xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 5c73cc4b6c83e88863a5de869cc5df3b913aef4a)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44 
45 #include "mmci.h"
46 #include "mmci_qcom_dml.h"
47 
48 #define DRIVER_NAME "mmci-pl18x"
49 
50 static unsigned int fmax = 515633;
51 
52 /**
53  * struct variant_data - MMCI variant-specific quirks
54  * @clkreg: default value for MCICLOCK register
55  * @clkreg_enable: enable value for MMCICLOCK register
56  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58  * @datalength_bits: number of bits in the MMCIDATALENGTH register
59  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60  *	      is asserted (likewise for RX)
61  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62  *		  is asserted (likewise for RX)
63  * @data_cmd_enable: enable value for data commands.
64  * @st_sdio: enable ST specific SDIO logic
65  * @st_clkdiv: true if using a ST-specific clock divider algorithm
66  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69  *		     register
70  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71  * @pwrreg_powerup: power up value for MMCIPOWER register
72  * @f_max: maximum clk frequency supported by the controller.
73  * @signal_direction: input/out direction of bus signals can be indicated
74  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75  * @busy_detect: true if busy detection on dat0 is supported
76  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77  * @explicit_mclk_control: enable explicit mclk control in driver.
78  * @qcom_fifo: enables qcom specific fifo pio read logic.
79  * @qcom_dml: enables qcom specific dma glue for dma transfers.
80  * @reversed_irq_handling: handle data irq before cmd irq.
81  */
82 struct variant_data {
83 	unsigned int		clkreg;
84 	unsigned int		clkreg_enable;
85 	unsigned int		clkreg_8bit_bus_enable;
86 	unsigned int		clkreg_neg_edge_enable;
87 	unsigned int		datalength_bits;
88 	unsigned int		fifosize;
89 	unsigned int		fifohalfsize;
90 	unsigned int		data_cmd_enable;
91 	unsigned int		datactrl_mask_ddrmode;
92 	unsigned int		datactrl_mask_sdio;
93 	bool			st_sdio;
94 	bool			st_clkdiv;
95 	bool			blksz_datactrl16;
96 	bool			blksz_datactrl4;
97 	u32			pwrreg_powerup;
98 	u32			f_max;
99 	bool			signal_direction;
100 	bool			pwrreg_clkgate;
101 	bool			busy_detect;
102 	bool			pwrreg_nopower;
103 	bool			explicit_mclk_control;
104 	bool			qcom_fifo;
105 	bool			qcom_dml;
106 	bool			reversed_irq_handling;
107 };
108 
109 static struct variant_data variant_arm = {
110 	.fifosize		= 16 * 4,
111 	.fifohalfsize		= 8 * 4,
112 	.datalength_bits	= 16,
113 	.pwrreg_powerup		= MCI_PWR_UP,
114 	.f_max			= 100000000,
115 	.reversed_irq_handling	= true,
116 };
117 
118 static struct variant_data variant_arm_extended_fifo = {
119 	.fifosize		= 128 * 4,
120 	.fifohalfsize		= 64 * 4,
121 	.datalength_bits	= 16,
122 	.pwrreg_powerup		= MCI_PWR_UP,
123 	.f_max			= 100000000,
124 };
125 
126 static struct variant_data variant_arm_extended_fifo_hwfc = {
127 	.fifosize		= 128 * 4,
128 	.fifohalfsize		= 64 * 4,
129 	.clkreg_enable		= MCI_ARM_HWFCEN,
130 	.datalength_bits	= 16,
131 	.pwrreg_powerup		= MCI_PWR_UP,
132 	.f_max			= 100000000,
133 };
134 
135 static struct variant_data variant_u300 = {
136 	.fifosize		= 16 * 4,
137 	.fifohalfsize		= 8 * 4,
138 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
139 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 	.datalength_bits	= 16,
141 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
142 	.st_sdio			= true,
143 	.pwrreg_powerup		= MCI_PWR_ON,
144 	.f_max			= 100000000,
145 	.signal_direction	= true,
146 	.pwrreg_clkgate		= true,
147 	.pwrreg_nopower		= true,
148 };
149 
150 static struct variant_data variant_nomadik = {
151 	.fifosize		= 16 * 4,
152 	.fifohalfsize		= 8 * 4,
153 	.clkreg			= MCI_CLK_ENABLE,
154 	.datalength_bits	= 24,
155 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
156 	.st_sdio		= true,
157 	.st_clkdiv		= true,
158 	.pwrreg_powerup		= MCI_PWR_ON,
159 	.f_max			= 100000000,
160 	.signal_direction	= true,
161 	.pwrreg_clkgate		= true,
162 	.pwrreg_nopower		= true,
163 };
164 
165 static struct variant_data variant_ux500 = {
166 	.fifosize		= 30 * 4,
167 	.fifohalfsize		= 8 * 4,
168 	.clkreg			= MCI_CLK_ENABLE,
169 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
170 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
172 	.datalength_bits	= 24,
173 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
174 	.st_sdio		= true,
175 	.st_clkdiv		= true,
176 	.pwrreg_powerup		= MCI_PWR_ON,
177 	.f_max			= 100000000,
178 	.signal_direction	= true,
179 	.pwrreg_clkgate		= true,
180 	.busy_detect		= true,
181 	.pwrreg_nopower		= true,
182 };
183 
184 static struct variant_data variant_ux500v2 = {
185 	.fifosize		= 30 * 4,
186 	.fifohalfsize		= 8 * 4,
187 	.clkreg			= MCI_CLK_ENABLE,
188 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
189 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
191 	.datactrl_mask_ddrmode	= MCI_ST_DPSM_DDRMODE,
192 	.datalength_bits	= 24,
193 	.datactrl_mask_sdio	= MCI_ST_DPSM_SDIOEN,
194 	.st_sdio		= true,
195 	.st_clkdiv		= true,
196 	.blksz_datactrl16	= true,
197 	.pwrreg_powerup		= MCI_PWR_ON,
198 	.f_max			= 100000000,
199 	.signal_direction	= true,
200 	.pwrreg_clkgate		= true,
201 	.busy_detect		= true,
202 	.pwrreg_nopower		= true,
203 };
204 
205 static struct variant_data variant_qcom = {
206 	.fifosize		= 16 * 4,
207 	.fifohalfsize		= 8 * 4,
208 	.clkreg			= MCI_CLK_ENABLE,
209 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
210 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 	.data_cmd_enable	= MCI_QCOM_CSPM_DATCMD,
214 	.blksz_datactrl4	= true,
215 	.datalength_bits	= 24,
216 	.pwrreg_powerup		= MCI_PWR_UP,
217 	.f_max			= 208000000,
218 	.explicit_mclk_control	= true,
219 	.qcom_fifo		= true,
220 	.qcom_dml		= true,
221 };
222 
223 static int mmci_card_busy(struct mmc_host *mmc)
224 {
225 	struct mmci_host *host = mmc_priv(mmc);
226 	unsigned long flags;
227 	int busy = 0;
228 
229 	pm_runtime_get_sync(mmc_dev(mmc));
230 
231 	spin_lock_irqsave(&host->lock, flags);
232 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
233 		busy = 1;
234 	spin_unlock_irqrestore(&host->lock, flags);
235 
236 	pm_runtime_mark_last_busy(mmc_dev(mmc));
237 	pm_runtime_put_autosuspend(mmc_dev(mmc));
238 
239 	return busy;
240 }
241 
242 /*
243  * Validate mmc prerequisites
244  */
245 static int mmci_validate_data(struct mmci_host *host,
246 			      struct mmc_data *data)
247 {
248 	if (!data)
249 		return 0;
250 
251 	if (!is_power_of_2(data->blksz)) {
252 		dev_err(mmc_dev(host->mmc),
253 			"unsupported block size (%d bytes)\n", data->blksz);
254 		return -EINVAL;
255 	}
256 
257 	return 0;
258 }
259 
260 static void mmci_reg_delay(struct mmci_host *host)
261 {
262 	/*
263 	 * According to the spec, at least three feedback clock cycles
264 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 	 * Worst delay time during card init is at 100 kHz => 30 us.
267 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
268 	 */
269 	if (host->cclk < 25000000)
270 		udelay(30);
271 	else
272 		ndelay(120);
273 }
274 
275 /*
276  * This must be called with host->lock held
277  */
278 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279 {
280 	if (host->clk_reg != clk) {
281 		host->clk_reg = clk;
282 		writel(clk, host->base + MMCICLOCK);
283 	}
284 }
285 
286 /*
287  * This must be called with host->lock held
288  */
289 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290 {
291 	if (host->pwr_reg != pwr) {
292 		host->pwr_reg = pwr;
293 		writel(pwr, host->base + MMCIPOWER);
294 	}
295 }
296 
297 /*
298  * This must be called with host->lock held
299  */
300 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301 {
302 	/* Keep ST Micro busy mode if enabled */
303 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
304 
305 	if (host->datactrl_reg != datactrl) {
306 		host->datactrl_reg = datactrl;
307 		writel(datactrl, host->base + MMCIDATACTRL);
308 	}
309 }
310 
311 /*
312  * This must be called with host->lock held
313  */
314 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315 {
316 	struct variant_data *variant = host->variant;
317 	u32 clk = variant->clkreg;
318 
319 	/* Make sure cclk reflects the current calculated clock */
320 	host->cclk = 0;
321 
322 	if (desired) {
323 		if (variant->explicit_mclk_control) {
324 			host->cclk = host->mclk;
325 		} else if (desired >= host->mclk) {
326 			clk = MCI_CLK_BYPASS;
327 			if (variant->st_clkdiv)
328 				clk |= MCI_ST_UX500_NEG_EDGE;
329 			host->cclk = host->mclk;
330 		} else if (variant->st_clkdiv) {
331 			/*
332 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 			 * => clkdiv = (mclk / f) - 2
334 			 * Round the divider up so we don't exceed the max
335 			 * frequency
336 			 */
337 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338 			if (clk >= 256)
339 				clk = 255;
340 			host->cclk = host->mclk / (clk + 2);
341 		} else {
342 			/*
343 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 			 * => clkdiv = mclk / (2 * f) - 1
345 			 */
346 			clk = host->mclk / (2 * desired) - 1;
347 			if (clk >= 256)
348 				clk = 255;
349 			host->cclk = host->mclk / (2 * (clk + 1));
350 		}
351 
352 		clk |= variant->clkreg_enable;
353 		clk |= MCI_CLK_ENABLE;
354 		/* This hasn't proven to be worthwhile */
355 		/* clk |= MCI_CLK_PWRSAVE; */
356 	}
357 
358 	/* Set actual clock for debug */
359 	host->mmc->actual_clock = host->cclk;
360 
361 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362 		clk |= MCI_4BIT_BUS;
363 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364 		clk |= variant->clkreg_8bit_bus_enable;
365 
366 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368 		clk |= variant->clkreg_neg_edge_enable;
369 
370 	mmci_write_clkreg(host, clk);
371 }
372 
373 static void
374 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
375 {
376 	writel(0, host->base + MMCICOMMAND);
377 
378 	BUG_ON(host->data);
379 
380 	host->mrq = NULL;
381 	host->cmd = NULL;
382 
383 	mmc_request_done(host->mmc, mrq);
384 
385 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
386 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
387 }
388 
389 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
390 {
391 	void __iomem *base = host->base;
392 
393 	if (host->singleirq) {
394 		unsigned int mask0 = readl(base + MMCIMASK0);
395 
396 		mask0 &= ~MCI_IRQ1MASK;
397 		mask0 |= mask;
398 
399 		writel(mask0, base + MMCIMASK0);
400 	}
401 
402 	writel(mask, base + MMCIMASK1);
403 }
404 
405 static void mmci_stop_data(struct mmci_host *host)
406 {
407 	mmci_write_datactrlreg(host, 0);
408 	mmci_set_mask1(host, 0);
409 	host->data = NULL;
410 }
411 
412 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
413 {
414 	unsigned int flags = SG_MITER_ATOMIC;
415 
416 	if (data->flags & MMC_DATA_READ)
417 		flags |= SG_MITER_TO_SG;
418 	else
419 		flags |= SG_MITER_FROM_SG;
420 
421 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
422 }
423 
424 /*
425  * All the DMA operation mode stuff goes inside this ifdef.
426  * This assumes that you have a generic DMA device interface,
427  * no custom DMA interfaces are supported.
428  */
429 #ifdef CONFIG_DMA_ENGINE
430 static void mmci_dma_setup(struct mmci_host *host)
431 {
432 	const char *rxname, *txname;
433 	struct variant_data *variant = host->variant;
434 
435 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
436 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
437 
438 	/* initialize pre request cookie */
439 	host->next_data.cookie = 1;
440 
441 	/*
442 	 * If only an RX channel is specified, the driver will
443 	 * attempt to use it bidirectionally, however if it is
444 	 * is specified but cannot be located, DMA will be disabled.
445 	 */
446 	if (host->dma_rx_channel && !host->dma_tx_channel)
447 		host->dma_tx_channel = host->dma_rx_channel;
448 
449 	if (host->dma_rx_channel)
450 		rxname = dma_chan_name(host->dma_rx_channel);
451 	else
452 		rxname = "none";
453 
454 	if (host->dma_tx_channel)
455 		txname = dma_chan_name(host->dma_tx_channel);
456 	else
457 		txname = "none";
458 
459 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
460 		 rxname, txname);
461 
462 	/*
463 	 * Limit the maximum segment size in any SG entry according to
464 	 * the parameters of the DMA engine device.
465 	 */
466 	if (host->dma_tx_channel) {
467 		struct device *dev = host->dma_tx_channel->device->dev;
468 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
469 
470 		if (max_seg_size < host->mmc->max_seg_size)
471 			host->mmc->max_seg_size = max_seg_size;
472 	}
473 	if (host->dma_rx_channel) {
474 		struct device *dev = host->dma_rx_channel->device->dev;
475 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
476 
477 		if (max_seg_size < host->mmc->max_seg_size)
478 			host->mmc->max_seg_size = max_seg_size;
479 	}
480 
481 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
482 		if (dml_hw_init(host, host->mmc->parent->of_node))
483 			variant->qcom_dml = false;
484 }
485 
486 /*
487  * This is used in or so inline it
488  * so it can be discarded.
489  */
490 static inline void mmci_dma_release(struct mmci_host *host)
491 {
492 	if (host->dma_rx_channel)
493 		dma_release_channel(host->dma_rx_channel);
494 	if (host->dma_tx_channel)
495 		dma_release_channel(host->dma_tx_channel);
496 	host->dma_rx_channel = host->dma_tx_channel = NULL;
497 }
498 
499 static void mmci_dma_data_error(struct mmci_host *host)
500 {
501 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
502 	dmaengine_terminate_all(host->dma_current);
503 	host->dma_current = NULL;
504 	host->dma_desc_current = NULL;
505 	host->data->host_cookie = 0;
506 }
507 
508 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
509 {
510 	struct dma_chan *chan;
511 	enum dma_data_direction dir;
512 
513 	if (data->flags & MMC_DATA_READ) {
514 		dir = DMA_FROM_DEVICE;
515 		chan = host->dma_rx_channel;
516 	} else {
517 		dir = DMA_TO_DEVICE;
518 		chan = host->dma_tx_channel;
519 	}
520 
521 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
522 }
523 
524 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
525 {
526 	u32 status;
527 	int i;
528 
529 	/* Wait up to 1ms for the DMA to complete */
530 	for (i = 0; ; i++) {
531 		status = readl(host->base + MMCISTATUS);
532 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
533 			break;
534 		udelay(10);
535 	}
536 
537 	/*
538 	 * Check to see whether we still have some data left in the FIFO -
539 	 * this catches DMA controllers which are unable to monitor the
540 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
541 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
542 	 */
543 	if (status & MCI_RXDATAAVLBLMASK) {
544 		mmci_dma_data_error(host);
545 		if (!data->error)
546 			data->error = -EIO;
547 	}
548 
549 	if (!data->host_cookie)
550 		mmci_dma_unmap(host, data);
551 
552 	/*
553 	 * Use of DMA with scatter-gather is impossible.
554 	 * Give up with DMA and switch back to PIO mode.
555 	 */
556 	if (status & MCI_RXDATAAVLBLMASK) {
557 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
558 		mmci_dma_release(host);
559 	}
560 
561 	host->dma_current = NULL;
562 	host->dma_desc_current = NULL;
563 }
564 
565 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
566 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
567 				struct dma_chan **dma_chan,
568 				struct dma_async_tx_descriptor **dma_desc)
569 {
570 	struct variant_data *variant = host->variant;
571 	struct dma_slave_config conf = {
572 		.src_addr = host->phybase + MMCIFIFO,
573 		.dst_addr = host->phybase + MMCIFIFO,
574 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
575 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
576 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
577 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
578 		.device_fc = false,
579 	};
580 	struct dma_chan *chan;
581 	struct dma_device *device;
582 	struct dma_async_tx_descriptor *desc;
583 	enum dma_data_direction buffer_dirn;
584 	int nr_sg;
585 	unsigned long flags = DMA_CTRL_ACK;
586 
587 	if (data->flags & MMC_DATA_READ) {
588 		conf.direction = DMA_DEV_TO_MEM;
589 		buffer_dirn = DMA_FROM_DEVICE;
590 		chan = host->dma_rx_channel;
591 	} else {
592 		conf.direction = DMA_MEM_TO_DEV;
593 		buffer_dirn = DMA_TO_DEVICE;
594 		chan = host->dma_tx_channel;
595 	}
596 
597 	/* If there's no DMA channel, fall back to PIO */
598 	if (!chan)
599 		return -EINVAL;
600 
601 	/* If less than or equal to the fifo size, don't bother with DMA */
602 	if (data->blksz * data->blocks <= variant->fifosize)
603 		return -EINVAL;
604 
605 	device = chan->device;
606 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
607 	if (nr_sg == 0)
608 		return -EINVAL;
609 
610 	if (host->variant->qcom_dml)
611 		flags |= DMA_PREP_INTERRUPT;
612 
613 	dmaengine_slave_config(chan, &conf);
614 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
615 					    conf.direction, flags);
616 	if (!desc)
617 		goto unmap_exit;
618 
619 	*dma_chan = chan;
620 	*dma_desc = desc;
621 
622 	return 0;
623 
624  unmap_exit:
625 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
626 	return -ENOMEM;
627 }
628 
629 static inline int mmci_dma_prep_data(struct mmci_host *host,
630 				     struct mmc_data *data)
631 {
632 	/* Check if next job is already prepared. */
633 	if (host->dma_current && host->dma_desc_current)
634 		return 0;
635 
636 	/* No job were prepared thus do it now. */
637 	return __mmci_dma_prep_data(host, data, &host->dma_current,
638 				    &host->dma_desc_current);
639 }
640 
641 static inline int mmci_dma_prep_next(struct mmci_host *host,
642 				     struct mmc_data *data)
643 {
644 	struct mmci_host_next *nd = &host->next_data;
645 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
646 }
647 
648 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
649 {
650 	int ret;
651 	struct mmc_data *data = host->data;
652 
653 	ret = mmci_dma_prep_data(host, host->data);
654 	if (ret)
655 		return ret;
656 
657 	/* Okay, go for it. */
658 	dev_vdbg(mmc_dev(host->mmc),
659 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
660 		 data->sg_len, data->blksz, data->blocks, data->flags);
661 	dmaengine_submit(host->dma_desc_current);
662 	dma_async_issue_pending(host->dma_current);
663 
664 	if (host->variant->qcom_dml)
665 		dml_start_xfer(host, data);
666 
667 	datactrl |= MCI_DPSM_DMAENABLE;
668 
669 	/* Trigger the DMA transfer */
670 	mmci_write_datactrlreg(host, datactrl);
671 
672 	/*
673 	 * Let the MMCI say when the data is ended and it's time
674 	 * to fire next DMA request. When that happens, MMCI will
675 	 * call mmci_data_end()
676 	 */
677 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
678 	       host->base + MMCIMASK0);
679 	return 0;
680 }
681 
682 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
683 {
684 	struct mmci_host_next *next = &host->next_data;
685 
686 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
687 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
688 
689 	host->dma_desc_current = next->dma_desc;
690 	host->dma_current = next->dma_chan;
691 	next->dma_desc = NULL;
692 	next->dma_chan = NULL;
693 }
694 
695 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
696 			     bool is_first_req)
697 {
698 	struct mmci_host *host = mmc_priv(mmc);
699 	struct mmc_data *data = mrq->data;
700 	struct mmci_host_next *nd = &host->next_data;
701 
702 	if (!data)
703 		return;
704 
705 	BUG_ON(data->host_cookie);
706 
707 	if (mmci_validate_data(host, data))
708 		return;
709 
710 	if (!mmci_dma_prep_next(host, data))
711 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
712 }
713 
714 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
715 			      int err)
716 {
717 	struct mmci_host *host = mmc_priv(mmc);
718 	struct mmc_data *data = mrq->data;
719 
720 	if (!data || !data->host_cookie)
721 		return;
722 
723 	mmci_dma_unmap(host, data);
724 
725 	if (err) {
726 		struct mmci_host_next *next = &host->next_data;
727 		struct dma_chan *chan;
728 		if (data->flags & MMC_DATA_READ)
729 			chan = host->dma_rx_channel;
730 		else
731 			chan = host->dma_tx_channel;
732 		dmaengine_terminate_all(chan);
733 
734 		if (host->dma_desc_current == next->dma_desc)
735 			host->dma_desc_current = NULL;
736 
737 		if (host->dma_current == next->dma_chan)
738 			host->dma_current = NULL;
739 
740 		next->dma_desc = NULL;
741 		next->dma_chan = NULL;
742 		data->host_cookie = 0;
743 	}
744 }
745 
746 #else
747 /* Blank functions if the DMA engine is not available */
748 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
749 {
750 }
751 static inline void mmci_dma_setup(struct mmci_host *host)
752 {
753 }
754 
755 static inline void mmci_dma_release(struct mmci_host *host)
756 {
757 }
758 
759 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
760 {
761 }
762 
763 static inline void mmci_dma_finalize(struct mmci_host *host,
764 				     struct mmc_data *data)
765 {
766 }
767 
768 static inline void mmci_dma_data_error(struct mmci_host *host)
769 {
770 }
771 
772 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
773 {
774 	return -ENOSYS;
775 }
776 
777 #define mmci_pre_request NULL
778 #define mmci_post_request NULL
779 
780 #endif
781 
782 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
783 {
784 	struct variant_data *variant = host->variant;
785 	unsigned int datactrl, timeout, irqmask;
786 	unsigned long long clks;
787 	void __iomem *base;
788 	int blksz_bits;
789 
790 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
791 		data->blksz, data->blocks, data->flags);
792 
793 	host->data = data;
794 	host->size = data->blksz * data->blocks;
795 	data->bytes_xfered = 0;
796 
797 	clks = (unsigned long long)data->timeout_ns * host->cclk;
798 	do_div(clks, NSEC_PER_SEC);
799 
800 	timeout = data->timeout_clks + (unsigned int)clks;
801 
802 	base = host->base;
803 	writel(timeout, base + MMCIDATATIMER);
804 	writel(host->size, base + MMCIDATALENGTH);
805 
806 	blksz_bits = ffs(data->blksz) - 1;
807 	BUG_ON(1 << blksz_bits != data->blksz);
808 
809 	if (variant->blksz_datactrl16)
810 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
811 	else if (variant->blksz_datactrl4)
812 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
813 	else
814 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
815 
816 	if (data->flags & MMC_DATA_READ)
817 		datactrl |= MCI_DPSM_DIRECTION;
818 
819 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
820 		u32 clk;
821 
822 		datactrl |= variant->datactrl_mask_sdio;
823 
824 		/*
825 		 * The ST Micro variant for SDIO small write transfers
826 		 * needs to have clock H/W flow control disabled,
827 		 * otherwise the transfer will not start. The threshold
828 		 * depends on the rate of MCLK.
829 		 */
830 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
831 		    (host->size < 8 ||
832 		     (host->size <= 8 && host->mclk > 50000000)))
833 			clk = host->clk_reg & ~variant->clkreg_enable;
834 		else
835 			clk = host->clk_reg | variant->clkreg_enable;
836 
837 		mmci_write_clkreg(host, clk);
838 	}
839 
840 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
841 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
842 		datactrl |= variant->datactrl_mask_ddrmode;
843 
844 	/*
845 	 * Attempt to use DMA operation mode, if this
846 	 * should fail, fall back to PIO mode
847 	 */
848 	if (!mmci_dma_start_data(host, datactrl))
849 		return;
850 
851 	/* IRQ mode, map the SG list for CPU reading/writing */
852 	mmci_init_sg(host, data);
853 
854 	if (data->flags & MMC_DATA_READ) {
855 		irqmask = MCI_RXFIFOHALFFULLMASK;
856 
857 		/*
858 		 * If we have less than the fifo 'half-full' threshold to
859 		 * transfer, trigger a PIO interrupt as soon as any data
860 		 * is available.
861 		 */
862 		if (host->size < variant->fifohalfsize)
863 			irqmask |= MCI_RXDATAAVLBLMASK;
864 	} else {
865 		/*
866 		 * We don't actually need to include "FIFO empty" here
867 		 * since its implicit in "FIFO half empty".
868 		 */
869 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
870 	}
871 
872 	mmci_write_datactrlreg(host, datactrl);
873 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
874 	mmci_set_mask1(host, irqmask);
875 }
876 
877 static void
878 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
879 {
880 	void __iomem *base = host->base;
881 
882 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
883 	    cmd->opcode, cmd->arg, cmd->flags);
884 
885 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
886 		writel(0, base + MMCICOMMAND);
887 		mmci_reg_delay(host);
888 	}
889 
890 	c |= cmd->opcode | MCI_CPSM_ENABLE;
891 	if (cmd->flags & MMC_RSP_PRESENT) {
892 		if (cmd->flags & MMC_RSP_136)
893 			c |= MCI_CPSM_LONGRSP;
894 		c |= MCI_CPSM_RESPONSE;
895 	}
896 	if (/*interrupt*/0)
897 		c |= MCI_CPSM_INTERRUPT;
898 
899 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
900 		c |= host->variant->data_cmd_enable;
901 
902 	host->cmd = cmd;
903 
904 	writel(cmd->arg, base + MMCIARGUMENT);
905 	writel(c, base + MMCICOMMAND);
906 }
907 
908 static void
909 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
910 	      unsigned int status)
911 {
912 	/* Make sure we have data to handle */
913 	if (!data)
914 		return;
915 
916 	/* First check for errors */
917 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
918 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
919 		u32 remain, success;
920 
921 		/* Terminate the DMA transfer */
922 		if (dma_inprogress(host)) {
923 			mmci_dma_data_error(host);
924 			mmci_dma_unmap(host, data);
925 		}
926 
927 		/*
928 		 * Calculate how far we are into the transfer.  Note that
929 		 * the data counter gives the number of bytes transferred
930 		 * on the MMC bus, not on the host side.  On reads, this
931 		 * can be as much as a FIFO-worth of data ahead.  This
932 		 * matters for FIFO overruns only.
933 		 */
934 		remain = readl(host->base + MMCIDATACNT);
935 		success = data->blksz * data->blocks - remain;
936 
937 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
938 			status, success);
939 		if (status & MCI_DATACRCFAIL) {
940 			/* Last block was not successful */
941 			success -= 1;
942 			data->error = -EILSEQ;
943 		} else if (status & MCI_DATATIMEOUT) {
944 			data->error = -ETIMEDOUT;
945 		} else if (status & MCI_STARTBITERR) {
946 			data->error = -ECOMM;
947 		} else if (status & MCI_TXUNDERRUN) {
948 			data->error = -EIO;
949 		} else if (status & MCI_RXOVERRUN) {
950 			if (success > host->variant->fifosize)
951 				success -= host->variant->fifosize;
952 			else
953 				success = 0;
954 			data->error = -EIO;
955 		}
956 		data->bytes_xfered = round_down(success, data->blksz);
957 	}
958 
959 	if (status & MCI_DATABLOCKEND)
960 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
961 
962 	if (status & MCI_DATAEND || data->error) {
963 		if (dma_inprogress(host))
964 			mmci_dma_finalize(host, data);
965 		mmci_stop_data(host);
966 
967 		if (!data->error)
968 			/* The error clause is handled above, success! */
969 			data->bytes_xfered = data->blksz * data->blocks;
970 
971 		if (!data->stop || host->mrq->sbc) {
972 			mmci_request_end(host, data->mrq);
973 		} else {
974 			mmci_start_command(host, data->stop, 0);
975 		}
976 	}
977 }
978 
979 static void
980 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
981 	     unsigned int status)
982 {
983 	void __iomem *base = host->base;
984 	bool sbc, busy_resp;
985 
986 	if (!cmd)
987 		return;
988 
989 	sbc = (cmd == host->mrq->sbc);
990 	busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
991 
992 	if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
993 		MCI_CMDSENT|MCI_CMDRESPEND)))
994 		return;
995 
996 	/* Check if we need to wait for busy completion. */
997 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
998 		return;
999 
1000 	/* Enable busy completion if needed and supported. */
1001 	if (!host->busy_status && busy_resp &&
1002 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1003 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1004 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1005 			base + MMCIMASK0);
1006 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1007 		return;
1008 	}
1009 
1010 	/* At busy completion, mask the IRQ and complete the request. */
1011 	if (host->busy_status) {
1012 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1013 			base + MMCIMASK0);
1014 		host->busy_status = 0;
1015 	}
1016 
1017 	host->cmd = NULL;
1018 
1019 	if (status & MCI_CMDTIMEOUT) {
1020 		cmd->error = -ETIMEDOUT;
1021 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1022 		cmd->error = -EILSEQ;
1023 	} else {
1024 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1025 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1026 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1027 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1028 	}
1029 
1030 	if ((!sbc && !cmd->data) || cmd->error) {
1031 		if (host->data) {
1032 			/* Terminate the DMA transfer */
1033 			if (dma_inprogress(host)) {
1034 				mmci_dma_data_error(host);
1035 				mmci_dma_unmap(host, host->data);
1036 			}
1037 			mmci_stop_data(host);
1038 		}
1039 		mmci_request_end(host, host->mrq);
1040 	} else if (sbc) {
1041 		mmci_start_command(host, host->mrq->cmd, 0);
1042 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1043 		mmci_start_data(host, cmd->data);
1044 	}
1045 }
1046 
1047 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1048 {
1049 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1050 }
1051 
1052 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1053 {
1054 	/*
1055 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1056 	 * from the fifo range should be used
1057 	 */
1058 	if (status & MCI_RXFIFOHALFFULL)
1059 		return host->variant->fifohalfsize;
1060 	else if (status & MCI_RXDATAAVLBL)
1061 		return 4;
1062 
1063 	return 0;
1064 }
1065 
1066 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1067 {
1068 	void __iomem *base = host->base;
1069 	char *ptr = buffer;
1070 	u32 status = readl(host->base + MMCISTATUS);
1071 	int host_remain = host->size;
1072 
1073 	do {
1074 		int count = host->get_rx_fifocnt(host, status, host_remain);
1075 
1076 		if (count > remain)
1077 			count = remain;
1078 
1079 		if (count <= 0)
1080 			break;
1081 
1082 		/*
1083 		 * SDIO especially may want to send something that is
1084 		 * not divisible by 4 (as opposed to card sectors
1085 		 * etc). Therefore make sure to always read the last bytes
1086 		 * while only doing full 32-bit reads towards the FIFO.
1087 		 */
1088 		if (unlikely(count & 0x3)) {
1089 			if (count < 4) {
1090 				unsigned char buf[4];
1091 				ioread32_rep(base + MMCIFIFO, buf, 1);
1092 				memcpy(ptr, buf, count);
1093 			} else {
1094 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1095 				count &= ~0x3;
1096 			}
1097 		} else {
1098 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1099 		}
1100 
1101 		ptr += count;
1102 		remain -= count;
1103 		host_remain -= count;
1104 
1105 		if (remain == 0)
1106 			break;
1107 
1108 		status = readl(base + MMCISTATUS);
1109 	} while (status & MCI_RXDATAAVLBL);
1110 
1111 	return ptr - buffer;
1112 }
1113 
1114 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1115 {
1116 	struct variant_data *variant = host->variant;
1117 	void __iomem *base = host->base;
1118 	char *ptr = buffer;
1119 
1120 	do {
1121 		unsigned int count, maxcnt;
1122 
1123 		maxcnt = status & MCI_TXFIFOEMPTY ?
1124 			 variant->fifosize : variant->fifohalfsize;
1125 		count = min(remain, maxcnt);
1126 
1127 		/*
1128 		 * SDIO especially may want to send something that is
1129 		 * not divisible by 4 (as opposed to card sectors
1130 		 * etc), and the FIFO only accept full 32-bit writes.
1131 		 * So compensate by adding +3 on the count, a single
1132 		 * byte become a 32bit write, 7 bytes will be two
1133 		 * 32bit writes etc.
1134 		 */
1135 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1136 
1137 		ptr += count;
1138 		remain -= count;
1139 
1140 		if (remain == 0)
1141 			break;
1142 
1143 		status = readl(base + MMCISTATUS);
1144 	} while (status & MCI_TXFIFOHALFEMPTY);
1145 
1146 	return ptr - buffer;
1147 }
1148 
1149 /*
1150  * PIO data transfer IRQ handler.
1151  */
1152 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1153 {
1154 	struct mmci_host *host = dev_id;
1155 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1156 	struct variant_data *variant = host->variant;
1157 	void __iomem *base = host->base;
1158 	unsigned long flags;
1159 	u32 status;
1160 
1161 	status = readl(base + MMCISTATUS);
1162 
1163 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1164 
1165 	local_irq_save(flags);
1166 
1167 	do {
1168 		unsigned int remain, len;
1169 		char *buffer;
1170 
1171 		/*
1172 		 * For write, we only need to test the half-empty flag
1173 		 * here - if the FIFO is completely empty, then by
1174 		 * definition it is more than half empty.
1175 		 *
1176 		 * For read, check for data available.
1177 		 */
1178 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1179 			break;
1180 
1181 		if (!sg_miter_next(sg_miter))
1182 			break;
1183 
1184 		buffer = sg_miter->addr;
1185 		remain = sg_miter->length;
1186 
1187 		len = 0;
1188 		if (status & MCI_RXACTIVE)
1189 			len = mmci_pio_read(host, buffer, remain);
1190 		if (status & MCI_TXACTIVE)
1191 			len = mmci_pio_write(host, buffer, remain, status);
1192 
1193 		sg_miter->consumed = len;
1194 
1195 		host->size -= len;
1196 		remain -= len;
1197 
1198 		if (remain)
1199 			break;
1200 
1201 		status = readl(base + MMCISTATUS);
1202 	} while (1);
1203 
1204 	sg_miter_stop(sg_miter);
1205 
1206 	local_irq_restore(flags);
1207 
1208 	/*
1209 	 * If we have less than the fifo 'half-full' threshold to transfer,
1210 	 * trigger a PIO interrupt as soon as any data is available.
1211 	 */
1212 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1213 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1214 
1215 	/*
1216 	 * If we run out of data, disable the data IRQs; this
1217 	 * prevents a race where the FIFO becomes empty before
1218 	 * the chip itself has disabled the data path, and
1219 	 * stops us racing with our data end IRQ.
1220 	 */
1221 	if (host->size == 0) {
1222 		mmci_set_mask1(host, 0);
1223 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1224 	}
1225 
1226 	return IRQ_HANDLED;
1227 }
1228 
1229 /*
1230  * Handle completion of command and data transfers.
1231  */
1232 static irqreturn_t mmci_irq(int irq, void *dev_id)
1233 {
1234 	struct mmci_host *host = dev_id;
1235 	u32 status;
1236 	int ret = 0;
1237 
1238 	spin_lock(&host->lock);
1239 
1240 	do {
1241 		status = readl(host->base + MMCISTATUS);
1242 
1243 		if (host->singleirq) {
1244 			if (status & readl(host->base + MMCIMASK1))
1245 				mmci_pio_irq(irq, dev_id);
1246 
1247 			status &= ~MCI_IRQ1MASK;
1248 		}
1249 
1250 		/*
1251 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1252 		 * enabled) since the HW seems to be triggering the IRQ on both
1253 		 * edges while monitoring DAT0 for busy completion.
1254 		 */
1255 		status &= readl(host->base + MMCIMASK0);
1256 		writel(status, host->base + MMCICLEAR);
1257 
1258 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1259 
1260 		if (host->variant->reversed_irq_handling) {
1261 			mmci_data_irq(host, host->data, status);
1262 			mmci_cmd_irq(host, host->cmd, status);
1263 		} else {
1264 			mmci_cmd_irq(host, host->cmd, status);
1265 			mmci_data_irq(host, host->data, status);
1266 		}
1267 
1268 		/* Don't poll for busy completion in irq context. */
1269 		if (host->busy_status)
1270 			status &= ~MCI_ST_CARDBUSY;
1271 
1272 		ret = 1;
1273 	} while (status);
1274 
1275 	spin_unlock(&host->lock);
1276 
1277 	return IRQ_RETVAL(ret);
1278 }
1279 
1280 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1281 {
1282 	struct mmci_host *host = mmc_priv(mmc);
1283 	unsigned long flags;
1284 
1285 	WARN_ON(host->mrq != NULL);
1286 
1287 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1288 	if (mrq->cmd->error) {
1289 		mmc_request_done(mmc, mrq);
1290 		return;
1291 	}
1292 
1293 	pm_runtime_get_sync(mmc_dev(mmc));
1294 
1295 	spin_lock_irqsave(&host->lock, flags);
1296 
1297 	host->mrq = mrq;
1298 
1299 	if (mrq->data)
1300 		mmci_get_next_data(host, mrq->data);
1301 
1302 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1303 		mmci_start_data(host, mrq->data);
1304 
1305 	if (mrq->sbc)
1306 		mmci_start_command(host, mrq->sbc, 0);
1307 	else
1308 		mmci_start_command(host, mrq->cmd, 0);
1309 
1310 	spin_unlock_irqrestore(&host->lock, flags);
1311 }
1312 
1313 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1314 {
1315 	struct mmci_host *host = mmc_priv(mmc);
1316 	struct variant_data *variant = host->variant;
1317 	u32 pwr = 0;
1318 	unsigned long flags;
1319 	int ret;
1320 
1321 	pm_runtime_get_sync(mmc_dev(mmc));
1322 
1323 	if (host->plat->ios_handler &&
1324 		host->plat->ios_handler(mmc_dev(mmc), ios))
1325 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1326 
1327 	switch (ios->power_mode) {
1328 	case MMC_POWER_OFF:
1329 		if (!IS_ERR(mmc->supply.vmmc))
1330 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1331 
1332 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1333 			regulator_disable(mmc->supply.vqmmc);
1334 			host->vqmmc_enabled = false;
1335 		}
1336 
1337 		break;
1338 	case MMC_POWER_UP:
1339 		if (!IS_ERR(mmc->supply.vmmc))
1340 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1341 
1342 		/*
1343 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1344 		 * and instead uses MCI_PWR_ON so apply whatever value is
1345 		 * configured in the variant data.
1346 		 */
1347 		pwr |= variant->pwrreg_powerup;
1348 
1349 		break;
1350 	case MMC_POWER_ON:
1351 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1352 			ret = regulator_enable(mmc->supply.vqmmc);
1353 			if (ret < 0)
1354 				dev_err(mmc_dev(mmc),
1355 					"failed to enable vqmmc regulator\n");
1356 			else
1357 				host->vqmmc_enabled = true;
1358 		}
1359 
1360 		pwr |= MCI_PWR_ON;
1361 		break;
1362 	}
1363 
1364 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1365 		/*
1366 		 * The ST Micro variant has some additional bits
1367 		 * indicating signal direction for the signals in
1368 		 * the SD/MMC bus and feedback-clock usage.
1369 		 */
1370 		pwr |= host->pwr_reg_add;
1371 
1372 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1373 			pwr &= ~MCI_ST_DATA74DIREN;
1374 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1375 			pwr &= (~MCI_ST_DATA74DIREN &
1376 				~MCI_ST_DATA31DIREN &
1377 				~MCI_ST_DATA2DIREN);
1378 	}
1379 
1380 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1381 		if (host->hw_designer != AMBA_VENDOR_ST)
1382 			pwr |= MCI_ROD;
1383 		else {
1384 			/*
1385 			 * The ST Micro variant use the ROD bit for something
1386 			 * else and only has OD (Open Drain).
1387 			 */
1388 			pwr |= MCI_OD;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1394 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1395 	 */
1396 	if (!ios->clock && variant->pwrreg_clkgate)
1397 		pwr &= ~MCI_PWR_ON;
1398 
1399 	if (host->variant->explicit_mclk_control &&
1400 	    ios->clock != host->clock_cache) {
1401 		ret = clk_set_rate(host->clk, ios->clock);
1402 		if (ret < 0)
1403 			dev_err(mmc_dev(host->mmc),
1404 				"Error setting clock rate (%d)\n", ret);
1405 		else
1406 			host->mclk = clk_get_rate(host->clk);
1407 	}
1408 	host->clock_cache = ios->clock;
1409 
1410 	spin_lock_irqsave(&host->lock, flags);
1411 
1412 	mmci_set_clkreg(host, ios->clock);
1413 	mmci_write_pwrreg(host, pwr);
1414 	mmci_reg_delay(host);
1415 
1416 	spin_unlock_irqrestore(&host->lock, flags);
1417 
1418 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1419 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1420 }
1421 
1422 static int mmci_get_cd(struct mmc_host *mmc)
1423 {
1424 	struct mmci_host *host = mmc_priv(mmc);
1425 	struct mmci_platform_data *plat = host->plat;
1426 	unsigned int status = mmc_gpio_get_cd(mmc);
1427 
1428 	if (status == -ENOSYS) {
1429 		if (!plat->status)
1430 			return 1; /* Assume always present */
1431 
1432 		status = plat->status(mmc_dev(host->mmc));
1433 	}
1434 	return status;
1435 }
1436 
1437 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1438 {
1439 	int ret = 0;
1440 
1441 	if (!IS_ERR(mmc->supply.vqmmc)) {
1442 
1443 		pm_runtime_get_sync(mmc_dev(mmc));
1444 
1445 		switch (ios->signal_voltage) {
1446 		case MMC_SIGNAL_VOLTAGE_330:
1447 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1448 						2700000, 3600000);
1449 			break;
1450 		case MMC_SIGNAL_VOLTAGE_180:
1451 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1452 						1700000, 1950000);
1453 			break;
1454 		case MMC_SIGNAL_VOLTAGE_120:
1455 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1456 						1100000, 1300000);
1457 			break;
1458 		}
1459 
1460 		if (ret)
1461 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1462 
1463 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1464 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 static struct mmc_host_ops mmci_ops = {
1471 	.request	= mmci_request,
1472 	.pre_req	= mmci_pre_request,
1473 	.post_req	= mmci_post_request,
1474 	.set_ios	= mmci_set_ios,
1475 	.get_ro		= mmc_gpio_get_ro,
1476 	.get_cd		= mmci_get_cd,
1477 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1478 };
1479 
1480 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1481 {
1482 	struct mmci_host *host = mmc_priv(mmc);
1483 	int ret = mmc_of_parse(mmc);
1484 
1485 	if (ret)
1486 		return ret;
1487 
1488 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1489 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1490 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1491 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1492 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1493 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1494 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1495 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1496 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1497 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1498 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1499 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1500 
1501 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1502 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1503 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1504 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1505 
1506 	return 0;
1507 }
1508 
1509 static int mmci_probe(struct amba_device *dev,
1510 	const struct amba_id *id)
1511 {
1512 	struct mmci_platform_data *plat = dev->dev.platform_data;
1513 	struct device_node *np = dev->dev.of_node;
1514 	struct variant_data *variant = id->data;
1515 	struct mmci_host *host;
1516 	struct mmc_host *mmc;
1517 	int ret;
1518 
1519 	/* Must have platform data or Device Tree. */
1520 	if (!plat && !np) {
1521 		dev_err(&dev->dev, "No plat data or DT found\n");
1522 		return -EINVAL;
1523 	}
1524 
1525 	if (!plat) {
1526 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1527 		if (!plat)
1528 			return -ENOMEM;
1529 	}
1530 
1531 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1532 	if (!mmc)
1533 		return -ENOMEM;
1534 
1535 	ret = mmci_of_parse(np, mmc);
1536 	if (ret)
1537 		goto host_free;
1538 
1539 	host = mmc_priv(mmc);
1540 	host->mmc = mmc;
1541 
1542 	host->hw_designer = amba_manf(dev);
1543 	host->hw_revision = amba_rev(dev);
1544 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1545 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1546 
1547 	host->clk = devm_clk_get(&dev->dev, NULL);
1548 	if (IS_ERR(host->clk)) {
1549 		ret = PTR_ERR(host->clk);
1550 		goto host_free;
1551 	}
1552 
1553 	ret = clk_prepare_enable(host->clk);
1554 	if (ret)
1555 		goto host_free;
1556 
1557 	if (variant->qcom_fifo)
1558 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1559 	else
1560 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1561 
1562 	host->plat = plat;
1563 	host->variant = variant;
1564 	host->mclk = clk_get_rate(host->clk);
1565 	/*
1566 	 * According to the spec, mclk is max 100 MHz,
1567 	 * so we try to adjust the clock down to this,
1568 	 * (if possible).
1569 	 */
1570 	if (host->mclk > variant->f_max) {
1571 		ret = clk_set_rate(host->clk, variant->f_max);
1572 		if (ret < 0)
1573 			goto clk_disable;
1574 		host->mclk = clk_get_rate(host->clk);
1575 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1576 			host->mclk);
1577 	}
1578 
1579 	host->phybase = dev->res.start;
1580 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1581 	if (IS_ERR(host->base)) {
1582 		ret = PTR_ERR(host->base);
1583 		goto clk_disable;
1584 	}
1585 
1586 	/*
1587 	 * The ARM and ST versions of the block have slightly different
1588 	 * clock divider equations which means that the minimum divider
1589 	 * differs too.
1590 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1591 	 */
1592 	if (variant->st_clkdiv)
1593 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1594 	else if (variant->explicit_mclk_control)
1595 		mmc->f_min = clk_round_rate(host->clk, 100000);
1596 	else
1597 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1598 	/*
1599 	 * If no maximum operating frequency is supplied, fall back to use
1600 	 * the module parameter, which has a (low) default value in case it
1601 	 * is not specified. Either value must not exceed the clock rate into
1602 	 * the block, of course.
1603 	 */
1604 	if (mmc->f_max)
1605 		mmc->f_max = variant->explicit_mclk_control ?
1606 				min(variant->f_max, mmc->f_max) :
1607 				min(host->mclk, mmc->f_max);
1608 	else
1609 		mmc->f_max = variant->explicit_mclk_control ?
1610 				fmax : min(host->mclk, fmax);
1611 
1612 
1613 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1614 
1615 	/* Get regulators and the supported OCR mask */
1616 	ret = mmc_regulator_get_supply(mmc);
1617 	if (ret == -EPROBE_DEFER)
1618 		goto clk_disable;
1619 
1620 	if (!mmc->ocr_avail)
1621 		mmc->ocr_avail = plat->ocr_mask;
1622 	else if (plat->ocr_mask)
1623 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1624 
1625 	/* DT takes precedence over platform data. */
1626 	if (!np) {
1627 		if (!plat->cd_invert)
1628 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1629 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1630 	}
1631 
1632 	/* We support these capabilities. */
1633 	mmc->caps |= MMC_CAP_CMD23;
1634 
1635 	if (variant->busy_detect) {
1636 		mmci_ops.card_busy = mmci_card_busy;
1637 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1638 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1639 		mmc->max_busy_timeout = 0;
1640 	}
1641 
1642 	mmc->ops = &mmci_ops;
1643 
1644 	/* We support these PM capabilities. */
1645 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1646 
1647 	/*
1648 	 * We can do SGIO
1649 	 */
1650 	mmc->max_segs = NR_SG;
1651 
1652 	/*
1653 	 * Since only a certain number of bits are valid in the data length
1654 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1655 	 * single request.
1656 	 */
1657 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1658 
1659 	/*
1660 	 * Set the maximum segment size.  Since we aren't doing DMA
1661 	 * (yet) we are only limited by the data length register.
1662 	 */
1663 	mmc->max_seg_size = mmc->max_req_size;
1664 
1665 	/*
1666 	 * Block size can be up to 2048 bytes, but must be a power of two.
1667 	 */
1668 	mmc->max_blk_size = 1 << 11;
1669 
1670 	/*
1671 	 * Limit the number of blocks transferred so that we don't overflow
1672 	 * the maximum request size.
1673 	 */
1674 	mmc->max_blk_count = mmc->max_req_size >> 11;
1675 
1676 	spin_lock_init(&host->lock);
1677 
1678 	writel(0, host->base + MMCIMASK0);
1679 	writel(0, host->base + MMCIMASK1);
1680 	writel(0xfff, host->base + MMCICLEAR);
1681 
1682 	/*
1683 	 * If:
1684 	 * - not using DT but using a descriptor table, or
1685 	 * - using a table of descriptors ALONGSIDE DT, or
1686 	 * look up these descriptors named "cd" and "wp" right here, fail
1687 	 * silently of these do not exist and proceed to try platform data
1688 	 */
1689 	if (!np) {
1690 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1691 		if (ret < 0) {
1692 			if (ret == -EPROBE_DEFER)
1693 				goto clk_disable;
1694 			else if (gpio_is_valid(plat->gpio_cd)) {
1695 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1696 				if (ret)
1697 					goto clk_disable;
1698 			}
1699 		}
1700 
1701 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1702 		if (ret < 0) {
1703 			if (ret == -EPROBE_DEFER)
1704 				goto clk_disable;
1705 			else if (gpio_is_valid(plat->gpio_wp)) {
1706 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1707 				if (ret)
1708 					goto clk_disable;
1709 			}
1710 		}
1711 	}
1712 
1713 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1714 			DRIVER_NAME " (cmd)", host);
1715 	if (ret)
1716 		goto clk_disable;
1717 
1718 	if (!dev->irq[1])
1719 		host->singleirq = true;
1720 	else {
1721 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1722 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1723 		if (ret)
1724 			goto clk_disable;
1725 	}
1726 
1727 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1728 
1729 	amba_set_drvdata(dev, mmc);
1730 
1731 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1732 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1733 		 amba_rev(dev), (unsigned long long)dev->res.start,
1734 		 dev->irq[0], dev->irq[1]);
1735 
1736 	mmci_dma_setup(host);
1737 
1738 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1739 	pm_runtime_use_autosuspend(&dev->dev);
1740 
1741 	mmc_add_host(mmc);
1742 
1743 	pm_runtime_put(&dev->dev);
1744 	return 0;
1745 
1746  clk_disable:
1747 	clk_disable_unprepare(host->clk);
1748  host_free:
1749 	mmc_free_host(mmc);
1750 	return ret;
1751 }
1752 
1753 static int mmci_remove(struct amba_device *dev)
1754 {
1755 	struct mmc_host *mmc = amba_get_drvdata(dev);
1756 
1757 	if (mmc) {
1758 		struct mmci_host *host = mmc_priv(mmc);
1759 
1760 		/*
1761 		 * Undo pm_runtime_put() in probe.  We use the _sync
1762 		 * version here so that we can access the primecell.
1763 		 */
1764 		pm_runtime_get_sync(&dev->dev);
1765 
1766 		mmc_remove_host(mmc);
1767 
1768 		writel(0, host->base + MMCIMASK0);
1769 		writel(0, host->base + MMCIMASK1);
1770 
1771 		writel(0, host->base + MMCICOMMAND);
1772 		writel(0, host->base + MMCIDATACTRL);
1773 
1774 		mmci_dma_release(host);
1775 		clk_disable_unprepare(host->clk);
1776 		mmc_free_host(mmc);
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 #ifdef CONFIG_PM
1783 static void mmci_save(struct mmci_host *host)
1784 {
1785 	unsigned long flags;
1786 
1787 	spin_lock_irqsave(&host->lock, flags);
1788 
1789 	writel(0, host->base + MMCIMASK0);
1790 	if (host->variant->pwrreg_nopower) {
1791 		writel(0, host->base + MMCIDATACTRL);
1792 		writel(0, host->base + MMCIPOWER);
1793 		writel(0, host->base + MMCICLOCK);
1794 	}
1795 	mmci_reg_delay(host);
1796 
1797 	spin_unlock_irqrestore(&host->lock, flags);
1798 }
1799 
1800 static void mmci_restore(struct mmci_host *host)
1801 {
1802 	unsigned long flags;
1803 
1804 	spin_lock_irqsave(&host->lock, flags);
1805 
1806 	if (host->variant->pwrreg_nopower) {
1807 		writel(host->clk_reg, host->base + MMCICLOCK);
1808 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1809 		writel(host->pwr_reg, host->base + MMCIPOWER);
1810 	}
1811 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1812 	mmci_reg_delay(host);
1813 
1814 	spin_unlock_irqrestore(&host->lock, flags);
1815 }
1816 
1817 static int mmci_runtime_suspend(struct device *dev)
1818 {
1819 	struct amba_device *adev = to_amba_device(dev);
1820 	struct mmc_host *mmc = amba_get_drvdata(adev);
1821 
1822 	if (mmc) {
1823 		struct mmci_host *host = mmc_priv(mmc);
1824 		pinctrl_pm_select_sleep_state(dev);
1825 		mmci_save(host);
1826 		clk_disable_unprepare(host->clk);
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static int mmci_runtime_resume(struct device *dev)
1833 {
1834 	struct amba_device *adev = to_amba_device(dev);
1835 	struct mmc_host *mmc = amba_get_drvdata(adev);
1836 
1837 	if (mmc) {
1838 		struct mmci_host *host = mmc_priv(mmc);
1839 		clk_prepare_enable(host->clk);
1840 		mmci_restore(host);
1841 		pinctrl_pm_select_default_state(dev);
1842 	}
1843 
1844 	return 0;
1845 }
1846 #endif
1847 
1848 static const struct dev_pm_ops mmci_dev_pm_ops = {
1849 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1850 				pm_runtime_force_resume)
1851 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1852 };
1853 
1854 static struct amba_id mmci_ids[] = {
1855 	{
1856 		.id	= 0x00041180,
1857 		.mask	= 0xff0fffff,
1858 		.data	= &variant_arm,
1859 	},
1860 	{
1861 		.id	= 0x01041180,
1862 		.mask	= 0xff0fffff,
1863 		.data	= &variant_arm_extended_fifo,
1864 	},
1865 	{
1866 		.id	= 0x02041180,
1867 		.mask	= 0xff0fffff,
1868 		.data	= &variant_arm_extended_fifo_hwfc,
1869 	},
1870 	{
1871 		.id	= 0x00041181,
1872 		.mask	= 0x000fffff,
1873 		.data	= &variant_arm,
1874 	},
1875 	/* ST Micro variants */
1876 	{
1877 		.id     = 0x00180180,
1878 		.mask   = 0x00ffffff,
1879 		.data	= &variant_u300,
1880 	},
1881 	{
1882 		.id     = 0x10180180,
1883 		.mask   = 0xf0ffffff,
1884 		.data	= &variant_nomadik,
1885 	},
1886 	{
1887 		.id     = 0x00280180,
1888 		.mask   = 0x00ffffff,
1889 		.data	= &variant_u300,
1890 	},
1891 	{
1892 		.id     = 0x00480180,
1893 		.mask   = 0xf0ffffff,
1894 		.data	= &variant_ux500,
1895 	},
1896 	{
1897 		.id     = 0x10480180,
1898 		.mask   = 0xf0ffffff,
1899 		.data	= &variant_ux500v2,
1900 	},
1901 	/* Qualcomm variants */
1902 	{
1903 		.id     = 0x00051180,
1904 		.mask	= 0x000fffff,
1905 		.data	= &variant_qcom,
1906 	},
1907 	{ 0, 0 },
1908 };
1909 
1910 MODULE_DEVICE_TABLE(amba, mmci_ids);
1911 
1912 static struct amba_driver mmci_driver = {
1913 	.drv		= {
1914 		.name	= DRIVER_NAME,
1915 		.pm	= &mmci_dev_pm_ops,
1916 	},
1917 	.probe		= mmci_probe,
1918 	.remove		= mmci_remove,
1919 	.id_table	= mmci_ids,
1920 };
1921 
1922 module_amba_driver(mmci_driver);
1923 
1924 module_param(fmax, uint, 0444);
1925 
1926 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1927 MODULE_LICENSE("GPL");
1928