xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 609e478b)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44 
45 #include "mmci.h"
46 #include "mmci_qcom_dml.h"
47 
48 #define DRIVER_NAME "mmci-pl18x"
49 
50 static unsigned int fmax = 515633;
51 
52 /**
53  * struct variant_data - MMCI variant-specific quirks
54  * @clkreg: default value for MCICLOCK register
55  * @clkreg_enable: enable value for MMCICLOCK register
56  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58  * @datalength_bits: number of bits in the MMCIDATALENGTH register
59  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60  *	      is asserted (likewise for RX)
61  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62  *		  is asserted (likewise for RX)
63  * @data_cmd_enable: enable value for data commands.
64  * @st_sdio: enable ST specific SDIO logic
65  * @st_clkdiv: true if using a ST-specific clock divider algorithm
66  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69  *		     register
70  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71  * @pwrreg_powerup: power up value for MMCIPOWER register
72  * @f_max: maximum clk frequency supported by the controller.
73  * @signal_direction: input/out direction of bus signals can be indicated
74  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75  * @busy_detect: true if busy detection on dat0 is supported
76  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77  * @explicit_mclk_control: enable explicit mclk control in driver.
78  * @qcom_fifo: enables qcom specific fifo pio read logic.
79  * @qcom_dml: enables qcom specific dma glue for dma transfers.
80  * @reversed_irq_handling: handle data irq before cmd irq.
81  */
82 struct variant_data {
83 	unsigned int		clkreg;
84 	unsigned int		clkreg_enable;
85 	unsigned int		clkreg_8bit_bus_enable;
86 	unsigned int		clkreg_neg_edge_enable;
87 	unsigned int		datalength_bits;
88 	unsigned int		fifosize;
89 	unsigned int		fifohalfsize;
90 	unsigned int		data_cmd_enable;
91 	unsigned int		datactrl_mask_ddrmode;
92 	unsigned int		datactrl_mask_sdio;
93 	bool			st_sdio;
94 	bool			st_clkdiv;
95 	bool			blksz_datactrl16;
96 	bool			blksz_datactrl4;
97 	u32			pwrreg_powerup;
98 	u32			f_max;
99 	bool			signal_direction;
100 	bool			pwrreg_clkgate;
101 	bool			busy_detect;
102 	bool			pwrreg_nopower;
103 	bool			explicit_mclk_control;
104 	bool			qcom_fifo;
105 	bool			qcom_dml;
106 	bool			reversed_irq_handling;
107 };
108 
109 static struct variant_data variant_arm = {
110 	.fifosize		= 16 * 4,
111 	.fifohalfsize		= 8 * 4,
112 	.datalength_bits	= 16,
113 	.pwrreg_powerup		= MCI_PWR_UP,
114 	.f_max			= 100000000,
115 	.reversed_irq_handling	= true,
116 };
117 
118 static struct variant_data variant_arm_extended_fifo = {
119 	.fifosize		= 128 * 4,
120 	.fifohalfsize		= 64 * 4,
121 	.datalength_bits	= 16,
122 	.pwrreg_powerup		= MCI_PWR_UP,
123 	.f_max			= 100000000,
124 };
125 
126 static struct variant_data variant_arm_extended_fifo_hwfc = {
127 	.fifosize		= 128 * 4,
128 	.fifohalfsize		= 64 * 4,
129 	.clkreg_enable		= MCI_ARM_HWFCEN,
130 	.datalength_bits	= 16,
131 	.pwrreg_powerup		= MCI_PWR_UP,
132 	.f_max			= 100000000,
133 };
134 
135 static struct variant_data variant_u300 = {
136 	.fifosize		= 16 * 4,
137 	.fifohalfsize		= 8 * 4,
138 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
139 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 	.datalength_bits	= 16,
141 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
142 	.st_sdio			= true,
143 	.pwrreg_powerup		= MCI_PWR_ON,
144 	.f_max			= 100000000,
145 	.signal_direction	= true,
146 	.pwrreg_clkgate		= true,
147 	.pwrreg_nopower		= true,
148 };
149 
150 static struct variant_data variant_nomadik = {
151 	.fifosize		= 16 * 4,
152 	.fifohalfsize		= 8 * 4,
153 	.clkreg			= MCI_CLK_ENABLE,
154 	.datalength_bits	= 24,
155 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
156 	.st_sdio		= true,
157 	.st_clkdiv		= true,
158 	.pwrreg_powerup		= MCI_PWR_ON,
159 	.f_max			= 100000000,
160 	.signal_direction	= true,
161 	.pwrreg_clkgate		= true,
162 	.pwrreg_nopower		= true,
163 };
164 
165 static struct variant_data variant_ux500 = {
166 	.fifosize		= 30 * 4,
167 	.fifohalfsize		= 8 * 4,
168 	.clkreg			= MCI_CLK_ENABLE,
169 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
170 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
172 	.datalength_bits	= 24,
173 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
174 	.st_sdio		= true,
175 	.st_clkdiv		= true,
176 	.pwrreg_powerup		= MCI_PWR_ON,
177 	.f_max			= 100000000,
178 	.signal_direction	= true,
179 	.pwrreg_clkgate		= true,
180 	.busy_detect		= true,
181 	.pwrreg_nopower		= true,
182 };
183 
184 static struct variant_data variant_ux500v2 = {
185 	.fifosize		= 30 * 4,
186 	.fifohalfsize		= 8 * 4,
187 	.clkreg			= MCI_CLK_ENABLE,
188 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
189 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
191 	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
192 	.datalength_bits	= 24,
193 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
194 	.st_sdio		= true,
195 	.st_clkdiv		= true,
196 	.blksz_datactrl16	= true,
197 	.pwrreg_powerup		= MCI_PWR_ON,
198 	.f_max			= 100000000,
199 	.signal_direction	= true,
200 	.pwrreg_clkgate		= true,
201 	.busy_detect		= true,
202 	.pwrreg_nopower		= true,
203 };
204 
205 static struct variant_data variant_qcom = {
206 	.fifosize		= 16 * 4,
207 	.fifohalfsize		= 8 * 4,
208 	.clkreg			= MCI_CLK_ENABLE,
209 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
210 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 	.data_cmd_enable	= MCI_QCOM_CSPM_DATCMD,
214 	.blksz_datactrl4	= true,
215 	.datalength_bits	= 24,
216 	.pwrreg_powerup		= MCI_PWR_UP,
217 	.f_max			= 208000000,
218 	.explicit_mclk_control	= true,
219 	.qcom_fifo		= true,
220 	.qcom_dml		= true,
221 };
222 
223 static int mmci_card_busy(struct mmc_host *mmc)
224 {
225 	struct mmci_host *host = mmc_priv(mmc);
226 	unsigned long flags;
227 	int busy = 0;
228 
229 	pm_runtime_get_sync(mmc_dev(mmc));
230 
231 	spin_lock_irqsave(&host->lock, flags);
232 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
233 		busy = 1;
234 	spin_unlock_irqrestore(&host->lock, flags);
235 
236 	pm_runtime_mark_last_busy(mmc_dev(mmc));
237 	pm_runtime_put_autosuspend(mmc_dev(mmc));
238 
239 	return busy;
240 }
241 
242 /*
243  * Validate mmc prerequisites
244  */
245 static int mmci_validate_data(struct mmci_host *host,
246 			      struct mmc_data *data)
247 {
248 	if (!data)
249 		return 0;
250 
251 	if (!is_power_of_2(data->blksz)) {
252 		dev_err(mmc_dev(host->mmc),
253 			"unsupported block size (%d bytes)\n", data->blksz);
254 		return -EINVAL;
255 	}
256 
257 	return 0;
258 }
259 
260 static void mmci_reg_delay(struct mmci_host *host)
261 {
262 	/*
263 	 * According to the spec, at least three feedback clock cycles
264 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 	 * Worst delay time during card init is at 100 kHz => 30 us.
267 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
268 	 */
269 	if (host->cclk < 25000000)
270 		udelay(30);
271 	else
272 		ndelay(120);
273 }
274 
275 /*
276  * This must be called with host->lock held
277  */
278 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279 {
280 	if (host->clk_reg != clk) {
281 		host->clk_reg = clk;
282 		writel(clk, host->base + MMCICLOCK);
283 	}
284 }
285 
286 /*
287  * This must be called with host->lock held
288  */
289 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290 {
291 	if (host->pwr_reg != pwr) {
292 		host->pwr_reg = pwr;
293 		writel(pwr, host->base + MMCIPOWER);
294 	}
295 }
296 
297 /*
298  * This must be called with host->lock held
299  */
300 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301 {
302 	/* Keep ST Micro busy mode if enabled */
303 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
304 
305 	if (host->datactrl_reg != datactrl) {
306 		host->datactrl_reg = datactrl;
307 		writel(datactrl, host->base + MMCIDATACTRL);
308 	}
309 }
310 
311 /*
312  * This must be called with host->lock held
313  */
314 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315 {
316 	struct variant_data *variant = host->variant;
317 	u32 clk = variant->clkreg;
318 
319 	/* Make sure cclk reflects the current calculated clock */
320 	host->cclk = 0;
321 
322 	if (desired) {
323 		if (variant->explicit_mclk_control) {
324 			host->cclk = host->mclk;
325 		} else if (desired >= host->mclk) {
326 			clk = MCI_CLK_BYPASS;
327 			if (variant->st_clkdiv)
328 				clk |= MCI_ST_UX500_NEG_EDGE;
329 			host->cclk = host->mclk;
330 		} else if (variant->st_clkdiv) {
331 			/*
332 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 			 * => clkdiv = (mclk / f) - 2
334 			 * Round the divider up so we don't exceed the max
335 			 * frequency
336 			 */
337 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338 			if (clk >= 256)
339 				clk = 255;
340 			host->cclk = host->mclk / (clk + 2);
341 		} else {
342 			/*
343 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 			 * => clkdiv = mclk / (2 * f) - 1
345 			 */
346 			clk = host->mclk / (2 * desired) - 1;
347 			if (clk >= 256)
348 				clk = 255;
349 			host->cclk = host->mclk / (2 * (clk + 1));
350 		}
351 
352 		clk |= variant->clkreg_enable;
353 		clk |= MCI_CLK_ENABLE;
354 		/* This hasn't proven to be worthwhile */
355 		/* clk |= MCI_CLK_PWRSAVE; */
356 	}
357 
358 	/* Set actual clock for debug */
359 	host->mmc->actual_clock = host->cclk;
360 
361 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362 		clk |= MCI_4BIT_BUS;
363 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364 		clk |= variant->clkreg_8bit_bus_enable;
365 
366 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368 		clk |= variant->clkreg_neg_edge_enable;
369 
370 	mmci_write_clkreg(host, clk);
371 }
372 
373 static void
374 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
375 {
376 	writel(0, host->base + MMCICOMMAND);
377 
378 	BUG_ON(host->data);
379 
380 	host->mrq = NULL;
381 	host->cmd = NULL;
382 
383 	mmc_request_done(host->mmc, mrq);
384 
385 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
386 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
387 }
388 
389 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
390 {
391 	void __iomem *base = host->base;
392 
393 	if (host->singleirq) {
394 		unsigned int mask0 = readl(base + MMCIMASK0);
395 
396 		mask0 &= ~MCI_IRQ1MASK;
397 		mask0 |= mask;
398 
399 		writel(mask0, base + MMCIMASK0);
400 	}
401 
402 	writel(mask, base + MMCIMASK1);
403 }
404 
405 static void mmci_stop_data(struct mmci_host *host)
406 {
407 	mmci_write_datactrlreg(host, 0);
408 	mmci_set_mask1(host, 0);
409 	host->data = NULL;
410 }
411 
412 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
413 {
414 	unsigned int flags = SG_MITER_ATOMIC;
415 
416 	if (data->flags & MMC_DATA_READ)
417 		flags |= SG_MITER_TO_SG;
418 	else
419 		flags |= SG_MITER_FROM_SG;
420 
421 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
422 }
423 
424 /*
425  * All the DMA operation mode stuff goes inside this ifdef.
426  * This assumes that you have a generic DMA device interface,
427  * no custom DMA interfaces are supported.
428  */
429 #ifdef CONFIG_DMA_ENGINE
430 static void mmci_dma_setup(struct mmci_host *host)
431 {
432 	const char *rxname, *txname;
433 	dma_cap_mask_t mask;
434 	struct variant_data *variant = host->variant;
435 
436 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
437 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
438 
439 	/* initialize pre request cookie */
440 	host->next_data.cookie = 1;
441 
442 	/* Try to acquire a generic DMA engine slave channel */
443 	dma_cap_zero(mask);
444 	dma_cap_set(DMA_SLAVE, mask);
445 
446 	/*
447 	 * If only an RX channel is specified, the driver will
448 	 * attempt to use it bidirectionally, however if it is
449 	 * is specified but cannot be located, DMA will be disabled.
450 	 */
451 	if (host->dma_rx_channel && !host->dma_tx_channel)
452 		host->dma_tx_channel = host->dma_rx_channel;
453 
454 	if (host->dma_rx_channel)
455 		rxname = dma_chan_name(host->dma_rx_channel);
456 	else
457 		rxname = "none";
458 
459 	if (host->dma_tx_channel)
460 		txname = dma_chan_name(host->dma_tx_channel);
461 	else
462 		txname = "none";
463 
464 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
465 		 rxname, txname);
466 
467 	/*
468 	 * Limit the maximum segment size in any SG entry according to
469 	 * the parameters of the DMA engine device.
470 	 */
471 	if (host->dma_tx_channel) {
472 		struct device *dev = host->dma_tx_channel->device->dev;
473 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
474 
475 		if (max_seg_size < host->mmc->max_seg_size)
476 			host->mmc->max_seg_size = max_seg_size;
477 	}
478 	if (host->dma_rx_channel) {
479 		struct device *dev = host->dma_rx_channel->device->dev;
480 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
481 
482 		if (max_seg_size < host->mmc->max_seg_size)
483 			host->mmc->max_seg_size = max_seg_size;
484 	}
485 
486 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
487 		if (dml_hw_init(host, host->mmc->parent->of_node))
488 			variant->qcom_dml = false;
489 }
490 
491 /*
492  * This is used in or so inline it
493  * so it can be discarded.
494  */
495 static inline void mmci_dma_release(struct mmci_host *host)
496 {
497 	if (host->dma_rx_channel)
498 		dma_release_channel(host->dma_rx_channel);
499 	if (host->dma_tx_channel)
500 		dma_release_channel(host->dma_tx_channel);
501 	host->dma_rx_channel = host->dma_tx_channel = NULL;
502 }
503 
504 static void mmci_dma_data_error(struct mmci_host *host)
505 {
506 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
507 	dmaengine_terminate_all(host->dma_current);
508 	host->dma_current = NULL;
509 	host->dma_desc_current = NULL;
510 	host->data->host_cookie = 0;
511 }
512 
513 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
514 {
515 	struct dma_chan *chan;
516 	enum dma_data_direction dir;
517 
518 	if (data->flags & MMC_DATA_READ) {
519 		dir = DMA_FROM_DEVICE;
520 		chan = host->dma_rx_channel;
521 	} else {
522 		dir = DMA_TO_DEVICE;
523 		chan = host->dma_tx_channel;
524 	}
525 
526 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
527 }
528 
529 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
530 {
531 	u32 status;
532 	int i;
533 
534 	/* Wait up to 1ms for the DMA to complete */
535 	for (i = 0; ; i++) {
536 		status = readl(host->base + MMCISTATUS);
537 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
538 			break;
539 		udelay(10);
540 	}
541 
542 	/*
543 	 * Check to see whether we still have some data left in the FIFO -
544 	 * this catches DMA controllers which are unable to monitor the
545 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
546 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
547 	 */
548 	if (status & MCI_RXDATAAVLBLMASK) {
549 		mmci_dma_data_error(host);
550 		if (!data->error)
551 			data->error = -EIO;
552 	}
553 
554 	if (!data->host_cookie)
555 		mmci_dma_unmap(host, data);
556 
557 	/*
558 	 * Use of DMA with scatter-gather is impossible.
559 	 * Give up with DMA and switch back to PIO mode.
560 	 */
561 	if (status & MCI_RXDATAAVLBLMASK) {
562 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
563 		mmci_dma_release(host);
564 	}
565 
566 	host->dma_current = NULL;
567 	host->dma_desc_current = NULL;
568 }
569 
570 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
571 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
572 				struct dma_chan **dma_chan,
573 				struct dma_async_tx_descriptor **dma_desc)
574 {
575 	struct variant_data *variant = host->variant;
576 	struct dma_slave_config conf = {
577 		.src_addr = host->phybase + MMCIFIFO,
578 		.dst_addr = host->phybase + MMCIFIFO,
579 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
580 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
581 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
582 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
583 		.device_fc = false,
584 	};
585 	struct dma_chan *chan;
586 	struct dma_device *device;
587 	struct dma_async_tx_descriptor *desc;
588 	enum dma_data_direction buffer_dirn;
589 	int nr_sg;
590 	unsigned long flags = DMA_CTRL_ACK;
591 
592 	if (data->flags & MMC_DATA_READ) {
593 		conf.direction = DMA_DEV_TO_MEM;
594 		buffer_dirn = DMA_FROM_DEVICE;
595 		chan = host->dma_rx_channel;
596 	} else {
597 		conf.direction = DMA_MEM_TO_DEV;
598 		buffer_dirn = DMA_TO_DEVICE;
599 		chan = host->dma_tx_channel;
600 	}
601 
602 	/* If there's no DMA channel, fall back to PIO */
603 	if (!chan)
604 		return -EINVAL;
605 
606 	/* If less than or equal to the fifo size, don't bother with DMA */
607 	if (data->blksz * data->blocks <= variant->fifosize)
608 		return -EINVAL;
609 
610 	device = chan->device;
611 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
612 	if (nr_sg == 0)
613 		return -EINVAL;
614 
615 	if (host->variant->qcom_dml)
616 		flags |= DMA_PREP_INTERRUPT;
617 
618 	dmaengine_slave_config(chan, &conf);
619 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
620 					    conf.direction, flags);
621 	if (!desc)
622 		goto unmap_exit;
623 
624 	*dma_chan = chan;
625 	*dma_desc = desc;
626 
627 	return 0;
628 
629  unmap_exit:
630 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
631 	return -ENOMEM;
632 }
633 
634 static inline int mmci_dma_prep_data(struct mmci_host *host,
635 				     struct mmc_data *data)
636 {
637 	/* Check if next job is already prepared. */
638 	if (host->dma_current && host->dma_desc_current)
639 		return 0;
640 
641 	/* No job were prepared thus do it now. */
642 	return __mmci_dma_prep_data(host, data, &host->dma_current,
643 				    &host->dma_desc_current);
644 }
645 
646 static inline int mmci_dma_prep_next(struct mmci_host *host,
647 				     struct mmc_data *data)
648 {
649 	struct mmci_host_next *nd = &host->next_data;
650 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
651 }
652 
653 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
654 {
655 	int ret;
656 	struct mmc_data *data = host->data;
657 
658 	ret = mmci_dma_prep_data(host, host->data);
659 	if (ret)
660 		return ret;
661 
662 	/* Okay, go for it. */
663 	dev_vdbg(mmc_dev(host->mmc),
664 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
665 		 data->sg_len, data->blksz, data->blocks, data->flags);
666 	dmaengine_submit(host->dma_desc_current);
667 	dma_async_issue_pending(host->dma_current);
668 
669 	if (host->variant->qcom_dml)
670 		dml_start_xfer(host, data);
671 
672 	datactrl |= MCI_DPSM_DMAENABLE;
673 
674 	/* Trigger the DMA transfer */
675 	mmci_write_datactrlreg(host, datactrl);
676 
677 	/*
678 	 * Let the MMCI say when the data is ended and it's time
679 	 * to fire next DMA request. When that happens, MMCI will
680 	 * call mmci_data_end()
681 	 */
682 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
683 	       host->base + MMCIMASK0);
684 	return 0;
685 }
686 
687 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
688 {
689 	struct mmci_host_next *next = &host->next_data;
690 
691 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
692 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
693 
694 	host->dma_desc_current = next->dma_desc;
695 	host->dma_current = next->dma_chan;
696 	next->dma_desc = NULL;
697 	next->dma_chan = NULL;
698 }
699 
700 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
701 			     bool is_first_req)
702 {
703 	struct mmci_host *host = mmc_priv(mmc);
704 	struct mmc_data *data = mrq->data;
705 	struct mmci_host_next *nd = &host->next_data;
706 
707 	if (!data)
708 		return;
709 
710 	BUG_ON(data->host_cookie);
711 
712 	if (mmci_validate_data(host, data))
713 		return;
714 
715 	if (!mmci_dma_prep_next(host, data))
716 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
717 }
718 
719 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
720 			      int err)
721 {
722 	struct mmci_host *host = mmc_priv(mmc);
723 	struct mmc_data *data = mrq->data;
724 
725 	if (!data || !data->host_cookie)
726 		return;
727 
728 	mmci_dma_unmap(host, data);
729 
730 	if (err) {
731 		struct mmci_host_next *next = &host->next_data;
732 		struct dma_chan *chan;
733 		if (data->flags & MMC_DATA_READ)
734 			chan = host->dma_rx_channel;
735 		else
736 			chan = host->dma_tx_channel;
737 		dmaengine_terminate_all(chan);
738 
739 		next->dma_desc = NULL;
740 		next->dma_chan = NULL;
741 	}
742 }
743 
744 #else
745 /* Blank functions if the DMA engine is not available */
746 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
747 {
748 }
749 static inline void mmci_dma_setup(struct mmci_host *host)
750 {
751 }
752 
753 static inline void mmci_dma_release(struct mmci_host *host)
754 {
755 }
756 
757 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
758 {
759 }
760 
761 static inline void mmci_dma_finalize(struct mmci_host *host,
762 				     struct mmc_data *data)
763 {
764 }
765 
766 static inline void mmci_dma_data_error(struct mmci_host *host)
767 {
768 }
769 
770 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
771 {
772 	return -ENOSYS;
773 }
774 
775 #define mmci_pre_request NULL
776 #define mmci_post_request NULL
777 
778 #endif
779 
780 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
781 {
782 	struct variant_data *variant = host->variant;
783 	unsigned int datactrl, timeout, irqmask;
784 	unsigned long long clks;
785 	void __iomem *base;
786 	int blksz_bits;
787 
788 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
789 		data->blksz, data->blocks, data->flags);
790 
791 	host->data = data;
792 	host->size = data->blksz * data->blocks;
793 	data->bytes_xfered = 0;
794 
795 	clks = (unsigned long long)data->timeout_ns * host->cclk;
796 	do_div(clks, NSEC_PER_SEC);
797 
798 	timeout = data->timeout_clks + (unsigned int)clks;
799 
800 	base = host->base;
801 	writel(timeout, base + MMCIDATATIMER);
802 	writel(host->size, base + MMCIDATALENGTH);
803 
804 	blksz_bits = ffs(data->blksz) - 1;
805 	BUG_ON(1 << blksz_bits != data->blksz);
806 
807 	if (variant->blksz_datactrl16)
808 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
809 	else if (variant->blksz_datactrl4)
810 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
811 	else
812 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
813 
814 	if (data->flags & MMC_DATA_READ)
815 		datactrl |= MCI_DPSM_DIRECTION;
816 
817 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
818 		u32 clk;
819 
820 		datactrl |= variant->datactrl_mask_sdio;
821 
822 		/*
823 		 * The ST Micro variant for SDIO small write transfers
824 		 * needs to have clock H/W flow control disabled,
825 		 * otherwise the transfer will not start. The threshold
826 		 * depends on the rate of MCLK.
827 		 */
828 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
829 		    (host->size < 8 ||
830 		     (host->size <= 8 && host->mclk > 50000000)))
831 			clk = host->clk_reg & ~variant->clkreg_enable;
832 		else
833 			clk = host->clk_reg | variant->clkreg_enable;
834 
835 		mmci_write_clkreg(host, clk);
836 	}
837 
838 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
839 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
840 		datactrl |= variant->datactrl_mask_ddrmode;
841 
842 	/*
843 	 * Attempt to use DMA operation mode, if this
844 	 * should fail, fall back to PIO mode
845 	 */
846 	if (!mmci_dma_start_data(host, datactrl))
847 		return;
848 
849 	/* IRQ mode, map the SG list for CPU reading/writing */
850 	mmci_init_sg(host, data);
851 
852 	if (data->flags & MMC_DATA_READ) {
853 		irqmask = MCI_RXFIFOHALFFULLMASK;
854 
855 		/*
856 		 * If we have less than the fifo 'half-full' threshold to
857 		 * transfer, trigger a PIO interrupt as soon as any data
858 		 * is available.
859 		 */
860 		if (host->size < variant->fifohalfsize)
861 			irqmask |= MCI_RXDATAAVLBLMASK;
862 	} else {
863 		/*
864 		 * We don't actually need to include "FIFO empty" here
865 		 * since its implicit in "FIFO half empty".
866 		 */
867 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
868 	}
869 
870 	mmci_write_datactrlreg(host, datactrl);
871 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
872 	mmci_set_mask1(host, irqmask);
873 }
874 
875 static void
876 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
877 {
878 	void __iomem *base = host->base;
879 
880 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
881 	    cmd->opcode, cmd->arg, cmd->flags);
882 
883 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
884 		writel(0, base + MMCICOMMAND);
885 		mmci_reg_delay(host);
886 	}
887 
888 	c |= cmd->opcode | MCI_CPSM_ENABLE;
889 	if (cmd->flags & MMC_RSP_PRESENT) {
890 		if (cmd->flags & MMC_RSP_136)
891 			c |= MCI_CPSM_LONGRSP;
892 		c |= MCI_CPSM_RESPONSE;
893 	}
894 	if (/*interrupt*/0)
895 		c |= MCI_CPSM_INTERRUPT;
896 
897 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
898 		c |= host->variant->data_cmd_enable;
899 
900 	host->cmd = cmd;
901 
902 	writel(cmd->arg, base + MMCIARGUMENT);
903 	writel(c, base + MMCICOMMAND);
904 }
905 
906 static void
907 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
908 	      unsigned int status)
909 {
910 	/* Make sure we have data to handle */
911 	if (!data)
912 		return;
913 
914 	/* First check for errors */
915 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
916 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
917 		u32 remain, success;
918 
919 		/* Terminate the DMA transfer */
920 		if (dma_inprogress(host)) {
921 			mmci_dma_data_error(host);
922 			mmci_dma_unmap(host, data);
923 		}
924 
925 		/*
926 		 * Calculate how far we are into the transfer.  Note that
927 		 * the data counter gives the number of bytes transferred
928 		 * on the MMC bus, not on the host side.  On reads, this
929 		 * can be as much as a FIFO-worth of data ahead.  This
930 		 * matters for FIFO overruns only.
931 		 */
932 		remain = readl(host->base + MMCIDATACNT);
933 		success = data->blksz * data->blocks - remain;
934 
935 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
936 			status, success);
937 		if (status & MCI_DATACRCFAIL) {
938 			/* Last block was not successful */
939 			success -= 1;
940 			data->error = -EILSEQ;
941 		} else if (status & MCI_DATATIMEOUT) {
942 			data->error = -ETIMEDOUT;
943 		} else if (status & MCI_STARTBITERR) {
944 			data->error = -ECOMM;
945 		} else if (status & MCI_TXUNDERRUN) {
946 			data->error = -EIO;
947 		} else if (status & MCI_RXOVERRUN) {
948 			if (success > host->variant->fifosize)
949 				success -= host->variant->fifosize;
950 			else
951 				success = 0;
952 			data->error = -EIO;
953 		}
954 		data->bytes_xfered = round_down(success, data->blksz);
955 	}
956 
957 	if (status & MCI_DATABLOCKEND)
958 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
959 
960 	if (status & MCI_DATAEND || data->error) {
961 		if (dma_inprogress(host))
962 			mmci_dma_finalize(host, data);
963 		mmci_stop_data(host);
964 
965 		if (!data->error)
966 			/* The error clause is handled above, success! */
967 			data->bytes_xfered = data->blksz * data->blocks;
968 
969 		if (!data->stop || host->mrq->sbc) {
970 			mmci_request_end(host, data->mrq);
971 		} else {
972 			mmci_start_command(host, data->stop, 0);
973 		}
974 	}
975 }
976 
977 static void
978 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
979 	     unsigned int status)
980 {
981 	void __iomem *base = host->base;
982 	bool sbc, busy_resp;
983 
984 	if (!cmd)
985 		return;
986 
987 	sbc = (cmd == host->mrq->sbc);
988 	busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
989 
990 	if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
991 		MCI_CMDSENT|MCI_CMDRESPEND)))
992 		return;
993 
994 	/* Check if we need to wait for busy completion. */
995 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
996 		return;
997 
998 	/* Enable busy completion if needed and supported. */
999 	if (!host->busy_status && busy_resp &&
1000 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1001 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1002 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1003 			base + MMCIMASK0);
1004 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1005 		return;
1006 	}
1007 
1008 	/* At busy completion, mask the IRQ and complete the request. */
1009 	if (host->busy_status) {
1010 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1011 			base + MMCIMASK0);
1012 		host->busy_status = 0;
1013 	}
1014 
1015 	host->cmd = NULL;
1016 
1017 	if (status & MCI_CMDTIMEOUT) {
1018 		cmd->error = -ETIMEDOUT;
1019 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1020 		cmd->error = -EILSEQ;
1021 	} else {
1022 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1023 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1024 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1025 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1026 	}
1027 
1028 	if ((!sbc && !cmd->data) || cmd->error) {
1029 		if (host->data) {
1030 			/* Terminate the DMA transfer */
1031 			if (dma_inprogress(host)) {
1032 				mmci_dma_data_error(host);
1033 				mmci_dma_unmap(host, host->data);
1034 			}
1035 			mmci_stop_data(host);
1036 		}
1037 		mmci_request_end(host, host->mrq);
1038 	} else if (sbc) {
1039 		mmci_start_command(host, host->mrq->cmd, 0);
1040 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1041 		mmci_start_data(host, cmd->data);
1042 	}
1043 }
1044 
1045 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1046 {
1047 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1048 }
1049 
1050 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1051 {
1052 	/*
1053 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1054 	 * from the fifo range should be used
1055 	 */
1056 	if (status & MCI_RXFIFOHALFFULL)
1057 		return host->variant->fifohalfsize;
1058 	else if (status & MCI_RXDATAAVLBL)
1059 		return 4;
1060 
1061 	return 0;
1062 }
1063 
1064 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1065 {
1066 	void __iomem *base = host->base;
1067 	char *ptr = buffer;
1068 	u32 status = readl(host->base + MMCISTATUS);
1069 	int host_remain = host->size;
1070 
1071 	do {
1072 		int count = host->get_rx_fifocnt(host, status, host_remain);
1073 
1074 		if (count > remain)
1075 			count = remain;
1076 
1077 		if (count <= 0)
1078 			break;
1079 
1080 		/*
1081 		 * SDIO especially may want to send something that is
1082 		 * not divisible by 4 (as opposed to card sectors
1083 		 * etc). Therefore make sure to always read the last bytes
1084 		 * while only doing full 32-bit reads towards the FIFO.
1085 		 */
1086 		if (unlikely(count & 0x3)) {
1087 			if (count < 4) {
1088 				unsigned char buf[4];
1089 				ioread32_rep(base + MMCIFIFO, buf, 1);
1090 				memcpy(ptr, buf, count);
1091 			} else {
1092 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1093 				count &= ~0x3;
1094 			}
1095 		} else {
1096 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1097 		}
1098 
1099 		ptr += count;
1100 		remain -= count;
1101 		host_remain -= count;
1102 
1103 		if (remain == 0)
1104 			break;
1105 
1106 		status = readl(base + MMCISTATUS);
1107 	} while (status & MCI_RXDATAAVLBL);
1108 
1109 	return ptr - buffer;
1110 }
1111 
1112 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1113 {
1114 	struct variant_data *variant = host->variant;
1115 	void __iomem *base = host->base;
1116 	char *ptr = buffer;
1117 
1118 	do {
1119 		unsigned int count, maxcnt;
1120 
1121 		maxcnt = status & MCI_TXFIFOEMPTY ?
1122 			 variant->fifosize : variant->fifohalfsize;
1123 		count = min(remain, maxcnt);
1124 
1125 		/*
1126 		 * SDIO especially may want to send something that is
1127 		 * not divisible by 4 (as opposed to card sectors
1128 		 * etc), and the FIFO only accept full 32-bit writes.
1129 		 * So compensate by adding +3 on the count, a single
1130 		 * byte become a 32bit write, 7 bytes will be two
1131 		 * 32bit writes etc.
1132 		 */
1133 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1134 
1135 		ptr += count;
1136 		remain -= count;
1137 
1138 		if (remain == 0)
1139 			break;
1140 
1141 		status = readl(base + MMCISTATUS);
1142 	} while (status & MCI_TXFIFOHALFEMPTY);
1143 
1144 	return ptr - buffer;
1145 }
1146 
1147 /*
1148  * PIO data transfer IRQ handler.
1149  */
1150 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1151 {
1152 	struct mmci_host *host = dev_id;
1153 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1154 	struct variant_data *variant = host->variant;
1155 	void __iomem *base = host->base;
1156 	unsigned long flags;
1157 	u32 status;
1158 
1159 	status = readl(base + MMCISTATUS);
1160 
1161 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1162 
1163 	local_irq_save(flags);
1164 
1165 	do {
1166 		unsigned int remain, len;
1167 		char *buffer;
1168 
1169 		/*
1170 		 * For write, we only need to test the half-empty flag
1171 		 * here - if the FIFO is completely empty, then by
1172 		 * definition it is more than half empty.
1173 		 *
1174 		 * For read, check for data available.
1175 		 */
1176 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1177 			break;
1178 
1179 		if (!sg_miter_next(sg_miter))
1180 			break;
1181 
1182 		buffer = sg_miter->addr;
1183 		remain = sg_miter->length;
1184 
1185 		len = 0;
1186 		if (status & MCI_RXACTIVE)
1187 			len = mmci_pio_read(host, buffer, remain);
1188 		if (status & MCI_TXACTIVE)
1189 			len = mmci_pio_write(host, buffer, remain, status);
1190 
1191 		sg_miter->consumed = len;
1192 
1193 		host->size -= len;
1194 		remain -= len;
1195 
1196 		if (remain)
1197 			break;
1198 
1199 		status = readl(base + MMCISTATUS);
1200 	} while (1);
1201 
1202 	sg_miter_stop(sg_miter);
1203 
1204 	local_irq_restore(flags);
1205 
1206 	/*
1207 	 * If we have less than the fifo 'half-full' threshold to transfer,
1208 	 * trigger a PIO interrupt as soon as any data is available.
1209 	 */
1210 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1211 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1212 
1213 	/*
1214 	 * If we run out of data, disable the data IRQs; this
1215 	 * prevents a race where the FIFO becomes empty before
1216 	 * the chip itself has disabled the data path, and
1217 	 * stops us racing with our data end IRQ.
1218 	 */
1219 	if (host->size == 0) {
1220 		mmci_set_mask1(host, 0);
1221 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1222 	}
1223 
1224 	return IRQ_HANDLED;
1225 }
1226 
1227 /*
1228  * Handle completion of command and data transfers.
1229  */
1230 static irqreturn_t mmci_irq(int irq, void *dev_id)
1231 {
1232 	struct mmci_host *host = dev_id;
1233 	u32 status;
1234 	int ret = 0;
1235 
1236 	spin_lock(&host->lock);
1237 
1238 	do {
1239 		status = readl(host->base + MMCISTATUS);
1240 
1241 		if (host->singleirq) {
1242 			if (status & readl(host->base + MMCIMASK1))
1243 				mmci_pio_irq(irq, dev_id);
1244 
1245 			status &= ~MCI_IRQ1MASK;
1246 		}
1247 
1248 		/*
1249 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1250 		 * enabled) since the HW seems to be triggering the IRQ on both
1251 		 * edges while monitoring DAT0 for busy completion.
1252 		 */
1253 		status &= readl(host->base + MMCIMASK0);
1254 		writel(status, host->base + MMCICLEAR);
1255 
1256 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1257 
1258 		if (host->variant->reversed_irq_handling) {
1259 			mmci_data_irq(host, host->data, status);
1260 			mmci_cmd_irq(host, host->cmd, status);
1261 		} else {
1262 			mmci_cmd_irq(host, host->cmd, status);
1263 			mmci_data_irq(host, host->data, status);
1264 		}
1265 
1266 		/* Don't poll for busy completion in irq context. */
1267 		if (host->busy_status)
1268 			status &= ~MCI_ST_CARDBUSY;
1269 
1270 		ret = 1;
1271 	} while (status);
1272 
1273 	spin_unlock(&host->lock);
1274 
1275 	return IRQ_RETVAL(ret);
1276 }
1277 
1278 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1279 {
1280 	struct mmci_host *host = mmc_priv(mmc);
1281 	unsigned long flags;
1282 
1283 	WARN_ON(host->mrq != NULL);
1284 
1285 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1286 	if (mrq->cmd->error) {
1287 		mmc_request_done(mmc, mrq);
1288 		return;
1289 	}
1290 
1291 	pm_runtime_get_sync(mmc_dev(mmc));
1292 
1293 	spin_lock_irqsave(&host->lock, flags);
1294 
1295 	host->mrq = mrq;
1296 
1297 	if (mrq->data)
1298 		mmci_get_next_data(host, mrq->data);
1299 
1300 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1301 		mmci_start_data(host, mrq->data);
1302 
1303 	if (mrq->sbc)
1304 		mmci_start_command(host, mrq->sbc, 0);
1305 	else
1306 		mmci_start_command(host, mrq->cmd, 0);
1307 
1308 	spin_unlock_irqrestore(&host->lock, flags);
1309 }
1310 
1311 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1312 {
1313 	struct mmci_host *host = mmc_priv(mmc);
1314 	struct variant_data *variant = host->variant;
1315 	u32 pwr = 0;
1316 	unsigned long flags;
1317 	int ret;
1318 
1319 	pm_runtime_get_sync(mmc_dev(mmc));
1320 
1321 	if (host->plat->ios_handler &&
1322 		host->plat->ios_handler(mmc_dev(mmc), ios))
1323 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1324 
1325 	switch (ios->power_mode) {
1326 	case MMC_POWER_OFF:
1327 		if (!IS_ERR(mmc->supply.vmmc))
1328 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1329 
1330 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1331 			regulator_disable(mmc->supply.vqmmc);
1332 			host->vqmmc_enabled = false;
1333 		}
1334 
1335 		break;
1336 	case MMC_POWER_UP:
1337 		if (!IS_ERR(mmc->supply.vmmc))
1338 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1339 
1340 		/*
1341 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1342 		 * and instead uses MCI_PWR_ON so apply whatever value is
1343 		 * configured in the variant data.
1344 		 */
1345 		pwr |= variant->pwrreg_powerup;
1346 
1347 		break;
1348 	case MMC_POWER_ON:
1349 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1350 			ret = regulator_enable(mmc->supply.vqmmc);
1351 			if (ret < 0)
1352 				dev_err(mmc_dev(mmc),
1353 					"failed to enable vqmmc regulator\n");
1354 			else
1355 				host->vqmmc_enabled = true;
1356 		}
1357 
1358 		pwr |= MCI_PWR_ON;
1359 		break;
1360 	}
1361 
1362 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1363 		/*
1364 		 * The ST Micro variant has some additional bits
1365 		 * indicating signal direction for the signals in
1366 		 * the SD/MMC bus and feedback-clock usage.
1367 		 */
1368 		pwr |= host->pwr_reg_add;
1369 
1370 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1371 			pwr &= ~MCI_ST_DATA74DIREN;
1372 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1373 			pwr &= (~MCI_ST_DATA74DIREN &
1374 				~MCI_ST_DATA31DIREN &
1375 				~MCI_ST_DATA2DIREN);
1376 	}
1377 
1378 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1379 		if (host->hw_designer != AMBA_VENDOR_ST)
1380 			pwr |= MCI_ROD;
1381 		else {
1382 			/*
1383 			 * The ST Micro variant use the ROD bit for something
1384 			 * else and only has OD (Open Drain).
1385 			 */
1386 			pwr |= MCI_OD;
1387 		}
1388 	}
1389 
1390 	/*
1391 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1392 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1393 	 */
1394 	if (!ios->clock && variant->pwrreg_clkgate)
1395 		pwr &= ~MCI_PWR_ON;
1396 
1397 	if (host->variant->explicit_mclk_control &&
1398 	    ios->clock != host->clock_cache) {
1399 		ret = clk_set_rate(host->clk, ios->clock);
1400 		if (ret < 0)
1401 			dev_err(mmc_dev(host->mmc),
1402 				"Error setting clock rate (%d)\n", ret);
1403 		else
1404 			host->mclk = clk_get_rate(host->clk);
1405 	}
1406 	host->clock_cache = ios->clock;
1407 
1408 	spin_lock_irqsave(&host->lock, flags);
1409 
1410 	mmci_set_clkreg(host, ios->clock);
1411 	mmci_write_pwrreg(host, pwr);
1412 	mmci_reg_delay(host);
1413 
1414 	spin_unlock_irqrestore(&host->lock, flags);
1415 
1416 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1417 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1418 }
1419 
1420 static int mmci_get_cd(struct mmc_host *mmc)
1421 {
1422 	struct mmci_host *host = mmc_priv(mmc);
1423 	struct mmci_platform_data *plat = host->plat;
1424 	unsigned int status = mmc_gpio_get_cd(mmc);
1425 
1426 	if (status == -ENOSYS) {
1427 		if (!plat->status)
1428 			return 1; /* Assume always present */
1429 
1430 		status = plat->status(mmc_dev(host->mmc));
1431 	}
1432 	return status;
1433 }
1434 
1435 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1436 {
1437 	int ret = 0;
1438 
1439 	if (!IS_ERR(mmc->supply.vqmmc)) {
1440 
1441 		pm_runtime_get_sync(mmc_dev(mmc));
1442 
1443 		switch (ios->signal_voltage) {
1444 		case MMC_SIGNAL_VOLTAGE_330:
1445 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1446 						2700000, 3600000);
1447 			break;
1448 		case MMC_SIGNAL_VOLTAGE_180:
1449 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1450 						1700000, 1950000);
1451 			break;
1452 		case MMC_SIGNAL_VOLTAGE_120:
1453 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1454 						1100000, 1300000);
1455 			break;
1456 		}
1457 
1458 		if (ret)
1459 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1460 
1461 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1462 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1463 	}
1464 
1465 	return ret;
1466 }
1467 
1468 static struct mmc_host_ops mmci_ops = {
1469 	.request	= mmci_request,
1470 	.pre_req	= mmci_pre_request,
1471 	.post_req	= mmci_post_request,
1472 	.set_ios	= mmci_set_ios,
1473 	.get_ro		= mmc_gpio_get_ro,
1474 	.get_cd		= mmci_get_cd,
1475 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1476 };
1477 
1478 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1479 {
1480 	struct mmci_host *host = mmc_priv(mmc);
1481 	int ret = mmc_of_parse(mmc);
1482 
1483 	if (ret)
1484 		return ret;
1485 
1486 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1487 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1488 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1489 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1490 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1491 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1492 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1493 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1494 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1495 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1496 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1497 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1498 
1499 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1500 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1501 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1502 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1503 
1504 	return 0;
1505 }
1506 
1507 static int mmci_probe(struct amba_device *dev,
1508 	const struct amba_id *id)
1509 {
1510 	struct mmci_platform_data *plat = dev->dev.platform_data;
1511 	struct device_node *np = dev->dev.of_node;
1512 	struct variant_data *variant = id->data;
1513 	struct mmci_host *host;
1514 	struct mmc_host *mmc;
1515 	int ret;
1516 
1517 	/* Must have platform data or Device Tree. */
1518 	if (!plat && !np) {
1519 		dev_err(&dev->dev, "No plat data or DT found\n");
1520 		return -EINVAL;
1521 	}
1522 
1523 	if (!plat) {
1524 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1525 		if (!plat)
1526 			return -ENOMEM;
1527 	}
1528 
1529 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1530 	if (!mmc)
1531 		return -ENOMEM;
1532 
1533 	ret = mmci_of_parse(np, mmc);
1534 	if (ret)
1535 		goto host_free;
1536 
1537 	host = mmc_priv(mmc);
1538 	host->mmc = mmc;
1539 
1540 	host->hw_designer = amba_manf(dev);
1541 	host->hw_revision = amba_rev(dev);
1542 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1543 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1544 
1545 	host->clk = devm_clk_get(&dev->dev, NULL);
1546 	if (IS_ERR(host->clk)) {
1547 		ret = PTR_ERR(host->clk);
1548 		goto host_free;
1549 	}
1550 
1551 	ret = clk_prepare_enable(host->clk);
1552 	if (ret)
1553 		goto host_free;
1554 
1555 	if (variant->qcom_fifo)
1556 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1557 	else
1558 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1559 
1560 	host->plat = plat;
1561 	host->variant = variant;
1562 	host->mclk = clk_get_rate(host->clk);
1563 	/*
1564 	 * According to the spec, mclk is max 100 MHz,
1565 	 * so we try to adjust the clock down to this,
1566 	 * (if possible).
1567 	 */
1568 	if (host->mclk > variant->f_max) {
1569 		ret = clk_set_rate(host->clk, variant->f_max);
1570 		if (ret < 0)
1571 			goto clk_disable;
1572 		host->mclk = clk_get_rate(host->clk);
1573 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1574 			host->mclk);
1575 	}
1576 
1577 	host->phybase = dev->res.start;
1578 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1579 	if (IS_ERR(host->base)) {
1580 		ret = PTR_ERR(host->base);
1581 		goto clk_disable;
1582 	}
1583 
1584 	/*
1585 	 * The ARM and ST versions of the block have slightly different
1586 	 * clock divider equations which means that the minimum divider
1587 	 * differs too.
1588 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1589 	 */
1590 	if (variant->st_clkdiv)
1591 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1592 	else if (variant->explicit_mclk_control)
1593 		mmc->f_min = clk_round_rate(host->clk, 100000);
1594 	else
1595 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1596 	/*
1597 	 * If no maximum operating frequency is supplied, fall back to use
1598 	 * the module parameter, which has a (low) default value in case it
1599 	 * is not specified. Either value must not exceed the clock rate into
1600 	 * the block, of course.
1601 	 */
1602 	if (mmc->f_max)
1603 		mmc->f_max = variant->explicit_mclk_control ?
1604 				min(variant->f_max, mmc->f_max) :
1605 				min(host->mclk, mmc->f_max);
1606 	else
1607 		mmc->f_max = variant->explicit_mclk_control ?
1608 				fmax : min(host->mclk, fmax);
1609 
1610 
1611 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1612 
1613 	/* Get regulators and the supported OCR mask */
1614 	mmc_regulator_get_supply(mmc);
1615 	if (!mmc->ocr_avail)
1616 		mmc->ocr_avail = plat->ocr_mask;
1617 	else if (plat->ocr_mask)
1618 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1619 
1620 	/* DT takes precedence over platform data. */
1621 	if (!np) {
1622 		if (!plat->cd_invert)
1623 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1624 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1625 	}
1626 
1627 	/* We support these capabilities. */
1628 	mmc->caps |= MMC_CAP_CMD23;
1629 
1630 	if (variant->busy_detect) {
1631 		mmci_ops.card_busy = mmci_card_busy;
1632 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1633 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1634 		mmc->max_busy_timeout = 0;
1635 	}
1636 
1637 	mmc->ops = &mmci_ops;
1638 
1639 	/* We support these PM capabilities. */
1640 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1641 
1642 	/*
1643 	 * We can do SGIO
1644 	 */
1645 	mmc->max_segs = NR_SG;
1646 
1647 	/*
1648 	 * Since only a certain number of bits are valid in the data length
1649 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1650 	 * single request.
1651 	 */
1652 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1653 
1654 	/*
1655 	 * Set the maximum segment size.  Since we aren't doing DMA
1656 	 * (yet) we are only limited by the data length register.
1657 	 */
1658 	mmc->max_seg_size = mmc->max_req_size;
1659 
1660 	/*
1661 	 * Block size can be up to 2048 bytes, but must be a power of two.
1662 	 */
1663 	mmc->max_blk_size = 1 << 11;
1664 
1665 	/*
1666 	 * Limit the number of blocks transferred so that we don't overflow
1667 	 * the maximum request size.
1668 	 */
1669 	mmc->max_blk_count = mmc->max_req_size >> 11;
1670 
1671 	spin_lock_init(&host->lock);
1672 
1673 	writel(0, host->base + MMCIMASK0);
1674 	writel(0, host->base + MMCIMASK1);
1675 	writel(0xfff, host->base + MMCICLEAR);
1676 
1677 	/*
1678 	 * If:
1679 	 * - not using DT but using a descriptor table, or
1680 	 * - using a table of descriptors ALONGSIDE DT, or
1681 	 * look up these descriptors named "cd" and "wp" right here, fail
1682 	 * silently of these do not exist and proceed to try platform data
1683 	 */
1684 	if (!np) {
1685 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1686 		if (ret < 0) {
1687 			if (ret == -EPROBE_DEFER)
1688 				goto clk_disable;
1689 			else if (gpio_is_valid(plat->gpio_cd)) {
1690 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1691 				if (ret)
1692 					goto clk_disable;
1693 			}
1694 		}
1695 
1696 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1697 		if (ret < 0) {
1698 			if (ret == -EPROBE_DEFER)
1699 				goto clk_disable;
1700 			else if (gpio_is_valid(plat->gpio_wp)) {
1701 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1702 				if (ret)
1703 					goto clk_disable;
1704 			}
1705 		}
1706 	}
1707 
1708 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1709 			DRIVER_NAME " (cmd)", host);
1710 	if (ret)
1711 		goto clk_disable;
1712 
1713 	if (!dev->irq[1])
1714 		host->singleirq = true;
1715 	else {
1716 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1717 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1718 		if (ret)
1719 			goto clk_disable;
1720 	}
1721 
1722 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1723 
1724 	amba_set_drvdata(dev, mmc);
1725 
1726 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1727 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1728 		 amba_rev(dev), (unsigned long long)dev->res.start,
1729 		 dev->irq[0], dev->irq[1]);
1730 
1731 	mmci_dma_setup(host);
1732 
1733 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1734 	pm_runtime_use_autosuspend(&dev->dev);
1735 	pm_runtime_put(&dev->dev);
1736 
1737 	mmc_add_host(mmc);
1738 
1739 	return 0;
1740 
1741  clk_disable:
1742 	clk_disable_unprepare(host->clk);
1743  host_free:
1744 	mmc_free_host(mmc);
1745 	return ret;
1746 }
1747 
1748 static int mmci_remove(struct amba_device *dev)
1749 {
1750 	struct mmc_host *mmc = amba_get_drvdata(dev);
1751 
1752 	if (mmc) {
1753 		struct mmci_host *host = mmc_priv(mmc);
1754 
1755 		/*
1756 		 * Undo pm_runtime_put() in probe.  We use the _sync
1757 		 * version here so that we can access the primecell.
1758 		 */
1759 		pm_runtime_get_sync(&dev->dev);
1760 
1761 		mmc_remove_host(mmc);
1762 
1763 		writel(0, host->base + MMCIMASK0);
1764 		writel(0, host->base + MMCIMASK1);
1765 
1766 		writel(0, host->base + MMCICOMMAND);
1767 		writel(0, host->base + MMCIDATACTRL);
1768 
1769 		mmci_dma_release(host);
1770 		clk_disable_unprepare(host->clk);
1771 		mmc_free_host(mmc);
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 #ifdef CONFIG_PM
1778 static void mmci_save(struct mmci_host *host)
1779 {
1780 	unsigned long flags;
1781 
1782 	spin_lock_irqsave(&host->lock, flags);
1783 
1784 	writel(0, host->base + MMCIMASK0);
1785 	if (host->variant->pwrreg_nopower) {
1786 		writel(0, host->base + MMCIDATACTRL);
1787 		writel(0, host->base + MMCIPOWER);
1788 		writel(0, host->base + MMCICLOCK);
1789 	}
1790 	mmci_reg_delay(host);
1791 
1792 	spin_unlock_irqrestore(&host->lock, flags);
1793 }
1794 
1795 static void mmci_restore(struct mmci_host *host)
1796 {
1797 	unsigned long flags;
1798 
1799 	spin_lock_irqsave(&host->lock, flags);
1800 
1801 	if (host->variant->pwrreg_nopower) {
1802 		writel(host->clk_reg, host->base + MMCICLOCK);
1803 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1804 		writel(host->pwr_reg, host->base + MMCIPOWER);
1805 	}
1806 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1807 	mmci_reg_delay(host);
1808 
1809 	spin_unlock_irqrestore(&host->lock, flags);
1810 }
1811 
1812 static int mmci_runtime_suspend(struct device *dev)
1813 {
1814 	struct amba_device *adev = to_amba_device(dev);
1815 	struct mmc_host *mmc = amba_get_drvdata(adev);
1816 
1817 	if (mmc) {
1818 		struct mmci_host *host = mmc_priv(mmc);
1819 		pinctrl_pm_select_sleep_state(dev);
1820 		mmci_save(host);
1821 		clk_disable_unprepare(host->clk);
1822 	}
1823 
1824 	return 0;
1825 }
1826 
1827 static int mmci_runtime_resume(struct device *dev)
1828 {
1829 	struct amba_device *adev = to_amba_device(dev);
1830 	struct mmc_host *mmc = amba_get_drvdata(adev);
1831 
1832 	if (mmc) {
1833 		struct mmci_host *host = mmc_priv(mmc);
1834 		clk_prepare_enable(host->clk);
1835 		mmci_restore(host);
1836 		pinctrl_pm_select_default_state(dev);
1837 	}
1838 
1839 	return 0;
1840 }
1841 #endif
1842 
1843 static const struct dev_pm_ops mmci_dev_pm_ops = {
1844 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1845 				pm_runtime_force_resume)
1846 	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1847 };
1848 
1849 static struct amba_id mmci_ids[] = {
1850 	{
1851 		.id	= 0x00041180,
1852 		.mask	= 0xff0fffff,
1853 		.data	= &variant_arm,
1854 	},
1855 	{
1856 		.id	= 0x01041180,
1857 		.mask	= 0xff0fffff,
1858 		.data	= &variant_arm_extended_fifo,
1859 	},
1860 	{
1861 		.id	= 0x02041180,
1862 		.mask	= 0xff0fffff,
1863 		.data	= &variant_arm_extended_fifo_hwfc,
1864 	},
1865 	{
1866 		.id	= 0x00041181,
1867 		.mask	= 0x000fffff,
1868 		.data	= &variant_arm,
1869 	},
1870 	/* ST Micro variants */
1871 	{
1872 		.id     = 0x00180180,
1873 		.mask   = 0x00ffffff,
1874 		.data	= &variant_u300,
1875 	},
1876 	{
1877 		.id     = 0x10180180,
1878 		.mask   = 0xf0ffffff,
1879 		.data	= &variant_nomadik,
1880 	},
1881 	{
1882 		.id     = 0x00280180,
1883 		.mask   = 0x00ffffff,
1884 		.data	= &variant_u300,
1885 	},
1886 	{
1887 		.id     = 0x00480180,
1888 		.mask   = 0xf0ffffff,
1889 		.data	= &variant_ux500,
1890 	},
1891 	{
1892 		.id     = 0x10480180,
1893 		.mask   = 0xf0ffffff,
1894 		.data	= &variant_ux500v2,
1895 	},
1896 	/* Qualcomm variants */
1897 	{
1898 		.id     = 0x00051180,
1899 		.mask	= 0x000fffff,
1900 		.data	= &variant_qcom,
1901 	},
1902 	{ 0, 0 },
1903 };
1904 
1905 MODULE_DEVICE_TABLE(amba, mmci_ids);
1906 
1907 static struct amba_driver mmci_driver = {
1908 	.drv		= {
1909 		.name	= DRIVER_NAME,
1910 		.pm	= &mmci_dev_pm_ops,
1911 	},
1912 	.probe		= mmci_probe,
1913 	.remove		= mmci_remove,
1914 	.id_table	= mmci_ids,
1915 };
1916 
1917 module_amba_driver(mmci_driver);
1918 
1919 module_param(fmax, uint, 0444);
1920 
1921 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1922 MODULE_LICENSE("GPL");
1923