mmc);
1456 	if (!mmc->ocr_avail)
1457 		mmc->ocr_avail = plat->ocr_mask;
1458 	else if (plat->ocr_mask)
1459 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1460 
1461 	mmc->caps = plat->capabilities;
1462 	mmc->caps2 = plat->capabilities2;
1463 
1464 	/* We support these PM capabilities. */
1465 	mmc->pm_caps = MMC_PM_KEEP_POWER;
1466 
1467 	/*
1468 	 * We can do SGIO
1469 	 */
1470 	mmc->max_segs = NR_SG;
1471 
1472 	/*
1473 	 * Since only a certain number of bits are valid in the data length
1474 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1475 	 * single request.
1476 	 */
1477 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1478 
1479 	/*
1480 	 * Set the maximum segment size.  Since we aren't doing DMA
1481 	 * (yet) we are only limited by the data length register.
1482 	 */
1483 	mmc->max_seg_size = mmc->max_req_size;
1484 
1485 	/*
1486 	 * Block size can be up to 2048 bytes, but must be a power of two.
1487 	 */
1488 	mmc->max_blk_size = 1 << 11;
1489 
1490 	/*
1491 	 * Limit the number of blocks transferred so that we don't overflow
1492 	 * the maximum request size.
1493 	 */
1494 	mmc->max_blk_count = mmc->max_req_size >> 11;
1495 
1496 	spin_lock_init(&host->lock);
1497 
1498 	writel(0, host->base + MMCIMASK0);
1499 	writel(0, host->base + MMCIMASK1);
1500 	writel(0xfff, host->base + MMCICLEAR);
1501 
1502 	if (plat->gpio_cd == -EPROBE_DEFER) {
1503 		ret = -EPROBE_DEFER;
1504 		goto err_gpio_cd;
1505 	}
1506 	if (gpio_is_valid(plat->gpio_cd)) {
1507 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1508 		if (ret == 0)
1509 			ret = gpio_direction_input(plat->gpio_cd);
1510 		if (ret == 0)
1511 			host->gpio_cd = plat->gpio_cd;
1512 		else if (ret != -ENOSYS)
1513 			goto err_gpio_cd;
1514 
1515 		/*
1516 		 * A gpio pin that will detect cards when inserted and removed
1517 		 * will most likely want to trigger on the edges if it is
1518 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1519 		 * for the inverted case) so we request triggers on both
1520 		 * edges.
1521 		 */
1522 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1523 				mmci_cd_irq,
1524 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1525 				DRIVER_NAME " (cd)", host);
1526 		if (ret >= 0)
1527 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1528 	}
1529 	if (plat->gpio_wp == -EPROBE_DEFER) {
1530 		ret = -EPROBE_DEFER;
1531 		goto err_gpio_wp;
1532 	}
1533 	if (gpio_is_valid(plat->gpio_wp)) {
1534 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1535 		if (ret == 0)
1536 			ret = gpio_direction_input(plat->gpio_wp);
1537 		if (ret == 0)
1538 			host->gpio_wp = plat->gpio_wp;
1539 		else if (ret != -ENOSYS)
1540 			goto err_gpio_wp;
1541 	}
1542 
1543 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1544 	    && host->gpio_cd_irq < 0)
1545 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1546 
1547 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1548 	if (ret)
1549 		goto unmap;
1550 
1551 	if (!dev->irq[1])
1552 		host->singleirq = true;
1553 	else {
1554 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1555 				  DRIVER_NAME " (pio)", host);
1556 		if (ret)
1557 			goto irq0_free;
1558 	}
1559 
1560 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1561 
1562 	amba_set_drvdata(dev, mmc);
1563 
1564 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1565 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1566 		 amba_rev(dev), (unsigned long long)dev->res.start,
1567 		 dev->irq[0], dev->irq[1]);
1568 
1569 	mmci_dma_setup(host);
1570 
1571 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1572 	pm_runtime_use_autosuspend(&dev->dev);
1573 	pm_runtime_put(&dev->dev);
1574 
1575 	mmc_add_host(mmc);
1576 
1577 	return 0;
1578 
1579  irq0_free:
1580 	free_irq(dev->irq[0], host);
1581  unmap:
1582 	if (host->gpio_wp != -ENOSYS)
1583 		gpio_free(host->gpio_wp);
1584  err_gpio_wp:
1585 	if (host->gpio_cd_irq >= 0)
1586 		free_irq(host->gpio_cd_irq, host);
1587 	if (host->gpio_cd != -ENOSYS)
1588 		gpio_free(host->gpio_cd);
1589  err_gpio_cd:
1590 	iounmap(host->base);
1591  clk_disable:
1592 	clk_disable_unprepare(host->clk);
1593  host_free:
1594 	mmc_free_host(mmc);
1595  rel_regions:
1596 	amba_release_regions(dev);
1597  out:
1598 	return ret;
1599 }
1600 
1601 static int mmci_remove(struct amba_device *dev)
1602 {
1603 	struct mmc_host *mmc = amba_get_drvdata(dev);
1604 
1605 	amba_set_drvdata(dev, NULL);
1606 
1607 	if (mmc) {
1608 		struct mmci_host *host = mmc_priv(mmc);
1609 
1610 		/*
1611 		 * Undo pm_runtime_put() in probe.  We use the _sync
1612 		 * version here so that we can access the primecell.
1613 		 */
1614 		pm_runtime_get_sync(&dev->dev);
1615 
1616 		mmc_remove_host(mmc);
1617 
1618 		writel(0, host->base + MMCIMASK0);
1619 		writel(0, host->base + MMCIMASK1);
1620 
1621 		writel(0, host->base + MMCICOMMAND);
1622 		writel(0, host->base + MMCIDATACTRL);
1623 
1624 		mmci_dma_release(host);
1625 		free_irq(dev->irq[0], host);
1626 		if (!host->singleirq)
1627 			free_irq(dev->irq[1], host);
1628 
1629 		if (host->gpio_wp != -ENOSYS)
1630 			gpio_free(host->gpio_wp);
1631 		if (host->gpio_cd_irq >= 0)
1632 			free_irq(host->gpio_cd_irq, host);
1633 		if (host->gpio_cd != -ENOSYS)
1634 			gpio_free(host->gpio_cd);
1635 
1636 		iounmap(host->base);
1637 		clk_disable_unprepare(host->clk);
1638 
1639 		mmc_free_host(mmc);
1640 
1641 		amba_release_regions(dev);
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 #ifdef CONFIG_SUSPEND
1648 static int mmci_suspend(struct device *dev)
1649 {
1650 	struct amba_device *adev = to_amba_device(dev);
1651 	struct mmc_host *mmc = amba_get_drvdata(adev);
1652 	int ret = 0;
1653 
1654 	if (mmc) {
1655 		struct mmci_host *host = mmc_priv(mmc);
1656 
1657 		ret = mmc_suspend_host(mmc);
1658 		if (ret == 0) {
1659 			pm_runtime_get_sync(dev);
1660 			writel(0, host->base + MMCIMASK0);
1661 		}
1662 	}
1663 
1664 	return ret;
1665 }
1666 
1667 static int mmci_resume(struct device *dev)
1668 {
1669 	struct amba_device *adev = to_amba_device(dev);
1670 	struct mmc_host *mmc = amba_get_drvdata(adev);
1671 	int ret = 0;
1672 
1673 	if (mmc) {
1674 		struct mmci_host *host = mmc_priv(mmc);
1675 
1676 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1677 		pm_runtime_put(dev);
1678 
1679 		ret = mmc_resume_host(mmc);
1680 	}
1681 
1682 	return ret;
1683 }
1684 #endif
1685 
1686 #ifdef CONFIG_PM_RUNTIME
1687 static int mmci_runtime_suspend(struct device *dev)
1688 {
1689 	struct amba_device *adev = to_amba_device(dev);
1690 	struct mmc_host *mmc = amba_get_drvdata(adev);
1691 
1692 	if (mmc) {
1693 		struct mmci_host *host = mmc_priv(mmc);
1694 		clk_disable_unprepare(host->clk);
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 static int mmci_runtime_resume(struct device *dev)
1701 {
1702 	struct amba_device *adev = to_amba_device(dev);
1703 	struct mmc_host *mmc = amba_get_drvdata(adev);
1704 
1705 	if (mmc) {
1706 		struct mmci_host *host = mmc_priv(mmc);
1707 		clk_prepare_enable(host->clk);
1708 	}
1709 
1710 	return 0;
1711 }
1712 #endif
1713 
1714 static const struct dev_pm_ops mmci_dev_pm_ops = {
1715 	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1716 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1717 };
1718 
1719 static struct amba_id mmci_ids[] = {
1720 	{
1721 		.id	= 0x00041180,
1722 		.mask	= 0xff0fffff,
1723 		.data	= &variant_arm,
1724 	},
1725 	{
1726 		.id	= 0x01041180,
1727 		.mask	= 0xff0fffff,
1728 		.data	= &variant_arm_extended_fifo,
1729 	},
1730 	{
1731 		.id	= 0x02041180,
1732 		.mask	= 0xff0fffff,
1733 		.data	= &variant_arm_extended_fifo_hwfc,
1734 	},
1735 	{
1736 		.id	= 0x00041181,
1737 		.mask	= 0x000fffff,
1738 		.data	= &variant_arm,
1739 	},
1740 	/* ST Micro variants */
1741 	{
1742 		.id     = 0x00180180,
1743 		.mask   = 0x00ffffff,
1744 		.data	= &variant_u300,
1745 	},
1746 	{
1747 		.id     = 0x10180180,
1748 		.mask   = 0xf0ffffff,
1749 		.data	= &variant_nomadik,
1750 	},
1751 	{
1752 		.id     = 0x00280180,
1753 		.mask   = 0x00ffffff,
1754 		.data	= &variant_u300,
1755 	},
1756 	{
1757 		.id     = 0x00480180,
1758 		.mask   = 0xf0ffffff,
1759 		.data	= &variant_ux500,
1760 	},
1761 	{
1762 		.id     = 0x10480180,
1763 		.mask   = 0xf0ffffff,
1764 		.data	= &variant_ux500v2,
1765 	},
1766 	{ 0, 0 },
1767 };
1768 
1769 MODULE_DEVICE_TABLE(amba, mmci_ids);
1770 
1771 static struct amba_driver mmci_driver = {
1772 	.drv		= {
1773 		.name	= DRIVER_NAME,
1774 		.pm	= &mmci_dev_pm_ops,
1775 	},
1776 	.probe		= mmci_probe,
1777 	.remove		= mmci_remove,
1778 	.id_table	= mmci_ids,
1779 };
1780 
1781 module_amba_driver(mmci_driver);
1782 
1783 module_param(fmax, uint, 0444);
1784 
1785 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1786 MODULE_LICENSE("GPL");
1787