xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 7be5ac5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 #include <linux/gpio/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 
44 #include "mmci.h"
45 
46 #define DRIVER_NAME "mmci-pl18x"
47 
48 static void mmci_variant_init(struct mmci_host *host);
49 static void ux500_variant_init(struct mmci_host *host);
50 static void ux500v2_variant_init(struct mmci_host *host);
51 
52 static unsigned int fmax = 515633;
53 
54 static struct variant_data variant_arm = {
55 	.fifosize		= 16 * 4,
56 	.fifohalfsize		= 8 * 4,
57 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
58 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
59 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
60 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
61 	.datalength_bits	= 16,
62 	.datactrl_blocksz	= 11,
63 	.pwrreg_powerup		= MCI_PWR_UP,
64 	.f_max			= 100000000,
65 	.reversed_irq_handling	= true,
66 	.mmcimask1		= true,
67 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
68 	.start_err		= MCI_STARTBITERR,
69 	.opendrain		= MCI_ROD,
70 	.init			= mmci_variant_init,
71 };
72 
73 static struct variant_data variant_arm_extended_fifo = {
74 	.fifosize		= 128 * 4,
75 	.fifohalfsize		= 64 * 4,
76 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
77 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
78 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
79 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
80 	.datalength_bits	= 16,
81 	.datactrl_blocksz	= 11,
82 	.pwrreg_powerup		= MCI_PWR_UP,
83 	.f_max			= 100000000,
84 	.mmcimask1		= true,
85 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
86 	.start_err		= MCI_STARTBITERR,
87 	.opendrain		= MCI_ROD,
88 	.init			= mmci_variant_init,
89 };
90 
91 static struct variant_data variant_arm_extended_fifo_hwfc = {
92 	.fifosize		= 128 * 4,
93 	.fifohalfsize		= 64 * 4,
94 	.clkreg_enable		= MCI_ARM_HWFCEN,
95 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
96 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
97 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
98 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
99 	.datalength_bits	= 16,
100 	.datactrl_blocksz	= 11,
101 	.pwrreg_powerup		= MCI_PWR_UP,
102 	.f_max			= 100000000,
103 	.mmcimask1		= true,
104 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
105 	.start_err		= MCI_STARTBITERR,
106 	.opendrain		= MCI_ROD,
107 	.init			= mmci_variant_init,
108 };
109 
110 static struct variant_data variant_u300 = {
111 	.fifosize		= 16 * 4,
112 	.fifohalfsize		= 8 * 4,
113 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
114 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
115 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
116 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
117 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
118 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
119 	.datalength_bits	= 16,
120 	.datactrl_blocksz	= 11,
121 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
122 	.st_sdio			= true,
123 	.pwrreg_powerup		= MCI_PWR_ON,
124 	.f_max			= 100000000,
125 	.signal_direction	= true,
126 	.pwrreg_clkgate		= true,
127 	.pwrreg_nopower		= true,
128 	.mmcimask1		= true,
129 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
130 	.start_err		= MCI_STARTBITERR,
131 	.opendrain		= MCI_OD,
132 	.init			= mmci_variant_init,
133 };
134 
135 static struct variant_data variant_nomadik = {
136 	.fifosize		= 16 * 4,
137 	.fifohalfsize		= 8 * 4,
138 	.clkreg			= MCI_CLK_ENABLE,
139 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
141 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
142 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
143 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
144 	.datalength_bits	= 24,
145 	.datactrl_blocksz	= 11,
146 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
147 	.st_sdio		= true,
148 	.st_clkdiv		= true,
149 	.pwrreg_powerup		= MCI_PWR_ON,
150 	.f_max			= 100000000,
151 	.signal_direction	= true,
152 	.pwrreg_clkgate		= true,
153 	.pwrreg_nopower		= true,
154 	.mmcimask1		= true,
155 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
156 	.start_err		= MCI_STARTBITERR,
157 	.opendrain		= MCI_OD,
158 	.init			= mmci_variant_init,
159 };
160 
161 static struct variant_data variant_ux500 = {
162 	.fifosize		= 30 * 4,
163 	.fifohalfsize		= 8 * 4,
164 	.clkreg			= MCI_CLK_ENABLE,
165 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
166 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
167 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
168 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
169 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
170 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
171 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
172 	.datalength_bits	= 24,
173 	.datactrl_blocksz	= 11,
174 	.datactrl_any_blocksz	= true,
175 	.dma_power_of_2		= true,
176 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
177 	.st_sdio		= true,
178 	.st_clkdiv		= true,
179 	.pwrreg_powerup		= MCI_PWR_ON,
180 	.f_max			= 100000000,
181 	.signal_direction	= true,
182 	.pwrreg_clkgate		= true,
183 	.busy_detect		= true,
184 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
185 	.busy_detect_flag	= MCI_ST_CARDBUSY,
186 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
187 	.pwrreg_nopower		= true,
188 	.mmcimask1		= true,
189 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
190 	.start_err		= MCI_STARTBITERR,
191 	.opendrain		= MCI_OD,
192 	.init			= ux500_variant_init,
193 };
194 
195 static struct variant_data variant_ux500v2 = {
196 	.fifosize		= 30 * 4,
197 	.fifohalfsize		= 8 * 4,
198 	.clkreg			= MCI_CLK_ENABLE,
199 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
200 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
202 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
203 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
204 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
205 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
206 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
207 	.datalength_bits	= 24,
208 	.datactrl_blocksz	= 11,
209 	.datactrl_any_blocksz	= true,
210 	.dma_power_of_2		= true,
211 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
212 	.st_sdio		= true,
213 	.st_clkdiv		= true,
214 	.pwrreg_powerup		= MCI_PWR_ON,
215 	.f_max			= 100000000,
216 	.signal_direction	= true,
217 	.pwrreg_clkgate		= true,
218 	.busy_detect		= true,
219 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
220 	.busy_detect_flag	= MCI_ST_CARDBUSY,
221 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
222 	.pwrreg_nopower		= true,
223 	.mmcimask1		= true,
224 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
225 	.start_err		= MCI_STARTBITERR,
226 	.opendrain		= MCI_OD,
227 	.init			= ux500v2_variant_init,
228 };
229 
230 static struct variant_data variant_stm32 = {
231 	.fifosize		= 32 * 4,
232 	.fifohalfsize		= 8 * 4,
233 	.clkreg			= MCI_CLK_ENABLE,
234 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
235 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
236 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
237 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
238 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
239 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
240 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
241 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
242 	.datalength_bits	= 24,
243 	.datactrl_blocksz	= 11,
244 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
245 	.st_sdio		= true,
246 	.st_clkdiv		= true,
247 	.pwrreg_powerup		= MCI_PWR_ON,
248 	.f_max			= 48000000,
249 	.pwrreg_clkgate		= true,
250 	.pwrreg_nopower		= true,
251 	.init			= mmci_variant_init,
252 };
253 
254 static struct variant_data variant_stm32_sdmmc = {
255 	.fifosize		= 16 * 4,
256 	.fifohalfsize		= 8 * 4,
257 	.f_max			= 208000000,
258 	.stm32_clkdiv		= true,
259 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
260 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
261 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
262 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
263 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
264 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
265 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
266 	.datactrl_first		= true,
267 	.datacnt_useless	= true,
268 	.datalength_bits	= 25,
269 	.datactrl_blocksz	= 14,
270 	.datactrl_any_blocksz	= true,
271 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
272 	.stm32_idmabsize_mask	= GENMASK(12, 5),
273 	.busy_timeout		= true,
274 	.busy_detect		= true,
275 	.busy_detect_flag	= MCI_STM32_BUSYD0,
276 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
277 	.init			= sdmmc_variant_init,
278 };
279 
280 static struct variant_data variant_stm32_sdmmcv2 = {
281 	.fifosize		= 16 * 4,
282 	.fifohalfsize		= 8 * 4,
283 	.f_max			= 267000000,
284 	.stm32_clkdiv		= true,
285 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
286 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
287 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
288 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
289 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
290 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
291 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
292 	.datactrl_first		= true,
293 	.datacnt_useless	= true,
294 	.datalength_bits	= 25,
295 	.datactrl_blocksz	= 14,
296 	.datactrl_any_blocksz	= true,
297 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
298 	.stm32_idmabsize_mask	= GENMASK(16, 5),
299 	.dma_lli		= true,
300 	.busy_timeout		= true,
301 	.busy_detect		= true,
302 	.busy_detect_flag	= MCI_STM32_BUSYD0,
303 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
304 	.init			= sdmmc_variant_init,
305 };
306 
307 static struct variant_data variant_qcom = {
308 	.fifosize		= 16 * 4,
309 	.fifohalfsize		= 8 * 4,
310 	.clkreg			= MCI_CLK_ENABLE,
311 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
312 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
313 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
314 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
315 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
316 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
317 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
318 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
319 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
320 	.datalength_bits	= 24,
321 	.datactrl_blocksz	= 11,
322 	.datactrl_any_blocksz	= true,
323 	.pwrreg_powerup		= MCI_PWR_UP,
324 	.f_max			= 208000000,
325 	.explicit_mclk_control	= true,
326 	.qcom_fifo		= true,
327 	.qcom_dml		= true,
328 	.mmcimask1		= true,
329 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
330 	.start_err		= MCI_STARTBITERR,
331 	.opendrain		= MCI_ROD,
332 	.init			= qcom_variant_init,
333 };
334 
335 /* Busy detection for the ST Micro variant */
336 static int mmci_card_busy(struct mmc_host *mmc)
337 {
338 	struct mmci_host *host = mmc_priv(mmc);
339 	unsigned long flags;
340 	int busy = 0;
341 
342 	spin_lock_irqsave(&host->lock, flags);
343 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
344 		busy = 1;
345 	spin_unlock_irqrestore(&host->lock, flags);
346 
347 	return busy;
348 }
349 
350 static void mmci_reg_delay(struct mmci_host *host)
351 {
352 	/*
353 	 * According to the spec, at least three feedback clock cycles
354 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
355 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
356 	 * Worst delay time during card init is at 100 kHz => 30 us.
357 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
358 	 */
359 	if (host->cclk < 25000000)
360 		udelay(30);
361 	else
362 		ndelay(120);
363 }
364 
365 /*
366  * This must be called with host->lock held
367  */
368 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
369 {
370 	if (host->clk_reg != clk) {
371 		host->clk_reg = clk;
372 		writel(clk, host->base + MMCICLOCK);
373 	}
374 }
375 
376 /*
377  * This must be called with host->lock held
378  */
379 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
380 {
381 	if (host->pwr_reg != pwr) {
382 		host->pwr_reg = pwr;
383 		writel(pwr, host->base + MMCIPOWER);
384 	}
385 }
386 
387 /*
388  * This must be called with host->lock held
389  */
390 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
391 {
392 	/* Keep busy mode in DPSM if enabled */
393 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
394 
395 	if (host->datactrl_reg != datactrl) {
396 		host->datactrl_reg = datactrl;
397 		writel(datactrl, host->base + MMCIDATACTRL);
398 	}
399 }
400 
401 /*
402  * This must be called with host->lock held
403  */
404 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
405 {
406 	struct variant_data *variant = host->variant;
407 	u32 clk = variant->clkreg;
408 
409 	/* Make sure cclk reflects the current calculated clock */
410 	host->cclk = 0;
411 
412 	if (desired) {
413 		if (variant->explicit_mclk_control) {
414 			host->cclk = host->mclk;
415 		} else if (desired >= host->mclk) {
416 			clk = MCI_CLK_BYPASS;
417 			if (variant->st_clkdiv)
418 				clk |= MCI_ST_UX500_NEG_EDGE;
419 			host->cclk = host->mclk;
420 		} else if (variant->st_clkdiv) {
421 			/*
422 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
423 			 * => clkdiv = (mclk / f) - 2
424 			 * Round the divider up so we don't exceed the max
425 			 * frequency
426 			 */
427 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
428 			if (clk >= 256)
429 				clk = 255;
430 			host->cclk = host->mclk / (clk + 2);
431 		} else {
432 			/*
433 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
434 			 * => clkdiv = mclk / (2 * f) - 1
435 			 */
436 			clk = host->mclk / (2 * desired) - 1;
437 			if (clk >= 256)
438 				clk = 255;
439 			host->cclk = host->mclk / (2 * (clk + 1));
440 		}
441 
442 		clk |= variant->clkreg_enable;
443 		clk |= MCI_CLK_ENABLE;
444 		/* This hasn't proven to be worthwhile */
445 		/* clk |= MCI_CLK_PWRSAVE; */
446 	}
447 
448 	/* Set actual clock for debug */
449 	host->mmc->actual_clock = host->cclk;
450 
451 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
452 		clk |= MCI_4BIT_BUS;
453 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
454 		clk |= variant->clkreg_8bit_bus_enable;
455 
456 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
457 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
458 		clk |= variant->clkreg_neg_edge_enable;
459 
460 	mmci_write_clkreg(host, clk);
461 }
462 
463 static void mmci_dma_release(struct mmci_host *host)
464 {
465 	if (host->ops && host->ops->dma_release)
466 		host->ops->dma_release(host);
467 
468 	host->use_dma = false;
469 }
470 
471 static void mmci_dma_setup(struct mmci_host *host)
472 {
473 	if (!host->ops || !host->ops->dma_setup)
474 		return;
475 
476 	if (host->ops->dma_setup(host))
477 		return;
478 
479 	/* initialize pre request cookie */
480 	host->next_cookie = 1;
481 
482 	host->use_dma = true;
483 }
484 
485 /*
486  * Validate mmc prerequisites
487  */
488 static int mmci_validate_data(struct mmci_host *host,
489 			      struct mmc_data *data)
490 {
491 	struct variant_data *variant = host->variant;
492 
493 	if (!data)
494 		return 0;
495 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
496 		dev_err(mmc_dev(host->mmc),
497 			"unsupported block size (%d bytes)\n", data->blksz);
498 		return -EINVAL;
499 	}
500 
501 	if (host->ops && host->ops->validate_data)
502 		return host->ops->validate_data(host, data);
503 
504 	return 0;
505 }
506 
507 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
508 {
509 	int err;
510 
511 	if (!host->ops || !host->ops->prep_data)
512 		return 0;
513 
514 	err = host->ops->prep_data(host, data, next);
515 
516 	if (next && !err)
517 		data->host_cookie = ++host->next_cookie < 0 ?
518 			1 : host->next_cookie;
519 
520 	return err;
521 }
522 
523 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
524 		      int err)
525 {
526 	if (host->ops && host->ops->unprep_data)
527 		host->ops->unprep_data(host, data, err);
528 
529 	data->host_cookie = 0;
530 }
531 
532 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
533 {
534 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
535 
536 	if (host->ops && host->ops->get_next_data)
537 		host->ops->get_next_data(host, data);
538 }
539 
540 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
541 {
542 	struct mmc_data *data = host->data;
543 	int ret;
544 
545 	if (!host->use_dma)
546 		return -EINVAL;
547 
548 	ret = mmci_prep_data(host, data, false);
549 	if (ret)
550 		return ret;
551 
552 	if (!host->ops || !host->ops->dma_start)
553 		return -EINVAL;
554 
555 	/* Okay, go for it. */
556 	dev_vdbg(mmc_dev(host->mmc),
557 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
558 		 data->sg_len, data->blksz, data->blocks, data->flags);
559 
560 	ret = host->ops->dma_start(host, &datactrl);
561 	if (ret)
562 		return ret;
563 
564 	/* Trigger the DMA transfer */
565 	mmci_write_datactrlreg(host, datactrl);
566 
567 	/*
568 	 * Let the MMCI say when the data is ended and it's time
569 	 * to fire next DMA request. When that happens, MMCI will
570 	 * call mmci_data_end()
571 	 */
572 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
573 	       host->base + MMCIMASK0);
574 	return 0;
575 }
576 
577 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
578 {
579 	if (!host->use_dma)
580 		return;
581 
582 	if (host->ops && host->ops->dma_finalize)
583 		host->ops->dma_finalize(host, data);
584 }
585 
586 static void mmci_dma_error(struct mmci_host *host)
587 {
588 	if (!host->use_dma)
589 		return;
590 
591 	if (host->ops && host->ops->dma_error)
592 		host->ops->dma_error(host);
593 }
594 
595 static void
596 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
597 {
598 	writel(0, host->base + MMCICOMMAND);
599 
600 	BUG_ON(host->data);
601 
602 	host->mrq = NULL;
603 	host->cmd = NULL;
604 
605 	mmc_request_done(host->mmc, mrq);
606 }
607 
608 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
609 {
610 	void __iomem *base = host->base;
611 	struct variant_data *variant = host->variant;
612 
613 	if (host->singleirq) {
614 		unsigned int mask0 = readl(base + MMCIMASK0);
615 
616 		mask0 &= ~variant->irq_pio_mask;
617 		mask0 |= mask;
618 
619 		writel(mask0, base + MMCIMASK0);
620 	}
621 
622 	if (variant->mmcimask1)
623 		writel(mask, base + MMCIMASK1);
624 
625 	host->mask1_reg = mask;
626 }
627 
628 static void mmci_stop_data(struct mmci_host *host)
629 {
630 	mmci_write_datactrlreg(host, 0);
631 	mmci_set_mask1(host, 0);
632 	host->data = NULL;
633 }
634 
635 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
636 {
637 	unsigned int flags = SG_MITER_ATOMIC;
638 
639 	if (data->flags & MMC_DATA_READ)
640 		flags |= SG_MITER_TO_SG;
641 	else
642 		flags |= SG_MITER_FROM_SG;
643 
644 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
645 }
646 
647 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
648 {
649 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
650 }
651 
652 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
653 {
654 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
655 }
656 
657 /*
658  * ux500_busy_complete() - this will wait until the busy status
659  * goes off, saving any status that occur in the meantime into
660  * host->busy_status until we know the card is not busy any more.
661  * The function returns true when the busy detection is ended
662  * and we should continue processing the command.
663  *
664  * The Ux500 typically fires two IRQs over a busy cycle like this:
665  *
666  *  DAT0 busy          +-----------------+
667  *                     |                 |
668  *  DAT0 not busy  ----+                 +--------
669  *
670  *                     ^                 ^
671  *                     |                 |
672  *                    IRQ1              IRQ2
673  */
674 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
675 {
676 	void __iomem *base = host->base;
677 
678 	if (status & err_msk) {
679 		/* Stop any ongoing busy detection if an error occurs */
680 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
681 		writel(readl(base + MMCIMASK0) &
682 		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
683 		host->busy_state = MMCI_BUSY_DONE;
684 		host->busy_status = 0;
685 		return true;
686 	}
687 
688 	/*
689 	 * Before unmasking for the busy end IRQ, confirm that the
690 	 * command was sent successfully. To keep track of having a
691 	 * command in-progress, waiting for busy signaling to end,
692 	 * store the status in host->busy_status.
693 	 *
694 	 * Note that, the card may need a couple of clock cycles before
695 	 * it starts signaling busy on DAT0, hence re-read the
696 	 * MMCISTATUS register here, to allow the busy bit to be set.
697 	 * Potentially we may even need to poll the register for a
698 	 * while, to allow it to be set, but tests indicates that it
699 	 * isn't needed.
700 	 */
701 	if (host->busy_state == MMCI_BUSY_DONE) {
702 		status = readl(base + MMCISTATUS);
703 		if (status & host->variant->busy_detect_flag) {
704 			writel(readl(base + MMCIMASK0) |
705 			       host->variant->busy_detect_mask,
706 			       base + MMCIMASK0);
707 
708 			host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
709 			host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
710 			return false;
711 		}
712 	}
713 
714 	/*
715 	 * If there is a command in-progress that has been successfully
716 	 * sent, then bail out if busy status is set and wait for the
717 	 * busy end IRQ.
718 	 *
719 	 * Note that, the HW triggers an IRQ on both edges while
720 	 * monitoring DAT0 for busy completion, but there is only one
721 	 * status bit in MMCISTATUS for the busy state. Therefore
722 	 * both the start and the end interrupts needs to be cleared,
723 	 * one after the other. So, clear the busy start IRQ here.
724 	 */
725 	if (host->busy_state == MMCI_BUSY_WAITING_FOR_START_IRQ) {
726 		if (status & host->variant->busy_detect_flag) {
727 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
728 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
729 			host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
730 			return false;
731 		} else {
732 			dev_dbg(mmc_dev(host->mmc),
733 				"lost busy status when waiting for busy start IRQ\n");
734 			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
735 			writel(readl(base + MMCIMASK0) &
736 			       ~host->variant->busy_detect_mask, base + MMCIMASK0);
737 			host->busy_state = MMCI_BUSY_DONE;
738 			host->busy_status = 0;
739 			return true;
740 		}
741 	}
742 
743 	if (host->busy_state == MMCI_BUSY_WAITING_FOR_END_IRQ) {
744 		if (!(status & host->variant->busy_detect_flag)) {
745 			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
746 			host->busy_state = MMCI_BUSY_DONE;
747 			return true;
748 		} else {
749 			dev_dbg(mmc_dev(host->mmc),
750 				"busy status still asserted when handling busy end IRQ - will keep waiting\n");
751 			return false;
752 		}
753 	}
754 
755 	return true;
756 }
757 
758 /*
759  * All the DMA operation mode stuff goes inside this ifdef.
760  * This assumes that you have a generic DMA device interface,
761  * no custom DMA interfaces are supported.
762  */
763 #ifdef CONFIG_DMA_ENGINE
764 struct mmci_dmae_next {
765 	struct dma_async_tx_descriptor *desc;
766 	struct dma_chan	*chan;
767 };
768 
769 struct mmci_dmae_priv {
770 	struct dma_chan	*cur;
771 	struct dma_chan	*rx_channel;
772 	struct dma_chan	*tx_channel;
773 	struct dma_async_tx_descriptor	*desc_current;
774 	struct mmci_dmae_next next_data;
775 };
776 
777 int mmci_dmae_setup(struct mmci_host *host)
778 {
779 	const char *rxname, *txname;
780 	struct mmci_dmae_priv *dmae;
781 
782 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
783 	if (!dmae)
784 		return -ENOMEM;
785 
786 	host->dma_priv = dmae;
787 
788 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
789 	if (IS_ERR(dmae->rx_channel)) {
790 		int ret = PTR_ERR(dmae->rx_channel);
791 		dmae->rx_channel = NULL;
792 		return ret;
793 	}
794 
795 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
796 	if (IS_ERR(dmae->tx_channel)) {
797 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
798 			dev_warn(mmc_dev(host->mmc),
799 				 "Deferred probe for TX channel ignored\n");
800 		dmae->tx_channel = NULL;
801 	}
802 
803 	/*
804 	 * If only an RX channel is specified, the driver will
805 	 * attempt to use it bidirectionally, however if it
806 	 * is specified but cannot be located, DMA will be disabled.
807 	 */
808 	if (dmae->rx_channel && !dmae->tx_channel)
809 		dmae->tx_channel = dmae->rx_channel;
810 
811 	if (dmae->rx_channel)
812 		rxname = dma_chan_name(dmae->rx_channel);
813 	else
814 		rxname = "none";
815 
816 	if (dmae->tx_channel)
817 		txname = dma_chan_name(dmae->tx_channel);
818 	else
819 		txname = "none";
820 
821 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
822 		 rxname, txname);
823 
824 	/*
825 	 * Limit the maximum segment size in any SG entry according to
826 	 * the parameters of the DMA engine device.
827 	 */
828 	if (dmae->tx_channel) {
829 		struct device *dev = dmae->tx_channel->device->dev;
830 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
831 
832 		if (max_seg_size < host->mmc->max_seg_size)
833 			host->mmc->max_seg_size = max_seg_size;
834 	}
835 	if (dmae->rx_channel) {
836 		struct device *dev = dmae->rx_channel->device->dev;
837 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
838 
839 		if (max_seg_size < host->mmc->max_seg_size)
840 			host->mmc->max_seg_size = max_seg_size;
841 	}
842 
843 	if (!dmae->tx_channel || !dmae->rx_channel) {
844 		mmci_dmae_release(host);
845 		return -EINVAL;
846 	}
847 
848 	return 0;
849 }
850 
851 /*
852  * This is used in or so inline it
853  * so it can be discarded.
854  */
855 void mmci_dmae_release(struct mmci_host *host)
856 {
857 	struct mmci_dmae_priv *dmae = host->dma_priv;
858 
859 	if (dmae->rx_channel)
860 		dma_release_channel(dmae->rx_channel);
861 	if (dmae->tx_channel)
862 		dma_release_channel(dmae->tx_channel);
863 	dmae->rx_channel = dmae->tx_channel = NULL;
864 }
865 
866 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
867 {
868 	struct mmci_dmae_priv *dmae = host->dma_priv;
869 	struct dma_chan *chan;
870 
871 	if (data->flags & MMC_DATA_READ)
872 		chan = dmae->rx_channel;
873 	else
874 		chan = dmae->tx_channel;
875 
876 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
877 		     mmc_get_dma_dir(data));
878 }
879 
880 void mmci_dmae_error(struct mmci_host *host)
881 {
882 	struct mmci_dmae_priv *dmae = host->dma_priv;
883 
884 	if (!dma_inprogress(host))
885 		return;
886 
887 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
888 	dmaengine_terminate_all(dmae->cur);
889 	host->dma_in_progress = false;
890 	dmae->cur = NULL;
891 	dmae->desc_current = NULL;
892 	host->data->host_cookie = 0;
893 
894 	mmci_dma_unmap(host, host->data);
895 }
896 
897 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
898 {
899 	struct mmci_dmae_priv *dmae = host->dma_priv;
900 	u32 status;
901 	int i;
902 
903 	if (!dma_inprogress(host))
904 		return;
905 
906 	/* Wait up to 1ms for the DMA to complete */
907 	for (i = 0; ; i++) {
908 		status = readl(host->base + MMCISTATUS);
909 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
910 			break;
911 		udelay(10);
912 	}
913 
914 	/*
915 	 * Check to see whether we still have some data left in the FIFO -
916 	 * this catches DMA controllers which are unable to monitor the
917 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
918 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
919 	 */
920 	if (status & MCI_RXDATAAVLBLMASK) {
921 		mmci_dma_error(host);
922 		if (!data->error)
923 			data->error = -EIO;
924 	} else if (!data->host_cookie) {
925 		mmci_dma_unmap(host, data);
926 	}
927 
928 	/*
929 	 * Use of DMA with scatter-gather is impossible.
930 	 * Give up with DMA and switch back to PIO mode.
931 	 */
932 	if (status & MCI_RXDATAAVLBLMASK) {
933 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
934 		mmci_dma_release(host);
935 	}
936 
937 	host->dma_in_progress = false;
938 	dmae->cur = NULL;
939 	dmae->desc_current = NULL;
940 }
941 
942 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
943 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
944 				struct dma_chan **dma_chan,
945 				struct dma_async_tx_descriptor **dma_desc)
946 {
947 	struct mmci_dmae_priv *dmae = host->dma_priv;
948 	struct variant_data *variant = host->variant;
949 	struct dma_slave_config conf = {
950 		.src_addr = host->phybase + MMCIFIFO,
951 		.dst_addr = host->phybase + MMCIFIFO,
952 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
953 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
954 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
955 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
956 		.device_fc = false,
957 	};
958 	struct dma_chan *chan;
959 	struct dma_device *device;
960 	struct dma_async_tx_descriptor *desc;
961 	int nr_sg;
962 	unsigned long flags = DMA_CTRL_ACK;
963 
964 	if (data->flags & MMC_DATA_READ) {
965 		conf.direction = DMA_DEV_TO_MEM;
966 		chan = dmae->rx_channel;
967 	} else {
968 		conf.direction = DMA_MEM_TO_DEV;
969 		chan = dmae->tx_channel;
970 	}
971 
972 	/* If there's no DMA channel, fall back to PIO */
973 	if (!chan)
974 		return -EINVAL;
975 
976 	/* If less than or equal to the fifo size, don't bother with DMA */
977 	if (data->blksz * data->blocks <= variant->fifosize)
978 		return -EINVAL;
979 
980 	/*
981 	 * This is necessary to get SDIO working on the Ux500. We do not yet
982 	 * know if this is a bug in:
983 	 * - The Ux500 DMA controller (DMA40)
984 	 * - The MMCI DMA interface on the Ux500
985 	 * some power of two blocks (such as 64 bytes) are sent regularly
986 	 * during SDIO traffic and those work fine so for these we enable DMA
987 	 * transfers.
988 	 */
989 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
990 		return -EINVAL;
991 
992 	device = chan->device;
993 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
994 			   mmc_get_dma_dir(data));
995 	if (nr_sg == 0)
996 		return -EINVAL;
997 
998 	if (host->variant->qcom_dml)
999 		flags |= DMA_PREP_INTERRUPT;
1000 
1001 	dmaengine_slave_config(chan, &conf);
1002 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1003 					    conf.direction, flags);
1004 	if (!desc)
1005 		goto unmap_exit;
1006 
1007 	*dma_chan = chan;
1008 	*dma_desc = desc;
1009 
1010 	return 0;
1011 
1012  unmap_exit:
1013 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
1014 		     mmc_get_dma_dir(data));
1015 	return -ENOMEM;
1016 }
1017 
1018 int mmci_dmae_prep_data(struct mmci_host *host,
1019 			struct mmc_data *data,
1020 			bool next)
1021 {
1022 	struct mmci_dmae_priv *dmae = host->dma_priv;
1023 	struct mmci_dmae_next *nd = &dmae->next_data;
1024 
1025 	if (!host->use_dma)
1026 		return -EINVAL;
1027 
1028 	if (next)
1029 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1030 	/* Check if next job is already prepared. */
1031 	if (dmae->cur && dmae->desc_current)
1032 		return 0;
1033 
1034 	/* No job were prepared thus do it now. */
1035 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
1036 				    &dmae->desc_current);
1037 }
1038 
1039 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1040 {
1041 	struct mmci_dmae_priv *dmae = host->dma_priv;
1042 	int ret;
1043 
1044 	host->dma_in_progress = true;
1045 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1046 	if (ret < 0) {
1047 		host->dma_in_progress = false;
1048 		return ret;
1049 	}
1050 	dma_async_issue_pending(dmae->cur);
1051 
1052 	*datactrl |= MCI_DPSM_DMAENABLE;
1053 
1054 	return 0;
1055 }
1056 
1057 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1058 {
1059 	struct mmci_dmae_priv *dmae = host->dma_priv;
1060 	struct mmci_dmae_next *next = &dmae->next_data;
1061 
1062 	if (!host->use_dma)
1063 		return;
1064 
1065 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1066 
1067 	dmae->desc_current = next->desc;
1068 	dmae->cur = next->chan;
1069 	next->desc = NULL;
1070 	next->chan = NULL;
1071 }
1072 
1073 void mmci_dmae_unprep_data(struct mmci_host *host,
1074 			   struct mmc_data *data, int err)
1075 
1076 {
1077 	struct mmci_dmae_priv *dmae = host->dma_priv;
1078 
1079 	if (!host->use_dma)
1080 		return;
1081 
1082 	mmci_dma_unmap(host, data);
1083 
1084 	if (err) {
1085 		struct mmci_dmae_next *next = &dmae->next_data;
1086 		struct dma_chan *chan;
1087 		if (data->flags & MMC_DATA_READ)
1088 			chan = dmae->rx_channel;
1089 		else
1090 			chan = dmae->tx_channel;
1091 		dmaengine_terminate_all(chan);
1092 
1093 		if (dmae->desc_current == next->desc)
1094 			dmae->desc_current = NULL;
1095 
1096 		if (dmae->cur == next->chan) {
1097 			host->dma_in_progress = false;
1098 			dmae->cur = NULL;
1099 		}
1100 
1101 		next->desc = NULL;
1102 		next->chan = NULL;
1103 	}
1104 }
1105 
1106 static struct mmci_host_ops mmci_variant_ops = {
1107 	.prep_data = mmci_dmae_prep_data,
1108 	.unprep_data = mmci_dmae_unprep_data,
1109 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1110 	.get_next_data = mmci_dmae_get_next_data,
1111 	.dma_setup = mmci_dmae_setup,
1112 	.dma_release = mmci_dmae_release,
1113 	.dma_start = mmci_dmae_start,
1114 	.dma_finalize = mmci_dmae_finalize,
1115 	.dma_error = mmci_dmae_error,
1116 };
1117 #else
1118 static struct mmci_host_ops mmci_variant_ops = {
1119 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1120 };
1121 #endif
1122 
1123 static void mmci_variant_init(struct mmci_host *host)
1124 {
1125 	host->ops = &mmci_variant_ops;
1126 }
1127 
1128 static void ux500_variant_init(struct mmci_host *host)
1129 {
1130 	host->ops = &mmci_variant_ops;
1131 	host->ops->busy_complete = ux500_busy_complete;
1132 }
1133 
1134 static void ux500v2_variant_init(struct mmci_host *host)
1135 {
1136 	host->ops = &mmci_variant_ops;
1137 	host->ops->busy_complete = ux500_busy_complete;
1138 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1139 }
1140 
1141 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1142 {
1143 	struct mmci_host *host = mmc_priv(mmc);
1144 	struct mmc_data *data = mrq->data;
1145 
1146 	if (!data)
1147 		return;
1148 
1149 	WARN_ON(data->host_cookie);
1150 
1151 	if (mmci_validate_data(host, data))
1152 		return;
1153 
1154 	mmci_prep_data(host, data, true);
1155 }
1156 
1157 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1158 			      int err)
1159 {
1160 	struct mmci_host *host = mmc_priv(mmc);
1161 	struct mmc_data *data = mrq->data;
1162 
1163 	if (!data || !data->host_cookie)
1164 		return;
1165 
1166 	mmci_unprep_data(host, data, err);
1167 }
1168 
1169 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1170 {
1171 	struct variant_data *variant = host->variant;
1172 	unsigned int datactrl, timeout, irqmask;
1173 	unsigned long long clks;
1174 	void __iomem *base;
1175 
1176 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1177 		data->blksz, data->blocks, data->flags);
1178 
1179 	host->data = data;
1180 	host->size = data->blksz * data->blocks;
1181 	data->bytes_xfered = 0;
1182 
1183 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1184 	do_div(clks, NSEC_PER_SEC);
1185 
1186 	timeout = data->timeout_clks + (unsigned int)clks;
1187 
1188 	base = host->base;
1189 	writel(timeout, base + MMCIDATATIMER);
1190 	writel(host->size, base + MMCIDATALENGTH);
1191 
1192 	datactrl = host->ops->get_datactrl_cfg(host);
1193 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1194 
1195 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1196 		u32 clk;
1197 
1198 		datactrl |= variant->datactrl_mask_sdio;
1199 
1200 		/*
1201 		 * The ST Micro variant for SDIO small write transfers
1202 		 * needs to have clock H/W flow control disabled,
1203 		 * otherwise the transfer will not start. The threshold
1204 		 * depends on the rate of MCLK.
1205 		 */
1206 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1207 		    (host->size < 8 ||
1208 		     (host->size <= 8 && host->mclk > 50000000)))
1209 			clk = host->clk_reg & ~variant->clkreg_enable;
1210 		else
1211 			clk = host->clk_reg | variant->clkreg_enable;
1212 
1213 		mmci_write_clkreg(host, clk);
1214 	}
1215 
1216 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1217 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1218 		datactrl |= variant->datactrl_mask_ddrmode;
1219 
1220 	/*
1221 	 * Attempt to use DMA operation mode, if this
1222 	 * should fail, fall back to PIO mode
1223 	 */
1224 	if (!mmci_dma_start(host, datactrl))
1225 		return;
1226 
1227 	/* IRQ mode, map the SG list for CPU reading/writing */
1228 	mmci_init_sg(host, data);
1229 
1230 	if (data->flags & MMC_DATA_READ) {
1231 		irqmask = MCI_RXFIFOHALFFULLMASK;
1232 
1233 		/*
1234 		 * If we have less than the fifo 'half-full' threshold to
1235 		 * transfer, trigger a PIO interrupt as soon as any data
1236 		 * is available.
1237 		 */
1238 		if (host->size < variant->fifohalfsize)
1239 			irqmask |= MCI_RXDATAAVLBLMASK;
1240 	} else {
1241 		/*
1242 		 * We don't actually need to include "FIFO empty" here
1243 		 * since its implicit in "FIFO half empty".
1244 		 */
1245 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1246 	}
1247 
1248 	mmci_write_datactrlreg(host, datactrl);
1249 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1250 	mmci_set_mask1(host, irqmask);
1251 }
1252 
1253 static void
1254 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1255 {
1256 	void __iomem *base = host->base;
1257 	unsigned long long clks;
1258 
1259 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1260 	    cmd->opcode, cmd->arg, cmd->flags);
1261 
1262 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1263 		writel(0, base + MMCICOMMAND);
1264 		mmci_reg_delay(host);
1265 	}
1266 
1267 	if (host->variant->cmdreg_stop &&
1268 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1269 		c |= host->variant->cmdreg_stop;
1270 
1271 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1272 	if (cmd->flags & MMC_RSP_PRESENT) {
1273 		if (cmd->flags & MMC_RSP_136)
1274 			c |= host->variant->cmdreg_lrsp_crc;
1275 		else if (cmd->flags & MMC_RSP_CRC)
1276 			c |= host->variant->cmdreg_srsp_crc;
1277 		else
1278 			c |= host->variant->cmdreg_srsp;
1279 	}
1280 
1281 	host->busy_status = 0;
1282 	host->busy_state = MMCI_BUSY_DONE;
1283 
1284 	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1285 		if (!cmd->busy_timeout)
1286 			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1287 
1288 		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1289 			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1290 		else
1291 			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1292 
1293 		do_div(clks, MSEC_PER_SEC);
1294 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1295 	}
1296 
1297 	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1298 		host->ops->pre_sig_volt_switch(host);
1299 
1300 	if (/*interrupt*/0)
1301 		c |= MCI_CPSM_INTERRUPT;
1302 
1303 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1304 		c |= host->variant->data_cmd_enable;
1305 
1306 	host->cmd = cmd;
1307 
1308 	writel(cmd->arg, base + MMCIARGUMENT);
1309 	writel(c, base + MMCICOMMAND);
1310 }
1311 
1312 static void mmci_stop_command(struct mmci_host *host)
1313 {
1314 	host->stop_abort.error = 0;
1315 	mmci_start_command(host, &host->stop_abort, 0);
1316 }
1317 
1318 static void
1319 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1320 	      unsigned int status)
1321 {
1322 	unsigned int status_err;
1323 
1324 	/* Make sure we have data to handle */
1325 	if (!data)
1326 		return;
1327 
1328 	/* First check for errors */
1329 	status_err = status & (host->variant->start_err |
1330 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1331 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1332 
1333 	if (status_err) {
1334 		u32 remain, success;
1335 
1336 		/* Terminate the DMA transfer */
1337 		mmci_dma_error(host);
1338 
1339 		/*
1340 		 * Calculate how far we are into the transfer.  Note that
1341 		 * the data counter gives the number of bytes transferred
1342 		 * on the MMC bus, not on the host side.  On reads, this
1343 		 * can be as much as a FIFO-worth of data ahead.  This
1344 		 * matters for FIFO overruns only.
1345 		 */
1346 		if (!host->variant->datacnt_useless) {
1347 			remain = readl(host->base + MMCIDATACNT);
1348 			success = data->blksz * data->blocks - remain;
1349 		} else {
1350 			success = 0;
1351 		}
1352 
1353 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1354 			status_err, success);
1355 		if (status_err & MCI_DATACRCFAIL) {
1356 			/* Last block was not successful */
1357 			success -= 1;
1358 			data->error = -EILSEQ;
1359 		} else if (status_err & MCI_DATATIMEOUT) {
1360 			data->error = -ETIMEDOUT;
1361 		} else if (status_err & MCI_STARTBITERR) {
1362 			data->error = -ECOMM;
1363 		} else if (status_err & MCI_TXUNDERRUN) {
1364 			data->error = -EIO;
1365 		} else if (status_err & MCI_RXOVERRUN) {
1366 			if (success > host->variant->fifosize)
1367 				success -= host->variant->fifosize;
1368 			else
1369 				success = 0;
1370 			data->error = -EIO;
1371 		}
1372 		data->bytes_xfered = round_down(success, data->blksz);
1373 	}
1374 
1375 	if (status & MCI_DATABLOCKEND)
1376 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1377 
1378 	if (status & MCI_DATAEND || data->error) {
1379 		mmci_dma_finalize(host, data);
1380 
1381 		mmci_stop_data(host);
1382 
1383 		if (!data->error)
1384 			/* The error clause is handled above, success! */
1385 			data->bytes_xfered = data->blksz * data->blocks;
1386 
1387 		if (!data->stop) {
1388 			if (host->variant->cmdreg_stop && data->error)
1389 				mmci_stop_command(host);
1390 			else
1391 				mmci_request_end(host, data->mrq);
1392 		} else if (host->mrq->sbc && !data->error) {
1393 			mmci_request_end(host, data->mrq);
1394 		} else {
1395 			mmci_start_command(host, data->stop, 0);
1396 		}
1397 	}
1398 }
1399 
1400 static void
1401 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1402 	     unsigned int status)
1403 {
1404 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1405 	void __iomem *base = host->base;
1406 	bool sbc, busy_resp;
1407 
1408 	if (!cmd)
1409 		return;
1410 
1411 	sbc = (cmd == host->mrq->sbc);
1412 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1413 
1414 	/*
1415 	 * We need to be one of these interrupts to be considered worth
1416 	 * handling. Note that we tag on any latent IRQs postponed
1417 	 * due to waiting for busy status.
1418 	 */
1419 	if (host->variant->busy_timeout && busy_resp)
1420 		err_msk |= MCI_DATATIMEOUT;
1421 
1422 	if (!((status | host->busy_status) &
1423 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1424 		return;
1425 
1426 	/* Handle busy detection on DAT0 if the variant supports it. */
1427 	if (busy_resp && host->variant->busy_detect)
1428 		if (!host->ops->busy_complete(host, status, err_msk))
1429 			return;
1430 
1431 	host->cmd = NULL;
1432 
1433 	if (status & MCI_CMDTIMEOUT) {
1434 		cmd->error = -ETIMEDOUT;
1435 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1436 		cmd->error = -EILSEQ;
1437 	} else if (host->variant->busy_timeout && busy_resp &&
1438 		   status & MCI_DATATIMEOUT) {
1439 		cmd->error = -ETIMEDOUT;
1440 		/*
1441 		 * This will wake up mmci_irq_thread() which will issue
1442 		 * a hardware reset of the MMCI block.
1443 		 */
1444 		host->irq_action = IRQ_WAKE_THREAD;
1445 	} else {
1446 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1447 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1448 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1449 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1450 	}
1451 
1452 	if ((!sbc && !cmd->data) || cmd->error) {
1453 		if (host->data) {
1454 			/* Terminate the DMA transfer */
1455 			mmci_dma_error(host);
1456 
1457 			mmci_stop_data(host);
1458 			if (host->variant->cmdreg_stop && cmd->error) {
1459 				mmci_stop_command(host);
1460 				return;
1461 			}
1462 		}
1463 
1464 		if (host->irq_action != IRQ_WAKE_THREAD)
1465 			mmci_request_end(host, host->mrq);
1466 
1467 	} else if (sbc) {
1468 		mmci_start_command(host, host->mrq->cmd, 0);
1469 	} else if (!host->variant->datactrl_first &&
1470 		   !(cmd->data->flags & MMC_DATA_READ)) {
1471 		mmci_start_data(host, cmd->data);
1472 	}
1473 }
1474 
1475 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1476 {
1477 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1478 }
1479 
1480 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1481 {
1482 	/*
1483 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1484 	 * from the fifo range should be used
1485 	 */
1486 	if (status & MCI_RXFIFOHALFFULL)
1487 		return host->variant->fifohalfsize;
1488 	else if (status & MCI_RXDATAAVLBL)
1489 		return 4;
1490 
1491 	return 0;
1492 }
1493 
1494 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1495 {
1496 	void __iomem *base = host->base;
1497 	char *ptr = buffer;
1498 	u32 status = readl(host->base + MMCISTATUS);
1499 	int host_remain = host->size;
1500 
1501 	do {
1502 		int count = host->get_rx_fifocnt(host, status, host_remain);
1503 
1504 		if (count > remain)
1505 			count = remain;
1506 
1507 		if (count <= 0)
1508 			break;
1509 
1510 		/*
1511 		 * SDIO especially may want to send something that is
1512 		 * not divisible by 4 (as opposed to card sectors
1513 		 * etc). Therefore make sure to always read the last bytes
1514 		 * while only doing full 32-bit reads towards the FIFO.
1515 		 */
1516 		if (unlikely(count & 0x3)) {
1517 			if (count < 4) {
1518 				unsigned char buf[4];
1519 				ioread32_rep(base + MMCIFIFO, buf, 1);
1520 				memcpy(ptr, buf, count);
1521 			} else {
1522 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1523 				count &= ~0x3;
1524 			}
1525 		} else {
1526 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1527 		}
1528 
1529 		ptr += count;
1530 		remain -= count;
1531 		host_remain -= count;
1532 
1533 		if (remain == 0)
1534 			break;
1535 
1536 		status = readl(base + MMCISTATUS);
1537 	} while (status & MCI_RXDATAAVLBL);
1538 
1539 	return ptr - buffer;
1540 }
1541 
1542 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1543 {
1544 	struct variant_data *variant = host->variant;
1545 	void __iomem *base = host->base;
1546 	char *ptr = buffer;
1547 
1548 	do {
1549 		unsigned int count, maxcnt;
1550 
1551 		maxcnt = status & MCI_TXFIFOEMPTY ?
1552 			 variant->fifosize : variant->fifohalfsize;
1553 		count = min(remain, maxcnt);
1554 
1555 		/*
1556 		 * SDIO especially may want to send something that is
1557 		 * not divisible by 4 (as opposed to card sectors
1558 		 * etc), and the FIFO only accept full 32-bit writes.
1559 		 * So compensate by adding +3 on the count, a single
1560 		 * byte become a 32bit write, 7 bytes will be two
1561 		 * 32bit writes etc.
1562 		 */
1563 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1564 
1565 		ptr += count;
1566 		remain -= count;
1567 
1568 		if (remain == 0)
1569 			break;
1570 
1571 		status = readl(base + MMCISTATUS);
1572 	} while (status & MCI_TXFIFOHALFEMPTY);
1573 
1574 	return ptr - buffer;
1575 }
1576 
1577 /*
1578  * PIO data transfer IRQ handler.
1579  */
1580 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1581 {
1582 	struct mmci_host *host = dev_id;
1583 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1584 	struct variant_data *variant = host->variant;
1585 	void __iomem *base = host->base;
1586 	u32 status;
1587 
1588 	status = readl(base + MMCISTATUS);
1589 
1590 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1591 
1592 	do {
1593 		unsigned int remain, len;
1594 		char *buffer;
1595 
1596 		/*
1597 		 * For write, we only need to test the half-empty flag
1598 		 * here - if the FIFO is completely empty, then by
1599 		 * definition it is more than half empty.
1600 		 *
1601 		 * For read, check for data available.
1602 		 */
1603 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1604 			break;
1605 
1606 		if (!sg_miter_next(sg_miter))
1607 			break;
1608 
1609 		buffer = sg_miter->addr;
1610 		remain = sg_miter->length;
1611 
1612 		len = 0;
1613 		if (status & MCI_RXACTIVE)
1614 			len = mmci_pio_read(host, buffer, remain);
1615 		if (status & MCI_TXACTIVE)
1616 			len = mmci_pio_write(host, buffer, remain, status);
1617 
1618 		sg_miter->consumed = len;
1619 
1620 		host->size -= len;
1621 		remain -= len;
1622 
1623 		if (remain)
1624 			break;
1625 
1626 		status = readl(base + MMCISTATUS);
1627 	} while (1);
1628 
1629 	sg_miter_stop(sg_miter);
1630 
1631 	/*
1632 	 * If we have less than the fifo 'half-full' threshold to transfer,
1633 	 * trigger a PIO interrupt as soon as any data is available.
1634 	 */
1635 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1636 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1637 
1638 	/*
1639 	 * If we run out of data, disable the data IRQs; this
1640 	 * prevents a race where the FIFO becomes empty before
1641 	 * the chip itself has disabled the data path, and
1642 	 * stops us racing with our data end IRQ.
1643 	 */
1644 	if (host->size == 0) {
1645 		mmci_set_mask1(host, 0);
1646 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1647 	}
1648 
1649 	return IRQ_HANDLED;
1650 }
1651 
1652 /*
1653  * Handle completion of command and data transfers.
1654  */
1655 static irqreturn_t mmci_irq(int irq, void *dev_id)
1656 {
1657 	struct mmci_host *host = dev_id;
1658 	u32 status;
1659 
1660 	spin_lock(&host->lock);
1661 	host->irq_action = IRQ_HANDLED;
1662 
1663 	do {
1664 		status = readl(host->base + MMCISTATUS);
1665 		if (!status)
1666 			break;
1667 
1668 		if (host->singleirq) {
1669 			if (status & host->mask1_reg)
1670 				mmci_pio_irq(irq, dev_id);
1671 
1672 			status &= ~host->variant->irq_pio_mask;
1673 		}
1674 
1675 		/*
1676 		 * Busy detection is managed by mmci_cmd_irq(), including to
1677 		 * clear the corresponding IRQ.
1678 		 */
1679 		status &= readl(host->base + MMCIMASK0);
1680 		if (host->variant->busy_detect)
1681 			writel(status & ~host->variant->busy_detect_mask,
1682 			       host->base + MMCICLEAR);
1683 		else
1684 			writel(status, host->base + MMCICLEAR);
1685 
1686 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1687 
1688 		if (host->variant->reversed_irq_handling) {
1689 			mmci_data_irq(host, host->data, status);
1690 			mmci_cmd_irq(host, host->cmd, status);
1691 		} else {
1692 			mmci_cmd_irq(host, host->cmd, status);
1693 			mmci_data_irq(host, host->data, status);
1694 		}
1695 
1696 		/*
1697 		 * Busy detection has been handled by mmci_cmd_irq() above.
1698 		 * Clear the status bit to prevent polling in IRQ context.
1699 		 */
1700 		if (host->variant->busy_detect_flag)
1701 			status &= ~host->variant->busy_detect_flag;
1702 
1703 	} while (status);
1704 
1705 	spin_unlock(&host->lock);
1706 
1707 	return host->irq_action;
1708 }
1709 
1710 /*
1711  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1712  *
1713  * A reset is needed for some variants, where a datatimeout for a R1B request
1714  * causes the DPSM to stay busy (non-functional).
1715  */
1716 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1717 {
1718 	struct mmci_host *host = dev_id;
1719 	unsigned long flags;
1720 
1721 	if (host->rst) {
1722 		reset_control_assert(host->rst);
1723 		udelay(2);
1724 		reset_control_deassert(host->rst);
1725 	}
1726 
1727 	spin_lock_irqsave(&host->lock, flags);
1728 	writel(host->clk_reg, host->base + MMCICLOCK);
1729 	writel(host->pwr_reg, host->base + MMCIPOWER);
1730 	writel(MCI_IRQENABLE | host->variant->start_err,
1731 	       host->base + MMCIMASK0);
1732 
1733 	host->irq_action = IRQ_HANDLED;
1734 	mmci_request_end(host, host->mrq);
1735 	spin_unlock_irqrestore(&host->lock, flags);
1736 
1737 	return host->irq_action;
1738 }
1739 
1740 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1741 {
1742 	struct mmci_host *host = mmc_priv(mmc);
1743 	unsigned long flags;
1744 
1745 	WARN_ON(host->mrq != NULL);
1746 
1747 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1748 	if (mrq->cmd->error) {
1749 		mmc_request_done(mmc, mrq);
1750 		return;
1751 	}
1752 
1753 	spin_lock_irqsave(&host->lock, flags);
1754 
1755 	host->mrq = mrq;
1756 
1757 	if (mrq->data)
1758 		mmci_get_next_data(host, mrq->data);
1759 
1760 	if (mrq->data &&
1761 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1762 		mmci_start_data(host, mrq->data);
1763 
1764 	if (mrq->sbc)
1765 		mmci_start_command(host, mrq->sbc, 0);
1766 	else
1767 		mmci_start_command(host, mrq->cmd, 0);
1768 
1769 	spin_unlock_irqrestore(&host->lock, flags);
1770 }
1771 
1772 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1773 {
1774 	struct mmci_host *host = mmc_priv(mmc);
1775 	u32 max_busy_timeout = 0;
1776 
1777 	if (!host->variant->busy_detect)
1778 		return;
1779 
1780 	if (host->variant->busy_timeout && mmc->actual_clock)
1781 		max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1782 							  MSEC_PER_SEC);
1783 
1784 	mmc->max_busy_timeout = max_busy_timeout;
1785 }
1786 
1787 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1788 {
1789 	struct mmci_host *host = mmc_priv(mmc);
1790 	struct variant_data *variant = host->variant;
1791 	u32 pwr = 0;
1792 	unsigned long flags;
1793 	int ret;
1794 
1795 	switch (ios->power_mode) {
1796 	case MMC_POWER_OFF:
1797 		if (!IS_ERR(mmc->supply.vmmc))
1798 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1799 
1800 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1801 			regulator_disable(mmc->supply.vqmmc);
1802 			host->vqmmc_enabled = false;
1803 		}
1804 
1805 		break;
1806 	case MMC_POWER_UP:
1807 		if (!IS_ERR(mmc->supply.vmmc))
1808 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1809 
1810 		/*
1811 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1812 		 * and instead uses MCI_PWR_ON so apply whatever value is
1813 		 * configured in the variant data.
1814 		 */
1815 		pwr |= variant->pwrreg_powerup;
1816 
1817 		break;
1818 	case MMC_POWER_ON:
1819 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1820 			ret = regulator_enable(mmc->supply.vqmmc);
1821 			if (ret < 0)
1822 				dev_err(mmc_dev(mmc),
1823 					"failed to enable vqmmc regulator\n");
1824 			else
1825 				host->vqmmc_enabled = true;
1826 		}
1827 
1828 		pwr |= MCI_PWR_ON;
1829 		break;
1830 	}
1831 
1832 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1833 		/*
1834 		 * The ST Micro variant has some additional bits
1835 		 * indicating signal direction for the signals in
1836 		 * the SD/MMC bus and feedback-clock usage.
1837 		 */
1838 		pwr |= host->pwr_reg_add;
1839 
1840 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1841 			pwr &= ~MCI_ST_DATA74DIREN;
1842 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1843 			pwr &= (~MCI_ST_DATA74DIREN &
1844 				~MCI_ST_DATA31DIREN &
1845 				~MCI_ST_DATA2DIREN);
1846 	}
1847 
1848 	if (variant->opendrain) {
1849 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1850 			pwr |= variant->opendrain;
1851 	} else {
1852 		/*
1853 		 * If the variant cannot configure the pads by its own, then we
1854 		 * expect the pinctrl to be able to do that for us
1855 		 */
1856 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1857 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1858 		else
1859 			pinctrl_select_default_state(mmc_dev(mmc));
1860 	}
1861 
1862 	/*
1863 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1864 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1865 	 */
1866 	if (!ios->clock && variant->pwrreg_clkgate)
1867 		pwr &= ~MCI_PWR_ON;
1868 
1869 	if (host->variant->explicit_mclk_control &&
1870 	    ios->clock != host->clock_cache) {
1871 		ret = clk_set_rate(host->clk, ios->clock);
1872 		if (ret < 0)
1873 			dev_err(mmc_dev(host->mmc),
1874 				"Error setting clock rate (%d)\n", ret);
1875 		else
1876 			host->mclk = clk_get_rate(host->clk);
1877 	}
1878 	host->clock_cache = ios->clock;
1879 
1880 	spin_lock_irqsave(&host->lock, flags);
1881 
1882 	if (host->ops && host->ops->set_clkreg)
1883 		host->ops->set_clkreg(host, ios->clock);
1884 	else
1885 		mmci_set_clkreg(host, ios->clock);
1886 
1887 	mmci_set_max_busy_timeout(mmc);
1888 
1889 	if (host->ops && host->ops->set_pwrreg)
1890 		host->ops->set_pwrreg(host, pwr);
1891 	else
1892 		mmci_write_pwrreg(host, pwr);
1893 
1894 	mmci_reg_delay(host);
1895 
1896 	spin_unlock_irqrestore(&host->lock, flags);
1897 }
1898 
1899 static int mmci_get_cd(struct mmc_host *mmc)
1900 {
1901 	struct mmci_host *host = mmc_priv(mmc);
1902 	struct mmci_platform_data *plat = host->plat;
1903 	unsigned int status = mmc_gpio_get_cd(mmc);
1904 
1905 	if (status == -ENOSYS) {
1906 		if (!plat->status)
1907 			return 1; /* Assume always present */
1908 
1909 		status = plat->status(mmc_dev(host->mmc));
1910 	}
1911 	return status;
1912 }
1913 
1914 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1915 {
1916 	struct mmci_host *host = mmc_priv(mmc);
1917 	int ret;
1918 
1919 	ret = mmc_regulator_set_vqmmc(mmc, ios);
1920 
1921 	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1922 		ret = host->ops->post_sig_volt_switch(host, ios);
1923 	else if (ret)
1924 		ret = 0;
1925 
1926 	if (ret < 0)
1927 		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1928 
1929 	return ret;
1930 }
1931 
1932 static struct mmc_host_ops mmci_ops = {
1933 	.request	= mmci_request,
1934 	.pre_req	= mmci_pre_request,
1935 	.post_req	= mmci_post_request,
1936 	.set_ios	= mmci_set_ios,
1937 	.get_ro		= mmc_gpio_get_ro,
1938 	.get_cd		= mmci_get_cd,
1939 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1940 };
1941 
1942 static void mmci_probe_level_translator(struct mmc_host *mmc)
1943 {
1944 	struct device *dev = mmc_dev(mmc);
1945 	struct mmci_host *host = mmc_priv(mmc);
1946 	struct gpio_desc *cmd_gpio;
1947 	struct gpio_desc *ck_gpio;
1948 	struct gpio_desc *ckin_gpio;
1949 	int clk_hi, clk_lo;
1950 
1951 	/*
1952 	 * Assume the level translator is present if st,use-ckin is set.
1953 	 * This is to cater for DTs which do not implement this test.
1954 	 */
1955 	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1956 
1957 	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
1958 	if (IS_ERR(cmd_gpio))
1959 		goto exit_cmd;
1960 
1961 	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
1962 	if (IS_ERR(ck_gpio))
1963 		goto exit_ck;
1964 
1965 	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
1966 	if (IS_ERR(ckin_gpio))
1967 		goto exit_ckin;
1968 
1969 	/* All GPIOs are valid, test whether level translator works */
1970 
1971 	/* Sample CKIN */
1972 	clk_hi = !!gpiod_get_value(ckin_gpio);
1973 
1974 	/* Set CK low */
1975 	gpiod_set_value(ck_gpio, 0);
1976 
1977 	/* Sample CKIN */
1978 	clk_lo = !!gpiod_get_value(ckin_gpio);
1979 
1980 	/* Tristate all */
1981 	gpiod_direction_input(cmd_gpio);
1982 	gpiod_direction_input(ck_gpio);
1983 
1984 	/* Level translator is present if CK signal is propagated to CKIN */
1985 	if (!clk_hi || clk_lo) {
1986 		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
1987 		dev_warn(dev,
1988 			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
1989 	}
1990 
1991 	gpiod_put(ckin_gpio);
1992 
1993 exit_ckin:
1994 	gpiod_put(ck_gpio);
1995 exit_ck:
1996 	gpiod_put(cmd_gpio);
1997 exit_cmd:
1998 	pinctrl_select_default_state(dev);
1999 }
2000 
2001 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2002 {
2003 	struct mmci_host *host = mmc_priv(mmc);
2004 	int ret = mmc_of_parse(mmc);
2005 
2006 	if (ret)
2007 		return ret;
2008 
2009 	if (of_property_read_bool(np, "st,sig-dir-dat0"))
2010 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2011 	if (of_property_read_bool(np, "st,sig-dir-dat2"))
2012 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2013 	if (of_property_read_bool(np, "st,sig-dir-dat31"))
2014 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2015 	if (of_property_read_bool(np, "st,sig-dir-dat74"))
2016 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2017 	if (of_property_read_bool(np, "st,sig-dir-cmd"))
2018 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
2019 	if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2020 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
2021 	if (of_property_read_bool(np, "st,sig-dir"))
2022 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
2023 	if (of_property_read_bool(np, "st,neg-edge"))
2024 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2025 	if (of_property_read_bool(np, "st,use-ckin"))
2026 		mmci_probe_level_translator(mmc);
2027 
2028 	if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2029 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2030 	if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2031 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2032 
2033 	return 0;
2034 }
2035 
2036 static int mmci_probe(struct amba_device *dev,
2037 	const struct amba_id *id)
2038 {
2039 	struct mmci_platform_data *plat = dev->dev.platform_data;
2040 	struct device_node *np = dev->dev.of_node;
2041 	struct variant_data *variant = id->data;
2042 	struct mmci_host *host;
2043 	struct mmc_host *mmc;
2044 	int ret;
2045 
2046 	/* Must have platform data or Device Tree. */
2047 	if (!plat && !np) {
2048 		dev_err(&dev->dev, "No plat data or DT found\n");
2049 		return -EINVAL;
2050 	}
2051 
2052 	if (!plat) {
2053 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2054 		if (!plat)
2055 			return -ENOMEM;
2056 	}
2057 
2058 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2059 	if (!mmc)
2060 		return -ENOMEM;
2061 
2062 	host = mmc_priv(mmc);
2063 	host->mmc = mmc;
2064 	host->mmc_ops = &mmci_ops;
2065 	mmc->ops = &mmci_ops;
2066 
2067 	ret = mmci_of_parse(np, mmc);
2068 	if (ret)
2069 		goto host_free;
2070 
2071 	/*
2072 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2073 	 * pins can be set accordingly using pinctrl
2074 	 */
2075 	if (!variant->opendrain) {
2076 		host->pinctrl = devm_pinctrl_get(&dev->dev);
2077 		if (IS_ERR(host->pinctrl)) {
2078 			dev_err(&dev->dev, "failed to get pinctrl");
2079 			ret = PTR_ERR(host->pinctrl);
2080 			goto host_free;
2081 		}
2082 
2083 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2084 							    MMCI_PINCTRL_STATE_OPENDRAIN);
2085 		if (IS_ERR(host->pins_opendrain)) {
2086 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2087 			ret = PTR_ERR(host->pins_opendrain);
2088 			goto host_free;
2089 		}
2090 	}
2091 
2092 	host->hw_designer = amba_manf(dev);
2093 	host->hw_revision = amba_rev(dev);
2094 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2095 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2096 
2097 	host->clk = devm_clk_get(&dev->dev, NULL);
2098 	if (IS_ERR(host->clk)) {
2099 		ret = PTR_ERR(host->clk);
2100 		goto host_free;
2101 	}
2102 
2103 	ret = clk_prepare_enable(host->clk);
2104 	if (ret)
2105 		goto host_free;
2106 
2107 	if (variant->qcom_fifo)
2108 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2109 	else
2110 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2111 
2112 	host->plat = plat;
2113 	host->variant = variant;
2114 	host->mclk = clk_get_rate(host->clk);
2115 	/*
2116 	 * According to the spec, mclk is max 100 MHz,
2117 	 * so we try to adjust the clock down to this,
2118 	 * (if possible).
2119 	 */
2120 	if (host->mclk > variant->f_max) {
2121 		ret = clk_set_rate(host->clk, variant->f_max);
2122 		if (ret < 0)
2123 			goto clk_disable;
2124 		host->mclk = clk_get_rate(host->clk);
2125 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2126 			host->mclk);
2127 	}
2128 
2129 	host->phybase = dev->res.start;
2130 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2131 	if (IS_ERR(host->base)) {
2132 		ret = PTR_ERR(host->base);
2133 		goto clk_disable;
2134 	}
2135 
2136 	if (variant->init)
2137 		variant->init(host);
2138 
2139 	/*
2140 	 * The ARM and ST versions of the block have slightly different
2141 	 * clock divider equations which means that the minimum divider
2142 	 * differs too.
2143 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2144 	 */
2145 	if (variant->st_clkdiv)
2146 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2147 	else if (variant->stm32_clkdiv)
2148 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2149 	else if (variant->explicit_mclk_control)
2150 		mmc->f_min = clk_round_rate(host->clk, 100000);
2151 	else
2152 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2153 	/*
2154 	 * If no maximum operating frequency is supplied, fall back to use
2155 	 * the module parameter, which has a (low) default value in case it
2156 	 * is not specified. Either value must not exceed the clock rate into
2157 	 * the block, of course.
2158 	 */
2159 	if (mmc->f_max)
2160 		mmc->f_max = variant->explicit_mclk_control ?
2161 				min(variant->f_max, mmc->f_max) :
2162 				min(host->mclk, mmc->f_max);
2163 	else
2164 		mmc->f_max = variant->explicit_mclk_control ?
2165 				fmax : min(host->mclk, fmax);
2166 
2167 
2168 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2169 
2170 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2171 	if (IS_ERR(host->rst)) {
2172 		ret = PTR_ERR(host->rst);
2173 		goto clk_disable;
2174 	}
2175 	ret = reset_control_deassert(host->rst);
2176 	if (ret)
2177 		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2178 
2179 	/* Get regulators and the supported OCR mask */
2180 	ret = mmc_regulator_get_supply(mmc);
2181 	if (ret)
2182 		goto clk_disable;
2183 
2184 	if (!mmc->ocr_avail)
2185 		mmc->ocr_avail = plat->ocr_mask;
2186 	else if (plat->ocr_mask)
2187 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2188 
2189 	/* We support these capabilities. */
2190 	mmc->caps |= MMC_CAP_CMD23;
2191 
2192 	/*
2193 	 * Enable busy detection.
2194 	 */
2195 	if (variant->busy_detect) {
2196 		mmci_ops.card_busy = mmci_card_busy;
2197 		/*
2198 		 * Not all variants have a flag to enable busy detection
2199 		 * in the DPSM, but if they do, set it here.
2200 		 */
2201 		if (variant->busy_dpsm_flag)
2202 			mmci_write_datactrlreg(host,
2203 					       host->variant->busy_dpsm_flag);
2204 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2205 	}
2206 
2207 	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2208 	if (variant->busy_timeout)
2209 		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2210 
2211 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2212 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2213 	host->stop_abort.arg = 0;
2214 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2215 
2216 	/* We support these PM capabilities. */
2217 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2218 
2219 	/*
2220 	 * We can do SGIO
2221 	 */
2222 	mmc->max_segs = NR_SG;
2223 
2224 	/*
2225 	 * Since only a certain number of bits are valid in the data length
2226 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2227 	 * single request.
2228 	 */
2229 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2230 
2231 	/*
2232 	 * Set the maximum segment size.  Since we aren't doing DMA
2233 	 * (yet) we are only limited by the data length register.
2234 	 */
2235 	mmc->max_seg_size = mmc->max_req_size;
2236 
2237 	/*
2238 	 * Block size can be up to 2048 bytes, but must be a power of two.
2239 	 */
2240 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2241 
2242 	/*
2243 	 * Limit the number of blocks transferred so that we don't overflow
2244 	 * the maximum request size.
2245 	 */
2246 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2247 
2248 	spin_lock_init(&host->lock);
2249 
2250 	writel(0, host->base + MMCIMASK0);
2251 
2252 	if (variant->mmcimask1)
2253 		writel(0, host->base + MMCIMASK1);
2254 
2255 	writel(0xfff, host->base + MMCICLEAR);
2256 
2257 	/*
2258 	 * If:
2259 	 * - not using DT but using a descriptor table, or
2260 	 * - using a table of descriptors ALONGSIDE DT, or
2261 	 * look up these descriptors named "cd" and "wp" right here, fail
2262 	 * silently of these do not exist
2263 	 */
2264 	if (!np) {
2265 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2266 		if (ret == -EPROBE_DEFER)
2267 			goto clk_disable;
2268 
2269 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2270 		if (ret == -EPROBE_DEFER)
2271 			goto clk_disable;
2272 	}
2273 
2274 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2275 					mmci_irq_thread, IRQF_SHARED,
2276 					DRIVER_NAME " (cmd)", host);
2277 	if (ret)
2278 		goto clk_disable;
2279 
2280 	if (!dev->irq[1])
2281 		host->singleirq = true;
2282 	else {
2283 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2284 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2285 		if (ret)
2286 			goto clk_disable;
2287 	}
2288 
2289 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2290 
2291 	amba_set_drvdata(dev, mmc);
2292 
2293 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2294 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2295 		 amba_rev(dev), (unsigned long long)dev->res.start,
2296 		 dev->irq[0], dev->irq[1]);
2297 
2298 	mmci_dma_setup(host);
2299 
2300 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2301 	pm_runtime_use_autosuspend(&dev->dev);
2302 
2303 	ret = mmc_add_host(mmc);
2304 	if (ret)
2305 		goto clk_disable;
2306 
2307 	pm_runtime_put(&dev->dev);
2308 	return 0;
2309 
2310  clk_disable:
2311 	clk_disable_unprepare(host->clk);
2312  host_free:
2313 	mmc_free_host(mmc);
2314 	return ret;
2315 }
2316 
2317 static void mmci_remove(struct amba_device *dev)
2318 {
2319 	struct mmc_host *mmc = amba_get_drvdata(dev);
2320 
2321 	if (mmc) {
2322 		struct mmci_host *host = mmc_priv(mmc);
2323 		struct variant_data *variant = host->variant;
2324 
2325 		/*
2326 		 * Undo pm_runtime_put() in probe.  We use the _sync
2327 		 * version here so that we can access the primecell.
2328 		 */
2329 		pm_runtime_get_sync(&dev->dev);
2330 
2331 		mmc_remove_host(mmc);
2332 
2333 		writel(0, host->base + MMCIMASK0);
2334 
2335 		if (variant->mmcimask1)
2336 			writel(0, host->base + MMCIMASK1);
2337 
2338 		writel(0, host->base + MMCICOMMAND);
2339 		writel(0, host->base + MMCIDATACTRL);
2340 
2341 		mmci_dma_release(host);
2342 		clk_disable_unprepare(host->clk);
2343 		mmc_free_host(mmc);
2344 	}
2345 }
2346 
2347 #ifdef CONFIG_PM
2348 static void mmci_save(struct mmci_host *host)
2349 {
2350 	unsigned long flags;
2351 
2352 	spin_lock_irqsave(&host->lock, flags);
2353 
2354 	writel(0, host->base + MMCIMASK0);
2355 	if (host->variant->pwrreg_nopower) {
2356 		writel(0, host->base + MMCIDATACTRL);
2357 		writel(0, host->base + MMCIPOWER);
2358 		writel(0, host->base + MMCICLOCK);
2359 	}
2360 	mmci_reg_delay(host);
2361 
2362 	spin_unlock_irqrestore(&host->lock, flags);
2363 }
2364 
2365 static void mmci_restore(struct mmci_host *host)
2366 {
2367 	unsigned long flags;
2368 
2369 	spin_lock_irqsave(&host->lock, flags);
2370 
2371 	if (host->variant->pwrreg_nopower) {
2372 		writel(host->clk_reg, host->base + MMCICLOCK);
2373 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2374 		writel(host->pwr_reg, host->base + MMCIPOWER);
2375 	}
2376 	writel(MCI_IRQENABLE | host->variant->start_err,
2377 	       host->base + MMCIMASK0);
2378 	mmci_reg_delay(host);
2379 
2380 	spin_unlock_irqrestore(&host->lock, flags);
2381 }
2382 
2383 static int mmci_runtime_suspend(struct device *dev)
2384 {
2385 	struct amba_device *adev = to_amba_device(dev);
2386 	struct mmc_host *mmc = amba_get_drvdata(adev);
2387 
2388 	if (mmc) {
2389 		struct mmci_host *host = mmc_priv(mmc);
2390 		pinctrl_pm_select_sleep_state(dev);
2391 		mmci_save(host);
2392 		clk_disable_unprepare(host->clk);
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 static int mmci_runtime_resume(struct device *dev)
2399 {
2400 	struct amba_device *adev = to_amba_device(dev);
2401 	struct mmc_host *mmc = amba_get_drvdata(adev);
2402 
2403 	if (mmc) {
2404 		struct mmci_host *host = mmc_priv(mmc);
2405 		clk_prepare_enable(host->clk);
2406 		mmci_restore(host);
2407 		pinctrl_select_default_state(dev);
2408 	}
2409 
2410 	return 0;
2411 }
2412 #endif
2413 
2414 static const struct dev_pm_ops mmci_dev_pm_ops = {
2415 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2416 				pm_runtime_force_resume)
2417 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2418 };
2419 
2420 static const struct amba_id mmci_ids[] = {
2421 	{
2422 		.id	= 0x00041180,
2423 		.mask	= 0xff0fffff,
2424 		.data	= &variant_arm,
2425 	},
2426 	{
2427 		.id	= 0x01041180,
2428 		.mask	= 0xff0fffff,
2429 		.data	= &variant_arm_extended_fifo,
2430 	},
2431 	{
2432 		.id	= 0x02041180,
2433 		.mask	= 0xff0fffff,
2434 		.data	= &variant_arm_extended_fifo_hwfc,
2435 	},
2436 	{
2437 		.id	= 0x00041181,
2438 		.mask	= 0x000fffff,
2439 		.data	= &variant_arm,
2440 	},
2441 	/* ST Micro variants */
2442 	{
2443 		.id     = 0x00180180,
2444 		.mask   = 0x00ffffff,
2445 		.data	= &variant_u300,
2446 	},
2447 	{
2448 		.id     = 0x10180180,
2449 		.mask   = 0xf0ffffff,
2450 		.data	= &variant_nomadik,
2451 	},
2452 	{
2453 		.id     = 0x00280180,
2454 		.mask   = 0x00ffffff,
2455 		.data	= &variant_nomadik,
2456 	},
2457 	{
2458 		.id     = 0x00480180,
2459 		.mask   = 0xf0ffffff,
2460 		.data	= &variant_ux500,
2461 	},
2462 	{
2463 		.id     = 0x10480180,
2464 		.mask   = 0xf0ffffff,
2465 		.data	= &variant_ux500v2,
2466 	},
2467 	{
2468 		.id     = 0x00880180,
2469 		.mask   = 0x00ffffff,
2470 		.data	= &variant_stm32,
2471 	},
2472 	{
2473 		.id     = 0x10153180,
2474 		.mask	= 0xf0ffffff,
2475 		.data	= &variant_stm32_sdmmc,
2476 	},
2477 	{
2478 		.id     = 0x00253180,
2479 		.mask	= 0xf0ffffff,
2480 		.data	= &variant_stm32_sdmmcv2,
2481 	},
2482 	{
2483 		.id     = 0x20253180,
2484 		.mask	= 0xf0ffffff,
2485 		.data	= &variant_stm32_sdmmcv2,
2486 	},
2487 	/* Qualcomm variants */
2488 	{
2489 		.id     = 0x00051180,
2490 		.mask	= 0x000fffff,
2491 		.data	= &variant_qcom,
2492 	},
2493 	{ 0, 0 },
2494 };
2495 
2496 MODULE_DEVICE_TABLE(amba, mmci_ids);
2497 
2498 static struct amba_driver mmci_driver = {
2499 	.drv		= {
2500 		.name	= DRIVER_NAME,
2501 		.pm	= &mmci_dev_pm_ops,
2502 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2503 	},
2504 	.probe		= mmci_probe,
2505 	.remove		= mmci_remove,
2506 	.id_table	= mmci_ids,
2507 };
2508 
2509 module_amba_driver(mmci_driver);
2510 
2511 module_param(fmax, uint, 0444);
2512 
2513 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2514 MODULE_LICENSE("GPL");
2515