1 /* 2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver 3 * 4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. 5 * Copyright (C) 2010 ST-Ericsson SA 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/init.h> 14 #include <linux/ioport.h> 15 #include <linux/device.h> 16 #include <linux/interrupt.h> 17 #include <linux/kernel.h> 18 #include <linux/slab.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/highmem.h> 22 #include <linux/log2.h> 23 #include <linux/mmc/pm.h> 24 #include <linux/mmc/host.h> 25 #include <linux/mmc/card.h> 26 #include <linux/amba/bus.h> 27 #include <linux/clk.h> 28 #include <linux/scatterlist.h> 29 #include <linux/gpio.h> 30 #include <linux/of_gpio.h> 31 #include <linux/regulator/consumer.h> 32 #include <linux/dmaengine.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/amba/mmci.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/types.h> 37 #include <linux/pinctrl/consumer.h> 38 39 #include <asm/div64.h> 40 #include <asm/io.h> 41 #include <asm/sizes.h> 42 43 #include "mmci.h" 44 45 #define DRIVER_NAME "mmci-pl18x" 46 47 static unsigned int fmax = 515633; 48 49 /** 50 * struct variant_data - MMCI variant-specific quirks 51 * @clkreg: default value for MCICLOCK register 52 * @clkreg_enable: enable value for MMCICLOCK register 53 * @datalength_bits: number of bits in the MMCIDATALENGTH register 54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY 55 * is asserted (likewise for RX) 56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY 57 * is asserted (likewise for RX) 58 * @sdio: variant supports SDIO 59 * @st_clkdiv: true if using a ST-specific clock divider algorithm 60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register 61 * @pwrreg_powerup: power up value for MMCIPOWER register 62 * @signal_direction: input/out direction of bus signals can be indicated 63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock 64 * @busy_detect: true if busy detection on dat0 is supported 65 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply 66 */ 67 struct variant_data { 68 unsigned int clkreg; 69 unsigned int clkreg_enable; 70 unsigned int datalength_bits; 71 unsigned int fifosize; 72 unsigned int fifohalfsize; 73 bool sdio; 74 bool st_clkdiv; 75 bool blksz_datactrl16; 76 u32 pwrreg_powerup; 77 bool signal_direction; 78 bool pwrreg_clkgate; 79 bool busy_detect; 80 bool pwrreg_nopower; 81 }; 82 83 static struct variant_data variant_arm = { 84 .fifosize = 16 * 4, 85 .fifohalfsize = 8 * 4, 86 .datalength_bits = 16, 87 .pwrreg_powerup = MCI_PWR_UP, 88 }; 89 90 static struct variant_data variant_arm_extended_fifo = { 91 .fifosize = 128 * 4, 92 .fifohalfsize = 64 * 4, 93 .datalength_bits = 16, 94 .pwrreg_powerup = MCI_PWR_UP, 95 }; 96 97 static struct variant_data variant_arm_extended_fifo_hwfc = { 98 .fifosize = 128 * 4, 99 .fifohalfsize = 64 * 4, 100 .clkreg_enable = MCI_ARM_HWFCEN, 101 .datalength_bits = 16, 102 .pwrreg_powerup = MCI_PWR_UP, 103 }; 104 105 static struct variant_data variant_u300 = { 106 .fifosize = 16 * 4, 107 .fifohalfsize = 8 * 4, 108 .clkreg_enable = MCI_ST_U300_HWFCEN, 109 .datalength_bits = 16, 110 .sdio = true, 111 .pwrreg_powerup = MCI_PWR_ON, 112 .signal_direction = true, 113 .pwrreg_clkgate = true, 114 .pwrreg_nopower = true, 115 }; 116 117 static struct variant_data variant_nomadik = { 118 .fifosize = 16 * 4, 119 .fifohalfsize = 8 * 4, 120 .clkreg = MCI_CLK_ENABLE, 121 .datalength_bits = 24, 122 .sdio = true, 123 .st_clkdiv = true, 124 .pwrreg_powerup = MCI_PWR_ON, 125 .signal_direction = true, 126 .pwrreg_clkgate = true, 127 .pwrreg_nopower = true, 128 }; 129 130 static struct variant_data variant_ux500 = { 131 .fifosize = 30 * 4, 132 .fifohalfsize = 8 * 4, 133 .clkreg = MCI_CLK_ENABLE, 134 .clkreg_enable = MCI_ST_UX500_HWFCEN, 135 .datalength_bits = 24, 136 .sdio = true, 137 .st_clkdiv = true, 138 .pwrreg_powerup = MCI_PWR_ON, 139 .signal_direction = true, 140 .pwrreg_clkgate = true, 141 .busy_detect = true, 142 .pwrreg_nopower = true, 143 }; 144 145 static struct variant_data variant_ux500v2 = { 146 .fifosize = 30 * 4, 147 .fifohalfsize = 8 * 4, 148 .clkreg = MCI_CLK_ENABLE, 149 .clkreg_enable = MCI_ST_UX500_HWFCEN, 150 .datalength_bits = 24, 151 .sdio = true, 152 .st_clkdiv = true, 153 .blksz_datactrl16 = true, 154 .pwrreg_powerup = MCI_PWR_ON, 155 .signal_direction = true, 156 .pwrreg_clkgate = true, 157 .busy_detect = true, 158 .pwrreg_nopower = true, 159 }; 160 161 static int mmci_card_busy(struct mmc_host *mmc) 162 { 163 struct mmci_host *host = mmc_priv(mmc); 164 unsigned long flags; 165 int busy = 0; 166 167 pm_runtime_get_sync(mmc_dev(mmc)); 168 169 spin_lock_irqsave(&host->lock, flags); 170 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY) 171 busy = 1; 172 spin_unlock_irqrestore(&host->lock, flags); 173 174 pm_runtime_mark_last_busy(mmc_dev(mmc)); 175 pm_runtime_put_autosuspend(mmc_dev(mmc)); 176 177 return busy; 178 } 179 180 /* 181 * Validate mmc prerequisites 182 */ 183 static int mmci_validate_data(struct mmci_host *host, 184 struct mmc_data *data) 185 { 186 if (!data) 187 return 0; 188 189 if (!is_power_of_2(data->blksz)) { 190 dev_err(mmc_dev(host->mmc), 191 "unsupported block size (%d bytes)\n", data->blksz); 192 return -EINVAL; 193 } 194 195 return 0; 196 } 197 198 static void mmci_reg_delay(struct mmci_host *host) 199 { 200 /* 201 * According to the spec, at least three feedback clock cycles 202 * of max 52 MHz must pass between two writes to the MMCICLOCK reg. 203 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. 204 * Worst delay time during card init is at 100 kHz => 30 us. 205 * Worst delay time when up and running is at 25 MHz => 120 ns. 206 */ 207 if (host->cclk < 25000000) 208 udelay(30); 209 else 210 ndelay(120); 211 } 212 213 /* 214 * This must be called with host->lock held 215 */ 216 static void mmci_write_clkreg(struct mmci_host *host, u32 clk) 217 { 218 if (host->clk_reg != clk) { 219 host->clk_reg = clk; 220 writel(clk, host->base + MMCICLOCK); 221 } 222 } 223 224 /* 225 * This must be called with host->lock held 226 */ 227 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) 228 { 229 if (host->pwr_reg != pwr) { 230 host->pwr_reg = pwr; 231 writel(pwr, host->base + MMCIPOWER); 232 } 233 } 234 235 /* 236 * This must be called with host->lock held 237 */ 238 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) 239 { 240 /* Keep ST Micro busy mode if enabled */ 241 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE; 242 243 if (host->datactrl_reg != datactrl) { 244 host->datactrl_reg = datactrl; 245 writel(datactrl, host->base + MMCIDATACTRL); 246 } 247 } 248 249 /* 250 * This must be called with host->lock held 251 */ 252 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) 253 { 254 struct variant_data *variant = host->variant; 255 u32 clk = variant->clkreg; 256 257 /* Make sure cclk reflects the current calculated clock */ 258 host->cclk = 0; 259 260 if (desired) { 261 if (desired >= host->mclk) { 262 clk = MCI_CLK_BYPASS; 263 if (variant->st_clkdiv) 264 clk |= MCI_ST_UX500_NEG_EDGE; 265 host->cclk = host->mclk; 266 } else if (variant->st_clkdiv) { 267 /* 268 * DB8500 TRM says f = mclk / (clkdiv + 2) 269 * => clkdiv = (mclk / f) - 2 270 * Round the divider up so we don't exceed the max 271 * frequency 272 */ 273 clk = DIV_ROUND_UP(host->mclk, desired) - 2; 274 if (clk >= 256) 275 clk = 255; 276 host->cclk = host->mclk / (clk + 2); 277 } else { 278 /* 279 * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) 280 * => clkdiv = mclk / (2 * f) - 1 281 */ 282 clk = host->mclk / (2 * desired) - 1; 283 if (clk >= 256) 284 clk = 255; 285 host->cclk = host->mclk / (2 * (clk + 1)); 286 } 287 288 clk |= variant->clkreg_enable; 289 clk |= MCI_CLK_ENABLE; 290 /* This hasn't proven to be worthwhile */ 291 /* clk |= MCI_CLK_PWRSAVE; */ 292 } 293 294 /* Set actual clock for debug */ 295 host->mmc->actual_clock = host->cclk; 296 297 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) 298 clk |= MCI_4BIT_BUS; 299 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) 300 clk |= MCI_ST_8BIT_BUS; 301 302 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) 303 clk |= MCI_ST_UX500_NEG_EDGE; 304 305 mmci_write_clkreg(host, clk); 306 } 307 308 static void 309 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) 310 { 311 writel(0, host->base + MMCICOMMAND); 312 313 BUG_ON(host->data); 314 315 host->mrq = NULL; 316 host->cmd = NULL; 317 318 mmc_request_done(host->mmc, mrq); 319 320 pm_runtime_mark_last_busy(mmc_dev(host->mmc)); 321 pm_runtime_put_autosuspend(mmc_dev(host->mmc)); 322 } 323 324 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) 325 { 326 void __iomem *base = host->base; 327 328 if (host->singleirq) { 329 unsigned int mask0 = readl(base + MMCIMASK0); 330 331 mask0 &= ~MCI_IRQ1MASK; 332 mask0 |= mask; 333 334 writel(mask0, base + MMCIMASK0); 335 } 336 337 writel(mask, base + MMCIMASK1); 338 } 339 340 static void mmci_stop_data(struct mmci_host *host) 341 { 342 mmci_write_datactrlreg(host, 0); 343 mmci_set_mask1(host, 0); 344 host->data = NULL; 345 } 346 347 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) 348 { 349 unsigned int flags = SG_MITER_ATOMIC; 350 351 if (data->flags & MMC_DATA_READ) 352 flags |= SG_MITER_TO_SG; 353 else 354 flags |= SG_MITER_FROM_SG; 355 356 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); 357 } 358 359 /* 360 * All the DMA operation mode stuff goes inside this ifdef. 361 * This assumes that you have a generic DMA device interface, 362 * no custom DMA interfaces are supported. 363 */ 364 #ifdef CONFIG_DMA_ENGINE 365 static void mmci_dma_setup(struct mmci_host *host) 366 { 367 struct mmci_platform_data *plat = host->plat; 368 const char *rxname, *txname; 369 dma_cap_mask_t mask; 370 371 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx"); 372 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx"); 373 374 /* initialize pre request cookie */ 375 host->next_data.cookie = 1; 376 377 /* Try to acquire a generic DMA engine slave channel */ 378 dma_cap_zero(mask); 379 dma_cap_set(DMA_SLAVE, mask); 380 381 if (plat && plat->dma_filter) { 382 if (!host->dma_rx_channel && plat->dma_rx_param) { 383 host->dma_rx_channel = dma_request_channel(mask, 384 plat->dma_filter, 385 plat->dma_rx_param); 386 /* E.g if no DMA hardware is present */ 387 if (!host->dma_rx_channel) 388 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n"); 389 } 390 391 if (!host->dma_tx_channel && plat->dma_tx_param) { 392 host->dma_tx_channel = dma_request_channel(mask, 393 plat->dma_filter, 394 plat->dma_tx_param); 395 if (!host->dma_tx_channel) 396 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n"); 397 } 398 } 399 400 /* 401 * If only an RX channel is specified, the driver will 402 * attempt to use it bidirectionally, however if it is 403 * is specified but cannot be located, DMA will be disabled. 404 */ 405 if (host->dma_rx_channel && !host->dma_tx_channel) 406 host->dma_tx_channel = host->dma_rx_channel; 407 408 if (host->dma_rx_channel) 409 rxname = dma_chan_name(host->dma_rx_channel); 410 else 411 rxname = "none"; 412 413 if (host->dma_tx_channel) 414 txname = dma_chan_name(host->dma_tx_channel); 415 else 416 txname = "none"; 417 418 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", 419 rxname, txname); 420 421 /* 422 * Limit the maximum segment size in any SG entry according to 423 * the parameters of the DMA engine device. 424 */ 425 if (host->dma_tx_channel) { 426 struct device *dev = host->dma_tx_channel->device->dev; 427 unsigned int max_seg_size = dma_get_max_seg_size(dev); 428 429 if (max_seg_size < host->mmc->max_seg_size) 430 host->mmc->max_seg_size = max_seg_size; 431 } 432 if (host->dma_rx_channel) { 433 struct device *dev = host->dma_rx_channel->device->dev; 434 unsigned int max_seg_size = dma_get_max_seg_size(dev); 435 436 if (max_seg_size < host->mmc->max_seg_size) 437 host->mmc->max_seg_size = max_seg_size; 438 } 439 } 440 441 /* 442 * This is used in or so inline it 443 * so it can be discarded. 444 */ 445 static inline void mmci_dma_release(struct mmci_host *host) 446 { 447 struct mmci_platform_data *plat = host->plat; 448 449 if (host->dma_rx_channel) 450 dma_release_channel(host->dma_rx_channel); 451 if (host->dma_tx_channel && plat->dma_tx_param) 452 dma_release_channel(host->dma_tx_channel); 453 host->dma_rx_channel = host->dma_tx_channel = NULL; 454 } 455 456 static void mmci_dma_data_error(struct mmci_host *host) 457 { 458 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); 459 dmaengine_terminate_all(host->dma_current); 460 host->dma_current = NULL; 461 host->dma_desc_current = NULL; 462 host->data->host_cookie = 0; 463 } 464 465 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 466 { 467 struct dma_chan *chan; 468 enum dma_data_direction dir; 469 470 if (data->flags & MMC_DATA_READ) { 471 dir = DMA_FROM_DEVICE; 472 chan = host->dma_rx_channel; 473 } else { 474 dir = DMA_TO_DEVICE; 475 chan = host->dma_tx_channel; 476 } 477 478 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); 479 } 480 481 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) 482 { 483 u32 status; 484 int i; 485 486 /* Wait up to 1ms for the DMA to complete */ 487 for (i = 0; ; i++) { 488 status = readl(host->base + MMCISTATUS); 489 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) 490 break; 491 udelay(10); 492 } 493 494 /* 495 * Check to see whether we still have some data left in the FIFO - 496 * this catches DMA controllers which are unable to monitor the 497 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- 498 * contiguous buffers. On TX, we'll get a FIFO underrun error. 499 */ 500 if (status & MCI_RXDATAAVLBLMASK) { 501 mmci_dma_data_error(host); 502 if (!data->error) 503 data->error = -EIO; 504 } 505 506 if (!data->host_cookie) 507 mmci_dma_unmap(host, data); 508 509 /* 510 * Use of DMA with scatter-gather is impossible. 511 * Give up with DMA and switch back to PIO mode. 512 */ 513 if (status & MCI_RXDATAAVLBLMASK) { 514 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); 515 mmci_dma_release(host); 516 } 517 518 host->dma_current = NULL; 519 host->dma_desc_current = NULL; 520 } 521 522 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ 523 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, 524 struct dma_chan **dma_chan, 525 struct dma_async_tx_descriptor **dma_desc) 526 { 527 struct variant_data *variant = host->variant; 528 struct dma_slave_config conf = { 529 .src_addr = host->phybase + MMCIFIFO, 530 .dst_addr = host->phybase + MMCIFIFO, 531 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 532 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, 533 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ 534 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ 535 .device_fc = false, 536 }; 537 struct dma_chan *chan; 538 struct dma_device *device; 539 struct dma_async_tx_descriptor *desc; 540 enum dma_data_direction buffer_dirn; 541 int nr_sg; 542 543 if (data->flags & MMC_DATA_READ) { 544 conf.direction = DMA_DEV_TO_MEM; 545 buffer_dirn = DMA_FROM_DEVICE; 546 chan = host->dma_rx_channel; 547 } else { 548 conf.direction = DMA_MEM_TO_DEV; 549 buffer_dirn = DMA_TO_DEVICE; 550 chan = host->dma_tx_channel; 551 } 552 553 /* If there's no DMA channel, fall back to PIO */ 554 if (!chan) 555 return -EINVAL; 556 557 /* If less than or equal to the fifo size, don't bother with DMA */ 558 if (data->blksz * data->blocks <= variant->fifosize) 559 return -EINVAL; 560 561 device = chan->device; 562 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 563 if (nr_sg == 0) 564 return -EINVAL; 565 566 dmaengine_slave_config(chan, &conf); 567 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, 568 conf.direction, DMA_CTRL_ACK); 569 if (!desc) 570 goto unmap_exit; 571 572 *dma_chan = chan; 573 *dma_desc = desc; 574 575 return 0; 576 577 unmap_exit: 578 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); 579 return -ENOMEM; 580 } 581 582 static inline int mmci_dma_prep_data(struct mmci_host *host, 583 struct mmc_data *data) 584 { 585 /* Check if next job is already prepared. */ 586 if (host->dma_current && host->dma_desc_current) 587 return 0; 588 589 /* No job were prepared thus do it now. */ 590 return __mmci_dma_prep_data(host, data, &host->dma_current, 591 &host->dma_desc_current); 592 } 593 594 static inline int mmci_dma_prep_next(struct mmci_host *host, 595 struct mmc_data *data) 596 { 597 struct mmci_host_next *nd = &host->next_data; 598 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc); 599 } 600 601 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 602 { 603 int ret; 604 struct mmc_data *data = host->data; 605 606 ret = mmci_dma_prep_data(host, host->data); 607 if (ret) 608 return ret; 609 610 /* Okay, go for it. */ 611 dev_vdbg(mmc_dev(host->mmc), 612 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", 613 data->sg_len, data->blksz, data->blocks, data->flags); 614 dmaengine_submit(host->dma_desc_current); 615 dma_async_issue_pending(host->dma_current); 616 617 datactrl |= MCI_DPSM_DMAENABLE; 618 619 /* Trigger the DMA transfer */ 620 mmci_write_datactrlreg(host, datactrl); 621 622 /* 623 * Let the MMCI say when the data is ended and it's time 624 * to fire next DMA request. When that happens, MMCI will 625 * call mmci_data_end() 626 */ 627 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, 628 host->base + MMCIMASK0); 629 return 0; 630 } 631 632 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 633 { 634 struct mmci_host_next *next = &host->next_data; 635 636 WARN_ON(data->host_cookie && data->host_cookie != next->cookie); 637 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan)); 638 639 host->dma_desc_current = next->dma_desc; 640 host->dma_current = next->dma_chan; 641 next->dma_desc = NULL; 642 next->dma_chan = NULL; 643 } 644 645 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, 646 bool is_first_req) 647 { 648 struct mmci_host *host = mmc_priv(mmc); 649 struct mmc_data *data = mrq->data; 650 struct mmci_host_next *nd = &host->next_data; 651 652 if (!data) 653 return; 654 655 BUG_ON(data->host_cookie); 656 657 if (mmci_validate_data(host, data)) 658 return; 659 660 if (!mmci_dma_prep_next(host, data)) 661 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; 662 } 663 664 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, 665 int err) 666 { 667 struct mmci_host *host = mmc_priv(mmc); 668 struct mmc_data *data = mrq->data; 669 670 if (!data || !data->host_cookie) 671 return; 672 673 mmci_dma_unmap(host, data); 674 675 if (err) { 676 struct mmci_host_next *next = &host->next_data; 677 struct dma_chan *chan; 678 if (data->flags & MMC_DATA_READ) 679 chan = host->dma_rx_channel; 680 else 681 chan = host->dma_tx_channel; 682 dmaengine_terminate_all(chan); 683 684 next->dma_desc = NULL; 685 next->dma_chan = NULL; 686 } 687 } 688 689 #else 690 /* Blank functions if the DMA engine is not available */ 691 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) 692 { 693 } 694 static inline void mmci_dma_setup(struct mmci_host *host) 695 { 696 } 697 698 static inline void mmci_dma_release(struct mmci_host *host) 699 { 700 } 701 702 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) 703 { 704 } 705 706 static inline void mmci_dma_finalize(struct mmci_host *host, 707 struct mmc_data *data) 708 { 709 } 710 711 static inline void mmci_dma_data_error(struct mmci_host *host) 712 { 713 } 714 715 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) 716 { 717 return -ENOSYS; 718 } 719 720 #define mmci_pre_request NULL 721 #define mmci_post_request NULL 722 723 #endif 724 725 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) 726 { 727 struct variant_data *variant = host->variant; 728 unsigned int datactrl, timeout, irqmask; 729 unsigned long long clks; 730 void __iomem *base; 731 int blksz_bits; 732 733 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", 734 data->blksz, data->blocks, data->flags); 735 736 host->data = data; 737 host->size = data->blksz * data->blocks; 738 data->bytes_xfered = 0; 739 740 clks = (unsigned long long)data->timeout_ns * host->cclk; 741 do_div(clks, 1000000000UL); 742 743 timeout = data->timeout_clks + (unsigned int)clks; 744 745 base = host->base; 746 writel(timeout, base + MMCIDATATIMER); 747 writel(host->size, base + MMCIDATALENGTH); 748 749 blksz_bits = ffs(data->blksz) - 1; 750 BUG_ON(1 << blksz_bits != data->blksz); 751 752 if (variant->blksz_datactrl16) 753 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); 754 else 755 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; 756 757 if (data->flags & MMC_DATA_READ) 758 datactrl |= MCI_DPSM_DIRECTION; 759 760 /* The ST Micro variants has a special bit to enable SDIO */ 761 if (variant->sdio && host->mmc->card) 762 if (mmc_card_sdio(host->mmc->card)) { 763 /* 764 * The ST Micro variants has a special bit 765 * to enable SDIO. 766 */ 767 u32 clk; 768 769 datactrl |= MCI_ST_DPSM_SDIOEN; 770 771 /* 772 * The ST Micro variant for SDIO small write transfers 773 * needs to have clock H/W flow control disabled, 774 * otherwise the transfer will not start. The threshold 775 * depends on the rate of MCLK. 776 */ 777 if (data->flags & MMC_DATA_WRITE && 778 (host->size < 8 || 779 (host->size <= 8 && host->mclk > 50000000))) 780 clk = host->clk_reg & ~variant->clkreg_enable; 781 else 782 clk = host->clk_reg | variant->clkreg_enable; 783 784 mmci_write_clkreg(host, clk); 785 } 786 787 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) 788 datactrl |= MCI_ST_DPSM_DDRMODE; 789 790 /* 791 * Attempt to use DMA operation mode, if this 792 * should fail, fall back to PIO mode 793 */ 794 if (!mmci_dma_start_data(host, datactrl)) 795 return; 796 797 /* IRQ mode, map the SG list for CPU reading/writing */ 798 mmci_init_sg(host, data); 799 800 if (data->flags & MMC_DATA_READ) { 801 irqmask = MCI_RXFIFOHALFFULLMASK; 802 803 /* 804 * If we have less than the fifo 'half-full' threshold to 805 * transfer, trigger a PIO interrupt as soon as any data 806 * is available. 807 */ 808 if (host->size < variant->fifohalfsize) 809 irqmask |= MCI_RXDATAAVLBLMASK; 810 } else { 811 /* 812 * We don't actually need to include "FIFO empty" here 813 * since its implicit in "FIFO half empty". 814 */ 815 irqmask = MCI_TXFIFOHALFEMPTYMASK; 816 } 817 818 mmci_write_datactrlreg(host, datactrl); 819 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); 820 mmci_set_mask1(host, irqmask); 821 } 822 823 static void 824 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) 825 { 826 void __iomem *base = host->base; 827 828 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", 829 cmd->opcode, cmd->arg, cmd->flags); 830 831 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { 832 writel(0, base + MMCICOMMAND); 833 udelay(1); 834 } 835 836 c |= cmd->opcode | MCI_CPSM_ENABLE; 837 if (cmd->flags & MMC_RSP_PRESENT) { 838 if (cmd->flags & MMC_RSP_136) 839 c |= MCI_CPSM_LONGRSP; 840 c |= MCI_CPSM_RESPONSE; 841 } 842 if (/*interrupt*/0) 843 c |= MCI_CPSM_INTERRUPT; 844 845 host->cmd = cmd; 846 847 writel(cmd->arg, base + MMCIARGUMENT); 848 writel(c, base + MMCICOMMAND); 849 } 850 851 static void 852 mmci_data_irq(struct mmci_host *host, struct mmc_data *data, 853 unsigned int status) 854 { 855 /* First check for errors */ 856 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 857 MCI_TXUNDERRUN|MCI_RXOVERRUN)) { 858 u32 remain, success; 859 860 /* Terminate the DMA transfer */ 861 if (dma_inprogress(host)) { 862 mmci_dma_data_error(host); 863 mmci_dma_unmap(host, data); 864 } 865 866 /* 867 * Calculate how far we are into the transfer. Note that 868 * the data counter gives the number of bytes transferred 869 * on the MMC bus, not on the host side. On reads, this 870 * can be as much as a FIFO-worth of data ahead. This 871 * matters for FIFO overruns only. 872 */ 873 remain = readl(host->base + MMCIDATACNT); 874 success = data->blksz * data->blocks - remain; 875 876 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", 877 status, success); 878 if (status & MCI_DATACRCFAIL) { 879 /* Last block was not successful */ 880 success -= 1; 881 data->error = -EILSEQ; 882 } else if (status & MCI_DATATIMEOUT) { 883 data->error = -ETIMEDOUT; 884 } else if (status & MCI_STARTBITERR) { 885 data->error = -ECOMM; 886 } else if (status & MCI_TXUNDERRUN) { 887 data->error = -EIO; 888 } else if (status & MCI_RXOVERRUN) { 889 if (success > host->variant->fifosize) 890 success -= host->variant->fifosize; 891 else 892 success = 0; 893 data->error = -EIO; 894 } 895 data->bytes_xfered = round_down(success, data->blksz); 896 } 897 898 if (status & MCI_DATABLOCKEND) 899 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); 900 901 if (status & MCI_DATAEND || data->error) { 902 if (dma_inprogress(host)) 903 mmci_dma_finalize(host, data); 904 mmci_stop_data(host); 905 906 if (!data->error) 907 /* The error clause is handled above, success! */ 908 data->bytes_xfered = data->blksz * data->blocks; 909 910 if (!data->stop || host->mrq->sbc) { 911 mmci_request_end(host, data->mrq); 912 } else { 913 mmci_start_command(host, data->stop, 0); 914 } 915 } 916 } 917 918 static void 919 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, 920 unsigned int status) 921 { 922 void __iomem *base = host->base; 923 bool sbc = (cmd == host->mrq->sbc); 924 925 host->cmd = NULL; 926 927 if (status & MCI_CMDTIMEOUT) { 928 cmd->error = -ETIMEDOUT; 929 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { 930 cmd->error = -EILSEQ; 931 } else { 932 cmd->resp[0] = readl(base + MMCIRESPONSE0); 933 cmd->resp[1] = readl(base + MMCIRESPONSE1); 934 cmd->resp[2] = readl(base + MMCIRESPONSE2); 935 cmd->resp[3] = readl(base + MMCIRESPONSE3); 936 } 937 938 if ((!sbc && !cmd->data) || cmd->error) { 939 if (host->data) { 940 /* Terminate the DMA transfer */ 941 if (dma_inprogress(host)) { 942 mmci_dma_data_error(host); 943 mmci_dma_unmap(host, host->data); 944 } 945 mmci_stop_data(host); 946 } 947 mmci_request_end(host, host->mrq); 948 } else if (sbc) { 949 mmci_start_command(host, host->mrq->cmd, 0); 950 } else if (!(cmd->data->flags & MMC_DATA_READ)) { 951 mmci_start_data(host, cmd->data); 952 } 953 } 954 955 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) 956 { 957 void __iomem *base = host->base; 958 char *ptr = buffer; 959 u32 status; 960 int host_remain = host->size; 961 962 do { 963 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2); 964 965 if (count > remain) 966 count = remain; 967 968 if (count <= 0) 969 break; 970 971 /* 972 * SDIO especially may want to send something that is 973 * not divisible by 4 (as opposed to card sectors 974 * etc). Therefore make sure to always read the last bytes 975 * while only doing full 32-bit reads towards the FIFO. 976 */ 977 if (unlikely(count & 0x3)) { 978 if (count < 4) { 979 unsigned char buf[4]; 980 ioread32_rep(base + MMCIFIFO, buf, 1); 981 memcpy(ptr, buf, count); 982 } else { 983 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 984 count &= ~0x3; 985 } 986 } else { 987 ioread32_rep(base + MMCIFIFO, ptr, count >> 2); 988 } 989 990 ptr += count; 991 remain -= count; 992 host_remain -= count; 993 994 if (remain == 0) 995 break; 996 997 status = readl(base + MMCISTATUS); 998 } while (status & MCI_RXDATAAVLBL); 999 1000 return ptr - buffer; 1001 } 1002 1003 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) 1004 { 1005 struct variant_data *variant = host->variant; 1006 void __iomem *base = host->base; 1007 char *ptr = buffer; 1008 1009 do { 1010 unsigned int count, maxcnt; 1011 1012 maxcnt = status & MCI_TXFIFOEMPTY ? 1013 variant->fifosize : variant->fifohalfsize; 1014 count = min(remain, maxcnt); 1015 1016 /* 1017 * SDIO especially may want to send something that is 1018 * not divisible by 4 (as opposed to card sectors 1019 * etc), and the FIFO only accept full 32-bit writes. 1020 * So compensate by adding +3 on the count, a single 1021 * byte become a 32bit write, 7 bytes will be two 1022 * 32bit writes etc. 1023 */ 1024 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); 1025 1026 ptr += count; 1027 remain -= count; 1028 1029 if (remain == 0) 1030 break; 1031 1032 status = readl(base + MMCISTATUS); 1033 } while (status & MCI_TXFIFOHALFEMPTY); 1034 1035 return ptr - buffer; 1036 } 1037 1038 /* 1039 * PIO data transfer IRQ handler. 1040 */ 1041 static irqreturn_t mmci_pio_irq(int irq, void *dev_id) 1042 { 1043 struct mmci_host *host = dev_id; 1044 struct sg_mapping_iter *sg_miter = &host->sg_miter; 1045 struct variant_data *variant = host->variant; 1046 void __iomem *base = host->base; 1047 unsigned long flags; 1048 u32 status; 1049 1050 status = readl(base + MMCISTATUS); 1051 1052 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); 1053 1054 local_irq_save(flags); 1055 1056 do { 1057 unsigned int remain, len; 1058 char *buffer; 1059 1060 /* 1061 * For write, we only need to test the half-empty flag 1062 * here - if the FIFO is completely empty, then by 1063 * definition it is more than half empty. 1064 * 1065 * For read, check for data available. 1066 */ 1067 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) 1068 break; 1069 1070 if (!sg_miter_next(sg_miter)) 1071 break; 1072 1073 buffer = sg_miter->addr; 1074 remain = sg_miter->length; 1075 1076 len = 0; 1077 if (status & MCI_RXACTIVE) 1078 len = mmci_pio_read(host, buffer, remain); 1079 if (status & MCI_TXACTIVE) 1080 len = mmci_pio_write(host, buffer, remain, status); 1081 1082 sg_miter->consumed = len; 1083 1084 host->size -= len; 1085 remain -= len; 1086 1087 if (remain) 1088 break; 1089 1090 status = readl(base + MMCISTATUS); 1091 } while (1); 1092 1093 sg_miter_stop(sg_miter); 1094 1095 local_irq_restore(flags); 1096 1097 /* 1098 * If we have less than the fifo 'half-full' threshold to transfer, 1099 * trigger a PIO interrupt as soon as any data is available. 1100 */ 1101 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) 1102 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); 1103 1104 /* 1105 * If we run out of data, disable the data IRQs; this 1106 * prevents a race where the FIFO becomes empty before 1107 * the chip itself has disabled the data path, and 1108 * stops us racing with our data end IRQ. 1109 */ 1110 if (host->size == 0) { 1111 mmci_set_mask1(host, 0); 1112 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); 1113 } 1114 1115 return IRQ_HANDLED; 1116 } 1117 1118 /* 1119 * Handle completion of command and data transfers. 1120 */ 1121 static irqreturn_t mmci_irq(int irq, void *dev_id) 1122 { 1123 struct mmci_host *host = dev_id; 1124 u32 status; 1125 int ret = 0; 1126 1127 spin_lock(&host->lock); 1128 1129 do { 1130 struct mmc_command *cmd; 1131 struct mmc_data *data; 1132 1133 status = readl(host->base + MMCISTATUS); 1134 1135 if (host->singleirq) { 1136 if (status & readl(host->base + MMCIMASK1)) 1137 mmci_pio_irq(irq, dev_id); 1138 1139 status &= ~MCI_IRQ1MASK; 1140 } 1141 1142 status &= readl(host->base + MMCIMASK0); 1143 writel(status, host->base + MMCICLEAR); 1144 1145 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); 1146 1147 data = host->data; 1148 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| 1149 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND| 1150 MCI_DATABLOCKEND) && data) 1151 mmci_data_irq(host, data, status); 1152 1153 cmd = host->cmd; 1154 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd) 1155 mmci_cmd_irq(host, cmd, status); 1156 1157 ret = 1; 1158 } while (status); 1159 1160 spin_unlock(&host->lock); 1161 1162 return IRQ_RETVAL(ret); 1163 } 1164 1165 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) 1166 { 1167 struct mmci_host *host = mmc_priv(mmc); 1168 unsigned long flags; 1169 1170 WARN_ON(host->mrq != NULL); 1171 1172 mrq->cmd->error = mmci_validate_data(host, mrq->data); 1173 if (mrq->cmd->error) { 1174 mmc_request_done(mmc, mrq); 1175 return; 1176 } 1177 1178 pm_runtime_get_sync(mmc_dev(mmc)); 1179 1180 spin_lock_irqsave(&host->lock, flags); 1181 1182 host->mrq = mrq; 1183 1184 if (mrq->data) 1185 mmci_get_next_data(host, mrq->data); 1186 1187 if (mrq->data && mrq->data->flags & MMC_DATA_READ) 1188 mmci_start_data(host, mrq->data); 1189 1190 if (mrq->sbc) 1191 mmci_start_command(host, mrq->sbc, 0); 1192 else 1193 mmci_start_command(host, mrq->cmd, 0); 1194 1195 spin_unlock_irqrestore(&host->lock, flags); 1196 } 1197 1198 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1199 { 1200 struct mmci_host *host = mmc_priv(mmc); 1201 struct variant_data *variant = host->variant; 1202 u32 pwr = 0; 1203 unsigned long flags; 1204 int ret; 1205 1206 pm_runtime_get_sync(mmc_dev(mmc)); 1207 1208 if (host->plat->ios_handler && 1209 host->plat->ios_handler(mmc_dev(mmc), ios)) 1210 dev_err(mmc_dev(mmc), "platform ios_handler failed\n"); 1211 1212 switch (ios->power_mode) { 1213 case MMC_POWER_OFF: 1214 if (!IS_ERR(mmc->supply.vmmc)) 1215 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 1216 1217 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 1218 regulator_disable(mmc->supply.vqmmc); 1219 host->vqmmc_enabled = false; 1220 } 1221 1222 break; 1223 case MMC_POWER_UP: 1224 if (!IS_ERR(mmc->supply.vmmc)) 1225 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 1226 1227 /* 1228 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP 1229 * and instead uses MCI_PWR_ON so apply whatever value is 1230 * configured in the variant data. 1231 */ 1232 pwr |= variant->pwrreg_powerup; 1233 1234 break; 1235 case MMC_POWER_ON: 1236 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 1237 ret = regulator_enable(mmc->supply.vqmmc); 1238 if (ret < 0) 1239 dev_err(mmc_dev(mmc), 1240 "failed to enable vqmmc regulator\n"); 1241 else 1242 host->vqmmc_enabled = true; 1243 } 1244 1245 pwr |= MCI_PWR_ON; 1246 break; 1247 } 1248 1249 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { 1250 /* 1251 * The ST Micro variant has some additional bits 1252 * indicating signal direction for the signals in 1253 * the SD/MMC bus and feedback-clock usage. 1254 */ 1255 pwr |= host->plat->sigdir; 1256 1257 if (ios->bus_width == MMC_BUS_WIDTH_4) 1258 pwr &= ~MCI_ST_DATA74DIREN; 1259 else if (ios->bus_width == MMC_BUS_WIDTH_1) 1260 pwr &= (~MCI_ST_DATA74DIREN & 1261 ~MCI_ST_DATA31DIREN & 1262 ~MCI_ST_DATA2DIREN); 1263 } 1264 1265 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { 1266 if (host->hw_designer != AMBA_VENDOR_ST) 1267 pwr |= MCI_ROD; 1268 else { 1269 /* 1270 * The ST Micro variant use the ROD bit for something 1271 * else and only has OD (Open Drain). 1272 */ 1273 pwr |= MCI_OD; 1274 } 1275 } 1276 1277 /* 1278 * If clock = 0 and the variant requires the MMCIPOWER to be used for 1279 * gating the clock, the MCI_PWR_ON bit is cleared. 1280 */ 1281 if (!ios->clock && variant->pwrreg_clkgate) 1282 pwr &= ~MCI_PWR_ON; 1283 1284 spin_lock_irqsave(&host->lock, flags); 1285 1286 mmci_set_clkreg(host, ios->clock); 1287 mmci_write_pwrreg(host, pwr); 1288 mmci_reg_delay(host); 1289 1290 spin_unlock_irqrestore(&host->lock, flags); 1291 1292 pm_runtime_mark_last_busy(mmc_dev(mmc)); 1293 pm_runtime_put_autosuspend(mmc_dev(mmc)); 1294 } 1295 1296 static int mmci_get_ro(struct mmc_host *mmc) 1297 { 1298 struct mmci_host *host = mmc_priv(mmc); 1299 1300 if (host->gpio_wp == -ENOSYS) 1301 return -ENOSYS; 1302 1303 return gpio_get_value_cansleep(host->gpio_wp); 1304 } 1305 1306 static int mmci_get_cd(struct mmc_host *mmc) 1307 { 1308 struct mmci_host *host = mmc_priv(mmc); 1309 struct mmci_platform_data *plat = host->plat; 1310 unsigned int status; 1311 1312 if (host->gpio_cd == -ENOSYS) { 1313 if (!plat->status) 1314 return 1; /* Assume always present */ 1315 1316 status = plat->status(mmc_dev(host->mmc)); 1317 } else 1318 status = !!gpio_get_value_cansleep(host->gpio_cd) 1319 ^ plat->cd_invert; 1320 1321 /* 1322 * Use positive logic throughout - status is zero for no card, 1323 * non-zero for card inserted. 1324 */ 1325 return status; 1326 } 1327 1328 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1329 { 1330 int ret = 0; 1331 1332 if (!IS_ERR(mmc->supply.vqmmc)) { 1333 1334 pm_runtime_get_sync(mmc_dev(mmc)); 1335 1336 switch (ios->signal_voltage) { 1337 case MMC_SIGNAL_VOLTAGE_330: 1338 ret = regulator_set_voltage(mmc->supply.vqmmc, 1339 2700000, 3600000); 1340 break; 1341 case MMC_SIGNAL_VOLTAGE_180: 1342 ret = regulator_set_voltage(mmc->supply.vqmmc, 1343 1700000, 1950000); 1344 break; 1345 case MMC_SIGNAL_VOLTAGE_120: 1346 ret = regulator_set_voltage(mmc->supply.vqmmc, 1347 1100000, 1300000); 1348 break; 1349 } 1350 1351 if (ret) 1352 dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); 1353 1354 pm_runtime_mark_last_busy(mmc_dev(mmc)); 1355 pm_runtime_put_autosuspend(mmc_dev(mmc)); 1356 } 1357 1358 return ret; 1359 } 1360 1361 static irqreturn_t mmci_cd_irq(int irq, void *dev_id) 1362 { 1363 struct mmci_host *host = dev_id; 1364 1365 mmc_detect_change(host->mmc, msecs_to_jiffies(500)); 1366 1367 return IRQ_HANDLED; 1368 } 1369 1370 static struct mmc_host_ops mmci_ops = { 1371 .request = mmci_request, 1372 .pre_req = mmci_pre_request, 1373 .post_req = mmci_post_request, 1374 .set_ios = mmci_set_ios, 1375 .get_ro = mmci_get_ro, 1376 .get_cd = mmci_get_cd, 1377 .start_signal_voltage_switch = mmci_sig_volt_switch, 1378 }; 1379 1380 #ifdef CONFIG_OF 1381 static void mmci_dt_populate_generic_pdata(struct device_node *np, 1382 struct mmci_platform_data *pdata) 1383 { 1384 int bus_width = 0; 1385 1386 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0); 1387 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0); 1388 1389 if (of_get_property(np, "cd-inverted", NULL)) 1390 pdata->cd_invert = true; 1391 else 1392 pdata->cd_invert = false; 1393 1394 of_property_read_u32(np, "max-frequency", &pdata->f_max); 1395 if (!pdata->f_max) 1396 pr_warn("%s has no 'max-frequency' property\n", np->full_name); 1397 1398 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) 1399 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED; 1400 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) 1401 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED; 1402 1403 of_property_read_u32(np, "bus-width", &bus_width); 1404 switch (bus_width) { 1405 case 0 : 1406 /* No bus-width supplied. */ 1407 break; 1408 case 4 : 1409 pdata->capabilities |= MMC_CAP_4_BIT_DATA; 1410 break; 1411 case 8 : 1412 pdata->capabilities |= MMC_CAP_8_BIT_DATA; 1413 break; 1414 default : 1415 pr_warn("%s: Unsupported bus width\n", np->full_name); 1416 } 1417 } 1418 #else 1419 static void mmci_dt_populate_generic_pdata(struct device_node *np, 1420 struct mmci_platform_data *pdata) 1421 { 1422 return; 1423 } 1424 #endif 1425 1426 static int mmci_probe(struct amba_device *dev, 1427 const struct amba_id *id) 1428 { 1429 struct mmci_platform_data *plat = dev->dev.platform_data; 1430 struct device_node *np = dev->dev.of_node; 1431 struct variant_data *variant = id->data; 1432 struct mmci_host *host; 1433 struct mmc_host *mmc; 1434 int ret; 1435 1436 /* Must have platform data or Device Tree. */ 1437 if (!plat && !np) { 1438 dev_err(&dev->dev, "No plat data or DT found\n"); 1439 return -EINVAL; 1440 } 1441 1442 if (!plat) { 1443 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); 1444 if (!plat) 1445 return -ENOMEM; 1446 } 1447 1448 if (np) 1449 mmci_dt_populate_generic_pdata(np, plat); 1450 1451 ret = amba_request_regions(dev, DRIVER_NAME); 1452 if (ret) 1453 goto out; 1454 1455 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); 1456 if (!mmc) { 1457 ret = -ENOMEM; 1458 goto rel_regions; 1459 } 1460 1461 host = mmc_priv(mmc); 1462 host->mmc = mmc; 1463 1464 host->gpio_wp = -ENOSYS; 1465 host->gpio_cd = -ENOSYS; 1466 host->gpio_cd_irq = -1; 1467 1468 host->hw_designer = amba_manf(dev); 1469 host->hw_revision = amba_rev(dev); 1470 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); 1471 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); 1472 1473 host->clk = devm_clk_get(&dev->dev, NULL); 1474 if (IS_ERR(host->clk)) { 1475 ret = PTR_ERR(host->clk); 1476 goto host_free; 1477 } 1478 1479 ret = clk_prepare_enable(host->clk); 1480 if (ret) 1481 goto host_free; 1482 1483 host->plat = plat; 1484 host->variant = variant; 1485 host->mclk = clk_get_rate(host->clk); 1486 /* 1487 * According to the spec, mclk is max 100 MHz, 1488 * so we try to adjust the clock down to this, 1489 * (if possible). 1490 */ 1491 if (host->mclk > 100000000) { 1492 ret = clk_set_rate(host->clk, 100000000); 1493 if (ret < 0) 1494 goto clk_disable; 1495 host->mclk = clk_get_rate(host->clk); 1496 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", 1497 host->mclk); 1498 } 1499 host->phybase = dev->res.start; 1500 host->base = ioremap(dev->res.start, resource_size(&dev->res)); 1501 if (!host->base) { 1502 ret = -ENOMEM; 1503 goto clk_disable; 1504 } 1505 1506 if (variant->busy_detect) { 1507 mmci_ops.card_busy = mmci_card_busy; 1508 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE); 1509 } 1510 1511 mmc->ops = &mmci_ops; 1512 /* 1513 * The ARM and ST versions of the block have slightly different 1514 * clock divider equations which means that the minimum divider 1515 * differs too. 1516 */ 1517 if (variant->st_clkdiv) 1518 mmc->f_min = DIV_ROUND_UP(host->mclk, 257); 1519 else 1520 mmc->f_min = DIV_ROUND_UP(host->mclk, 512); 1521 /* 1522 * If the platform data supplies a maximum operating 1523 * frequency, this takes precedence. Else, we fall back 1524 * to using the module parameter, which has a (low) 1525 * default value in case it is not specified. Either 1526 * value must not exceed the clock rate into the block, 1527 * of course. 1528 */ 1529 if (plat->f_max) 1530 mmc->f_max = min(host->mclk, plat->f_max); 1531 else 1532 mmc->f_max = min(host->mclk, fmax); 1533 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); 1534 1535 /* Get regulators and the supported OCR mask */ 1536 mmc_regulator_get_supply(mmc); 1537 if (!mmc->ocr_avail) 1538 mmc->ocr_avail = plat->ocr_mask; 1539 else if (plat->ocr_mask) 1540 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); 1541 1542 mmc->caps = plat->capabilities; 1543 mmc->caps2 = plat->capabilities2; 1544 1545 /* We support these PM capabilities. */ 1546 mmc->pm_caps = MMC_PM_KEEP_POWER; 1547 1548 /* 1549 * We can do SGIO 1550 */ 1551 mmc->max_segs = NR_SG; 1552 1553 /* 1554 * Since only a certain number of bits are valid in the data length 1555 * register, we must ensure that we don't exceed 2^num-1 bytes in a 1556 * single request. 1557 */ 1558 mmc->max_req_size = (1 << variant->datalength_bits) - 1; 1559 1560 /* 1561 * Set the maximum segment size. Since we aren't doing DMA 1562 * (yet) we are only limited by the data length register. 1563 */ 1564 mmc->max_seg_size = mmc->max_req_size; 1565 1566 /* 1567 * Block size can be up to 2048 bytes, but must be a power of two. 1568 */ 1569 mmc->max_blk_size = 1 << 11; 1570 1571 /* 1572 * Limit the number of blocks transferred so that we don't overflow 1573 * the maximum request size. 1574 */ 1575 mmc->max_blk_count = mmc->max_req_size >> 11; 1576 1577 spin_lock_init(&host->lock); 1578 1579 writel(0, host->base + MMCIMASK0); 1580 writel(0, host->base + MMCIMASK1); 1581 writel(0xfff, host->base + MMCICLEAR); 1582 1583 if (plat->gpio_cd == -EPROBE_DEFER) { 1584 ret = -EPROBE_DEFER; 1585 goto err_gpio_cd; 1586 } 1587 if (gpio_is_valid(plat->gpio_cd)) { 1588 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)"); 1589 if (ret == 0) 1590 ret = gpio_direction_input(plat->gpio_cd); 1591 if (ret == 0) 1592 host->gpio_cd = plat->gpio_cd; 1593 else if (ret != -ENOSYS) 1594 goto err_gpio_cd; 1595 1596 /* 1597 * A gpio pin that will detect cards when inserted and removed 1598 * will most likely want to trigger on the edges if it is 1599 * 0 when ejected and 1 when inserted (or mutatis mutandis 1600 * for the inverted case) so we request triggers on both 1601 * edges. 1602 */ 1603 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd), 1604 mmci_cd_irq, 1605 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, 1606 DRIVER_NAME " (cd)", host); 1607 if (ret >= 0) 1608 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd); 1609 } 1610 if (plat->gpio_wp == -EPROBE_DEFER) { 1611 ret = -EPROBE_DEFER; 1612 goto err_gpio_wp; 1613 } 1614 if (gpio_is_valid(plat->gpio_wp)) { 1615 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)"); 1616 if (ret == 0) 1617 ret = gpio_direction_input(plat->gpio_wp); 1618 if (ret == 0) 1619 host->gpio_wp = plat->gpio_wp; 1620 else if (ret != -ENOSYS) 1621 goto err_gpio_wp; 1622 } 1623 1624 if ((host->plat->status || host->gpio_cd != -ENOSYS) 1625 && host->gpio_cd_irq < 0) 1626 mmc->caps |= MMC_CAP_NEEDS_POLL; 1627 1628 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host); 1629 if (ret) 1630 goto unmap; 1631 1632 if (!dev->irq[1]) 1633 host->singleirq = true; 1634 else { 1635 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED, 1636 DRIVER_NAME " (pio)", host); 1637 if (ret) 1638 goto irq0_free; 1639 } 1640 1641 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1642 1643 amba_set_drvdata(dev, mmc); 1644 1645 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", 1646 mmc_hostname(mmc), amba_part(dev), amba_manf(dev), 1647 amba_rev(dev), (unsigned long long)dev->res.start, 1648 dev->irq[0], dev->irq[1]); 1649 1650 mmci_dma_setup(host); 1651 1652 pm_runtime_set_autosuspend_delay(&dev->dev, 50); 1653 pm_runtime_use_autosuspend(&dev->dev); 1654 pm_runtime_put(&dev->dev); 1655 1656 mmc_add_host(mmc); 1657 1658 return 0; 1659 1660 irq0_free: 1661 free_irq(dev->irq[0], host); 1662 unmap: 1663 if (host->gpio_wp != -ENOSYS) 1664 gpio_free(host->gpio_wp); 1665 err_gpio_wp: 1666 if (host->gpio_cd_irq >= 0) 1667 free_irq(host->gpio_cd_irq, host); 1668 if (host->gpio_cd != -ENOSYS) 1669 gpio_free(host->gpio_cd); 1670 err_gpio_cd: 1671 iounmap(host->base); 1672 clk_disable: 1673 clk_disable_unprepare(host->clk); 1674 host_free: 1675 mmc_free_host(mmc); 1676 rel_regions: 1677 amba_release_regions(dev); 1678 out: 1679 return ret; 1680 } 1681 1682 static int mmci_remove(struct amba_device *dev) 1683 { 1684 struct mmc_host *mmc = amba_get_drvdata(dev); 1685 1686 amba_set_drvdata(dev, NULL); 1687 1688 if (mmc) { 1689 struct mmci_host *host = mmc_priv(mmc); 1690 1691 /* 1692 * Undo pm_runtime_put() in probe. We use the _sync 1693 * version here so that we can access the primecell. 1694 */ 1695 pm_runtime_get_sync(&dev->dev); 1696 1697 mmc_remove_host(mmc); 1698 1699 writel(0, host->base + MMCIMASK0); 1700 writel(0, host->base + MMCIMASK1); 1701 1702 writel(0, host->base + MMCICOMMAND); 1703 writel(0, host->base + MMCIDATACTRL); 1704 1705 mmci_dma_release(host); 1706 free_irq(dev->irq[0], host); 1707 if (!host->singleirq) 1708 free_irq(dev->irq[1], host); 1709 1710 if (host->gpio_wp != -ENOSYS) 1711 gpio_free(host->gpio_wp); 1712 if (host->gpio_cd_irq >= 0) 1713 free_irq(host->gpio_cd_irq, host); 1714 if (host->gpio_cd != -ENOSYS) 1715 gpio_free(host->gpio_cd); 1716 1717 iounmap(host->base); 1718 clk_disable_unprepare(host->clk); 1719 1720 mmc_free_host(mmc); 1721 1722 amba_release_regions(dev); 1723 } 1724 1725 return 0; 1726 } 1727 1728 #ifdef CONFIG_SUSPEND 1729 static int mmci_suspend(struct device *dev) 1730 { 1731 struct amba_device *adev = to_amba_device(dev); 1732 struct mmc_host *mmc = amba_get_drvdata(adev); 1733 1734 if (mmc) { 1735 struct mmci_host *host = mmc_priv(mmc); 1736 pm_runtime_get_sync(dev); 1737 writel(0, host->base + MMCIMASK0); 1738 } 1739 1740 return 0; 1741 } 1742 1743 static int mmci_resume(struct device *dev) 1744 { 1745 struct amba_device *adev = to_amba_device(dev); 1746 struct mmc_host *mmc = amba_get_drvdata(adev); 1747 1748 if (mmc) { 1749 struct mmci_host *host = mmc_priv(mmc); 1750 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1751 pm_runtime_put(dev); 1752 } 1753 1754 return 0; 1755 } 1756 #endif 1757 1758 #ifdef CONFIG_PM_RUNTIME 1759 static void mmci_save(struct mmci_host *host) 1760 { 1761 unsigned long flags; 1762 1763 if (host->variant->pwrreg_nopower) { 1764 spin_lock_irqsave(&host->lock, flags); 1765 1766 writel(0, host->base + MMCIMASK0); 1767 writel(0, host->base + MMCIDATACTRL); 1768 writel(0, host->base + MMCIPOWER); 1769 writel(0, host->base + MMCICLOCK); 1770 mmci_reg_delay(host); 1771 1772 spin_unlock_irqrestore(&host->lock, flags); 1773 } 1774 1775 } 1776 1777 static void mmci_restore(struct mmci_host *host) 1778 { 1779 unsigned long flags; 1780 1781 if (host->variant->pwrreg_nopower) { 1782 spin_lock_irqsave(&host->lock, flags); 1783 1784 writel(host->clk_reg, host->base + MMCICLOCK); 1785 writel(host->datactrl_reg, host->base + MMCIDATACTRL); 1786 writel(host->pwr_reg, host->base + MMCIPOWER); 1787 writel(MCI_IRQENABLE, host->base + MMCIMASK0); 1788 mmci_reg_delay(host); 1789 1790 spin_unlock_irqrestore(&host->lock, flags); 1791 } 1792 } 1793 1794 static int mmci_runtime_suspend(struct device *dev) 1795 { 1796 struct amba_device *adev = to_amba_device(dev); 1797 struct mmc_host *mmc = amba_get_drvdata(adev); 1798 1799 if (mmc) { 1800 struct mmci_host *host = mmc_priv(mmc); 1801 pinctrl_pm_select_sleep_state(dev); 1802 mmci_save(host); 1803 clk_disable_unprepare(host->clk); 1804 } 1805 1806 return 0; 1807 } 1808 1809 static int mmci_runtime_resume(struct device *dev) 1810 { 1811 struct amba_device *adev = to_amba_device(dev); 1812 struct mmc_host *mmc = amba_get_drvdata(adev); 1813 1814 if (mmc) { 1815 struct mmci_host *host = mmc_priv(mmc); 1816 clk_prepare_enable(host->clk); 1817 mmci_restore(host); 1818 pinctrl_pm_select_default_state(dev); 1819 } 1820 1821 return 0; 1822 } 1823 #endif 1824 1825 static const struct dev_pm_ops mmci_dev_pm_ops = { 1826 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume) 1827 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) 1828 }; 1829 1830 static struct amba_id mmci_ids[] = { 1831 { 1832 .id = 0x00041180, 1833 .mask = 0xff0fffff, 1834 .data = &variant_arm, 1835 }, 1836 { 1837 .id = 0x01041180, 1838 .mask = 0xff0fffff, 1839 .data = &variant_arm_extended_fifo, 1840 }, 1841 { 1842 .id = 0x02041180, 1843 .mask = 0xff0fffff, 1844 .data = &variant_arm_extended_fifo_hwfc, 1845 }, 1846 { 1847 .id = 0x00041181, 1848 .mask = 0x000fffff, 1849 .data = &variant_arm, 1850 }, 1851 /* ST Micro variants */ 1852 { 1853 .id = 0x00180180, 1854 .mask = 0x00ffffff, 1855 .data = &variant_u300, 1856 }, 1857 { 1858 .id = 0x10180180, 1859 .mask = 0xf0ffffff, 1860 .data = &variant_nomadik, 1861 }, 1862 { 1863 .id = 0x00280180, 1864 .mask = 0x00ffffff, 1865 .data = &variant_u300, 1866 }, 1867 { 1868 .id = 0x00480180, 1869 .mask = 0xf0ffffff, 1870 .data = &variant_ux500, 1871 }, 1872 { 1873 .id = 0x10480180, 1874 .mask = 0xf0ffffff, 1875 .data = &variant_ux500v2, 1876 }, 1877 { 0, 0 }, 1878 }; 1879 1880 MODULE_DEVICE_TABLE(amba, mmci_ids); 1881 1882 static struct amba_driver mmci_driver = { 1883 .drv = { 1884 .name = DRIVER_NAME, 1885 .pm = &mmci_dev_pm_ops, 1886 }, 1887 .probe = mmci_probe, 1888 .remove = mmci_remove, 1889 .id_table = mmci_ids, 1890 }; 1891 1892 module_amba_driver(mmci_driver); 1893 1894 module_param(fmax, uint, 0444); 1895 1896 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); 1897 MODULE_LICENSE("GPL"); 1898