xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 7258db7e)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <asm/div64.h>
35 #include <asm/io.h>
36 #include <asm/sizes.h>
37 
38 #include "mmci.h"
39 
40 #define DRIVER_NAME "mmci-pl18x"
41 
42 static unsigned int fmax = 515633;
43 
44 /**
45  * struct variant_data - MMCI variant-specific quirks
46  * @clkreg: default value for MCICLOCK register
47  * @clkreg_enable: enable value for MMCICLOCK register
48  * @datalength_bits: number of bits in the MMCIDATALENGTH register
49  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50  *	      is asserted (likewise for RX)
51  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52  *		  is asserted (likewise for RX)
53  * @sdio: variant supports SDIO
54  * @st_clkdiv: true if using a ST-specific clock divider algorithm
55  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56  * @pwrreg_powerup: power up value for MMCIPOWER register
57  * @signal_direction: input/out direction of bus signals can be indicated
58  */
59 struct variant_data {
60 	unsigned int		clkreg;
61 	unsigned int		clkreg_enable;
62 	unsigned int		datalength_bits;
63 	unsigned int		fifosize;
64 	unsigned int		fifohalfsize;
65 	bool			sdio;
66 	bool			st_clkdiv;
67 	bool			blksz_datactrl16;
68 	u32			pwrreg_powerup;
69 	bool			signal_direction;
70 };
71 
72 static struct variant_data variant_arm = {
73 	.fifosize		= 16 * 4,
74 	.fifohalfsize		= 8 * 4,
75 	.datalength_bits	= 16,
76 	.pwrreg_powerup		= MCI_PWR_UP,
77 };
78 
79 static struct variant_data variant_arm_extended_fifo = {
80 	.fifosize		= 128 * 4,
81 	.fifohalfsize		= 64 * 4,
82 	.datalength_bits	= 16,
83 	.pwrreg_powerup		= MCI_PWR_UP,
84 };
85 
86 static struct variant_data variant_u300 = {
87 	.fifosize		= 16 * 4,
88 	.fifohalfsize		= 8 * 4,
89 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
90 	.datalength_bits	= 16,
91 	.sdio			= true,
92 	.pwrreg_powerup		= MCI_PWR_ON,
93 	.signal_direction	= true,
94 };
95 
96 static struct variant_data variant_ux500 = {
97 	.fifosize		= 30 * 4,
98 	.fifohalfsize		= 8 * 4,
99 	.clkreg			= MCI_CLK_ENABLE,
100 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
101 	.datalength_bits	= 24,
102 	.sdio			= true,
103 	.st_clkdiv		= true,
104 	.pwrreg_powerup		= MCI_PWR_ON,
105 	.signal_direction	= true,
106 };
107 
108 static struct variant_data variant_ux500v2 = {
109 	.fifosize		= 30 * 4,
110 	.fifohalfsize		= 8 * 4,
111 	.clkreg			= MCI_CLK_ENABLE,
112 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
113 	.datalength_bits	= 24,
114 	.sdio			= true,
115 	.st_clkdiv		= true,
116 	.blksz_datactrl16	= true,
117 	.pwrreg_powerup		= MCI_PWR_ON,
118 	.signal_direction	= true,
119 };
120 
121 /*
122  * This must be called with host->lock held
123  */
124 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
125 {
126 	struct variant_data *variant = host->variant;
127 	u32 clk = variant->clkreg;
128 
129 	if (desired) {
130 		if (desired >= host->mclk) {
131 			clk = MCI_CLK_BYPASS;
132 			if (variant->st_clkdiv)
133 				clk |= MCI_ST_UX500_NEG_EDGE;
134 			host->cclk = host->mclk;
135 		} else if (variant->st_clkdiv) {
136 			/*
137 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
138 			 * => clkdiv = (mclk / f) - 2
139 			 * Round the divider up so we don't exceed the max
140 			 * frequency
141 			 */
142 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
143 			if (clk >= 256)
144 				clk = 255;
145 			host->cclk = host->mclk / (clk + 2);
146 		} else {
147 			/*
148 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
149 			 * => clkdiv = mclk / (2 * f) - 1
150 			 */
151 			clk = host->mclk / (2 * desired) - 1;
152 			if (clk >= 256)
153 				clk = 255;
154 			host->cclk = host->mclk / (2 * (clk + 1));
155 		}
156 
157 		clk |= variant->clkreg_enable;
158 		clk |= MCI_CLK_ENABLE;
159 		/* This hasn't proven to be worthwhile */
160 		/* clk |= MCI_CLK_PWRSAVE; */
161 	}
162 
163 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
164 		clk |= MCI_4BIT_BUS;
165 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
166 		clk |= MCI_ST_8BIT_BUS;
167 
168 	writel(clk, host->base + MMCICLOCK);
169 }
170 
171 static void
172 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
173 {
174 	writel(0, host->base + MMCICOMMAND);
175 
176 	BUG_ON(host->data);
177 
178 	host->mrq = NULL;
179 	host->cmd = NULL;
180 
181 	mmc_request_done(host->mmc, mrq);
182 
183 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
184 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
185 }
186 
187 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
188 {
189 	void __iomem *base = host->base;
190 
191 	if (host->singleirq) {
192 		unsigned int mask0 = readl(base + MMCIMASK0);
193 
194 		mask0 &= ~MCI_IRQ1MASK;
195 		mask0 |= mask;
196 
197 		writel(mask0, base + MMCIMASK0);
198 	}
199 
200 	writel(mask, base + MMCIMASK1);
201 }
202 
203 static void mmci_stop_data(struct mmci_host *host)
204 {
205 	writel(0, host->base + MMCIDATACTRL);
206 	mmci_set_mask1(host, 0);
207 	host->data = NULL;
208 }
209 
210 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
211 {
212 	unsigned int flags = SG_MITER_ATOMIC;
213 
214 	if (data->flags & MMC_DATA_READ)
215 		flags |= SG_MITER_TO_SG;
216 	else
217 		flags |= SG_MITER_FROM_SG;
218 
219 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
220 }
221 
222 /*
223  * All the DMA operation mode stuff goes inside this ifdef.
224  * This assumes that you have a generic DMA device interface,
225  * no custom DMA interfaces are supported.
226  */
227 #ifdef CONFIG_DMA_ENGINE
228 static void __devinit mmci_dma_setup(struct mmci_host *host)
229 {
230 	struct mmci_platform_data *plat = host->plat;
231 	const char *rxname, *txname;
232 	dma_cap_mask_t mask;
233 
234 	if (!plat || !plat->dma_filter) {
235 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
236 		return;
237 	}
238 
239 	/* initialize pre request cookie */
240 	host->next_data.cookie = 1;
241 
242 	/* Try to acquire a generic DMA engine slave channel */
243 	dma_cap_zero(mask);
244 	dma_cap_set(DMA_SLAVE, mask);
245 
246 	/*
247 	 * If only an RX channel is specified, the driver will
248 	 * attempt to use it bidirectionally, however if it is
249 	 * is specified but cannot be located, DMA will be disabled.
250 	 */
251 	if (plat->dma_rx_param) {
252 		host->dma_rx_channel = dma_request_channel(mask,
253 							   plat->dma_filter,
254 							   plat->dma_rx_param);
255 		/* E.g if no DMA hardware is present */
256 		if (!host->dma_rx_channel)
257 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
258 	}
259 
260 	if (plat->dma_tx_param) {
261 		host->dma_tx_channel = dma_request_channel(mask,
262 							   plat->dma_filter,
263 							   plat->dma_tx_param);
264 		if (!host->dma_tx_channel)
265 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
266 	} else {
267 		host->dma_tx_channel = host->dma_rx_channel;
268 	}
269 
270 	if (host->dma_rx_channel)
271 		rxname = dma_chan_name(host->dma_rx_channel);
272 	else
273 		rxname = "none";
274 
275 	if (host->dma_tx_channel)
276 		txname = dma_chan_name(host->dma_tx_channel);
277 	else
278 		txname = "none";
279 
280 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
281 		 rxname, txname);
282 
283 	/*
284 	 * Limit the maximum segment size in any SG entry according to
285 	 * the parameters of the DMA engine device.
286 	 */
287 	if (host->dma_tx_channel) {
288 		struct device *dev = host->dma_tx_channel->device->dev;
289 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
290 
291 		if (max_seg_size < host->mmc->max_seg_size)
292 			host->mmc->max_seg_size = max_seg_size;
293 	}
294 	if (host->dma_rx_channel) {
295 		struct device *dev = host->dma_rx_channel->device->dev;
296 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
297 
298 		if (max_seg_size < host->mmc->max_seg_size)
299 			host->mmc->max_seg_size = max_seg_size;
300 	}
301 }
302 
303 /*
304  * This is used in __devinit or __devexit so inline it
305  * so it can be discarded.
306  */
307 static inline void mmci_dma_release(struct mmci_host *host)
308 {
309 	struct mmci_platform_data *plat = host->plat;
310 
311 	if (host->dma_rx_channel)
312 		dma_release_channel(host->dma_rx_channel);
313 	if (host->dma_tx_channel && plat->dma_tx_param)
314 		dma_release_channel(host->dma_tx_channel);
315 	host->dma_rx_channel = host->dma_tx_channel = NULL;
316 }
317 
318 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
319 {
320 	struct dma_chan *chan = host->dma_current;
321 	enum dma_data_direction dir;
322 	u32 status;
323 	int i;
324 
325 	/* Wait up to 1ms for the DMA to complete */
326 	for (i = 0; ; i++) {
327 		status = readl(host->base + MMCISTATUS);
328 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
329 			break;
330 		udelay(10);
331 	}
332 
333 	/*
334 	 * Check to see whether we still have some data left in the FIFO -
335 	 * this catches DMA controllers which are unable to monitor the
336 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
337 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
338 	 */
339 	if (status & MCI_RXDATAAVLBLMASK) {
340 		dmaengine_terminate_all(chan);
341 		if (!data->error)
342 			data->error = -EIO;
343 	}
344 
345 	if (data->flags & MMC_DATA_WRITE) {
346 		dir = DMA_TO_DEVICE;
347 	} else {
348 		dir = DMA_FROM_DEVICE;
349 	}
350 
351 	if (!data->host_cookie)
352 		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
353 
354 	/*
355 	 * Use of DMA with scatter-gather is impossible.
356 	 * Give up with DMA and switch back to PIO mode.
357 	 */
358 	if (status & MCI_RXDATAAVLBLMASK) {
359 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
360 		mmci_dma_release(host);
361 	}
362 }
363 
364 static void mmci_dma_data_error(struct mmci_host *host)
365 {
366 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
367 	dmaengine_terminate_all(host->dma_current);
368 }
369 
370 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
371 			      struct mmci_host_next *next)
372 {
373 	struct variant_data *variant = host->variant;
374 	struct dma_slave_config conf = {
375 		.src_addr = host->phybase + MMCIFIFO,
376 		.dst_addr = host->phybase + MMCIFIFO,
377 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
378 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
379 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
380 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
381 	};
382 	struct dma_chan *chan;
383 	struct dma_device *device;
384 	struct dma_async_tx_descriptor *desc;
385 	enum dma_data_direction buffer_dirn;
386 	int nr_sg;
387 
388 	/* Check if next job is already prepared */
389 	if (data->host_cookie && !next &&
390 	    host->dma_current && host->dma_desc_current)
391 		return 0;
392 
393 	if (!next) {
394 		host->dma_current = NULL;
395 		host->dma_desc_current = NULL;
396 	}
397 
398 	if (data->flags & MMC_DATA_READ) {
399 		conf.direction = DMA_DEV_TO_MEM;
400 		buffer_dirn = DMA_FROM_DEVICE;
401 		chan = host->dma_rx_channel;
402 	} else {
403 		conf.direction = DMA_MEM_TO_DEV;
404 		buffer_dirn = DMA_TO_DEVICE;
405 		chan = host->dma_tx_channel;
406 	}
407 
408 	/* If there's no DMA channel, fall back to PIO */
409 	if (!chan)
410 		return -EINVAL;
411 
412 	/* If less than or equal to the fifo size, don't bother with DMA */
413 	if (data->blksz * data->blocks <= variant->fifosize)
414 		return -EINVAL;
415 
416 	device = chan->device;
417 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
418 	if (nr_sg == 0)
419 		return -EINVAL;
420 
421 	dmaengine_slave_config(chan, &conf);
422 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
423 					    conf.direction, DMA_CTRL_ACK);
424 	if (!desc)
425 		goto unmap_exit;
426 
427 	if (next) {
428 		next->dma_chan = chan;
429 		next->dma_desc = desc;
430 	} else {
431 		host->dma_current = chan;
432 		host->dma_desc_current = desc;
433 	}
434 
435 	return 0;
436 
437  unmap_exit:
438 	if (!next)
439 		dmaengine_terminate_all(chan);
440 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
441 	return -ENOMEM;
442 }
443 
444 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
445 {
446 	int ret;
447 	struct mmc_data *data = host->data;
448 
449 	ret = mmci_dma_prep_data(host, host->data, NULL);
450 	if (ret)
451 		return ret;
452 
453 	/* Okay, go for it. */
454 	dev_vdbg(mmc_dev(host->mmc),
455 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
456 		 data->sg_len, data->blksz, data->blocks, data->flags);
457 	dmaengine_submit(host->dma_desc_current);
458 	dma_async_issue_pending(host->dma_current);
459 
460 	datactrl |= MCI_DPSM_DMAENABLE;
461 
462 	/* Trigger the DMA transfer */
463 	writel(datactrl, host->base + MMCIDATACTRL);
464 
465 	/*
466 	 * Let the MMCI say when the data is ended and it's time
467 	 * to fire next DMA request. When that happens, MMCI will
468 	 * call mmci_data_end()
469 	 */
470 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
471 	       host->base + MMCIMASK0);
472 	return 0;
473 }
474 
475 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
476 {
477 	struct mmci_host_next *next = &host->next_data;
478 
479 	if (data->host_cookie && data->host_cookie != next->cookie) {
480 		pr_warning("[%s] invalid cookie: data->host_cookie %d"
481 		       " host->next_data.cookie %d\n",
482 		       __func__, data->host_cookie, host->next_data.cookie);
483 		data->host_cookie = 0;
484 	}
485 
486 	if (!data->host_cookie)
487 		return;
488 
489 	host->dma_desc_current = next->dma_desc;
490 	host->dma_current = next->dma_chan;
491 
492 	next->dma_desc = NULL;
493 	next->dma_chan = NULL;
494 }
495 
496 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
497 			     bool is_first_req)
498 {
499 	struct mmci_host *host = mmc_priv(mmc);
500 	struct mmc_data *data = mrq->data;
501 	struct mmci_host_next *nd = &host->next_data;
502 
503 	if (!data)
504 		return;
505 
506 	if (data->host_cookie) {
507 		data->host_cookie = 0;
508 		return;
509 	}
510 
511 	/* if config for dma */
512 	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
513 	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
514 		if (mmci_dma_prep_data(host, data, nd))
515 			data->host_cookie = 0;
516 		else
517 			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
518 	}
519 }
520 
521 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
522 			      int err)
523 {
524 	struct mmci_host *host = mmc_priv(mmc);
525 	struct mmc_data *data = mrq->data;
526 	struct dma_chan *chan;
527 	enum dma_data_direction dir;
528 
529 	if (!data)
530 		return;
531 
532 	if (data->flags & MMC_DATA_READ) {
533 		dir = DMA_FROM_DEVICE;
534 		chan = host->dma_rx_channel;
535 	} else {
536 		dir = DMA_TO_DEVICE;
537 		chan = host->dma_tx_channel;
538 	}
539 
540 
541 	/* if config for dma */
542 	if (chan) {
543 		if (err)
544 			dmaengine_terminate_all(chan);
545 		if (data->host_cookie)
546 			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
547 				     data->sg_len, dir);
548 		mrq->data->host_cookie = 0;
549 	}
550 }
551 
552 #else
553 /* Blank functions if the DMA engine is not available */
554 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
555 {
556 }
557 static inline void mmci_dma_setup(struct mmci_host *host)
558 {
559 }
560 
561 static inline void mmci_dma_release(struct mmci_host *host)
562 {
563 }
564 
565 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
566 {
567 }
568 
569 static inline void mmci_dma_data_error(struct mmci_host *host)
570 {
571 }
572 
573 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
574 {
575 	return -ENOSYS;
576 }
577 
578 #define mmci_pre_request NULL
579 #define mmci_post_request NULL
580 
581 #endif
582 
583 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
584 {
585 	struct variant_data *variant = host->variant;
586 	unsigned int datactrl, timeout, irqmask;
587 	unsigned long long clks;
588 	void __iomem *base;
589 	int blksz_bits;
590 
591 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
592 		data->blksz, data->blocks, data->flags);
593 
594 	host->data = data;
595 	host->size = data->blksz * data->blocks;
596 	data->bytes_xfered = 0;
597 
598 	clks = (unsigned long long)data->timeout_ns * host->cclk;
599 	do_div(clks, 1000000000UL);
600 
601 	timeout = data->timeout_clks + (unsigned int)clks;
602 
603 	base = host->base;
604 	writel(timeout, base + MMCIDATATIMER);
605 	writel(host->size, base + MMCIDATALENGTH);
606 
607 	blksz_bits = ffs(data->blksz) - 1;
608 	BUG_ON(1 << blksz_bits != data->blksz);
609 
610 	if (variant->blksz_datactrl16)
611 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
612 	else
613 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
614 
615 	if (data->flags & MMC_DATA_READ)
616 		datactrl |= MCI_DPSM_DIRECTION;
617 
618 	/* The ST Micro variants has a special bit to enable SDIO */
619 	if (variant->sdio && host->mmc->card)
620 		if (mmc_card_sdio(host->mmc->card))
621 			datactrl |= MCI_ST_DPSM_SDIOEN;
622 
623 	/*
624 	 * Attempt to use DMA operation mode, if this
625 	 * should fail, fall back to PIO mode
626 	 */
627 	if (!mmci_dma_start_data(host, datactrl))
628 		return;
629 
630 	/* IRQ mode, map the SG list for CPU reading/writing */
631 	mmci_init_sg(host, data);
632 
633 	if (data->flags & MMC_DATA_READ) {
634 		irqmask = MCI_RXFIFOHALFFULLMASK;
635 
636 		/*
637 		 * If we have less than the fifo 'half-full' threshold to
638 		 * transfer, trigger a PIO interrupt as soon as any data
639 		 * is available.
640 		 */
641 		if (host->size < variant->fifohalfsize)
642 			irqmask |= MCI_RXDATAAVLBLMASK;
643 	} else {
644 		/*
645 		 * We don't actually need to include "FIFO empty" here
646 		 * since its implicit in "FIFO half empty".
647 		 */
648 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
649 	}
650 
651 	writel(datactrl, base + MMCIDATACTRL);
652 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
653 	mmci_set_mask1(host, irqmask);
654 }
655 
656 static void
657 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
658 {
659 	void __iomem *base = host->base;
660 
661 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
662 	    cmd->opcode, cmd->arg, cmd->flags);
663 
664 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
665 		writel(0, base + MMCICOMMAND);
666 		udelay(1);
667 	}
668 
669 	c |= cmd->opcode | MCI_CPSM_ENABLE;
670 	if (cmd->flags & MMC_RSP_PRESENT) {
671 		if (cmd->flags & MMC_RSP_136)
672 			c |= MCI_CPSM_LONGRSP;
673 		c |= MCI_CPSM_RESPONSE;
674 	}
675 	if (/*interrupt*/0)
676 		c |= MCI_CPSM_INTERRUPT;
677 
678 	host->cmd = cmd;
679 
680 	writel(cmd->arg, base + MMCIARGUMENT);
681 	writel(c, base + MMCICOMMAND);
682 }
683 
684 static void
685 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
686 	      unsigned int status)
687 {
688 	/* First check for errors */
689 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
690 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
691 		u32 remain, success;
692 
693 		/* Terminate the DMA transfer */
694 		if (dma_inprogress(host))
695 			mmci_dma_data_error(host);
696 
697 		/*
698 		 * Calculate how far we are into the transfer.  Note that
699 		 * the data counter gives the number of bytes transferred
700 		 * on the MMC bus, not on the host side.  On reads, this
701 		 * can be as much as a FIFO-worth of data ahead.  This
702 		 * matters for FIFO overruns only.
703 		 */
704 		remain = readl(host->base + MMCIDATACNT);
705 		success = data->blksz * data->blocks - remain;
706 
707 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
708 			status, success);
709 		if (status & MCI_DATACRCFAIL) {
710 			/* Last block was not successful */
711 			success -= 1;
712 			data->error = -EILSEQ;
713 		} else if (status & MCI_DATATIMEOUT) {
714 			data->error = -ETIMEDOUT;
715 		} else if (status & MCI_STARTBITERR) {
716 			data->error = -ECOMM;
717 		} else if (status & MCI_TXUNDERRUN) {
718 			data->error = -EIO;
719 		} else if (status & MCI_RXOVERRUN) {
720 			if (success > host->variant->fifosize)
721 				success -= host->variant->fifosize;
722 			else
723 				success = 0;
724 			data->error = -EIO;
725 		}
726 		data->bytes_xfered = round_down(success, data->blksz);
727 	}
728 
729 	if (status & MCI_DATABLOCKEND)
730 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
731 
732 	if (status & MCI_DATAEND || data->error) {
733 		if (dma_inprogress(host))
734 			mmci_dma_unmap(host, data);
735 		mmci_stop_data(host);
736 
737 		if (!data->error)
738 			/* The error clause is handled above, success! */
739 			data->bytes_xfered = data->blksz * data->blocks;
740 
741 		if (!data->stop) {
742 			mmci_request_end(host, data->mrq);
743 		} else {
744 			mmci_start_command(host, data->stop, 0);
745 		}
746 	}
747 }
748 
749 static void
750 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
751 	     unsigned int status)
752 {
753 	void __iomem *base = host->base;
754 
755 	host->cmd = NULL;
756 
757 	if (status & MCI_CMDTIMEOUT) {
758 		cmd->error = -ETIMEDOUT;
759 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
760 		cmd->error = -EILSEQ;
761 	} else {
762 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
763 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
764 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
765 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
766 	}
767 
768 	if (!cmd->data || cmd->error) {
769 		if (host->data) {
770 			/* Terminate the DMA transfer */
771 			if (dma_inprogress(host))
772 				mmci_dma_data_error(host);
773 			mmci_stop_data(host);
774 		}
775 		mmci_request_end(host, cmd->mrq);
776 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
777 		mmci_start_data(host, cmd->data);
778 	}
779 }
780 
781 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
782 {
783 	void __iomem *base = host->base;
784 	char *ptr = buffer;
785 	u32 status;
786 	int host_remain = host->size;
787 
788 	do {
789 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
790 
791 		if (count > remain)
792 			count = remain;
793 
794 		if (count <= 0)
795 			break;
796 
797 		readsl(base + MMCIFIFO, ptr, count >> 2);
798 
799 		ptr += count;
800 		remain -= count;
801 		host_remain -= count;
802 
803 		if (remain == 0)
804 			break;
805 
806 		status = readl(base + MMCISTATUS);
807 	} while (status & MCI_RXDATAAVLBL);
808 
809 	return ptr - buffer;
810 }
811 
812 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
813 {
814 	struct variant_data *variant = host->variant;
815 	void __iomem *base = host->base;
816 	char *ptr = buffer;
817 
818 	do {
819 		unsigned int count, maxcnt;
820 
821 		maxcnt = status & MCI_TXFIFOEMPTY ?
822 			 variant->fifosize : variant->fifohalfsize;
823 		count = min(remain, maxcnt);
824 
825 		/*
826 		 * The ST Micro variant for SDIO transfer sizes
827 		 * less then 8 bytes should have clock H/W flow
828 		 * control disabled.
829 		 */
830 		if (variant->sdio &&
831 		    mmc_card_sdio(host->mmc->card)) {
832 			if (count < 8)
833 				writel(readl(host->base + MMCICLOCK) &
834 					~variant->clkreg_enable,
835 					host->base + MMCICLOCK);
836 			else
837 				writel(readl(host->base + MMCICLOCK) |
838 					variant->clkreg_enable,
839 					host->base + MMCICLOCK);
840 		}
841 
842 		/*
843 		 * SDIO especially may want to send something that is
844 		 * not divisible by 4 (as opposed to card sectors
845 		 * etc), and the FIFO only accept full 32-bit writes.
846 		 * So compensate by adding +3 on the count, a single
847 		 * byte become a 32bit write, 7 bytes will be two
848 		 * 32bit writes etc.
849 		 */
850 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
851 
852 		ptr += count;
853 		remain -= count;
854 
855 		if (remain == 0)
856 			break;
857 
858 		status = readl(base + MMCISTATUS);
859 	} while (status & MCI_TXFIFOHALFEMPTY);
860 
861 	return ptr - buffer;
862 }
863 
864 /*
865  * PIO data transfer IRQ handler.
866  */
867 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
868 {
869 	struct mmci_host *host = dev_id;
870 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
871 	struct variant_data *variant = host->variant;
872 	void __iomem *base = host->base;
873 	unsigned long flags;
874 	u32 status;
875 
876 	status = readl(base + MMCISTATUS);
877 
878 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
879 
880 	local_irq_save(flags);
881 
882 	do {
883 		unsigned int remain, len;
884 		char *buffer;
885 
886 		/*
887 		 * For write, we only need to test the half-empty flag
888 		 * here - if the FIFO is completely empty, then by
889 		 * definition it is more than half empty.
890 		 *
891 		 * For read, check for data available.
892 		 */
893 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
894 			break;
895 
896 		if (!sg_miter_next(sg_miter))
897 			break;
898 
899 		buffer = sg_miter->addr;
900 		remain = sg_miter->length;
901 
902 		len = 0;
903 		if (status & MCI_RXACTIVE)
904 			len = mmci_pio_read(host, buffer, remain);
905 		if (status & MCI_TXACTIVE)
906 			len = mmci_pio_write(host, buffer, remain, status);
907 
908 		sg_miter->consumed = len;
909 
910 		host->size -= len;
911 		remain -= len;
912 
913 		if (remain)
914 			break;
915 
916 		status = readl(base + MMCISTATUS);
917 	} while (1);
918 
919 	sg_miter_stop(sg_miter);
920 
921 	local_irq_restore(flags);
922 
923 	/*
924 	 * If we have less than the fifo 'half-full' threshold to transfer,
925 	 * trigger a PIO interrupt as soon as any data is available.
926 	 */
927 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
928 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
929 
930 	/*
931 	 * If we run out of data, disable the data IRQs; this
932 	 * prevents a race where the FIFO becomes empty before
933 	 * the chip itself has disabled the data path, and
934 	 * stops us racing with our data end IRQ.
935 	 */
936 	if (host->size == 0) {
937 		mmci_set_mask1(host, 0);
938 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
939 	}
940 
941 	return IRQ_HANDLED;
942 }
943 
944 /*
945  * Handle completion of command and data transfers.
946  */
947 static irqreturn_t mmci_irq(int irq, void *dev_id)
948 {
949 	struct mmci_host *host = dev_id;
950 	u32 status;
951 	int ret = 0;
952 
953 	spin_lock(&host->lock);
954 
955 	do {
956 		struct mmc_command *cmd;
957 		struct mmc_data *data;
958 
959 		status = readl(host->base + MMCISTATUS);
960 
961 		if (host->singleirq) {
962 			if (status & readl(host->base + MMCIMASK1))
963 				mmci_pio_irq(irq, dev_id);
964 
965 			status &= ~MCI_IRQ1MASK;
966 		}
967 
968 		status &= readl(host->base + MMCIMASK0);
969 		writel(status, host->base + MMCICLEAR);
970 
971 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
972 
973 		data = host->data;
974 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
975 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
976 			      MCI_DATABLOCKEND) && data)
977 			mmci_data_irq(host, data, status);
978 
979 		cmd = host->cmd;
980 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
981 			mmci_cmd_irq(host, cmd, status);
982 
983 		ret = 1;
984 	} while (status);
985 
986 	spin_unlock(&host->lock);
987 
988 	return IRQ_RETVAL(ret);
989 }
990 
991 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
992 {
993 	struct mmci_host *host = mmc_priv(mmc);
994 	unsigned long flags;
995 
996 	WARN_ON(host->mrq != NULL);
997 
998 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
999 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
1000 			mrq->data->blksz);
1001 		mrq->cmd->error = -EINVAL;
1002 		mmc_request_done(mmc, mrq);
1003 		return;
1004 	}
1005 
1006 	pm_runtime_get_sync(mmc_dev(mmc));
1007 
1008 	spin_lock_irqsave(&host->lock, flags);
1009 
1010 	host->mrq = mrq;
1011 
1012 	if (mrq->data)
1013 		mmci_get_next_data(host, mrq->data);
1014 
1015 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1016 		mmci_start_data(host, mrq->data);
1017 
1018 	mmci_start_command(host, mrq->cmd, 0);
1019 
1020 	spin_unlock_irqrestore(&host->lock, flags);
1021 }
1022 
1023 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1024 {
1025 	struct mmci_host *host = mmc_priv(mmc);
1026 	struct variant_data *variant = host->variant;
1027 	u32 pwr = 0;
1028 	unsigned long flags;
1029 	int ret;
1030 
1031 	pm_runtime_get_sync(mmc_dev(mmc));
1032 
1033 	if (host->plat->ios_handler &&
1034 		host->plat->ios_handler(mmc_dev(mmc), ios))
1035 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1036 
1037 	switch (ios->power_mode) {
1038 	case MMC_POWER_OFF:
1039 		if (host->vcc)
1040 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1041 		break;
1042 	case MMC_POWER_UP:
1043 		if (host->vcc) {
1044 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1045 			if (ret) {
1046 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1047 				/*
1048 				 * The .set_ios() function in the mmc_host_ops
1049 				 * struct return void, and failing to set the
1050 				 * power should be rare so we print an error
1051 				 * and return here.
1052 				 */
1053 				goto out;
1054 			}
1055 		}
1056 		/*
1057 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1058 		 * and instead uses MCI_PWR_ON so apply whatever value is
1059 		 * configured in the variant data.
1060 		 */
1061 		pwr |= variant->pwrreg_powerup;
1062 
1063 		break;
1064 	case MMC_POWER_ON:
1065 		pwr |= MCI_PWR_ON;
1066 		break;
1067 	}
1068 
1069 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1070 		/*
1071 		 * The ST Micro variant has some additional bits
1072 		 * indicating signal direction for the signals in
1073 		 * the SD/MMC bus and feedback-clock usage.
1074 		 */
1075 		pwr |= host->plat->sigdir;
1076 
1077 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1078 			pwr &= ~MCI_ST_DATA74DIREN;
1079 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1080 			pwr &= (~MCI_ST_DATA74DIREN &
1081 				~MCI_ST_DATA31DIREN &
1082 				~MCI_ST_DATA2DIREN);
1083 	}
1084 
1085 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1086 		if (host->hw_designer != AMBA_VENDOR_ST)
1087 			pwr |= MCI_ROD;
1088 		else {
1089 			/*
1090 			 * The ST Micro variant use the ROD bit for something
1091 			 * else and only has OD (Open Drain).
1092 			 */
1093 			pwr |= MCI_OD;
1094 		}
1095 	}
1096 
1097 	spin_lock_irqsave(&host->lock, flags);
1098 
1099 	mmci_set_clkreg(host, ios->clock);
1100 
1101 	if (host->pwr != pwr) {
1102 		host->pwr = pwr;
1103 		writel(pwr, host->base + MMCIPOWER);
1104 	}
1105 
1106 	spin_unlock_irqrestore(&host->lock, flags);
1107 
1108  out:
1109 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1110 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1111 }
1112 
1113 static int mmci_get_ro(struct mmc_host *mmc)
1114 {
1115 	struct mmci_host *host = mmc_priv(mmc);
1116 
1117 	if (host->gpio_wp == -ENOSYS)
1118 		return -ENOSYS;
1119 
1120 	return gpio_get_value_cansleep(host->gpio_wp);
1121 }
1122 
1123 static int mmci_get_cd(struct mmc_host *mmc)
1124 {
1125 	struct mmci_host *host = mmc_priv(mmc);
1126 	struct mmci_platform_data *plat = host->plat;
1127 	unsigned int status;
1128 
1129 	if (host->gpio_cd == -ENOSYS) {
1130 		if (!plat->status)
1131 			return 1; /* Assume always present */
1132 
1133 		status = plat->status(mmc_dev(host->mmc));
1134 	} else
1135 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1136 			^ plat->cd_invert;
1137 
1138 	/*
1139 	 * Use positive logic throughout - status is zero for no card,
1140 	 * non-zero for card inserted.
1141 	 */
1142 	return status;
1143 }
1144 
1145 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1146 {
1147 	struct mmci_host *host = dev_id;
1148 
1149 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1150 
1151 	return IRQ_HANDLED;
1152 }
1153 
1154 static const struct mmc_host_ops mmci_ops = {
1155 	.request	= mmci_request,
1156 	.pre_req	= mmci_pre_request,
1157 	.post_req	= mmci_post_request,
1158 	.set_ios	= mmci_set_ios,
1159 	.get_ro		= mmci_get_ro,
1160 	.get_cd		= mmci_get_cd,
1161 };
1162 
1163 static int __devinit mmci_probe(struct amba_device *dev,
1164 	const struct amba_id *id)
1165 {
1166 	struct mmci_platform_data *plat = dev->dev.platform_data;
1167 	struct variant_data *variant = id->data;
1168 	struct mmci_host *host;
1169 	struct mmc_host *mmc;
1170 	int ret;
1171 
1172 	/* must have platform data */
1173 	if (!plat) {
1174 		ret = -EINVAL;
1175 		goto out;
1176 	}
1177 
1178 	ret = amba_request_regions(dev, DRIVER_NAME);
1179 	if (ret)
1180 		goto out;
1181 
1182 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1183 	if (!mmc) {
1184 		ret = -ENOMEM;
1185 		goto rel_regions;
1186 	}
1187 
1188 	host = mmc_priv(mmc);
1189 	host->mmc = mmc;
1190 
1191 	host->gpio_wp = -ENOSYS;
1192 	host->gpio_cd = -ENOSYS;
1193 	host->gpio_cd_irq = -1;
1194 
1195 	host->hw_designer = amba_manf(dev);
1196 	host->hw_revision = amba_rev(dev);
1197 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1198 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1199 
1200 	host->clk = clk_get(&dev->dev, NULL);
1201 	if (IS_ERR(host->clk)) {
1202 		ret = PTR_ERR(host->clk);
1203 		host->clk = NULL;
1204 		goto host_free;
1205 	}
1206 
1207 	ret = clk_prepare(host->clk);
1208 	if (ret)
1209 		goto clk_free;
1210 
1211 	ret = clk_enable(host->clk);
1212 	if (ret)
1213 		goto clk_unprep;
1214 
1215 	host->plat = plat;
1216 	host->variant = variant;
1217 	host->mclk = clk_get_rate(host->clk);
1218 	/*
1219 	 * According to the spec, mclk is max 100 MHz,
1220 	 * so we try to adjust the clock down to this,
1221 	 * (if possible).
1222 	 */
1223 	if (host->mclk > 100000000) {
1224 		ret = clk_set_rate(host->clk, 100000000);
1225 		if (ret < 0)
1226 			goto clk_disable;
1227 		host->mclk = clk_get_rate(host->clk);
1228 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1229 			host->mclk);
1230 	}
1231 	host->phybase = dev->res.start;
1232 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1233 	if (!host->base) {
1234 		ret = -ENOMEM;
1235 		goto clk_disable;
1236 	}
1237 
1238 	mmc->ops = &mmci_ops;
1239 	/*
1240 	 * The ARM and ST versions of the block have slightly different
1241 	 * clock divider equations which means that the minimum divider
1242 	 * differs too.
1243 	 */
1244 	if (variant->st_clkdiv)
1245 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1246 	else
1247 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1248 	/*
1249 	 * If the platform data supplies a maximum operating
1250 	 * frequency, this takes precedence. Else, we fall back
1251 	 * to using the module parameter, which has a (low)
1252 	 * default value in case it is not specified. Either
1253 	 * value must not exceed the clock rate into the block,
1254 	 * of course.
1255 	 */
1256 	if (plat->f_max)
1257 		mmc->f_max = min(host->mclk, plat->f_max);
1258 	else
1259 		mmc->f_max = min(host->mclk, fmax);
1260 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1261 
1262 #ifdef CONFIG_REGULATOR
1263 	/* If we're using the regulator framework, try to fetch a regulator */
1264 	host->vcc = regulator_get(&dev->dev, "vmmc");
1265 	if (IS_ERR(host->vcc))
1266 		host->vcc = NULL;
1267 	else {
1268 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1269 
1270 		if (mask < 0)
1271 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1272 				mask);
1273 		else {
1274 			host->mmc->ocr_avail = (u32) mask;
1275 			if (plat->ocr_mask)
1276 				dev_warn(&dev->dev,
1277 				 "Provided ocr_mask/setpower will not be used "
1278 				 "(using regulator instead)\n");
1279 		}
1280 	}
1281 #endif
1282 	/* Fall back to platform data if no regulator is found */
1283 	if (host->vcc == NULL)
1284 		mmc->ocr_avail = plat->ocr_mask;
1285 	mmc->caps = plat->capabilities;
1286 	mmc->caps2 = plat->capabilities2;
1287 
1288 	/*
1289 	 * We can do SGIO
1290 	 */
1291 	mmc->max_segs = NR_SG;
1292 
1293 	/*
1294 	 * Since only a certain number of bits are valid in the data length
1295 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1296 	 * single request.
1297 	 */
1298 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1299 
1300 	/*
1301 	 * Set the maximum segment size.  Since we aren't doing DMA
1302 	 * (yet) we are only limited by the data length register.
1303 	 */
1304 	mmc->max_seg_size = mmc->max_req_size;
1305 
1306 	/*
1307 	 * Block size can be up to 2048 bytes, but must be a power of two.
1308 	 */
1309 	mmc->max_blk_size = 2048;
1310 
1311 	/*
1312 	 * No limit on the number of blocks transferred.
1313 	 */
1314 	mmc->max_blk_count = mmc->max_req_size;
1315 
1316 	spin_lock_init(&host->lock);
1317 
1318 	writel(0, host->base + MMCIMASK0);
1319 	writel(0, host->base + MMCIMASK1);
1320 	writel(0xfff, host->base + MMCICLEAR);
1321 
1322 	if (gpio_is_valid(plat->gpio_cd)) {
1323 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1324 		if (ret == 0)
1325 			ret = gpio_direction_input(plat->gpio_cd);
1326 		if (ret == 0)
1327 			host->gpio_cd = plat->gpio_cd;
1328 		else if (ret != -ENOSYS)
1329 			goto err_gpio_cd;
1330 
1331 		/*
1332 		 * A gpio pin that will detect cards when inserted and removed
1333 		 * will most likely want to trigger on the edges if it is
1334 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1335 		 * for the inverted case) so we request triggers on both
1336 		 * edges.
1337 		 */
1338 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1339 				mmci_cd_irq,
1340 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1341 				DRIVER_NAME " (cd)", host);
1342 		if (ret >= 0)
1343 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1344 	}
1345 	if (gpio_is_valid(plat->gpio_wp)) {
1346 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1347 		if (ret == 0)
1348 			ret = gpio_direction_input(plat->gpio_wp);
1349 		if (ret == 0)
1350 			host->gpio_wp = plat->gpio_wp;
1351 		else if (ret != -ENOSYS)
1352 			goto err_gpio_wp;
1353 	}
1354 
1355 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1356 	    && host->gpio_cd_irq < 0)
1357 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1358 
1359 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1360 	if (ret)
1361 		goto unmap;
1362 
1363 	if (dev->irq[1] == NO_IRQ)
1364 		host->singleirq = true;
1365 	else {
1366 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1367 				  DRIVER_NAME " (pio)", host);
1368 		if (ret)
1369 			goto irq0_free;
1370 	}
1371 
1372 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1373 
1374 	amba_set_drvdata(dev, mmc);
1375 
1376 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1377 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1378 		 amba_rev(dev), (unsigned long long)dev->res.start,
1379 		 dev->irq[0], dev->irq[1]);
1380 
1381 	mmci_dma_setup(host);
1382 
1383 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1384 	pm_runtime_use_autosuspend(&dev->dev);
1385 	pm_runtime_put(&dev->dev);
1386 
1387 	mmc_add_host(mmc);
1388 
1389 	return 0;
1390 
1391  irq0_free:
1392 	free_irq(dev->irq[0], host);
1393  unmap:
1394 	if (host->gpio_wp != -ENOSYS)
1395 		gpio_free(host->gpio_wp);
1396  err_gpio_wp:
1397 	if (host->gpio_cd_irq >= 0)
1398 		free_irq(host->gpio_cd_irq, host);
1399 	if (host->gpio_cd != -ENOSYS)
1400 		gpio_free(host->gpio_cd);
1401  err_gpio_cd:
1402 	iounmap(host->base);
1403  clk_disable:
1404 	clk_disable(host->clk);
1405  clk_unprep:
1406 	clk_unprepare(host->clk);
1407  clk_free:
1408 	clk_put(host->clk);
1409  host_free:
1410 	mmc_free_host(mmc);
1411  rel_regions:
1412 	amba_release_regions(dev);
1413  out:
1414 	return ret;
1415 }
1416 
1417 static int __devexit mmci_remove(struct amba_device *dev)
1418 {
1419 	struct mmc_host *mmc = amba_get_drvdata(dev);
1420 
1421 	amba_set_drvdata(dev, NULL);
1422 
1423 	if (mmc) {
1424 		struct mmci_host *host = mmc_priv(mmc);
1425 
1426 		/*
1427 		 * Undo pm_runtime_put() in probe.  We use the _sync
1428 		 * version here so that we can access the primecell.
1429 		 */
1430 		pm_runtime_get_sync(&dev->dev);
1431 
1432 		mmc_remove_host(mmc);
1433 
1434 		writel(0, host->base + MMCIMASK0);
1435 		writel(0, host->base + MMCIMASK1);
1436 
1437 		writel(0, host->base + MMCICOMMAND);
1438 		writel(0, host->base + MMCIDATACTRL);
1439 
1440 		mmci_dma_release(host);
1441 		free_irq(dev->irq[0], host);
1442 		if (!host->singleirq)
1443 			free_irq(dev->irq[1], host);
1444 
1445 		if (host->gpio_wp != -ENOSYS)
1446 			gpio_free(host->gpio_wp);
1447 		if (host->gpio_cd_irq >= 0)
1448 			free_irq(host->gpio_cd_irq, host);
1449 		if (host->gpio_cd != -ENOSYS)
1450 			gpio_free(host->gpio_cd);
1451 
1452 		iounmap(host->base);
1453 		clk_disable(host->clk);
1454 		clk_unprepare(host->clk);
1455 		clk_put(host->clk);
1456 
1457 		if (host->vcc)
1458 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1459 		regulator_put(host->vcc);
1460 
1461 		mmc_free_host(mmc);
1462 
1463 		amba_release_regions(dev);
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 #ifdef CONFIG_SUSPEND
1470 static int mmci_suspend(struct device *dev)
1471 {
1472 	struct amba_device *adev = to_amba_device(dev);
1473 	struct mmc_host *mmc = amba_get_drvdata(adev);
1474 	int ret = 0;
1475 
1476 	if (mmc) {
1477 		struct mmci_host *host = mmc_priv(mmc);
1478 
1479 		ret = mmc_suspend_host(mmc);
1480 		if (ret == 0) {
1481 			pm_runtime_get_sync(dev);
1482 			writel(0, host->base + MMCIMASK0);
1483 		}
1484 	}
1485 
1486 	return ret;
1487 }
1488 
1489 static int mmci_resume(struct device *dev)
1490 {
1491 	struct amba_device *adev = to_amba_device(dev);
1492 	struct mmc_host *mmc = amba_get_drvdata(adev);
1493 	int ret = 0;
1494 
1495 	if (mmc) {
1496 		struct mmci_host *host = mmc_priv(mmc);
1497 
1498 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1499 		pm_runtime_put(dev);
1500 
1501 		ret = mmc_resume_host(mmc);
1502 	}
1503 
1504 	return ret;
1505 }
1506 #endif
1507 
1508 static const struct dev_pm_ops mmci_dev_pm_ops = {
1509 	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1510 };
1511 
1512 static struct amba_id mmci_ids[] = {
1513 	{
1514 		.id	= 0x00041180,
1515 		.mask	= 0xff0fffff,
1516 		.data	= &variant_arm,
1517 	},
1518 	{
1519 		.id	= 0x01041180,
1520 		.mask	= 0xff0fffff,
1521 		.data	= &variant_arm_extended_fifo,
1522 	},
1523 	{
1524 		.id	= 0x00041181,
1525 		.mask	= 0x000fffff,
1526 		.data	= &variant_arm,
1527 	},
1528 	/* ST Micro variants */
1529 	{
1530 		.id     = 0x00180180,
1531 		.mask   = 0x00ffffff,
1532 		.data	= &variant_u300,
1533 	},
1534 	{
1535 		.id     = 0x00280180,
1536 		.mask   = 0x00ffffff,
1537 		.data	= &variant_u300,
1538 	},
1539 	{
1540 		.id     = 0x00480180,
1541 		.mask   = 0xf0ffffff,
1542 		.data	= &variant_ux500,
1543 	},
1544 	{
1545 		.id     = 0x10480180,
1546 		.mask   = 0xf0ffffff,
1547 		.data	= &variant_ux500v2,
1548 	},
1549 	{ 0, 0 },
1550 };
1551 
1552 MODULE_DEVICE_TABLE(amba, mmci_ids);
1553 
1554 static struct amba_driver mmci_driver = {
1555 	.drv		= {
1556 		.name	= DRIVER_NAME,
1557 		.pm	= &mmci_dev_pm_ops,
1558 	},
1559 	.probe		= mmci_probe,
1560 	.remove		= __devexit_p(mmci_remove),
1561 	.id_table	= mmci_ids,
1562 };
1563 
1564 static int __init mmci_init(void)
1565 {
1566 	return amba_driver_register(&mmci_driver);
1567 }
1568 
1569 static void __exit mmci_exit(void)
1570 {
1571 	amba_driver_unregister(&mmci_driver);
1572 }
1573 
1574 module_init(mmci_init);
1575 module_exit(mmci_exit);
1576 module_param(fmax, uint, 0444);
1577 
1578 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1579 MODULE_LICENSE("GPL");
1580