xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 75f25bd3)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 
33 #include <asm/div64.h>
34 #include <asm/io.h>
35 #include <asm/sizes.h>
36 
37 #include "mmci.h"
38 
39 #define DRIVER_NAME "mmci-pl18x"
40 
41 static unsigned int fmax = 515633;
42 
43 /**
44  * struct variant_data - MMCI variant-specific quirks
45  * @clkreg: default value for MCICLOCK register
46  * @clkreg_enable: enable value for MMCICLOCK register
47  * @datalength_bits: number of bits in the MMCIDATALENGTH register
48  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49  *	      is asserted (likewise for RX)
50  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51  *		  is asserted (likewise for RX)
52  * @sdio: variant supports SDIO
53  * @st_clkdiv: true if using a ST-specific clock divider algorithm
54  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
55  */
56 struct variant_data {
57 	unsigned int		clkreg;
58 	unsigned int		clkreg_enable;
59 	unsigned int		datalength_bits;
60 	unsigned int		fifosize;
61 	unsigned int		fifohalfsize;
62 	bool			sdio;
63 	bool			st_clkdiv;
64 	bool			blksz_datactrl16;
65 };
66 
67 static struct variant_data variant_arm = {
68 	.fifosize		= 16 * 4,
69 	.fifohalfsize		= 8 * 4,
70 	.datalength_bits	= 16,
71 };
72 
73 static struct variant_data variant_arm_extended_fifo = {
74 	.fifosize		= 128 * 4,
75 	.fifohalfsize		= 64 * 4,
76 	.datalength_bits	= 16,
77 };
78 
79 static struct variant_data variant_u300 = {
80 	.fifosize		= 16 * 4,
81 	.fifohalfsize		= 8 * 4,
82 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
83 	.datalength_bits	= 16,
84 	.sdio			= true,
85 };
86 
87 static struct variant_data variant_ux500 = {
88 	.fifosize		= 30 * 4,
89 	.fifohalfsize		= 8 * 4,
90 	.clkreg			= MCI_CLK_ENABLE,
91 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
92 	.datalength_bits	= 24,
93 	.sdio			= true,
94 	.st_clkdiv		= true,
95 };
96 
97 static struct variant_data variant_ux500v2 = {
98 	.fifosize		= 30 * 4,
99 	.fifohalfsize		= 8 * 4,
100 	.clkreg			= MCI_CLK_ENABLE,
101 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
102 	.datalength_bits	= 24,
103 	.sdio			= true,
104 	.st_clkdiv		= true,
105 	.blksz_datactrl16	= true,
106 };
107 
108 /*
109  * This must be called with host->lock held
110  */
111 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
112 {
113 	struct variant_data *variant = host->variant;
114 	u32 clk = variant->clkreg;
115 
116 	if (desired) {
117 		if (desired >= host->mclk) {
118 			clk = MCI_CLK_BYPASS;
119 			if (variant->st_clkdiv)
120 				clk |= MCI_ST_UX500_NEG_EDGE;
121 			host->cclk = host->mclk;
122 		} else if (variant->st_clkdiv) {
123 			/*
124 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
125 			 * => clkdiv = (mclk / f) - 2
126 			 * Round the divider up so we don't exceed the max
127 			 * frequency
128 			 */
129 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
130 			if (clk >= 256)
131 				clk = 255;
132 			host->cclk = host->mclk / (clk + 2);
133 		} else {
134 			/*
135 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136 			 * => clkdiv = mclk / (2 * f) - 1
137 			 */
138 			clk = host->mclk / (2 * desired) - 1;
139 			if (clk >= 256)
140 				clk = 255;
141 			host->cclk = host->mclk / (2 * (clk + 1));
142 		}
143 
144 		clk |= variant->clkreg_enable;
145 		clk |= MCI_CLK_ENABLE;
146 		/* This hasn't proven to be worthwhile */
147 		/* clk |= MCI_CLK_PWRSAVE; */
148 	}
149 
150 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
151 		clk |= MCI_4BIT_BUS;
152 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
153 		clk |= MCI_ST_8BIT_BUS;
154 
155 	writel(clk, host->base + MMCICLOCK);
156 }
157 
158 static void
159 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
160 {
161 	writel(0, host->base + MMCICOMMAND);
162 
163 	BUG_ON(host->data);
164 
165 	host->mrq = NULL;
166 	host->cmd = NULL;
167 
168 	/*
169 	 * Need to drop the host lock here; mmc_request_done may call
170 	 * back into the driver...
171 	 */
172 	spin_unlock(&host->lock);
173 	mmc_request_done(host->mmc, mrq);
174 	spin_lock(&host->lock);
175 }
176 
177 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
178 {
179 	void __iomem *base = host->base;
180 
181 	if (host->singleirq) {
182 		unsigned int mask0 = readl(base + MMCIMASK0);
183 
184 		mask0 &= ~MCI_IRQ1MASK;
185 		mask0 |= mask;
186 
187 		writel(mask0, base + MMCIMASK0);
188 	}
189 
190 	writel(mask, base + MMCIMASK1);
191 }
192 
193 static void mmci_stop_data(struct mmci_host *host)
194 {
195 	writel(0, host->base + MMCIDATACTRL);
196 	mmci_set_mask1(host, 0);
197 	host->data = NULL;
198 }
199 
200 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
201 {
202 	unsigned int flags = SG_MITER_ATOMIC;
203 
204 	if (data->flags & MMC_DATA_READ)
205 		flags |= SG_MITER_TO_SG;
206 	else
207 		flags |= SG_MITER_FROM_SG;
208 
209 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
210 }
211 
212 /*
213  * All the DMA operation mode stuff goes inside this ifdef.
214  * This assumes that you have a generic DMA device interface,
215  * no custom DMA interfaces are supported.
216  */
217 #ifdef CONFIG_DMA_ENGINE
218 static void __devinit mmci_dma_setup(struct mmci_host *host)
219 {
220 	struct mmci_platform_data *plat = host->plat;
221 	const char *rxname, *txname;
222 	dma_cap_mask_t mask;
223 
224 	if (!plat || !plat->dma_filter) {
225 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
226 		return;
227 	}
228 
229 	/* initialize pre request cookie */
230 	host->next_data.cookie = 1;
231 
232 	/* Try to acquire a generic DMA engine slave channel */
233 	dma_cap_zero(mask);
234 	dma_cap_set(DMA_SLAVE, mask);
235 
236 	/*
237 	 * If only an RX channel is specified, the driver will
238 	 * attempt to use it bidirectionally, however if it is
239 	 * is specified but cannot be located, DMA will be disabled.
240 	 */
241 	if (plat->dma_rx_param) {
242 		host->dma_rx_channel = dma_request_channel(mask,
243 							   plat->dma_filter,
244 							   plat->dma_rx_param);
245 		/* E.g if no DMA hardware is present */
246 		if (!host->dma_rx_channel)
247 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
248 	}
249 
250 	if (plat->dma_tx_param) {
251 		host->dma_tx_channel = dma_request_channel(mask,
252 							   plat->dma_filter,
253 							   plat->dma_tx_param);
254 		if (!host->dma_tx_channel)
255 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
256 	} else {
257 		host->dma_tx_channel = host->dma_rx_channel;
258 	}
259 
260 	if (host->dma_rx_channel)
261 		rxname = dma_chan_name(host->dma_rx_channel);
262 	else
263 		rxname = "none";
264 
265 	if (host->dma_tx_channel)
266 		txname = dma_chan_name(host->dma_tx_channel);
267 	else
268 		txname = "none";
269 
270 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
271 		 rxname, txname);
272 
273 	/*
274 	 * Limit the maximum segment size in any SG entry according to
275 	 * the parameters of the DMA engine device.
276 	 */
277 	if (host->dma_tx_channel) {
278 		struct device *dev = host->dma_tx_channel->device->dev;
279 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
280 
281 		if (max_seg_size < host->mmc->max_seg_size)
282 			host->mmc->max_seg_size = max_seg_size;
283 	}
284 	if (host->dma_rx_channel) {
285 		struct device *dev = host->dma_rx_channel->device->dev;
286 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
287 
288 		if (max_seg_size < host->mmc->max_seg_size)
289 			host->mmc->max_seg_size = max_seg_size;
290 	}
291 }
292 
293 /*
294  * This is used in __devinit or __devexit so inline it
295  * so it can be discarded.
296  */
297 static inline void mmci_dma_release(struct mmci_host *host)
298 {
299 	struct mmci_platform_data *plat = host->plat;
300 
301 	if (host->dma_rx_channel)
302 		dma_release_channel(host->dma_rx_channel);
303 	if (host->dma_tx_channel && plat->dma_tx_param)
304 		dma_release_channel(host->dma_tx_channel);
305 	host->dma_rx_channel = host->dma_tx_channel = NULL;
306 }
307 
308 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
309 {
310 	struct dma_chan *chan = host->dma_current;
311 	enum dma_data_direction dir;
312 	u32 status;
313 	int i;
314 
315 	/* Wait up to 1ms for the DMA to complete */
316 	for (i = 0; ; i++) {
317 		status = readl(host->base + MMCISTATUS);
318 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
319 			break;
320 		udelay(10);
321 	}
322 
323 	/*
324 	 * Check to see whether we still have some data left in the FIFO -
325 	 * this catches DMA controllers which are unable to monitor the
326 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
327 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
328 	 */
329 	if (status & MCI_RXDATAAVLBLMASK) {
330 		dmaengine_terminate_all(chan);
331 		if (!data->error)
332 			data->error = -EIO;
333 	}
334 
335 	if (data->flags & MMC_DATA_WRITE) {
336 		dir = DMA_TO_DEVICE;
337 	} else {
338 		dir = DMA_FROM_DEVICE;
339 	}
340 
341 	if (!data->host_cookie)
342 		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
343 
344 	/*
345 	 * Use of DMA with scatter-gather is impossible.
346 	 * Give up with DMA and switch back to PIO mode.
347 	 */
348 	if (status & MCI_RXDATAAVLBLMASK) {
349 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
350 		mmci_dma_release(host);
351 	}
352 }
353 
354 static void mmci_dma_data_error(struct mmci_host *host)
355 {
356 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
357 	dmaengine_terminate_all(host->dma_current);
358 }
359 
360 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
361 			      struct mmci_host_next *next)
362 {
363 	struct variant_data *variant = host->variant;
364 	struct dma_slave_config conf = {
365 		.src_addr = host->phybase + MMCIFIFO,
366 		.dst_addr = host->phybase + MMCIFIFO,
367 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
368 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
369 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
370 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
371 	};
372 	struct dma_chan *chan;
373 	struct dma_device *device;
374 	struct dma_async_tx_descriptor *desc;
375 	int nr_sg;
376 
377 	/* Check if next job is already prepared */
378 	if (data->host_cookie && !next &&
379 	    host->dma_current && host->dma_desc_current)
380 		return 0;
381 
382 	if (!next) {
383 		host->dma_current = NULL;
384 		host->dma_desc_current = NULL;
385 	}
386 
387 	if (data->flags & MMC_DATA_READ) {
388 		conf.direction = DMA_FROM_DEVICE;
389 		chan = host->dma_rx_channel;
390 	} else {
391 		conf.direction = DMA_TO_DEVICE;
392 		chan = host->dma_tx_channel;
393 	}
394 
395 	/* If there's no DMA channel, fall back to PIO */
396 	if (!chan)
397 		return -EINVAL;
398 
399 	/* If less than or equal to the fifo size, don't bother with DMA */
400 	if (data->blksz * data->blocks <= variant->fifosize)
401 		return -EINVAL;
402 
403 	device = chan->device;
404 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
405 	if (nr_sg == 0)
406 		return -EINVAL;
407 
408 	dmaengine_slave_config(chan, &conf);
409 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
410 					    conf.direction, DMA_CTRL_ACK);
411 	if (!desc)
412 		goto unmap_exit;
413 
414 	if (next) {
415 		next->dma_chan = chan;
416 		next->dma_desc = desc;
417 	} else {
418 		host->dma_current = chan;
419 		host->dma_desc_current = desc;
420 	}
421 
422 	return 0;
423 
424  unmap_exit:
425 	if (!next)
426 		dmaengine_terminate_all(chan);
427 	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
428 	return -ENOMEM;
429 }
430 
431 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
432 {
433 	int ret;
434 	struct mmc_data *data = host->data;
435 
436 	ret = mmci_dma_prep_data(host, host->data, NULL);
437 	if (ret)
438 		return ret;
439 
440 	/* Okay, go for it. */
441 	dev_vdbg(mmc_dev(host->mmc),
442 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
443 		 data->sg_len, data->blksz, data->blocks, data->flags);
444 	dmaengine_submit(host->dma_desc_current);
445 	dma_async_issue_pending(host->dma_current);
446 
447 	datactrl |= MCI_DPSM_DMAENABLE;
448 
449 	/* Trigger the DMA transfer */
450 	writel(datactrl, host->base + MMCIDATACTRL);
451 
452 	/*
453 	 * Let the MMCI say when the data is ended and it's time
454 	 * to fire next DMA request. When that happens, MMCI will
455 	 * call mmci_data_end()
456 	 */
457 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
458 	       host->base + MMCIMASK0);
459 	return 0;
460 }
461 
462 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
463 {
464 	struct mmci_host_next *next = &host->next_data;
465 
466 	if (data->host_cookie && data->host_cookie != next->cookie) {
467 		printk(KERN_WARNING "[%s] invalid cookie: data->host_cookie %d"
468 		       " host->next_data.cookie %d\n",
469 		       __func__, data->host_cookie, host->next_data.cookie);
470 		data->host_cookie = 0;
471 	}
472 
473 	if (!data->host_cookie)
474 		return;
475 
476 	host->dma_desc_current = next->dma_desc;
477 	host->dma_current = next->dma_chan;
478 
479 	next->dma_desc = NULL;
480 	next->dma_chan = NULL;
481 }
482 
483 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
484 			     bool is_first_req)
485 {
486 	struct mmci_host *host = mmc_priv(mmc);
487 	struct mmc_data *data = mrq->data;
488 	struct mmci_host_next *nd = &host->next_data;
489 
490 	if (!data)
491 		return;
492 
493 	if (data->host_cookie) {
494 		data->host_cookie = 0;
495 		return;
496 	}
497 
498 	/* if config for dma */
499 	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
500 	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
501 		if (mmci_dma_prep_data(host, data, nd))
502 			data->host_cookie = 0;
503 		else
504 			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
505 	}
506 }
507 
508 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
509 			      int err)
510 {
511 	struct mmci_host *host = mmc_priv(mmc);
512 	struct mmc_data *data = mrq->data;
513 	struct dma_chan *chan;
514 	enum dma_data_direction dir;
515 
516 	if (!data)
517 		return;
518 
519 	if (data->flags & MMC_DATA_READ) {
520 		dir = DMA_FROM_DEVICE;
521 		chan = host->dma_rx_channel;
522 	} else {
523 		dir = DMA_TO_DEVICE;
524 		chan = host->dma_tx_channel;
525 	}
526 
527 
528 	/* if config for dma */
529 	if (chan) {
530 		if (err)
531 			dmaengine_terminate_all(chan);
532 		if (err || data->host_cookie)
533 			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
534 				     data->sg_len, dir);
535 		mrq->data->host_cookie = 0;
536 	}
537 }
538 
539 #else
540 /* Blank functions if the DMA engine is not available */
541 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
542 {
543 }
544 static inline void mmci_dma_setup(struct mmci_host *host)
545 {
546 }
547 
548 static inline void mmci_dma_release(struct mmci_host *host)
549 {
550 }
551 
552 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
553 {
554 }
555 
556 static inline void mmci_dma_data_error(struct mmci_host *host)
557 {
558 }
559 
560 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
561 {
562 	return -ENOSYS;
563 }
564 
565 #define mmci_pre_request NULL
566 #define mmci_post_request NULL
567 
568 #endif
569 
570 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
571 {
572 	struct variant_data *variant = host->variant;
573 	unsigned int datactrl, timeout, irqmask;
574 	unsigned long long clks;
575 	void __iomem *base;
576 	int blksz_bits;
577 
578 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
579 		data->blksz, data->blocks, data->flags);
580 
581 	host->data = data;
582 	host->size = data->blksz * data->blocks;
583 	data->bytes_xfered = 0;
584 
585 	clks = (unsigned long long)data->timeout_ns * host->cclk;
586 	do_div(clks, 1000000000UL);
587 
588 	timeout = data->timeout_clks + (unsigned int)clks;
589 
590 	base = host->base;
591 	writel(timeout, base + MMCIDATATIMER);
592 	writel(host->size, base + MMCIDATALENGTH);
593 
594 	blksz_bits = ffs(data->blksz) - 1;
595 	BUG_ON(1 << blksz_bits != data->blksz);
596 
597 	if (variant->blksz_datactrl16)
598 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
599 	else
600 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
601 
602 	if (data->flags & MMC_DATA_READ)
603 		datactrl |= MCI_DPSM_DIRECTION;
604 
605 	/*
606 	 * Attempt to use DMA operation mode, if this
607 	 * should fail, fall back to PIO mode
608 	 */
609 	if (!mmci_dma_start_data(host, datactrl))
610 		return;
611 
612 	/* IRQ mode, map the SG list for CPU reading/writing */
613 	mmci_init_sg(host, data);
614 
615 	if (data->flags & MMC_DATA_READ) {
616 		irqmask = MCI_RXFIFOHALFFULLMASK;
617 
618 		/*
619 		 * If we have less than the fifo 'half-full' threshold to
620 		 * transfer, trigger a PIO interrupt as soon as any data
621 		 * is available.
622 		 */
623 		if (host->size < variant->fifohalfsize)
624 			irqmask |= MCI_RXDATAAVLBLMASK;
625 	} else {
626 		/*
627 		 * We don't actually need to include "FIFO empty" here
628 		 * since its implicit in "FIFO half empty".
629 		 */
630 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
631 	}
632 
633 	/* The ST Micro variants has a special bit to enable SDIO */
634 	if (variant->sdio && host->mmc->card)
635 		if (mmc_card_sdio(host->mmc->card))
636 			datactrl |= MCI_ST_DPSM_SDIOEN;
637 
638 	writel(datactrl, base + MMCIDATACTRL);
639 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
640 	mmci_set_mask1(host, irqmask);
641 }
642 
643 static void
644 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
645 {
646 	void __iomem *base = host->base;
647 
648 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
649 	    cmd->opcode, cmd->arg, cmd->flags);
650 
651 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
652 		writel(0, base + MMCICOMMAND);
653 		udelay(1);
654 	}
655 
656 	c |= cmd->opcode | MCI_CPSM_ENABLE;
657 	if (cmd->flags & MMC_RSP_PRESENT) {
658 		if (cmd->flags & MMC_RSP_136)
659 			c |= MCI_CPSM_LONGRSP;
660 		c |= MCI_CPSM_RESPONSE;
661 	}
662 	if (/*interrupt*/0)
663 		c |= MCI_CPSM_INTERRUPT;
664 
665 	host->cmd = cmd;
666 
667 	writel(cmd->arg, base + MMCIARGUMENT);
668 	writel(c, base + MMCICOMMAND);
669 }
670 
671 static void
672 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
673 	      unsigned int status)
674 {
675 	/* First check for errors */
676 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
677 		u32 remain, success;
678 
679 		/* Terminate the DMA transfer */
680 		if (dma_inprogress(host))
681 			mmci_dma_data_error(host);
682 
683 		/*
684 		 * Calculate how far we are into the transfer.  Note that
685 		 * the data counter gives the number of bytes transferred
686 		 * on the MMC bus, not on the host side.  On reads, this
687 		 * can be as much as a FIFO-worth of data ahead.  This
688 		 * matters for FIFO overruns only.
689 		 */
690 		remain = readl(host->base + MMCIDATACNT);
691 		success = data->blksz * data->blocks - remain;
692 
693 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
694 			status, success);
695 		if (status & MCI_DATACRCFAIL) {
696 			/* Last block was not successful */
697 			success -= 1;
698 			data->error = -EILSEQ;
699 		} else if (status & MCI_DATATIMEOUT) {
700 			data->error = -ETIMEDOUT;
701 		} else if (status & MCI_STARTBITERR) {
702 			data->error = -ECOMM;
703 		} else if (status & MCI_TXUNDERRUN) {
704 			data->error = -EIO;
705 		} else if (status & MCI_RXOVERRUN) {
706 			if (success > host->variant->fifosize)
707 				success -= host->variant->fifosize;
708 			else
709 				success = 0;
710 			data->error = -EIO;
711 		}
712 		data->bytes_xfered = round_down(success, data->blksz);
713 	}
714 
715 	if (status & MCI_DATABLOCKEND)
716 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
717 
718 	if (status & MCI_DATAEND || data->error) {
719 		if (dma_inprogress(host))
720 			mmci_dma_unmap(host, data);
721 		mmci_stop_data(host);
722 
723 		if (!data->error)
724 			/* The error clause is handled above, success! */
725 			data->bytes_xfered = data->blksz * data->blocks;
726 
727 		if (!data->stop) {
728 			mmci_request_end(host, data->mrq);
729 		} else {
730 			mmci_start_command(host, data->stop, 0);
731 		}
732 	}
733 }
734 
735 static void
736 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
737 	     unsigned int status)
738 {
739 	void __iomem *base = host->base;
740 
741 	host->cmd = NULL;
742 
743 	if (status & MCI_CMDTIMEOUT) {
744 		cmd->error = -ETIMEDOUT;
745 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
746 		cmd->error = -EILSEQ;
747 	} else {
748 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
749 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
750 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
751 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
752 	}
753 
754 	if (!cmd->data || cmd->error) {
755 		if (host->data)
756 			mmci_stop_data(host);
757 		mmci_request_end(host, cmd->mrq);
758 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
759 		mmci_start_data(host, cmd->data);
760 	}
761 }
762 
763 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
764 {
765 	void __iomem *base = host->base;
766 	char *ptr = buffer;
767 	u32 status;
768 	int host_remain = host->size;
769 
770 	do {
771 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
772 
773 		if (count > remain)
774 			count = remain;
775 
776 		if (count <= 0)
777 			break;
778 
779 		readsl(base + MMCIFIFO, ptr, count >> 2);
780 
781 		ptr += count;
782 		remain -= count;
783 		host_remain -= count;
784 
785 		if (remain == 0)
786 			break;
787 
788 		status = readl(base + MMCISTATUS);
789 	} while (status & MCI_RXDATAAVLBL);
790 
791 	return ptr - buffer;
792 }
793 
794 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
795 {
796 	struct variant_data *variant = host->variant;
797 	void __iomem *base = host->base;
798 	char *ptr = buffer;
799 
800 	do {
801 		unsigned int count, maxcnt;
802 
803 		maxcnt = status & MCI_TXFIFOEMPTY ?
804 			 variant->fifosize : variant->fifohalfsize;
805 		count = min(remain, maxcnt);
806 
807 		/*
808 		 * The ST Micro variant for SDIO transfer sizes
809 		 * less then 8 bytes should have clock H/W flow
810 		 * control disabled.
811 		 */
812 		if (variant->sdio &&
813 		    mmc_card_sdio(host->mmc->card)) {
814 			if (count < 8)
815 				writel(readl(host->base + MMCICLOCK) &
816 					~variant->clkreg_enable,
817 					host->base + MMCICLOCK);
818 			else
819 				writel(readl(host->base + MMCICLOCK) |
820 					variant->clkreg_enable,
821 					host->base + MMCICLOCK);
822 		}
823 
824 		/*
825 		 * SDIO especially may want to send something that is
826 		 * not divisible by 4 (as opposed to card sectors
827 		 * etc), and the FIFO only accept full 32-bit writes.
828 		 * So compensate by adding +3 on the count, a single
829 		 * byte become a 32bit write, 7 bytes will be two
830 		 * 32bit writes etc.
831 		 */
832 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
833 
834 		ptr += count;
835 		remain -= count;
836 
837 		if (remain == 0)
838 			break;
839 
840 		status = readl(base + MMCISTATUS);
841 	} while (status & MCI_TXFIFOHALFEMPTY);
842 
843 	return ptr - buffer;
844 }
845 
846 /*
847  * PIO data transfer IRQ handler.
848  */
849 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
850 {
851 	struct mmci_host *host = dev_id;
852 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
853 	struct variant_data *variant = host->variant;
854 	void __iomem *base = host->base;
855 	unsigned long flags;
856 	u32 status;
857 
858 	status = readl(base + MMCISTATUS);
859 
860 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
861 
862 	local_irq_save(flags);
863 
864 	do {
865 		unsigned int remain, len;
866 		char *buffer;
867 
868 		/*
869 		 * For write, we only need to test the half-empty flag
870 		 * here - if the FIFO is completely empty, then by
871 		 * definition it is more than half empty.
872 		 *
873 		 * For read, check for data available.
874 		 */
875 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
876 			break;
877 
878 		if (!sg_miter_next(sg_miter))
879 			break;
880 
881 		buffer = sg_miter->addr;
882 		remain = sg_miter->length;
883 
884 		len = 0;
885 		if (status & MCI_RXACTIVE)
886 			len = mmci_pio_read(host, buffer, remain);
887 		if (status & MCI_TXACTIVE)
888 			len = mmci_pio_write(host, buffer, remain, status);
889 
890 		sg_miter->consumed = len;
891 
892 		host->size -= len;
893 		remain -= len;
894 
895 		if (remain)
896 			break;
897 
898 		status = readl(base + MMCISTATUS);
899 	} while (1);
900 
901 	sg_miter_stop(sg_miter);
902 
903 	local_irq_restore(flags);
904 
905 	/*
906 	 * If we have less than the fifo 'half-full' threshold to transfer,
907 	 * trigger a PIO interrupt as soon as any data is available.
908 	 */
909 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
910 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
911 
912 	/*
913 	 * If we run out of data, disable the data IRQs; this
914 	 * prevents a race where the FIFO becomes empty before
915 	 * the chip itself has disabled the data path, and
916 	 * stops us racing with our data end IRQ.
917 	 */
918 	if (host->size == 0) {
919 		mmci_set_mask1(host, 0);
920 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
921 	}
922 
923 	return IRQ_HANDLED;
924 }
925 
926 /*
927  * Handle completion of command and data transfers.
928  */
929 static irqreturn_t mmci_irq(int irq, void *dev_id)
930 {
931 	struct mmci_host *host = dev_id;
932 	u32 status;
933 	int ret = 0;
934 
935 	spin_lock(&host->lock);
936 
937 	do {
938 		struct mmc_command *cmd;
939 		struct mmc_data *data;
940 
941 		status = readl(host->base + MMCISTATUS);
942 
943 		if (host->singleirq) {
944 			if (status & readl(host->base + MMCIMASK1))
945 				mmci_pio_irq(irq, dev_id);
946 
947 			status &= ~MCI_IRQ1MASK;
948 		}
949 
950 		status &= readl(host->base + MMCIMASK0);
951 		writel(status, host->base + MMCICLEAR);
952 
953 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
954 
955 		data = host->data;
956 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
957 			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
958 			mmci_data_irq(host, data, status);
959 
960 		cmd = host->cmd;
961 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
962 			mmci_cmd_irq(host, cmd, status);
963 
964 		ret = 1;
965 	} while (status);
966 
967 	spin_unlock(&host->lock);
968 
969 	return IRQ_RETVAL(ret);
970 }
971 
972 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
973 {
974 	struct mmci_host *host = mmc_priv(mmc);
975 	unsigned long flags;
976 
977 	WARN_ON(host->mrq != NULL);
978 
979 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
980 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
981 			mrq->data->blksz);
982 		mrq->cmd->error = -EINVAL;
983 		mmc_request_done(mmc, mrq);
984 		return;
985 	}
986 
987 	spin_lock_irqsave(&host->lock, flags);
988 
989 	host->mrq = mrq;
990 
991 	if (mrq->data)
992 		mmci_get_next_data(host, mrq->data);
993 
994 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
995 		mmci_start_data(host, mrq->data);
996 
997 	mmci_start_command(host, mrq->cmd, 0);
998 
999 	spin_unlock_irqrestore(&host->lock, flags);
1000 }
1001 
1002 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1003 {
1004 	struct mmci_host *host = mmc_priv(mmc);
1005 	u32 pwr = 0;
1006 	unsigned long flags;
1007 	int ret;
1008 
1009 	switch (ios->power_mode) {
1010 	case MMC_POWER_OFF:
1011 		if (host->vcc)
1012 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1013 		break;
1014 	case MMC_POWER_UP:
1015 		if (host->vcc) {
1016 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1017 			if (ret) {
1018 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1019 				/*
1020 				 * The .set_ios() function in the mmc_host_ops
1021 				 * struct return void, and failing to set the
1022 				 * power should be rare so we print an error
1023 				 * and return here.
1024 				 */
1025 				return;
1026 			}
1027 		}
1028 		if (host->plat->vdd_handler)
1029 			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1030 						       ios->power_mode);
1031 		/* The ST version does not have this, fall through to POWER_ON */
1032 		if (host->hw_designer != AMBA_VENDOR_ST) {
1033 			pwr |= MCI_PWR_UP;
1034 			break;
1035 		}
1036 	case MMC_POWER_ON:
1037 		pwr |= MCI_PWR_ON;
1038 		break;
1039 	}
1040 
1041 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1042 		if (host->hw_designer != AMBA_VENDOR_ST)
1043 			pwr |= MCI_ROD;
1044 		else {
1045 			/*
1046 			 * The ST Micro variant use the ROD bit for something
1047 			 * else and only has OD (Open Drain).
1048 			 */
1049 			pwr |= MCI_OD;
1050 		}
1051 	}
1052 
1053 	spin_lock_irqsave(&host->lock, flags);
1054 
1055 	mmci_set_clkreg(host, ios->clock);
1056 
1057 	if (host->pwr != pwr) {
1058 		host->pwr = pwr;
1059 		writel(pwr, host->base + MMCIPOWER);
1060 	}
1061 
1062 	spin_unlock_irqrestore(&host->lock, flags);
1063 }
1064 
1065 static int mmci_get_ro(struct mmc_host *mmc)
1066 {
1067 	struct mmci_host *host = mmc_priv(mmc);
1068 
1069 	if (host->gpio_wp == -ENOSYS)
1070 		return -ENOSYS;
1071 
1072 	return gpio_get_value_cansleep(host->gpio_wp);
1073 }
1074 
1075 static int mmci_get_cd(struct mmc_host *mmc)
1076 {
1077 	struct mmci_host *host = mmc_priv(mmc);
1078 	struct mmci_platform_data *plat = host->plat;
1079 	unsigned int status;
1080 
1081 	if (host->gpio_cd == -ENOSYS) {
1082 		if (!plat->status)
1083 			return 1; /* Assume always present */
1084 
1085 		status = plat->status(mmc_dev(host->mmc));
1086 	} else
1087 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1088 			^ plat->cd_invert;
1089 
1090 	/*
1091 	 * Use positive logic throughout - status is zero for no card,
1092 	 * non-zero for card inserted.
1093 	 */
1094 	return status;
1095 }
1096 
1097 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1098 {
1099 	struct mmci_host *host = dev_id;
1100 
1101 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1102 
1103 	return IRQ_HANDLED;
1104 }
1105 
1106 static const struct mmc_host_ops mmci_ops = {
1107 	.request	= mmci_request,
1108 	.pre_req	= mmci_pre_request,
1109 	.post_req	= mmci_post_request,
1110 	.set_ios	= mmci_set_ios,
1111 	.get_ro		= mmci_get_ro,
1112 	.get_cd		= mmci_get_cd,
1113 };
1114 
1115 static int __devinit mmci_probe(struct amba_device *dev,
1116 	const struct amba_id *id)
1117 {
1118 	struct mmci_platform_data *plat = dev->dev.platform_data;
1119 	struct variant_data *variant = id->data;
1120 	struct mmci_host *host;
1121 	struct mmc_host *mmc;
1122 	int ret;
1123 
1124 	/* must have platform data */
1125 	if (!plat) {
1126 		ret = -EINVAL;
1127 		goto out;
1128 	}
1129 
1130 	ret = amba_request_regions(dev, DRIVER_NAME);
1131 	if (ret)
1132 		goto out;
1133 
1134 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1135 	if (!mmc) {
1136 		ret = -ENOMEM;
1137 		goto rel_regions;
1138 	}
1139 
1140 	host = mmc_priv(mmc);
1141 	host->mmc = mmc;
1142 
1143 	host->gpio_wp = -ENOSYS;
1144 	host->gpio_cd = -ENOSYS;
1145 	host->gpio_cd_irq = -1;
1146 
1147 	host->hw_designer = amba_manf(dev);
1148 	host->hw_revision = amba_rev(dev);
1149 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1150 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1151 
1152 	host->clk = clk_get(&dev->dev, NULL);
1153 	if (IS_ERR(host->clk)) {
1154 		ret = PTR_ERR(host->clk);
1155 		host->clk = NULL;
1156 		goto host_free;
1157 	}
1158 
1159 	ret = clk_enable(host->clk);
1160 	if (ret)
1161 		goto clk_free;
1162 
1163 	host->plat = plat;
1164 	host->variant = variant;
1165 	host->mclk = clk_get_rate(host->clk);
1166 	/*
1167 	 * According to the spec, mclk is max 100 MHz,
1168 	 * so we try to adjust the clock down to this,
1169 	 * (if possible).
1170 	 */
1171 	if (host->mclk > 100000000) {
1172 		ret = clk_set_rate(host->clk, 100000000);
1173 		if (ret < 0)
1174 			goto clk_disable;
1175 		host->mclk = clk_get_rate(host->clk);
1176 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1177 			host->mclk);
1178 	}
1179 	host->phybase = dev->res.start;
1180 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1181 	if (!host->base) {
1182 		ret = -ENOMEM;
1183 		goto clk_disable;
1184 	}
1185 
1186 	mmc->ops = &mmci_ops;
1187 	/*
1188 	 * The ARM and ST versions of the block have slightly different
1189 	 * clock divider equations which means that the minimum divider
1190 	 * differs too.
1191 	 */
1192 	if (variant->st_clkdiv)
1193 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1194 	else
1195 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1196 	/*
1197 	 * If the platform data supplies a maximum operating
1198 	 * frequency, this takes precedence. Else, we fall back
1199 	 * to using the module parameter, which has a (low)
1200 	 * default value in case it is not specified. Either
1201 	 * value must not exceed the clock rate into the block,
1202 	 * of course.
1203 	 */
1204 	if (plat->f_max)
1205 		mmc->f_max = min(host->mclk, plat->f_max);
1206 	else
1207 		mmc->f_max = min(host->mclk, fmax);
1208 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1209 
1210 #ifdef CONFIG_REGULATOR
1211 	/* If we're using the regulator framework, try to fetch a regulator */
1212 	host->vcc = regulator_get(&dev->dev, "vmmc");
1213 	if (IS_ERR(host->vcc))
1214 		host->vcc = NULL;
1215 	else {
1216 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1217 
1218 		if (mask < 0)
1219 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1220 				mask);
1221 		else {
1222 			host->mmc->ocr_avail = (u32) mask;
1223 			if (plat->ocr_mask)
1224 				dev_warn(&dev->dev,
1225 				 "Provided ocr_mask/setpower will not be used "
1226 				 "(using regulator instead)\n");
1227 		}
1228 	}
1229 #endif
1230 	/* Fall back to platform data if no regulator is found */
1231 	if (host->vcc == NULL)
1232 		mmc->ocr_avail = plat->ocr_mask;
1233 	mmc->caps = plat->capabilities;
1234 
1235 	/*
1236 	 * We can do SGIO
1237 	 */
1238 	mmc->max_segs = NR_SG;
1239 
1240 	/*
1241 	 * Since only a certain number of bits are valid in the data length
1242 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1243 	 * single request.
1244 	 */
1245 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1246 
1247 	/*
1248 	 * Set the maximum segment size.  Since we aren't doing DMA
1249 	 * (yet) we are only limited by the data length register.
1250 	 */
1251 	mmc->max_seg_size = mmc->max_req_size;
1252 
1253 	/*
1254 	 * Block size can be up to 2048 bytes, but must be a power of two.
1255 	 */
1256 	mmc->max_blk_size = 2048;
1257 
1258 	/*
1259 	 * No limit on the number of blocks transferred.
1260 	 */
1261 	mmc->max_blk_count = mmc->max_req_size;
1262 
1263 	spin_lock_init(&host->lock);
1264 
1265 	writel(0, host->base + MMCIMASK0);
1266 	writel(0, host->base + MMCIMASK1);
1267 	writel(0xfff, host->base + MMCICLEAR);
1268 
1269 	if (gpio_is_valid(plat->gpio_cd)) {
1270 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1271 		if (ret == 0)
1272 			ret = gpio_direction_input(plat->gpio_cd);
1273 		if (ret == 0)
1274 			host->gpio_cd = plat->gpio_cd;
1275 		else if (ret != -ENOSYS)
1276 			goto err_gpio_cd;
1277 
1278 		/*
1279 		 * A gpio pin that will detect cards when inserted and removed
1280 		 * will most likely want to trigger on the edges if it is
1281 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1282 		 * for the inverted case) so we request triggers on both
1283 		 * edges.
1284 		 */
1285 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1286 				mmci_cd_irq,
1287 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1288 				DRIVER_NAME " (cd)", host);
1289 		if (ret >= 0)
1290 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1291 	}
1292 	if (gpio_is_valid(plat->gpio_wp)) {
1293 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1294 		if (ret == 0)
1295 			ret = gpio_direction_input(plat->gpio_wp);
1296 		if (ret == 0)
1297 			host->gpio_wp = plat->gpio_wp;
1298 		else if (ret != -ENOSYS)
1299 			goto err_gpio_wp;
1300 	}
1301 
1302 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1303 	    && host->gpio_cd_irq < 0)
1304 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1305 
1306 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1307 	if (ret)
1308 		goto unmap;
1309 
1310 	if (dev->irq[1] == NO_IRQ)
1311 		host->singleirq = true;
1312 	else {
1313 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1314 				  DRIVER_NAME " (pio)", host);
1315 		if (ret)
1316 			goto irq0_free;
1317 	}
1318 
1319 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1320 
1321 	amba_set_drvdata(dev, mmc);
1322 
1323 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1324 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1325 		 amba_rev(dev), (unsigned long long)dev->res.start,
1326 		 dev->irq[0], dev->irq[1]);
1327 
1328 	mmci_dma_setup(host);
1329 
1330 	mmc_add_host(mmc);
1331 
1332 	return 0;
1333 
1334  irq0_free:
1335 	free_irq(dev->irq[0], host);
1336  unmap:
1337 	if (host->gpio_wp != -ENOSYS)
1338 		gpio_free(host->gpio_wp);
1339  err_gpio_wp:
1340 	if (host->gpio_cd_irq >= 0)
1341 		free_irq(host->gpio_cd_irq, host);
1342 	if (host->gpio_cd != -ENOSYS)
1343 		gpio_free(host->gpio_cd);
1344  err_gpio_cd:
1345 	iounmap(host->base);
1346  clk_disable:
1347 	clk_disable(host->clk);
1348  clk_free:
1349 	clk_put(host->clk);
1350  host_free:
1351 	mmc_free_host(mmc);
1352  rel_regions:
1353 	amba_release_regions(dev);
1354  out:
1355 	return ret;
1356 }
1357 
1358 static int __devexit mmci_remove(struct amba_device *dev)
1359 {
1360 	struct mmc_host *mmc = amba_get_drvdata(dev);
1361 
1362 	amba_set_drvdata(dev, NULL);
1363 
1364 	if (mmc) {
1365 		struct mmci_host *host = mmc_priv(mmc);
1366 
1367 		mmc_remove_host(mmc);
1368 
1369 		writel(0, host->base + MMCIMASK0);
1370 		writel(0, host->base + MMCIMASK1);
1371 
1372 		writel(0, host->base + MMCICOMMAND);
1373 		writel(0, host->base + MMCIDATACTRL);
1374 
1375 		mmci_dma_release(host);
1376 		free_irq(dev->irq[0], host);
1377 		if (!host->singleirq)
1378 			free_irq(dev->irq[1], host);
1379 
1380 		if (host->gpio_wp != -ENOSYS)
1381 			gpio_free(host->gpio_wp);
1382 		if (host->gpio_cd_irq >= 0)
1383 			free_irq(host->gpio_cd_irq, host);
1384 		if (host->gpio_cd != -ENOSYS)
1385 			gpio_free(host->gpio_cd);
1386 
1387 		iounmap(host->base);
1388 		clk_disable(host->clk);
1389 		clk_put(host->clk);
1390 
1391 		if (host->vcc)
1392 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1393 		regulator_put(host->vcc);
1394 
1395 		mmc_free_host(mmc);
1396 
1397 		amba_release_regions(dev);
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 #ifdef CONFIG_PM
1404 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1405 {
1406 	struct mmc_host *mmc = amba_get_drvdata(dev);
1407 	int ret = 0;
1408 
1409 	if (mmc) {
1410 		struct mmci_host *host = mmc_priv(mmc);
1411 
1412 		ret = mmc_suspend_host(mmc);
1413 		if (ret == 0)
1414 			writel(0, host->base + MMCIMASK0);
1415 	}
1416 
1417 	return ret;
1418 }
1419 
1420 static int mmci_resume(struct amba_device *dev)
1421 {
1422 	struct mmc_host *mmc = amba_get_drvdata(dev);
1423 	int ret = 0;
1424 
1425 	if (mmc) {
1426 		struct mmci_host *host = mmc_priv(mmc);
1427 
1428 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1429 
1430 		ret = mmc_resume_host(mmc);
1431 	}
1432 
1433 	return ret;
1434 }
1435 #else
1436 #define mmci_suspend	NULL
1437 #define mmci_resume	NULL
1438 #endif
1439 
1440 static struct amba_id mmci_ids[] = {
1441 	{
1442 		.id	= 0x00041180,
1443 		.mask	= 0xff0fffff,
1444 		.data	= &variant_arm,
1445 	},
1446 	{
1447 		.id	= 0x01041180,
1448 		.mask	= 0xff0fffff,
1449 		.data	= &variant_arm_extended_fifo,
1450 	},
1451 	{
1452 		.id	= 0x00041181,
1453 		.mask	= 0x000fffff,
1454 		.data	= &variant_arm,
1455 	},
1456 	/* ST Micro variants */
1457 	{
1458 		.id     = 0x00180180,
1459 		.mask   = 0x00ffffff,
1460 		.data	= &variant_u300,
1461 	},
1462 	{
1463 		.id     = 0x00280180,
1464 		.mask   = 0x00ffffff,
1465 		.data	= &variant_u300,
1466 	},
1467 	{
1468 		.id     = 0x00480180,
1469 		.mask   = 0xf0ffffff,
1470 		.data	= &variant_ux500,
1471 	},
1472 	{
1473 		.id     = 0x10480180,
1474 		.mask   = 0xf0ffffff,
1475 		.data	= &variant_ux500v2,
1476 	},
1477 	{ 0, 0 },
1478 };
1479 
1480 static struct amba_driver mmci_driver = {
1481 	.drv		= {
1482 		.name	= DRIVER_NAME,
1483 	},
1484 	.probe		= mmci_probe,
1485 	.remove		= __devexit_p(mmci_remove),
1486 	.suspend	= mmci_suspend,
1487 	.resume		= mmci_resume,
1488 	.id_table	= mmci_ids,
1489 };
1490 
1491 static int __init mmci_init(void)
1492 {
1493 	return amba_driver_register(&mmci_driver);
1494 }
1495 
1496 static void __exit mmci_exit(void)
1497 {
1498 	amba_driver_unregister(&mmci_driver);
1499 }
1500 
1501 module_init(mmci_init);
1502 module_exit(mmci_exit);
1503 module_param(fmax, uint, 0444);
1504 
1505 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1506 MODULE_LICENSE("GPL");
1507