xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 7437cfa5)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <asm/div64.h>
35 #include <asm/io.h>
36 #include <asm/sizes.h>
37 
38 #include "mmci.h"
39 
40 #define DRIVER_NAME "mmci-pl18x"
41 
42 static unsigned int fmax = 515633;
43 
44 /**
45  * struct variant_data - MMCI variant-specific quirks
46  * @clkreg: default value for MCICLOCK register
47  * @clkreg_enable: enable value for MMCICLOCK register
48  * @datalength_bits: number of bits in the MMCIDATALENGTH register
49  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50  *	      is asserted (likewise for RX)
51  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52  *		  is asserted (likewise for RX)
53  * @sdio: variant supports SDIO
54  * @st_clkdiv: true if using a ST-specific clock divider algorithm
55  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56  * @pwrreg_powerup: power up value for MMCIPOWER register
57  * @signal_direction: input/out direction of bus signals can be indicated
58  */
59 struct variant_data {
60 	unsigned int		clkreg;
61 	unsigned int		clkreg_enable;
62 	unsigned int		datalength_bits;
63 	unsigned int		fifosize;
64 	unsigned int		fifohalfsize;
65 	bool			sdio;
66 	bool			st_clkdiv;
67 	bool			blksz_datactrl16;
68 	u32			pwrreg_powerup;
69 	bool			signal_direction;
70 };
71 
72 static struct variant_data variant_arm = {
73 	.fifosize		= 16 * 4,
74 	.fifohalfsize		= 8 * 4,
75 	.datalength_bits	= 16,
76 	.pwrreg_powerup		= MCI_PWR_UP,
77 };
78 
79 static struct variant_data variant_arm_extended_fifo = {
80 	.fifosize		= 128 * 4,
81 	.fifohalfsize		= 64 * 4,
82 	.datalength_bits	= 16,
83 	.pwrreg_powerup		= MCI_PWR_UP,
84 };
85 
86 static struct variant_data variant_u300 = {
87 	.fifosize		= 16 * 4,
88 	.fifohalfsize		= 8 * 4,
89 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
90 	.datalength_bits	= 16,
91 	.sdio			= true,
92 	.pwrreg_powerup		= MCI_PWR_ON,
93 	.signal_direction	= true,
94 };
95 
96 static struct variant_data variant_ux500 = {
97 	.fifosize		= 30 * 4,
98 	.fifohalfsize		= 8 * 4,
99 	.clkreg			= MCI_CLK_ENABLE,
100 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
101 	.datalength_bits	= 24,
102 	.sdio			= true,
103 	.st_clkdiv		= true,
104 	.pwrreg_powerup		= MCI_PWR_ON,
105 	.signal_direction	= true,
106 };
107 
108 static struct variant_data variant_ux500v2 = {
109 	.fifosize		= 30 * 4,
110 	.fifohalfsize		= 8 * 4,
111 	.clkreg			= MCI_CLK_ENABLE,
112 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
113 	.datalength_bits	= 24,
114 	.sdio			= true,
115 	.st_clkdiv		= true,
116 	.blksz_datactrl16	= true,
117 	.pwrreg_powerup		= MCI_PWR_ON,
118 	.signal_direction	= true,
119 };
120 
121 /*
122  * This must be called with host->lock held
123  */
124 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
125 {
126 	if (host->clk_reg != clk) {
127 		host->clk_reg = clk;
128 		writel(clk, host->base + MMCICLOCK);
129 	}
130 }
131 
132 /*
133  * This must be called with host->lock held
134  */
135 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
136 {
137 	if (host->pwr_reg != pwr) {
138 		host->pwr_reg = pwr;
139 		writel(pwr, host->base + MMCIPOWER);
140 	}
141 }
142 
143 /*
144  * This must be called with host->lock held
145  */
146 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
147 {
148 	struct variant_data *variant = host->variant;
149 	u32 clk = variant->clkreg;
150 
151 	if (desired) {
152 		if (desired >= host->mclk) {
153 			clk = MCI_CLK_BYPASS;
154 			if (variant->st_clkdiv)
155 				clk |= MCI_ST_UX500_NEG_EDGE;
156 			host->cclk = host->mclk;
157 		} else if (variant->st_clkdiv) {
158 			/*
159 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
160 			 * => clkdiv = (mclk / f) - 2
161 			 * Round the divider up so we don't exceed the max
162 			 * frequency
163 			 */
164 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
165 			if (clk >= 256)
166 				clk = 255;
167 			host->cclk = host->mclk / (clk + 2);
168 		} else {
169 			/*
170 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
171 			 * => clkdiv = mclk / (2 * f) - 1
172 			 */
173 			clk = host->mclk / (2 * desired) - 1;
174 			if (clk >= 256)
175 				clk = 255;
176 			host->cclk = host->mclk / (2 * (clk + 1));
177 		}
178 
179 		clk |= variant->clkreg_enable;
180 		clk |= MCI_CLK_ENABLE;
181 		/* This hasn't proven to be worthwhile */
182 		/* clk |= MCI_CLK_PWRSAVE; */
183 	}
184 
185 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
186 		clk |= MCI_4BIT_BUS;
187 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
188 		clk |= MCI_ST_8BIT_BUS;
189 
190 	mmci_write_clkreg(host, clk);
191 }
192 
193 static void
194 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
195 {
196 	writel(0, host->base + MMCICOMMAND);
197 
198 	BUG_ON(host->data);
199 
200 	host->mrq = NULL;
201 	host->cmd = NULL;
202 
203 	mmc_request_done(host->mmc, mrq);
204 
205 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
206 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
207 }
208 
209 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
210 {
211 	void __iomem *base = host->base;
212 
213 	if (host->singleirq) {
214 		unsigned int mask0 = readl(base + MMCIMASK0);
215 
216 		mask0 &= ~MCI_IRQ1MASK;
217 		mask0 |= mask;
218 
219 		writel(mask0, base + MMCIMASK0);
220 	}
221 
222 	writel(mask, base + MMCIMASK1);
223 }
224 
225 static void mmci_stop_data(struct mmci_host *host)
226 {
227 	writel(0, host->base + MMCIDATACTRL);
228 	mmci_set_mask1(host, 0);
229 	host->data = NULL;
230 }
231 
232 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
233 {
234 	unsigned int flags = SG_MITER_ATOMIC;
235 
236 	if (data->flags & MMC_DATA_READ)
237 		flags |= SG_MITER_TO_SG;
238 	else
239 		flags |= SG_MITER_FROM_SG;
240 
241 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
242 }
243 
244 /*
245  * All the DMA operation mode stuff goes inside this ifdef.
246  * This assumes that you have a generic DMA device interface,
247  * no custom DMA interfaces are supported.
248  */
249 #ifdef CONFIG_DMA_ENGINE
250 static void __devinit mmci_dma_setup(struct mmci_host *host)
251 {
252 	struct mmci_platform_data *plat = host->plat;
253 	const char *rxname, *txname;
254 	dma_cap_mask_t mask;
255 
256 	if (!plat || !plat->dma_filter) {
257 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
258 		return;
259 	}
260 
261 	/* initialize pre request cookie */
262 	host->next_data.cookie = 1;
263 
264 	/* Try to acquire a generic DMA engine slave channel */
265 	dma_cap_zero(mask);
266 	dma_cap_set(DMA_SLAVE, mask);
267 
268 	/*
269 	 * If only an RX channel is specified, the driver will
270 	 * attempt to use it bidirectionally, however if it is
271 	 * is specified but cannot be located, DMA will be disabled.
272 	 */
273 	if (plat->dma_rx_param) {
274 		host->dma_rx_channel = dma_request_channel(mask,
275 							   plat->dma_filter,
276 							   plat->dma_rx_param);
277 		/* E.g if no DMA hardware is present */
278 		if (!host->dma_rx_channel)
279 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
280 	}
281 
282 	if (plat->dma_tx_param) {
283 		host->dma_tx_channel = dma_request_channel(mask,
284 							   plat->dma_filter,
285 							   plat->dma_tx_param);
286 		if (!host->dma_tx_channel)
287 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
288 	} else {
289 		host->dma_tx_channel = host->dma_rx_channel;
290 	}
291 
292 	if (host->dma_rx_channel)
293 		rxname = dma_chan_name(host->dma_rx_channel);
294 	else
295 		rxname = "none";
296 
297 	if (host->dma_tx_channel)
298 		txname = dma_chan_name(host->dma_tx_channel);
299 	else
300 		txname = "none";
301 
302 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
303 		 rxname, txname);
304 
305 	/*
306 	 * Limit the maximum segment size in any SG entry according to
307 	 * the parameters of the DMA engine device.
308 	 */
309 	if (host->dma_tx_channel) {
310 		struct device *dev = host->dma_tx_channel->device->dev;
311 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
312 
313 		if (max_seg_size < host->mmc->max_seg_size)
314 			host->mmc->max_seg_size = max_seg_size;
315 	}
316 	if (host->dma_rx_channel) {
317 		struct device *dev = host->dma_rx_channel->device->dev;
318 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
319 
320 		if (max_seg_size < host->mmc->max_seg_size)
321 			host->mmc->max_seg_size = max_seg_size;
322 	}
323 }
324 
325 /*
326  * This is used in __devinit or __devexit so inline it
327  * so it can be discarded.
328  */
329 static inline void mmci_dma_release(struct mmci_host *host)
330 {
331 	struct mmci_platform_data *plat = host->plat;
332 
333 	if (host->dma_rx_channel)
334 		dma_release_channel(host->dma_rx_channel);
335 	if (host->dma_tx_channel && plat->dma_tx_param)
336 		dma_release_channel(host->dma_tx_channel);
337 	host->dma_rx_channel = host->dma_tx_channel = NULL;
338 }
339 
340 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
341 {
342 	struct dma_chan *chan = host->dma_current;
343 	enum dma_data_direction dir;
344 	u32 status;
345 	int i;
346 
347 	/* Wait up to 1ms for the DMA to complete */
348 	for (i = 0; ; i++) {
349 		status = readl(host->base + MMCISTATUS);
350 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
351 			break;
352 		udelay(10);
353 	}
354 
355 	/*
356 	 * Check to see whether we still have some data left in the FIFO -
357 	 * this catches DMA controllers which are unable to monitor the
358 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
359 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
360 	 */
361 	if (status & MCI_RXDATAAVLBLMASK) {
362 		dmaengine_terminate_all(chan);
363 		if (!data->error)
364 			data->error = -EIO;
365 	}
366 
367 	if (data->flags & MMC_DATA_WRITE) {
368 		dir = DMA_TO_DEVICE;
369 	} else {
370 		dir = DMA_FROM_DEVICE;
371 	}
372 
373 	if (!data->host_cookie)
374 		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
375 
376 	/*
377 	 * Use of DMA with scatter-gather is impossible.
378 	 * Give up with DMA and switch back to PIO mode.
379 	 */
380 	if (status & MCI_RXDATAAVLBLMASK) {
381 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
382 		mmci_dma_release(host);
383 	}
384 }
385 
386 static void mmci_dma_data_error(struct mmci_host *host)
387 {
388 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
389 	dmaengine_terminate_all(host->dma_current);
390 }
391 
392 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
393 			      struct mmci_host_next *next)
394 {
395 	struct variant_data *variant = host->variant;
396 	struct dma_slave_config conf = {
397 		.src_addr = host->phybase + MMCIFIFO,
398 		.dst_addr = host->phybase + MMCIFIFO,
399 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
400 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
401 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
402 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
403 	};
404 	struct dma_chan *chan;
405 	struct dma_device *device;
406 	struct dma_async_tx_descriptor *desc;
407 	enum dma_data_direction buffer_dirn;
408 	int nr_sg;
409 
410 	/* Check if next job is already prepared */
411 	if (data->host_cookie && !next &&
412 	    host->dma_current && host->dma_desc_current)
413 		return 0;
414 
415 	if (!next) {
416 		host->dma_current = NULL;
417 		host->dma_desc_current = NULL;
418 	}
419 
420 	if (data->flags & MMC_DATA_READ) {
421 		conf.direction = DMA_DEV_TO_MEM;
422 		buffer_dirn = DMA_FROM_DEVICE;
423 		chan = host->dma_rx_channel;
424 	} else {
425 		conf.direction = DMA_MEM_TO_DEV;
426 		buffer_dirn = DMA_TO_DEVICE;
427 		chan = host->dma_tx_channel;
428 	}
429 
430 	/* If there's no DMA channel, fall back to PIO */
431 	if (!chan)
432 		return -EINVAL;
433 
434 	/* If less than or equal to the fifo size, don't bother with DMA */
435 	if (data->blksz * data->blocks <= variant->fifosize)
436 		return -EINVAL;
437 
438 	device = chan->device;
439 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
440 	if (nr_sg == 0)
441 		return -EINVAL;
442 
443 	dmaengine_slave_config(chan, &conf);
444 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
445 					    conf.direction, DMA_CTRL_ACK);
446 	if (!desc)
447 		goto unmap_exit;
448 
449 	if (next) {
450 		next->dma_chan = chan;
451 		next->dma_desc = desc;
452 	} else {
453 		host->dma_current = chan;
454 		host->dma_desc_current = desc;
455 	}
456 
457 	return 0;
458 
459  unmap_exit:
460 	if (!next)
461 		dmaengine_terminate_all(chan);
462 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
463 	return -ENOMEM;
464 }
465 
466 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
467 {
468 	int ret;
469 	struct mmc_data *data = host->data;
470 
471 	ret = mmci_dma_prep_data(host, host->data, NULL);
472 	if (ret)
473 		return ret;
474 
475 	/* Okay, go for it. */
476 	dev_vdbg(mmc_dev(host->mmc),
477 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
478 		 data->sg_len, data->blksz, data->blocks, data->flags);
479 	dmaengine_submit(host->dma_desc_current);
480 	dma_async_issue_pending(host->dma_current);
481 
482 	datactrl |= MCI_DPSM_DMAENABLE;
483 
484 	/* Trigger the DMA transfer */
485 	writel(datactrl, host->base + MMCIDATACTRL);
486 
487 	/*
488 	 * Let the MMCI say when the data is ended and it's time
489 	 * to fire next DMA request. When that happens, MMCI will
490 	 * call mmci_data_end()
491 	 */
492 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
493 	       host->base + MMCIMASK0);
494 	return 0;
495 }
496 
497 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
498 {
499 	struct mmci_host_next *next = &host->next_data;
500 
501 	if (data->host_cookie && data->host_cookie != next->cookie) {
502 		pr_warning("[%s] invalid cookie: data->host_cookie %d"
503 		       " host->next_data.cookie %d\n",
504 		       __func__, data->host_cookie, host->next_data.cookie);
505 		data->host_cookie = 0;
506 	}
507 
508 	if (!data->host_cookie)
509 		return;
510 
511 	host->dma_desc_current = next->dma_desc;
512 	host->dma_current = next->dma_chan;
513 
514 	next->dma_desc = NULL;
515 	next->dma_chan = NULL;
516 }
517 
518 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
519 			     bool is_first_req)
520 {
521 	struct mmci_host *host = mmc_priv(mmc);
522 	struct mmc_data *data = mrq->data;
523 	struct mmci_host_next *nd = &host->next_data;
524 
525 	if (!data)
526 		return;
527 
528 	if (data->host_cookie) {
529 		data->host_cookie = 0;
530 		return;
531 	}
532 
533 	/* if config for dma */
534 	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
535 	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
536 		if (mmci_dma_prep_data(host, data, nd))
537 			data->host_cookie = 0;
538 		else
539 			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
540 	}
541 }
542 
543 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
544 			      int err)
545 {
546 	struct mmci_host *host = mmc_priv(mmc);
547 	struct mmc_data *data = mrq->data;
548 	struct dma_chan *chan;
549 	enum dma_data_direction dir;
550 
551 	if (!data)
552 		return;
553 
554 	if (data->flags & MMC_DATA_READ) {
555 		dir = DMA_FROM_DEVICE;
556 		chan = host->dma_rx_channel;
557 	} else {
558 		dir = DMA_TO_DEVICE;
559 		chan = host->dma_tx_channel;
560 	}
561 
562 
563 	/* if config for dma */
564 	if (chan) {
565 		if (err)
566 			dmaengine_terminate_all(chan);
567 		if (data->host_cookie)
568 			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
569 				     data->sg_len, dir);
570 		mrq->data->host_cookie = 0;
571 	}
572 }
573 
574 #else
575 /* Blank functions if the DMA engine is not available */
576 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
577 {
578 }
579 static inline void mmci_dma_setup(struct mmci_host *host)
580 {
581 }
582 
583 static inline void mmci_dma_release(struct mmci_host *host)
584 {
585 }
586 
587 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
588 {
589 }
590 
591 static inline void mmci_dma_data_error(struct mmci_host *host)
592 {
593 }
594 
595 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
596 {
597 	return -ENOSYS;
598 }
599 
600 #define mmci_pre_request NULL
601 #define mmci_post_request NULL
602 
603 #endif
604 
605 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
606 {
607 	struct variant_data *variant = host->variant;
608 	unsigned int datactrl, timeout, irqmask;
609 	unsigned long long clks;
610 	void __iomem *base;
611 	int blksz_bits;
612 
613 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
614 		data->blksz, data->blocks, data->flags);
615 
616 	host->data = data;
617 	host->size = data->blksz * data->blocks;
618 	data->bytes_xfered = 0;
619 
620 	clks = (unsigned long long)data->timeout_ns * host->cclk;
621 	do_div(clks, 1000000000UL);
622 
623 	timeout = data->timeout_clks + (unsigned int)clks;
624 
625 	base = host->base;
626 	writel(timeout, base + MMCIDATATIMER);
627 	writel(host->size, base + MMCIDATALENGTH);
628 
629 	blksz_bits = ffs(data->blksz) - 1;
630 	BUG_ON(1 << blksz_bits != data->blksz);
631 
632 	if (variant->blksz_datactrl16)
633 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
634 	else
635 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
636 
637 	if (data->flags & MMC_DATA_READ)
638 		datactrl |= MCI_DPSM_DIRECTION;
639 
640 	/* The ST Micro variants has a special bit to enable SDIO */
641 	if (variant->sdio && host->mmc->card)
642 		if (mmc_card_sdio(host->mmc->card))
643 			datactrl |= MCI_ST_DPSM_SDIOEN;
644 
645 	/*
646 	 * Attempt to use DMA operation mode, if this
647 	 * should fail, fall back to PIO mode
648 	 */
649 	if (!mmci_dma_start_data(host, datactrl))
650 		return;
651 
652 	/* IRQ mode, map the SG list for CPU reading/writing */
653 	mmci_init_sg(host, data);
654 
655 	if (data->flags & MMC_DATA_READ) {
656 		irqmask = MCI_RXFIFOHALFFULLMASK;
657 
658 		/*
659 		 * If we have less than the fifo 'half-full' threshold to
660 		 * transfer, trigger a PIO interrupt as soon as any data
661 		 * is available.
662 		 */
663 		if (host->size < variant->fifohalfsize)
664 			irqmask |= MCI_RXDATAAVLBLMASK;
665 	} else {
666 		/*
667 		 * We don't actually need to include "FIFO empty" here
668 		 * since its implicit in "FIFO half empty".
669 		 */
670 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
671 	}
672 
673 	writel(datactrl, base + MMCIDATACTRL);
674 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
675 	mmci_set_mask1(host, irqmask);
676 }
677 
678 static void
679 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
680 {
681 	void __iomem *base = host->base;
682 
683 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
684 	    cmd->opcode, cmd->arg, cmd->flags);
685 
686 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
687 		writel(0, base + MMCICOMMAND);
688 		udelay(1);
689 	}
690 
691 	c |= cmd->opcode | MCI_CPSM_ENABLE;
692 	if (cmd->flags & MMC_RSP_PRESENT) {
693 		if (cmd->flags & MMC_RSP_136)
694 			c |= MCI_CPSM_LONGRSP;
695 		c |= MCI_CPSM_RESPONSE;
696 	}
697 	if (/*interrupt*/0)
698 		c |= MCI_CPSM_INTERRUPT;
699 
700 	host->cmd = cmd;
701 
702 	writel(cmd->arg, base + MMCIARGUMENT);
703 	writel(c, base + MMCICOMMAND);
704 }
705 
706 static void
707 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
708 	      unsigned int status)
709 {
710 	/* First check for errors */
711 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
712 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
713 		u32 remain, success;
714 
715 		/* Terminate the DMA transfer */
716 		if (dma_inprogress(host))
717 			mmci_dma_data_error(host);
718 
719 		/*
720 		 * Calculate how far we are into the transfer.  Note that
721 		 * the data counter gives the number of bytes transferred
722 		 * on the MMC bus, not on the host side.  On reads, this
723 		 * can be as much as a FIFO-worth of data ahead.  This
724 		 * matters for FIFO overruns only.
725 		 */
726 		remain = readl(host->base + MMCIDATACNT);
727 		success = data->blksz * data->blocks - remain;
728 
729 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
730 			status, success);
731 		if (status & MCI_DATACRCFAIL) {
732 			/* Last block was not successful */
733 			success -= 1;
734 			data->error = -EILSEQ;
735 		} else if (status & MCI_DATATIMEOUT) {
736 			data->error = -ETIMEDOUT;
737 		} else if (status & MCI_STARTBITERR) {
738 			data->error = -ECOMM;
739 		} else if (status & MCI_TXUNDERRUN) {
740 			data->error = -EIO;
741 		} else if (status & MCI_RXOVERRUN) {
742 			if (success > host->variant->fifosize)
743 				success -= host->variant->fifosize;
744 			else
745 				success = 0;
746 			data->error = -EIO;
747 		}
748 		data->bytes_xfered = round_down(success, data->blksz);
749 	}
750 
751 	if (status & MCI_DATABLOCKEND)
752 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
753 
754 	if (status & MCI_DATAEND || data->error) {
755 		if (dma_inprogress(host))
756 			mmci_dma_unmap(host, data);
757 		mmci_stop_data(host);
758 
759 		if (!data->error)
760 			/* The error clause is handled above, success! */
761 			data->bytes_xfered = data->blksz * data->blocks;
762 
763 		if (!data->stop) {
764 			mmci_request_end(host, data->mrq);
765 		} else {
766 			mmci_start_command(host, data->stop, 0);
767 		}
768 	}
769 }
770 
771 static void
772 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
773 	     unsigned int status)
774 {
775 	void __iomem *base = host->base;
776 
777 	host->cmd = NULL;
778 
779 	if (status & MCI_CMDTIMEOUT) {
780 		cmd->error = -ETIMEDOUT;
781 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
782 		cmd->error = -EILSEQ;
783 	} else {
784 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
785 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
786 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
787 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
788 	}
789 
790 	if (!cmd->data || cmd->error) {
791 		if (host->data) {
792 			/* Terminate the DMA transfer */
793 			if (dma_inprogress(host))
794 				mmci_dma_data_error(host);
795 			mmci_stop_data(host);
796 		}
797 		mmci_request_end(host, cmd->mrq);
798 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
799 		mmci_start_data(host, cmd->data);
800 	}
801 }
802 
803 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
804 {
805 	void __iomem *base = host->base;
806 	char *ptr = buffer;
807 	u32 status;
808 	int host_remain = host->size;
809 
810 	do {
811 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
812 
813 		if (count > remain)
814 			count = remain;
815 
816 		if (count <= 0)
817 			break;
818 
819 		/*
820 		 * SDIO especially may want to send something that is
821 		 * not divisible by 4 (as opposed to card sectors
822 		 * etc). Therefore make sure to always read the last bytes
823 		 * while only doing full 32-bit reads towards the FIFO.
824 		 */
825 		if (unlikely(count & 0x3)) {
826 			if (count < 4) {
827 				unsigned char buf[4];
828 				readsl(base + MMCIFIFO, buf, 1);
829 				memcpy(ptr, buf, count);
830 			} else {
831 				readsl(base + MMCIFIFO, ptr, count >> 2);
832 				count &= ~0x3;
833 			}
834 		} else {
835 			readsl(base + MMCIFIFO, ptr, count >> 2);
836 		}
837 
838 		ptr += count;
839 		remain -= count;
840 		host_remain -= count;
841 
842 		if (remain == 0)
843 			break;
844 
845 		status = readl(base + MMCISTATUS);
846 	} while (status & MCI_RXDATAAVLBL);
847 
848 	return ptr - buffer;
849 }
850 
851 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
852 {
853 	struct variant_data *variant = host->variant;
854 	void __iomem *base = host->base;
855 	char *ptr = buffer;
856 
857 	do {
858 		unsigned int count, maxcnt;
859 
860 		maxcnt = status & MCI_TXFIFOEMPTY ?
861 			 variant->fifosize : variant->fifohalfsize;
862 		count = min(remain, maxcnt);
863 
864 		/*
865 		 * The ST Micro variant for SDIO transfer sizes
866 		 * less then 8 bytes should have clock H/W flow
867 		 * control disabled.
868 		 */
869 		if (variant->sdio &&
870 		    mmc_card_sdio(host->mmc->card)) {
871 			u32 clk;
872 			if (count < 8)
873 				clk = host->clk_reg & ~variant->clkreg_enable;
874 			else
875 				clk = host->clk_reg | variant->clkreg_enable;
876 
877 			mmci_write_clkreg(host, clk);
878 		}
879 
880 		/*
881 		 * SDIO especially may want to send something that is
882 		 * not divisible by 4 (as opposed to card sectors
883 		 * etc), and the FIFO only accept full 32-bit writes.
884 		 * So compensate by adding +3 on the count, a single
885 		 * byte become a 32bit write, 7 bytes will be two
886 		 * 32bit writes etc.
887 		 */
888 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
889 
890 		ptr += count;
891 		remain -= count;
892 
893 		if (remain == 0)
894 			break;
895 
896 		status = readl(base + MMCISTATUS);
897 	} while (status & MCI_TXFIFOHALFEMPTY);
898 
899 	return ptr - buffer;
900 }
901 
902 /*
903  * PIO data transfer IRQ handler.
904  */
905 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
906 {
907 	struct mmci_host *host = dev_id;
908 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
909 	struct variant_data *variant = host->variant;
910 	void __iomem *base = host->base;
911 	unsigned long flags;
912 	u32 status;
913 
914 	status = readl(base + MMCISTATUS);
915 
916 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
917 
918 	local_irq_save(flags);
919 
920 	do {
921 		unsigned int remain, len;
922 		char *buffer;
923 
924 		/*
925 		 * For write, we only need to test the half-empty flag
926 		 * here - if the FIFO is completely empty, then by
927 		 * definition it is more than half empty.
928 		 *
929 		 * For read, check for data available.
930 		 */
931 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
932 			break;
933 
934 		if (!sg_miter_next(sg_miter))
935 			break;
936 
937 		buffer = sg_miter->addr;
938 		remain = sg_miter->length;
939 
940 		len = 0;
941 		if (status & MCI_RXACTIVE)
942 			len = mmci_pio_read(host, buffer, remain);
943 		if (status & MCI_TXACTIVE)
944 			len = mmci_pio_write(host, buffer, remain, status);
945 
946 		sg_miter->consumed = len;
947 
948 		host->size -= len;
949 		remain -= len;
950 
951 		if (remain)
952 			break;
953 
954 		status = readl(base + MMCISTATUS);
955 	} while (1);
956 
957 	sg_miter_stop(sg_miter);
958 
959 	local_irq_restore(flags);
960 
961 	/*
962 	 * If we have less than the fifo 'half-full' threshold to transfer,
963 	 * trigger a PIO interrupt as soon as any data is available.
964 	 */
965 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
966 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
967 
968 	/*
969 	 * If we run out of data, disable the data IRQs; this
970 	 * prevents a race where the FIFO becomes empty before
971 	 * the chip itself has disabled the data path, and
972 	 * stops us racing with our data end IRQ.
973 	 */
974 	if (host->size == 0) {
975 		mmci_set_mask1(host, 0);
976 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
977 	}
978 
979 	return IRQ_HANDLED;
980 }
981 
982 /*
983  * Handle completion of command and data transfers.
984  */
985 static irqreturn_t mmci_irq(int irq, void *dev_id)
986 {
987 	struct mmci_host *host = dev_id;
988 	u32 status;
989 	int ret = 0;
990 
991 	spin_lock(&host->lock);
992 
993 	do {
994 		struct mmc_command *cmd;
995 		struct mmc_data *data;
996 
997 		status = readl(host->base + MMCISTATUS);
998 
999 		if (host->singleirq) {
1000 			if (status & readl(host->base + MMCIMASK1))
1001 				mmci_pio_irq(irq, dev_id);
1002 
1003 			status &= ~MCI_IRQ1MASK;
1004 		}
1005 
1006 		status &= readl(host->base + MMCIMASK0);
1007 		writel(status, host->base + MMCICLEAR);
1008 
1009 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1010 
1011 		data = host->data;
1012 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1013 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1014 			      MCI_DATABLOCKEND) && data)
1015 			mmci_data_irq(host, data, status);
1016 
1017 		cmd = host->cmd;
1018 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1019 			mmci_cmd_irq(host, cmd, status);
1020 
1021 		ret = 1;
1022 	} while (status);
1023 
1024 	spin_unlock(&host->lock);
1025 
1026 	return IRQ_RETVAL(ret);
1027 }
1028 
1029 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1030 {
1031 	struct mmci_host *host = mmc_priv(mmc);
1032 	unsigned long flags;
1033 
1034 	WARN_ON(host->mrq != NULL);
1035 
1036 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
1037 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1038 			mrq->data->blksz);
1039 		mrq->cmd->error = -EINVAL;
1040 		mmc_request_done(mmc, mrq);
1041 		return;
1042 	}
1043 
1044 	pm_runtime_get_sync(mmc_dev(mmc));
1045 
1046 	spin_lock_irqsave(&host->lock, flags);
1047 
1048 	host->mrq = mrq;
1049 
1050 	if (mrq->data)
1051 		mmci_get_next_data(host, mrq->data);
1052 
1053 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1054 		mmci_start_data(host, mrq->data);
1055 
1056 	mmci_start_command(host, mrq->cmd, 0);
1057 
1058 	spin_unlock_irqrestore(&host->lock, flags);
1059 }
1060 
1061 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1062 {
1063 	struct mmci_host *host = mmc_priv(mmc);
1064 	struct variant_data *variant = host->variant;
1065 	u32 pwr = 0;
1066 	unsigned long flags;
1067 	int ret;
1068 
1069 	pm_runtime_get_sync(mmc_dev(mmc));
1070 
1071 	if (host->plat->ios_handler &&
1072 		host->plat->ios_handler(mmc_dev(mmc), ios))
1073 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1074 
1075 	switch (ios->power_mode) {
1076 	case MMC_POWER_OFF:
1077 		if (host->vcc)
1078 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1079 		break;
1080 	case MMC_POWER_UP:
1081 		if (host->vcc) {
1082 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1083 			if (ret) {
1084 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1085 				/*
1086 				 * The .set_ios() function in the mmc_host_ops
1087 				 * struct return void, and failing to set the
1088 				 * power should be rare so we print an error
1089 				 * and return here.
1090 				 */
1091 				goto out;
1092 			}
1093 		}
1094 		/*
1095 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1096 		 * and instead uses MCI_PWR_ON so apply whatever value is
1097 		 * configured in the variant data.
1098 		 */
1099 		pwr |= variant->pwrreg_powerup;
1100 
1101 		break;
1102 	case MMC_POWER_ON:
1103 		pwr |= MCI_PWR_ON;
1104 		break;
1105 	}
1106 
1107 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1108 		/*
1109 		 * The ST Micro variant has some additional bits
1110 		 * indicating signal direction for the signals in
1111 		 * the SD/MMC bus and feedback-clock usage.
1112 		 */
1113 		pwr |= host->plat->sigdir;
1114 
1115 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1116 			pwr &= ~MCI_ST_DATA74DIREN;
1117 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1118 			pwr &= (~MCI_ST_DATA74DIREN &
1119 				~MCI_ST_DATA31DIREN &
1120 				~MCI_ST_DATA2DIREN);
1121 	}
1122 
1123 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1124 		if (host->hw_designer != AMBA_VENDOR_ST)
1125 			pwr |= MCI_ROD;
1126 		else {
1127 			/*
1128 			 * The ST Micro variant use the ROD bit for something
1129 			 * else and only has OD (Open Drain).
1130 			 */
1131 			pwr |= MCI_OD;
1132 		}
1133 	}
1134 
1135 	spin_lock_irqsave(&host->lock, flags);
1136 
1137 	mmci_set_clkreg(host, ios->clock);
1138 	mmci_write_pwrreg(host, pwr);
1139 
1140 	spin_unlock_irqrestore(&host->lock, flags);
1141 
1142  out:
1143 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1144 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1145 }
1146 
1147 static int mmci_get_ro(struct mmc_host *mmc)
1148 {
1149 	struct mmci_host *host = mmc_priv(mmc);
1150 
1151 	if (host->gpio_wp == -ENOSYS)
1152 		return -ENOSYS;
1153 
1154 	return gpio_get_value_cansleep(host->gpio_wp);
1155 }
1156 
1157 static int mmci_get_cd(struct mmc_host *mmc)
1158 {
1159 	struct mmci_host *host = mmc_priv(mmc);
1160 	struct mmci_platform_data *plat = host->plat;
1161 	unsigned int status;
1162 
1163 	if (host->gpio_cd == -ENOSYS) {
1164 		if (!plat->status)
1165 			return 1; /* Assume always present */
1166 
1167 		status = plat->status(mmc_dev(host->mmc));
1168 	} else
1169 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1170 			^ plat->cd_invert;
1171 
1172 	/*
1173 	 * Use positive logic throughout - status is zero for no card,
1174 	 * non-zero for card inserted.
1175 	 */
1176 	return status;
1177 }
1178 
1179 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1180 {
1181 	struct mmci_host *host = dev_id;
1182 
1183 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1184 
1185 	return IRQ_HANDLED;
1186 }
1187 
1188 static const struct mmc_host_ops mmci_ops = {
1189 	.request	= mmci_request,
1190 	.pre_req	= mmci_pre_request,
1191 	.post_req	= mmci_post_request,
1192 	.set_ios	= mmci_set_ios,
1193 	.get_ro		= mmci_get_ro,
1194 	.get_cd		= mmci_get_cd,
1195 };
1196 
1197 static int __devinit mmci_probe(struct amba_device *dev,
1198 	const struct amba_id *id)
1199 {
1200 	struct mmci_platform_data *plat = dev->dev.platform_data;
1201 	struct variant_data *variant = id->data;
1202 	struct mmci_host *host;
1203 	struct mmc_host *mmc;
1204 	int ret;
1205 
1206 	/* must have platform data */
1207 	if (!plat) {
1208 		ret = -EINVAL;
1209 		goto out;
1210 	}
1211 
1212 	ret = amba_request_regions(dev, DRIVER_NAME);
1213 	if (ret)
1214 		goto out;
1215 
1216 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1217 	if (!mmc) {
1218 		ret = -ENOMEM;
1219 		goto rel_regions;
1220 	}
1221 
1222 	host = mmc_priv(mmc);
1223 	host->mmc = mmc;
1224 
1225 	host->gpio_wp = -ENOSYS;
1226 	host->gpio_cd = -ENOSYS;
1227 	host->gpio_cd_irq = -1;
1228 
1229 	host->hw_designer = amba_manf(dev);
1230 	host->hw_revision = amba_rev(dev);
1231 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1232 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1233 
1234 	host->clk = clk_get(&dev->dev, NULL);
1235 	if (IS_ERR(host->clk)) {
1236 		ret = PTR_ERR(host->clk);
1237 		host->clk = NULL;
1238 		goto host_free;
1239 	}
1240 
1241 	ret = clk_prepare(host->clk);
1242 	if (ret)
1243 		goto clk_free;
1244 
1245 	ret = clk_enable(host->clk);
1246 	if (ret)
1247 		goto clk_unprep;
1248 
1249 	host->plat = plat;
1250 	host->variant = variant;
1251 	host->mclk = clk_get_rate(host->clk);
1252 	/*
1253 	 * According to the spec, mclk is max 100 MHz,
1254 	 * so we try to adjust the clock down to this,
1255 	 * (if possible).
1256 	 */
1257 	if (host->mclk > 100000000) {
1258 		ret = clk_set_rate(host->clk, 100000000);
1259 		if (ret < 0)
1260 			goto clk_disable;
1261 		host->mclk = clk_get_rate(host->clk);
1262 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1263 			host->mclk);
1264 	}
1265 	host->phybase = dev->res.start;
1266 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1267 	if (!host->base) {
1268 		ret = -ENOMEM;
1269 		goto clk_disable;
1270 	}
1271 
1272 	mmc->ops = &mmci_ops;
1273 	/*
1274 	 * The ARM and ST versions of the block have slightly different
1275 	 * clock divider equations which means that the minimum divider
1276 	 * differs too.
1277 	 */
1278 	if (variant->st_clkdiv)
1279 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1280 	else
1281 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1282 	/*
1283 	 * If the platform data supplies a maximum operating
1284 	 * frequency, this takes precedence. Else, we fall back
1285 	 * to using the module parameter, which has a (low)
1286 	 * default value in case it is not specified. Either
1287 	 * value must not exceed the clock rate into the block,
1288 	 * of course.
1289 	 */
1290 	if (plat->f_max)
1291 		mmc->f_max = min(host->mclk, plat->f_max);
1292 	else
1293 		mmc->f_max = min(host->mclk, fmax);
1294 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1295 
1296 #ifdef CONFIG_REGULATOR
1297 	/* If we're using the regulator framework, try to fetch a regulator */
1298 	host->vcc = regulator_get(&dev->dev, "vmmc");
1299 	if (IS_ERR(host->vcc))
1300 		host->vcc = NULL;
1301 	else {
1302 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1303 
1304 		if (mask < 0)
1305 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1306 				mask);
1307 		else {
1308 			host->mmc->ocr_avail = (u32) mask;
1309 			if (plat->ocr_mask)
1310 				dev_warn(&dev->dev,
1311 				 "Provided ocr_mask/setpower will not be used "
1312 				 "(using regulator instead)\n");
1313 		}
1314 	}
1315 #endif
1316 	/* Fall back to platform data if no regulator is found */
1317 	if (host->vcc == NULL)
1318 		mmc->ocr_avail = plat->ocr_mask;
1319 	mmc->caps = plat->capabilities;
1320 	mmc->caps2 = plat->capabilities2;
1321 
1322 	/*
1323 	 * We can do SGIO
1324 	 */
1325 	mmc->max_segs = NR_SG;
1326 
1327 	/*
1328 	 * Since only a certain number of bits are valid in the data length
1329 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1330 	 * single request.
1331 	 */
1332 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1333 
1334 	/*
1335 	 * Set the maximum segment size.  Since we aren't doing DMA
1336 	 * (yet) we are only limited by the data length register.
1337 	 */
1338 	mmc->max_seg_size = mmc->max_req_size;
1339 
1340 	/*
1341 	 * Block size can be up to 2048 bytes, but must be a power of two.
1342 	 */
1343 	mmc->max_blk_size = 2048;
1344 
1345 	/*
1346 	 * No limit on the number of blocks transferred.
1347 	 */
1348 	mmc->max_blk_count = mmc->max_req_size;
1349 
1350 	spin_lock_init(&host->lock);
1351 
1352 	writel(0, host->base + MMCIMASK0);
1353 	writel(0, host->base + MMCIMASK1);
1354 	writel(0xfff, host->base + MMCICLEAR);
1355 
1356 	if (gpio_is_valid(plat->gpio_cd)) {
1357 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1358 		if (ret == 0)
1359 			ret = gpio_direction_input(plat->gpio_cd);
1360 		if (ret == 0)
1361 			host->gpio_cd = plat->gpio_cd;
1362 		else if (ret != -ENOSYS)
1363 			goto err_gpio_cd;
1364 
1365 		/*
1366 		 * A gpio pin that will detect cards when inserted and removed
1367 		 * will most likely want to trigger on the edges if it is
1368 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1369 		 * for the inverted case) so we request triggers on both
1370 		 * edges.
1371 		 */
1372 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1373 				mmci_cd_irq,
1374 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1375 				DRIVER_NAME " (cd)", host);
1376 		if (ret >= 0)
1377 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1378 	}
1379 	if (gpio_is_valid(plat->gpio_wp)) {
1380 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1381 		if (ret == 0)
1382 			ret = gpio_direction_input(plat->gpio_wp);
1383 		if (ret == 0)
1384 			host->gpio_wp = plat->gpio_wp;
1385 		else if (ret != -ENOSYS)
1386 			goto err_gpio_wp;
1387 	}
1388 
1389 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1390 	    && host->gpio_cd_irq < 0)
1391 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1392 
1393 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1394 	if (ret)
1395 		goto unmap;
1396 
1397 	if (dev->irq[1] == NO_IRQ)
1398 		host->singleirq = true;
1399 	else {
1400 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1401 				  DRIVER_NAME " (pio)", host);
1402 		if (ret)
1403 			goto irq0_free;
1404 	}
1405 
1406 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1407 
1408 	amba_set_drvdata(dev, mmc);
1409 
1410 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1411 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1412 		 amba_rev(dev), (unsigned long long)dev->res.start,
1413 		 dev->irq[0], dev->irq[1]);
1414 
1415 	mmci_dma_setup(host);
1416 
1417 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1418 	pm_runtime_use_autosuspend(&dev->dev);
1419 	pm_runtime_put(&dev->dev);
1420 
1421 	mmc_add_host(mmc);
1422 
1423 	return 0;
1424 
1425  irq0_free:
1426 	free_irq(dev->irq[0], host);
1427  unmap:
1428 	if (host->gpio_wp != -ENOSYS)
1429 		gpio_free(host->gpio_wp);
1430  err_gpio_wp:
1431 	if (host->gpio_cd_irq >= 0)
1432 		free_irq(host->gpio_cd_irq, host);
1433 	if (host->gpio_cd != -ENOSYS)
1434 		gpio_free(host->gpio_cd);
1435  err_gpio_cd:
1436 	iounmap(host->base);
1437  clk_disable:
1438 	clk_disable(host->clk);
1439  clk_unprep:
1440 	clk_unprepare(host->clk);
1441  clk_free:
1442 	clk_put(host->clk);
1443  host_free:
1444 	mmc_free_host(mmc);
1445  rel_regions:
1446 	amba_release_regions(dev);
1447  out:
1448 	return ret;
1449 }
1450 
1451 static int __devexit mmci_remove(struct amba_device *dev)
1452 {
1453 	struct mmc_host *mmc = amba_get_drvdata(dev);
1454 
1455 	amba_set_drvdata(dev, NULL);
1456 
1457 	if (mmc) {
1458 		struct mmci_host *host = mmc_priv(mmc);
1459 
1460 		/*
1461 		 * Undo pm_runtime_put() in probe.  We use the _sync
1462 		 * version here so that we can access the primecell.
1463 		 */
1464 		pm_runtime_get_sync(&dev->dev);
1465 
1466 		mmc_remove_host(mmc);
1467 
1468 		writel(0, host->base + MMCIMASK0);
1469 		writel(0, host->base + MMCIMASK1);
1470 
1471 		writel(0, host->base + MMCICOMMAND);
1472 		writel(0, host->base + MMCIDATACTRL);
1473 
1474 		mmci_dma_release(host);
1475 		free_irq(dev->irq[0], host);
1476 		if (!host->singleirq)
1477 			free_irq(dev->irq[1], host);
1478 
1479 		if (host->gpio_wp != -ENOSYS)
1480 			gpio_free(host->gpio_wp);
1481 		if (host->gpio_cd_irq >= 0)
1482 			free_irq(host->gpio_cd_irq, host);
1483 		if (host->gpio_cd != -ENOSYS)
1484 			gpio_free(host->gpio_cd);
1485 
1486 		iounmap(host->base);
1487 		clk_disable(host->clk);
1488 		clk_unprepare(host->clk);
1489 		clk_put(host->clk);
1490 
1491 		if (host->vcc)
1492 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1493 		regulator_put(host->vcc);
1494 
1495 		mmc_free_host(mmc);
1496 
1497 		amba_release_regions(dev);
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 #ifdef CONFIG_SUSPEND
1504 static int mmci_suspend(struct device *dev)
1505 {
1506 	struct amba_device *adev = to_amba_device(dev);
1507 	struct mmc_host *mmc = amba_get_drvdata(adev);
1508 	int ret = 0;
1509 
1510 	if (mmc) {
1511 		struct mmci_host *host = mmc_priv(mmc);
1512 
1513 		ret = mmc_suspend_host(mmc);
1514 		if (ret == 0) {
1515 			pm_runtime_get_sync(dev);
1516 			writel(0, host->base + MMCIMASK0);
1517 		}
1518 	}
1519 
1520 	return ret;
1521 }
1522 
1523 static int mmci_resume(struct device *dev)
1524 {
1525 	struct amba_device *adev = to_amba_device(dev);
1526 	struct mmc_host *mmc = amba_get_drvdata(adev);
1527 	int ret = 0;
1528 
1529 	if (mmc) {
1530 		struct mmci_host *host = mmc_priv(mmc);
1531 
1532 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1533 		pm_runtime_put(dev);
1534 
1535 		ret = mmc_resume_host(mmc);
1536 	}
1537 
1538 	return ret;
1539 }
1540 #endif
1541 
1542 static const struct dev_pm_ops mmci_dev_pm_ops = {
1543 	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1544 };
1545 
1546 static struct amba_id mmci_ids[] = {
1547 	{
1548 		.id	= 0x00041180,
1549 		.mask	= 0xff0fffff,
1550 		.data	= &variant_arm,
1551 	},
1552 	{
1553 		.id	= 0x01041180,
1554 		.mask	= 0xff0fffff,
1555 		.data	= &variant_arm_extended_fifo,
1556 	},
1557 	{
1558 		.id	= 0x00041181,
1559 		.mask	= 0x000fffff,
1560 		.data	= &variant_arm,
1561 	},
1562 	/* ST Micro variants */
1563 	{
1564 		.id     = 0x00180180,
1565 		.mask   = 0x00ffffff,
1566 		.data	= &variant_u300,
1567 	},
1568 	{
1569 		.id     = 0x00280180,
1570 		.mask   = 0x00ffffff,
1571 		.data	= &variant_u300,
1572 	},
1573 	{
1574 		.id     = 0x00480180,
1575 		.mask   = 0xf0ffffff,
1576 		.data	= &variant_ux500,
1577 	},
1578 	{
1579 		.id     = 0x10480180,
1580 		.mask   = 0xf0ffffff,
1581 		.data	= &variant_ux500v2,
1582 	},
1583 	{ 0, 0 },
1584 };
1585 
1586 MODULE_DEVICE_TABLE(amba, mmci_ids);
1587 
1588 static struct amba_driver mmci_driver = {
1589 	.drv		= {
1590 		.name	= DRIVER_NAME,
1591 		.pm	= &mmci_dev_pm_ops,
1592 	},
1593 	.probe		= mmci_probe,
1594 	.remove		= __devexit_p(mmci_remove),
1595 	.id_table	= mmci_ids,
1596 };
1597 
1598 static int __init mmci_init(void)
1599 {
1600 	return amba_driver_register(&mmci_driver);
1601 }
1602 
1603 static void __exit mmci_exit(void)
1604 {
1605 	amba_driver_unregister(&mmci_driver);
1606 }
1607 
1608 module_init(mmci_init);
1609 module_exit(mmci_exit);
1610 module_param(fmax, uint, 0444);
1611 
1612 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1613 MODULE_LICENSE("GPL");
1614