xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/slot-gpio.h>
27 #include <linux/amba/bus.h>
28 #include <linux/clk.h>
29 #include <linux/scatterlist.h>
30 #include <linux/of.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 #include <linux/reset.h>
39 
40 #include <asm/div64.h>
41 #include <asm/io.h>
42 
43 #include "mmci.h"
44 
45 #define DRIVER_NAME "mmci-pl18x"
46 
47 static void mmci_variant_init(struct mmci_host *host);
48 static void ux500_variant_init(struct mmci_host *host);
49 static void ux500v2_variant_init(struct mmci_host *host);
50 
51 static unsigned int fmax = 515633;
52 
53 static struct variant_data variant_arm = {
54 	.fifosize		= 16 * 4,
55 	.fifohalfsize		= 8 * 4,
56 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
57 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
58 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
59 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
60 	.datalength_bits	= 16,
61 	.datactrl_blocksz	= 11,
62 	.pwrreg_powerup		= MCI_PWR_UP,
63 	.f_max			= 100000000,
64 	.reversed_irq_handling	= true,
65 	.mmcimask1		= true,
66 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
67 	.start_err		= MCI_STARTBITERR,
68 	.opendrain		= MCI_ROD,
69 	.init			= mmci_variant_init,
70 };
71 
72 static struct variant_data variant_arm_extended_fifo = {
73 	.fifosize		= 128 * 4,
74 	.fifohalfsize		= 64 * 4,
75 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
76 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
77 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
78 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
79 	.datalength_bits	= 16,
80 	.datactrl_blocksz	= 11,
81 	.pwrreg_powerup		= MCI_PWR_UP,
82 	.f_max			= 100000000,
83 	.mmcimask1		= true,
84 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
85 	.start_err		= MCI_STARTBITERR,
86 	.opendrain		= MCI_ROD,
87 	.init			= mmci_variant_init,
88 };
89 
90 static struct variant_data variant_arm_extended_fifo_hwfc = {
91 	.fifosize		= 128 * 4,
92 	.fifohalfsize		= 64 * 4,
93 	.clkreg_enable		= MCI_ARM_HWFCEN,
94 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
95 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
96 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
97 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
98 	.datalength_bits	= 16,
99 	.datactrl_blocksz	= 11,
100 	.pwrreg_powerup		= MCI_PWR_UP,
101 	.f_max			= 100000000,
102 	.mmcimask1		= true,
103 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
104 	.start_err		= MCI_STARTBITERR,
105 	.opendrain		= MCI_ROD,
106 	.init			= mmci_variant_init,
107 };
108 
109 static struct variant_data variant_u300 = {
110 	.fifosize		= 16 * 4,
111 	.fifohalfsize		= 8 * 4,
112 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
113 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
114 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
115 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
116 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
117 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
118 	.datalength_bits	= 16,
119 	.datactrl_blocksz	= 11,
120 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
121 	.st_sdio			= true,
122 	.pwrreg_powerup		= MCI_PWR_ON,
123 	.f_max			= 100000000,
124 	.signal_direction	= true,
125 	.pwrreg_clkgate		= true,
126 	.pwrreg_nopower		= true,
127 	.mmcimask1		= true,
128 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
129 	.start_err		= MCI_STARTBITERR,
130 	.opendrain		= MCI_OD,
131 	.init			= mmci_variant_init,
132 };
133 
134 static struct variant_data variant_nomadik = {
135 	.fifosize		= 16 * 4,
136 	.fifohalfsize		= 8 * 4,
137 	.clkreg			= MCI_CLK_ENABLE,
138 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
139 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
140 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
141 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
142 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
143 	.datalength_bits	= 24,
144 	.datactrl_blocksz	= 11,
145 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
146 	.st_sdio		= true,
147 	.st_clkdiv		= true,
148 	.pwrreg_powerup		= MCI_PWR_ON,
149 	.f_max			= 100000000,
150 	.signal_direction	= true,
151 	.pwrreg_clkgate		= true,
152 	.pwrreg_nopower		= true,
153 	.mmcimask1		= true,
154 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
155 	.start_err		= MCI_STARTBITERR,
156 	.opendrain		= MCI_OD,
157 	.init			= mmci_variant_init,
158 };
159 
160 static struct variant_data variant_ux500 = {
161 	.fifosize		= 30 * 4,
162 	.fifohalfsize		= 8 * 4,
163 	.clkreg			= MCI_CLK_ENABLE,
164 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
165 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
166 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
167 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
168 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
169 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
170 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
171 	.datalength_bits	= 24,
172 	.datactrl_blocksz	= 11,
173 	.datactrl_any_blocksz	= true,
174 	.dma_power_of_2		= true,
175 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
176 	.st_sdio		= true,
177 	.st_clkdiv		= true,
178 	.pwrreg_powerup		= MCI_PWR_ON,
179 	.f_max			= 100000000,
180 	.signal_direction	= true,
181 	.pwrreg_clkgate		= true,
182 	.busy_detect		= true,
183 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
184 	.busy_detect_flag	= MCI_ST_CARDBUSY,
185 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
186 	.pwrreg_nopower		= true,
187 	.mmcimask1		= true,
188 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
189 	.start_err		= MCI_STARTBITERR,
190 	.opendrain		= MCI_OD,
191 	.init			= ux500_variant_init,
192 };
193 
194 static struct variant_data variant_ux500v2 = {
195 	.fifosize		= 30 * 4,
196 	.fifohalfsize		= 8 * 4,
197 	.clkreg			= MCI_CLK_ENABLE,
198 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
199 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
200 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
201 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
202 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
203 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
204 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
205 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
206 	.datalength_bits	= 24,
207 	.datactrl_blocksz	= 11,
208 	.datactrl_any_blocksz	= true,
209 	.dma_power_of_2		= true,
210 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
211 	.st_sdio		= true,
212 	.st_clkdiv		= true,
213 	.pwrreg_powerup		= MCI_PWR_ON,
214 	.f_max			= 100000000,
215 	.signal_direction	= true,
216 	.pwrreg_clkgate		= true,
217 	.busy_detect		= true,
218 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
219 	.busy_detect_flag	= MCI_ST_CARDBUSY,
220 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
221 	.pwrreg_nopower		= true,
222 	.mmcimask1		= true,
223 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
224 	.start_err		= MCI_STARTBITERR,
225 	.opendrain		= MCI_OD,
226 	.init			= ux500v2_variant_init,
227 };
228 
229 static struct variant_data variant_stm32 = {
230 	.fifosize		= 32 * 4,
231 	.fifohalfsize		= 8 * 4,
232 	.clkreg			= MCI_CLK_ENABLE,
233 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
234 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
235 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
236 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
237 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
238 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
239 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
240 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
241 	.datalength_bits	= 24,
242 	.datactrl_blocksz	= 11,
243 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
244 	.st_sdio		= true,
245 	.st_clkdiv		= true,
246 	.pwrreg_powerup		= MCI_PWR_ON,
247 	.f_max			= 48000000,
248 	.pwrreg_clkgate		= true,
249 	.pwrreg_nopower		= true,
250 	.init			= mmci_variant_init,
251 };
252 
253 static struct variant_data variant_stm32_sdmmc = {
254 	.fifosize		= 16 * 4,
255 	.fifohalfsize		= 8 * 4,
256 	.f_max			= 208000000,
257 	.stm32_clkdiv		= true,
258 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
259 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
260 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
261 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
262 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
263 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
264 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
265 	.datactrl_first		= true,
266 	.datacnt_useless	= true,
267 	.datalength_bits	= 25,
268 	.datactrl_blocksz	= 14,
269 	.datactrl_any_blocksz	= true,
270 	.stm32_idmabsize_mask	= GENMASK(12, 5),
271 	.busy_timeout		= true,
272 	.busy_detect		= true,
273 	.busy_detect_flag	= MCI_STM32_BUSYD0,
274 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
275 	.init			= sdmmc_variant_init,
276 };
277 
278 static struct variant_data variant_stm32_sdmmcv2 = {
279 	.fifosize		= 16 * 4,
280 	.fifohalfsize		= 8 * 4,
281 	.f_max			= 208000000,
282 	.stm32_clkdiv		= true,
283 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
284 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
285 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
286 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
287 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
288 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
289 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
290 	.datactrl_first		= true,
291 	.datacnt_useless	= true,
292 	.datalength_bits	= 25,
293 	.datactrl_blocksz	= 14,
294 	.datactrl_any_blocksz	= true,
295 	.stm32_idmabsize_mask	= GENMASK(16, 5),
296 	.dma_lli		= true,
297 	.busy_timeout		= true,
298 	.busy_detect		= true,
299 	.busy_detect_flag	= MCI_STM32_BUSYD0,
300 	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
301 	.init			= sdmmc_variant_init,
302 };
303 
304 static struct variant_data variant_qcom = {
305 	.fifosize		= 16 * 4,
306 	.fifohalfsize		= 8 * 4,
307 	.clkreg			= MCI_CLK_ENABLE,
308 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
309 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
310 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
311 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
312 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
313 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
314 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
315 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
316 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
317 	.datalength_bits	= 24,
318 	.datactrl_blocksz	= 11,
319 	.datactrl_any_blocksz	= true,
320 	.pwrreg_powerup		= MCI_PWR_UP,
321 	.f_max			= 208000000,
322 	.explicit_mclk_control	= true,
323 	.qcom_fifo		= true,
324 	.qcom_dml		= true,
325 	.mmcimask1		= true,
326 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
327 	.start_err		= MCI_STARTBITERR,
328 	.opendrain		= MCI_ROD,
329 	.init			= qcom_variant_init,
330 };
331 
332 /* Busy detection for the ST Micro variant */
333 static int mmci_card_busy(struct mmc_host *mmc)
334 {
335 	struct mmci_host *host = mmc_priv(mmc);
336 	unsigned long flags;
337 	int busy = 0;
338 
339 	spin_lock_irqsave(&host->lock, flags);
340 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
341 		busy = 1;
342 	spin_unlock_irqrestore(&host->lock, flags);
343 
344 	return busy;
345 }
346 
347 static void mmci_reg_delay(struct mmci_host *host)
348 {
349 	/*
350 	 * According to the spec, at least three feedback clock cycles
351 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
352 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
353 	 * Worst delay time during card init is at 100 kHz => 30 us.
354 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
355 	 */
356 	if (host->cclk < 25000000)
357 		udelay(30);
358 	else
359 		ndelay(120);
360 }
361 
362 /*
363  * This must be called with host->lock held
364  */
365 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
366 {
367 	if (host->clk_reg != clk) {
368 		host->clk_reg = clk;
369 		writel(clk, host->base + MMCICLOCK);
370 	}
371 }
372 
373 /*
374  * This must be called with host->lock held
375  */
376 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
377 {
378 	if (host->pwr_reg != pwr) {
379 		host->pwr_reg = pwr;
380 		writel(pwr, host->base + MMCIPOWER);
381 	}
382 }
383 
384 /*
385  * This must be called with host->lock held
386  */
387 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
388 {
389 	/* Keep busy mode in DPSM if enabled */
390 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
391 
392 	if (host->datactrl_reg != datactrl) {
393 		host->datactrl_reg = datactrl;
394 		writel(datactrl, host->base + MMCIDATACTRL);
395 	}
396 }
397 
398 /*
399  * This must be called with host->lock held
400  */
401 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
402 {
403 	struct variant_data *variant = host->variant;
404 	u32 clk = variant->clkreg;
405 
406 	/* Make sure cclk reflects the current calculated clock */
407 	host->cclk = 0;
408 
409 	if (desired) {
410 		if (variant->explicit_mclk_control) {
411 			host->cclk = host->mclk;
412 		} else if (desired >= host->mclk) {
413 			clk = MCI_CLK_BYPASS;
414 			if (variant->st_clkdiv)
415 				clk |= MCI_ST_UX500_NEG_EDGE;
416 			host->cclk = host->mclk;
417 		} else if (variant->st_clkdiv) {
418 			/*
419 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
420 			 * => clkdiv = (mclk / f) - 2
421 			 * Round the divider up so we don't exceed the max
422 			 * frequency
423 			 */
424 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
425 			if (clk >= 256)
426 				clk = 255;
427 			host->cclk = host->mclk / (clk + 2);
428 		} else {
429 			/*
430 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
431 			 * => clkdiv = mclk / (2 * f) - 1
432 			 */
433 			clk = host->mclk / (2 * desired) - 1;
434 			if (clk >= 256)
435 				clk = 255;
436 			host->cclk = host->mclk / (2 * (clk + 1));
437 		}
438 
439 		clk |= variant->clkreg_enable;
440 		clk |= MCI_CLK_ENABLE;
441 		/* This hasn't proven to be worthwhile */
442 		/* clk |= MCI_CLK_PWRSAVE; */
443 	}
444 
445 	/* Set actual clock for debug */
446 	host->mmc->actual_clock = host->cclk;
447 
448 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
449 		clk |= MCI_4BIT_BUS;
450 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
451 		clk |= variant->clkreg_8bit_bus_enable;
452 
453 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
454 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
455 		clk |= variant->clkreg_neg_edge_enable;
456 
457 	mmci_write_clkreg(host, clk);
458 }
459 
460 static void mmci_dma_release(struct mmci_host *host)
461 {
462 	if (host->ops && host->ops->dma_release)
463 		host->ops->dma_release(host);
464 
465 	host->use_dma = false;
466 }
467 
468 static void mmci_dma_setup(struct mmci_host *host)
469 {
470 	if (!host->ops || !host->ops->dma_setup)
471 		return;
472 
473 	if (host->ops->dma_setup(host))
474 		return;
475 
476 	/* initialize pre request cookie */
477 	host->next_cookie = 1;
478 
479 	host->use_dma = true;
480 }
481 
482 /*
483  * Validate mmc prerequisites
484  */
485 static int mmci_validate_data(struct mmci_host *host,
486 			      struct mmc_data *data)
487 {
488 	struct variant_data *variant = host->variant;
489 
490 	if (!data)
491 		return 0;
492 	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
493 		dev_err(mmc_dev(host->mmc),
494 			"unsupported block size (%d bytes)\n", data->blksz);
495 		return -EINVAL;
496 	}
497 
498 	if (host->ops && host->ops->validate_data)
499 		return host->ops->validate_data(host, data);
500 
501 	return 0;
502 }
503 
504 static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
505 {
506 	int err;
507 
508 	if (!host->ops || !host->ops->prep_data)
509 		return 0;
510 
511 	err = host->ops->prep_data(host, data, next);
512 
513 	if (next && !err)
514 		data->host_cookie = ++host->next_cookie < 0 ?
515 			1 : host->next_cookie;
516 
517 	return err;
518 }
519 
520 static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
521 		      int err)
522 {
523 	if (host->ops && host->ops->unprep_data)
524 		host->ops->unprep_data(host, data, err);
525 
526 	data->host_cookie = 0;
527 }
528 
529 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
530 {
531 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
532 
533 	if (host->ops && host->ops->get_next_data)
534 		host->ops->get_next_data(host, data);
535 }
536 
537 static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
538 {
539 	struct mmc_data *data = host->data;
540 	int ret;
541 
542 	if (!host->use_dma)
543 		return -EINVAL;
544 
545 	ret = mmci_prep_data(host, data, false);
546 	if (ret)
547 		return ret;
548 
549 	if (!host->ops || !host->ops->dma_start)
550 		return -EINVAL;
551 
552 	/* Okay, go for it. */
553 	dev_vdbg(mmc_dev(host->mmc),
554 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
555 		 data->sg_len, data->blksz, data->blocks, data->flags);
556 
557 	ret = host->ops->dma_start(host, &datactrl);
558 	if (ret)
559 		return ret;
560 
561 	/* Trigger the DMA transfer */
562 	mmci_write_datactrlreg(host, datactrl);
563 
564 	/*
565 	 * Let the MMCI say when the data is ended and it's time
566 	 * to fire next DMA request. When that happens, MMCI will
567 	 * call mmci_data_end()
568 	 */
569 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
570 	       host->base + MMCIMASK0);
571 	return 0;
572 }
573 
574 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
575 {
576 	if (!host->use_dma)
577 		return;
578 
579 	if (host->ops && host->ops->dma_finalize)
580 		host->ops->dma_finalize(host, data);
581 }
582 
583 static void mmci_dma_error(struct mmci_host *host)
584 {
585 	if (!host->use_dma)
586 		return;
587 
588 	if (host->ops && host->ops->dma_error)
589 		host->ops->dma_error(host);
590 }
591 
592 static void
593 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
594 {
595 	writel(0, host->base + MMCICOMMAND);
596 
597 	BUG_ON(host->data);
598 
599 	host->mrq = NULL;
600 	host->cmd = NULL;
601 
602 	mmc_request_done(host->mmc, mrq);
603 }
604 
605 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
606 {
607 	void __iomem *base = host->base;
608 	struct variant_data *variant = host->variant;
609 
610 	if (host->singleirq) {
611 		unsigned int mask0 = readl(base + MMCIMASK0);
612 
613 		mask0 &= ~variant->irq_pio_mask;
614 		mask0 |= mask;
615 
616 		writel(mask0, base + MMCIMASK0);
617 	}
618 
619 	if (variant->mmcimask1)
620 		writel(mask, base + MMCIMASK1);
621 
622 	host->mask1_reg = mask;
623 }
624 
625 static void mmci_stop_data(struct mmci_host *host)
626 {
627 	mmci_write_datactrlreg(host, 0);
628 	mmci_set_mask1(host, 0);
629 	host->data = NULL;
630 }
631 
632 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
633 {
634 	unsigned int flags = SG_MITER_ATOMIC;
635 
636 	if (data->flags & MMC_DATA_READ)
637 		flags |= SG_MITER_TO_SG;
638 	else
639 		flags |= SG_MITER_FROM_SG;
640 
641 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
642 }
643 
644 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
645 {
646 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
647 }
648 
649 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
650 {
651 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
652 }
653 
654 static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
655 {
656 	void __iomem *base = host->base;
657 
658 	/*
659 	 * Before unmasking for the busy end IRQ, confirm that the
660 	 * command was sent successfully. To keep track of having a
661 	 * command in-progress, waiting for busy signaling to end,
662 	 * store the status in host->busy_status.
663 	 *
664 	 * Note that, the card may need a couple of clock cycles before
665 	 * it starts signaling busy on DAT0, hence re-read the
666 	 * MMCISTATUS register here, to allow the busy bit to be set.
667 	 * Potentially we may even need to poll the register for a
668 	 * while, to allow it to be set, but tests indicates that it
669 	 * isn't needed.
670 	 */
671 	if (!host->busy_status && !(status & err_msk) &&
672 	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
673 		writel(readl(base + MMCIMASK0) |
674 		       host->variant->busy_detect_mask,
675 		       base + MMCIMASK0);
676 
677 		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
678 		return false;
679 	}
680 
681 	/*
682 	 * If there is a command in-progress that has been successfully
683 	 * sent, then bail out if busy status is set and wait for the
684 	 * busy end IRQ.
685 	 *
686 	 * Note that, the HW triggers an IRQ on both edges while
687 	 * monitoring DAT0 for busy completion, but there is only one
688 	 * status bit in MMCISTATUS for the busy state. Therefore
689 	 * both the start and the end interrupts needs to be cleared,
690 	 * one after the other. So, clear the busy start IRQ here.
691 	 */
692 	if (host->busy_status &&
693 	    (status & host->variant->busy_detect_flag)) {
694 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
695 		return false;
696 	}
697 
698 	/*
699 	 * If there is a command in-progress that has been successfully
700 	 * sent and the busy bit isn't set, it means we have received
701 	 * the busy end IRQ. Clear and mask the IRQ, then continue to
702 	 * process the command.
703 	 */
704 	if (host->busy_status) {
705 		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
706 
707 		writel(readl(base + MMCIMASK0) &
708 		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
709 		host->busy_status = 0;
710 	}
711 
712 	return true;
713 }
714 
715 /*
716  * All the DMA operation mode stuff goes inside this ifdef.
717  * This assumes that you have a generic DMA device interface,
718  * no custom DMA interfaces are supported.
719  */
720 #ifdef CONFIG_DMA_ENGINE
721 struct mmci_dmae_next {
722 	struct dma_async_tx_descriptor *desc;
723 	struct dma_chan	*chan;
724 };
725 
726 struct mmci_dmae_priv {
727 	struct dma_chan	*cur;
728 	struct dma_chan	*rx_channel;
729 	struct dma_chan	*tx_channel;
730 	struct dma_async_tx_descriptor	*desc_current;
731 	struct mmci_dmae_next next_data;
732 };
733 
734 int mmci_dmae_setup(struct mmci_host *host)
735 {
736 	const char *rxname, *txname;
737 	struct mmci_dmae_priv *dmae;
738 
739 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
740 	if (!dmae)
741 		return -ENOMEM;
742 
743 	host->dma_priv = dmae;
744 
745 	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
746 	if (IS_ERR(dmae->rx_channel)) {
747 		int ret = PTR_ERR(dmae->rx_channel);
748 		dmae->rx_channel = NULL;
749 		return ret;
750 	}
751 
752 	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
753 	if (IS_ERR(dmae->tx_channel)) {
754 		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
755 			dev_warn(mmc_dev(host->mmc),
756 				 "Deferred probe for TX channel ignored\n");
757 		dmae->tx_channel = NULL;
758 	}
759 
760 	/*
761 	 * If only an RX channel is specified, the driver will
762 	 * attempt to use it bidirectionally, however if it is
763 	 * is specified but cannot be located, DMA will be disabled.
764 	 */
765 	if (dmae->rx_channel && !dmae->tx_channel)
766 		dmae->tx_channel = dmae->rx_channel;
767 
768 	if (dmae->rx_channel)
769 		rxname = dma_chan_name(dmae->rx_channel);
770 	else
771 		rxname = "none";
772 
773 	if (dmae->tx_channel)
774 		txname = dma_chan_name(dmae->tx_channel);
775 	else
776 		txname = "none";
777 
778 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
779 		 rxname, txname);
780 
781 	/*
782 	 * Limit the maximum segment size in any SG entry according to
783 	 * the parameters of the DMA engine device.
784 	 */
785 	if (dmae->tx_channel) {
786 		struct device *dev = dmae->tx_channel->device->dev;
787 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
788 
789 		if (max_seg_size < host->mmc->max_seg_size)
790 			host->mmc->max_seg_size = max_seg_size;
791 	}
792 	if (dmae->rx_channel) {
793 		struct device *dev = dmae->rx_channel->device->dev;
794 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
795 
796 		if (max_seg_size < host->mmc->max_seg_size)
797 			host->mmc->max_seg_size = max_seg_size;
798 	}
799 
800 	if (!dmae->tx_channel || !dmae->rx_channel) {
801 		mmci_dmae_release(host);
802 		return -EINVAL;
803 	}
804 
805 	return 0;
806 }
807 
808 /*
809  * This is used in or so inline it
810  * so it can be discarded.
811  */
812 void mmci_dmae_release(struct mmci_host *host)
813 {
814 	struct mmci_dmae_priv *dmae = host->dma_priv;
815 
816 	if (dmae->rx_channel)
817 		dma_release_channel(dmae->rx_channel);
818 	if (dmae->tx_channel)
819 		dma_release_channel(dmae->tx_channel);
820 	dmae->rx_channel = dmae->tx_channel = NULL;
821 }
822 
823 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
824 {
825 	struct mmci_dmae_priv *dmae = host->dma_priv;
826 	struct dma_chan *chan;
827 
828 	if (data->flags & MMC_DATA_READ)
829 		chan = dmae->rx_channel;
830 	else
831 		chan = dmae->tx_channel;
832 
833 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
834 		     mmc_get_dma_dir(data));
835 }
836 
837 void mmci_dmae_error(struct mmci_host *host)
838 {
839 	struct mmci_dmae_priv *dmae = host->dma_priv;
840 
841 	if (!dma_inprogress(host))
842 		return;
843 
844 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
845 	dmaengine_terminate_all(dmae->cur);
846 	host->dma_in_progress = false;
847 	dmae->cur = NULL;
848 	dmae->desc_current = NULL;
849 	host->data->host_cookie = 0;
850 
851 	mmci_dma_unmap(host, host->data);
852 }
853 
854 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
855 {
856 	struct mmci_dmae_priv *dmae = host->dma_priv;
857 	u32 status;
858 	int i;
859 
860 	if (!dma_inprogress(host))
861 		return;
862 
863 	/* Wait up to 1ms for the DMA to complete */
864 	for (i = 0; ; i++) {
865 		status = readl(host->base + MMCISTATUS);
866 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
867 			break;
868 		udelay(10);
869 	}
870 
871 	/*
872 	 * Check to see whether we still have some data left in the FIFO -
873 	 * this catches DMA controllers which are unable to monitor the
874 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
875 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
876 	 */
877 	if (status & MCI_RXDATAAVLBLMASK) {
878 		mmci_dma_error(host);
879 		if (!data->error)
880 			data->error = -EIO;
881 	} else if (!data->host_cookie) {
882 		mmci_dma_unmap(host, data);
883 	}
884 
885 	/*
886 	 * Use of DMA with scatter-gather is impossible.
887 	 * Give up with DMA and switch back to PIO mode.
888 	 */
889 	if (status & MCI_RXDATAAVLBLMASK) {
890 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
891 		mmci_dma_release(host);
892 	}
893 
894 	host->dma_in_progress = false;
895 	dmae->cur = NULL;
896 	dmae->desc_current = NULL;
897 }
898 
899 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
900 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
901 				struct dma_chan **dma_chan,
902 				struct dma_async_tx_descriptor **dma_desc)
903 {
904 	struct mmci_dmae_priv *dmae = host->dma_priv;
905 	struct variant_data *variant = host->variant;
906 	struct dma_slave_config conf = {
907 		.src_addr = host->phybase + MMCIFIFO,
908 		.dst_addr = host->phybase + MMCIFIFO,
909 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
910 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
911 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
912 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
913 		.device_fc = false,
914 	};
915 	struct dma_chan *chan;
916 	struct dma_device *device;
917 	struct dma_async_tx_descriptor *desc;
918 	int nr_sg;
919 	unsigned long flags = DMA_CTRL_ACK;
920 
921 	if (data->flags & MMC_DATA_READ) {
922 		conf.direction = DMA_DEV_TO_MEM;
923 		chan = dmae->rx_channel;
924 	} else {
925 		conf.direction = DMA_MEM_TO_DEV;
926 		chan = dmae->tx_channel;
927 	}
928 
929 	/* If there's no DMA channel, fall back to PIO */
930 	if (!chan)
931 		return -EINVAL;
932 
933 	/* If less than or equal to the fifo size, don't bother with DMA */
934 	if (data->blksz * data->blocks <= variant->fifosize)
935 		return -EINVAL;
936 
937 	/*
938 	 * This is necessary to get SDIO working on the Ux500. We do not yet
939 	 * know if this is a bug in:
940 	 * - The Ux500 DMA controller (DMA40)
941 	 * - The MMCI DMA interface on the Ux500
942 	 * some power of two blocks (such as 64 bytes) are sent regularly
943 	 * during SDIO traffic and those work fine so for these we enable DMA
944 	 * transfers.
945 	 */
946 	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
947 		return -EINVAL;
948 
949 	device = chan->device;
950 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
951 			   mmc_get_dma_dir(data));
952 	if (nr_sg == 0)
953 		return -EINVAL;
954 
955 	if (host->variant->qcom_dml)
956 		flags |= DMA_PREP_INTERRUPT;
957 
958 	dmaengine_slave_config(chan, &conf);
959 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
960 					    conf.direction, flags);
961 	if (!desc)
962 		goto unmap_exit;
963 
964 	*dma_chan = chan;
965 	*dma_desc = desc;
966 
967 	return 0;
968 
969  unmap_exit:
970 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
971 		     mmc_get_dma_dir(data));
972 	return -ENOMEM;
973 }
974 
975 int mmci_dmae_prep_data(struct mmci_host *host,
976 			struct mmc_data *data,
977 			bool next)
978 {
979 	struct mmci_dmae_priv *dmae = host->dma_priv;
980 	struct mmci_dmae_next *nd = &dmae->next_data;
981 
982 	if (!host->use_dma)
983 		return -EINVAL;
984 
985 	if (next)
986 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
987 	/* Check if next job is already prepared. */
988 	if (dmae->cur && dmae->desc_current)
989 		return 0;
990 
991 	/* No job were prepared thus do it now. */
992 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
993 				    &dmae->desc_current);
994 }
995 
996 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
997 {
998 	struct mmci_dmae_priv *dmae = host->dma_priv;
999 	int ret;
1000 
1001 	host->dma_in_progress = true;
1002 	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1003 	if (ret < 0) {
1004 		host->dma_in_progress = false;
1005 		return ret;
1006 	}
1007 	dma_async_issue_pending(dmae->cur);
1008 
1009 	*datactrl |= MCI_DPSM_DMAENABLE;
1010 
1011 	return 0;
1012 }
1013 
1014 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1015 {
1016 	struct mmci_dmae_priv *dmae = host->dma_priv;
1017 	struct mmci_dmae_next *next = &dmae->next_data;
1018 
1019 	if (!host->use_dma)
1020 		return;
1021 
1022 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1023 
1024 	dmae->desc_current = next->desc;
1025 	dmae->cur = next->chan;
1026 	next->desc = NULL;
1027 	next->chan = NULL;
1028 }
1029 
1030 void mmci_dmae_unprep_data(struct mmci_host *host,
1031 			   struct mmc_data *data, int err)
1032 
1033 {
1034 	struct mmci_dmae_priv *dmae = host->dma_priv;
1035 
1036 	if (!host->use_dma)
1037 		return;
1038 
1039 	mmci_dma_unmap(host, data);
1040 
1041 	if (err) {
1042 		struct mmci_dmae_next *next = &dmae->next_data;
1043 		struct dma_chan *chan;
1044 		if (data->flags & MMC_DATA_READ)
1045 			chan = dmae->rx_channel;
1046 		else
1047 			chan = dmae->tx_channel;
1048 		dmaengine_terminate_all(chan);
1049 
1050 		if (dmae->desc_current == next->desc)
1051 			dmae->desc_current = NULL;
1052 
1053 		if (dmae->cur == next->chan) {
1054 			host->dma_in_progress = false;
1055 			dmae->cur = NULL;
1056 		}
1057 
1058 		next->desc = NULL;
1059 		next->chan = NULL;
1060 	}
1061 }
1062 
1063 static struct mmci_host_ops mmci_variant_ops = {
1064 	.prep_data = mmci_dmae_prep_data,
1065 	.unprep_data = mmci_dmae_unprep_data,
1066 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1067 	.get_next_data = mmci_dmae_get_next_data,
1068 	.dma_setup = mmci_dmae_setup,
1069 	.dma_release = mmci_dmae_release,
1070 	.dma_start = mmci_dmae_start,
1071 	.dma_finalize = mmci_dmae_finalize,
1072 	.dma_error = mmci_dmae_error,
1073 };
1074 #else
1075 static struct mmci_host_ops mmci_variant_ops = {
1076 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1077 };
1078 #endif
1079 
1080 static void mmci_variant_init(struct mmci_host *host)
1081 {
1082 	host->ops = &mmci_variant_ops;
1083 }
1084 
1085 static void ux500_variant_init(struct mmci_host *host)
1086 {
1087 	host->ops = &mmci_variant_ops;
1088 	host->ops->busy_complete = ux500_busy_complete;
1089 }
1090 
1091 static void ux500v2_variant_init(struct mmci_host *host)
1092 {
1093 	host->ops = &mmci_variant_ops;
1094 	host->ops->busy_complete = ux500_busy_complete;
1095 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1096 }
1097 
1098 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1099 {
1100 	struct mmci_host *host = mmc_priv(mmc);
1101 	struct mmc_data *data = mrq->data;
1102 
1103 	if (!data)
1104 		return;
1105 
1106 	WARN_ON(data->host_cookie);
1107 
1108 	if (mmci_validate_data(host, data))
1109 		return;
1110 
1111 	mmci_prep_data(host, data, true);
1112 }
1113 
1114 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1115 			      int err)
1116 {
1117 	struct mmci_host *host = mmc_priv(mmc);
1118 	struct mmc_data *data = mrq->data;
1119 
1120 	if (!data || !data->host_cookie)
1121 		return;
1122 
1123 	mmci_unprep_data(host, data, err);
1124 }
1125 
1126 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1127 {
1128 	struct variant_data *variant = host->variant;
1129 	unsigned int datactrl, timeout, irqmask;
1130 	unsigned long long clks;
1131 	void __iomem *base;
1132 
1133 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1134 		data->blksz, data->blocks, data->flags);
1135 
1136 	host->data = data;
1137 	host->size = data->blksz * data->blocks;
1138 	data->bytes_xfered = 0;
1139 
1140 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1141 	do_div(clks, NSEC_PER_SEC);
1142 
1143 	timeout = data->timeout_clks + (unsigned int)clks;
1144 
1145 	base = host->base;
1146 	writel(timeout, base + MMCIDATATIMER);
1147 	writel(host->size, base + MMCIDATALENGTH);
1148 
1149 	datactrl = host->ops->get_datactrl_cfg(host);
1150 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1151 
1152 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1153 		u32 clk;
1154 
1155 		datactrl |= variant->datactrl_mask_sdio;
1156 
1157 		/*
1158 		 * The ST Micro variant for SDIO small write transfers
1159 		 * needs to have clock H/W flow control disabled,
1160 		 * otherwise the transfer will not start. The threshold
1161 		 * depends on the rate of MCLK.
1162 		 */
1163 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1164 		    (host->size < 8 ||
1165 		     (host->size <= 8 && host->mclk > 50000000)))
1166 			clk = host->clk_reg & ~variant->clkreg_enable;
1167 		else
1168 			clk = host->clk_reg | variant->clkreg_enable;
1169 
1170 		mmci_write_clkreg(host, clk);
1171 	}
1172 
1173 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1174 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1175 		datactrl |= variant->datactrl_mask_ddrmode;
1176 
1177 	/*
1178 	 * Attempt to use DMA operation mode, if this
1179 	 * should fail, fall back to PIO mode
1180 	 */
1181 	if (!mmci_dma_start(host, datactrl))
1182 		return;
1183 
1184 	/* IRQ mode, map the SG list for CPU reading/writing */
1185 	mmci_init_sg(host, data);
1186 
1187 	if (data->flags & MMC_DATA_READ) {
1188 		irqmask = MCI_RXFIFOHALFFULLMASK;
1189 
1190 		/*
1191 		 * If we have less than the fifo 'half-full' threshold to
1192 		 * transfer, trigger a PIO interrupt as soon as any data
1193 		 * is available.
1194 		 */
1195 		if (host->size < variant->fifohalfsize)
1196 			irqmask |= MCI_RXDATAAVLBLMASK;
1197 	} else {
1198 		/*
1199 		 * We don't actually need to include "FIFO empty" here
1200 		 * since its implicit in "FIFO half empty".
1201 		 */
1202 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1203 	}
1204 
1205 	mmci_write_datactrlreg(host, datactrl);
1206 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1207 	mmci_set_mask1(host, irqmask);
1208 }
1209 
1210 static void
1211 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1212 {
1213 	void __iomem *base = host->base;
1214 	unsigned long long clks;
1215 
1216 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1217 	    cmd->opcode, cmd->arg, cmd->flags);
1218 
1219 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1220 		writel(0, base + MMCICOMMAND);
1221 		mmci_reg_delay(host);
1222 	}
1223 
1224 	if (host->variant->cmdreg_stop &&
1225 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1226 		c |= host->variant->cmdreg_stop;
1227 
1228 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1229 	if (cmd->flags & MMC_RSP_PRESENT) {
1230 		if (cmd->flags & MMC_RSP_136)
1231 			c |= host->variant->cmdreg_lrsp_crc;
1232 		else if (cmd->flags & MMC_RSP_CRC)
1233 			c |= host->variant->cmdreg_srsp_crc;
1234 		else
1235 			c |= host->variant->cmdreg_srsp;
1236 	}
1237 
1238 	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1239 		if (!cmd->busy_timeout)
1240 			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1241 
1242 		clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1243 		do_div(clks, MSEC_PER_SEC);
1244 		writel_relaxed(clks, host->base + MMCIDATATIMER);
1245 	}
1246 
1247 	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1248 		host->ops->pre_sig_volt_switch(host);
1249 
1250 	if (/*interrupt*/0)
1251 		c |= MCI_CPSM_INTERRUPT;
1252 
1253 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1254 		c |= host->variant->data_cmd_enable;
1255 
1256 	host->cmd = cmd;
1257 
1258 	writel(cmd->arg, base + MMCIARGUMENT);
1259 	writel(c, base + MMCICOMMAND);
1260 }
1261 
1262 static void mmci_stop_command(struct mmci_host *host)
1263 {
1264 	host->stop_abort.error = 0;
1265 	mmci_start_command(host, &host->stop_abort, 0);
1266 }
1267 
1268 static void
1269 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1270 	      unsigned int status)
1271 {
1272 	unsigned int status_err;
1273 
1274 	/* Make sure we have data to handle */
1275 	if (!data)
1276 		return;
1277 
1278 	/* First check for errors */
1279 	status_err = status & (host->variant->start_err |
1280 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1281 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1282 
1283 	if (status_err) {
1284 		u32 remain, success;
1285 
1286 		/* Terminate the DMA transfer */
1287 		mmci_dma_error(host);
1288 
1289 		/*
1290 		 * Calculate how far we are into the transfer.  Note that
1291 		 * the data counter gives the number of bytes transferred
1292 		 * on the MMC bus, not on the host side.  On reads, this
1293 		 * can be as much as a FIFO-worth of data ahead.  This
1294 		 * matters for FIFO overruns only.
1295 		 */
1296 		if (!host->variant->datacnt_useless) {
1297 			remain = readl(host->base + MMCIDATACNT);
1298 			success = data->blksz * data->blocks - remain;
1299 		} else {
1300 			success = 0;
1301 		}
1302 
1303 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1304 			status_err, success);
1305 		if (status_err & MCI_DATACRCFAIL) {
1306 			/* Last block was not successful */
1307 			success -= 1;
1308 			data->error = -EILSEQ;
1309 		} else if (status_err & MCI_DATATIMEOUT) {
1310 			data->error = -ETIMEDOUT;
1311 		} else if (status_err & MCI_STARTBITERR) {
1312 			data->error = -ECOMM;
1313 		} else if (status_err & MCI_TXUNDERRUN) {
1314 			data->error = -EIO;
1315 		} else if (status_err & MCI_RXOVERRUN) {
1316 			if (success > host->variant->fifosize)
1317 				success -= host->variant->fifosize;
1318 			else
1319 				success = 0;
1320 			data->error = -EIO;
1321 		}
1322 		data->bytes_xfered = round_down(success, data->blksz);
1323 	}
1324 
1325 	if (status & MCI_DATABLOCKEND)
1326 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1327 
1328 	if (status & MCI_DATAEND || data->error) {
1329 		mmci_dma_finalize(host, data);
1330 
1331 		mmci_stop_data(host);
1332 
1333 		if (!data->error)
1334 			/* The error clause is handled above, success! */
1335 			data->bytes_xfered = data->blksz * data->blocks;
1336 
1337 		if (!data->stop) {
1338 			if (host->variant->cmdreg_stop && data->error)
1339 				mmci_stop_command(host);
1340 			else
1341 				mmci_request_end(host, data->mrq);
1342 		} else if (host->mrq->sbc && !data->error) {
1343 			mmci_request_end(host, data->mrq);
1344 		} else {
1345 			mmci_start_command(host, data->stop, 0);
1346 		}
1347 	}
1348 }
1349 
1350 static void
1351 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1352 	     unsigned int status)
1353 {
1354 	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1355 	void __iomem *base = host->base;
1356 	bool sbc, busy_resp;
1357 
1358 	if (!cmd)
1359 		return;
1360 
1361 	sbc = (cmd == host->mrq->sbc);
1362 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1363 
1364 	/*
1365 	 * We need to be one of these interrupts to be considered worth
1366 	 * handling. Note that we tag on any latent IRQs postponed
1367 	 * due to waiting for busy status.
1368 	 */
1369 	if (host->variant->busy_timeout && busy_resp)
1370 		err_msk |= MCI_DATATIMEOUT;
1371 
1372 	if (!((status | host->busy_status) &
1373 	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1374 		return;
1375 
1376 	/* Handle busy detection on DAT0 if the variant supports it. */
1377 	if (busy_resp && host->variant->busy_detect)
1378 		if (!host->ops->busy_complete(host, status, err_msk))
1379 			return;
1380 
1381 	host->cmd = NULL;
1382 
1383 	if (status & MCI_CMDTIMEOUT) {
1384 		cmd->error = -ETIMEDOUT;
1385 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1386 		cmd->error = -EILSEQ;
1387 	} else if (host->variant->busy_timeout && busy_resp &&
1388 		   status & MCI_DATATIMEOUT) {
1389 		cmd->error = -ETIMEDOUT;
1390 		host->irq_action = IRQ_WAKE_THREAD;
1391 	} else {
1392 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1393 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1394 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1395 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1396 	}
1397 
1398 	if ((!sbc && !cmd->data) || cmd->error) {
1399 		if (host->data) {
1400 			/* Terminate the DMA transfer */
1401 			mmci_dma_error(host);
1402 
1403 			mmci_stop_data(host);
1404 			if (host->variant->cmdreg_stop && cmd->error) {
1405 				mmci_stop_command(host);
1406 				return;
1407 			}
1408 		}
1409 
1410 		if (host->irq_action != IRQ_WAKE_THREAD)
1411 			mmci_request_end(host, host->mrq);
1412 
1413 	} else if (sbc) {
1414 		mmci_start_command(host, host->mrq->cmd, 0);
1415 	} else if (!host->variant->datactrl_first &&
1416 		   !(cmd->data->flags & MMC_DATA_READ)) {
1417 		mmci_start_data(host, cmd->data);
1418 	}
1419 }
1420 
1421 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1422 {
1423 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1424 }
1425 
1426 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1427 {
1428 	/*
1429 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1430 	 * from the fifo range should be used
1431 	 */
1432 	if (status & MCI_RXFIFOHALFFULL)
1433 		return host->variant->fifohalfsize;
1434 	else if (status & MCI_RXDATAAVLBL)
1435 		return 4;
1436 
1437 	return 0;
1438 }
1439 
1440 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1441 {
1442 	void __iomem *base = host->base;
1443 	char *ptr = buffer;
1444 	u32 status = readl(host->base + MMCISTATUS);
1445 	int host_remain = host->size;
1446 
1447 	do {
1448 		int count = host->get_rx_fifocnt(host, status, host_remain);
1449 
1450 		if (count > remain)
1451 			count = remain;
1452 
1453 		if (count <= 0)
1454 			break;
1455 
1456 		/*
1457 		 * SDIO especially may want to send something that is
1458 		 * not divisible by 4 (as opposed to card sectors
1459 		 * etc). Therefore make sure to always read the last bytes
1460 		 * while only doing full 32-bit reads towards the FIFO.
1461 		 */
1462 		if (unlikely(count & 0x3)) {
1463 			if (count < 4) {
1464 				unsigned char buf[4];
1465 				ioread32_rep(base + MMCIFIFO, buf, 1);
1466 				memcpy(ptr, buf, count);
1467 			} else {
1468 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1469 				count &= ~0x3;
1470 			}
1471 		} else {
1472 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1473 		}
1474 
1475 		ptr += count;
1476 		remain -= count;
1477 		host_remain -= count;
1478 
1479 		if (remain == 0)
1480 			break;
1481 
1482 		status = readl(base + MMCISTATUS);
1483 	} while (status & MCI_RXDATAAVLBL);
1484 
1485 	return ptr - buffer;
1486 }
1487 
1488 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1489 {
1490 	struct variant_data *variant = host->variant;
1491 	void __iomem *base = host->base;
1492 	char *ptr = buffer;
1493 
1494 	do {
1495 		unsigned int count, maxcnt;
1496 
1497 		maxcnt = status & MCI_TXFIFOEMPTY ?
1498 			 variant->fifosize : variant->fifohalfsize;
1499 		count = min(remain, maxcnt);
1500 
1501 		/*
1502 		 * SDIO especially may want to send something that is
1503 		 * not divisible by 4 (as opposed to card sectors
1504 		 * etc), and the FIFO only accept full 32-bit writes.
1505 		 * So compensate by adding +3 on the count, a single
1506 		 * byte become a 32bit write, 7 bytes will be two
1507 		 * 32bit writes etc.
1508 		 */
1509 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1510 
1511 		ptr += count;
1512 		remain -= count;
1513 
1514 		if (remain == 0)
1515 			break;
1516 
1517 		status = readl(base + MMCISTATUS);
1518 	} while (status & MCI_TXFIFOHALFEMPTY);
1519 
1520 	return ptr - buffer;
1521 }
1522 
1523 /*
1524  * PIO data transfer IRQ handler.
1525  */
1526 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1527 {
1528 	struct mmci_host *host = dev_id;
1529 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1530 	struct variant_data *variant = host->variant;
1531 	void __iomem *base = host->base;
1532 	u32 status;
1533 
1534 	status = readl(base + MMCISTATUS);
1535 
1536 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1537 
1538 	do {
1539 		unsigned int remain, len;
1540 		char *buffer;
1541 
1542 		/*
1543 		 * For write, we only need to test the half-empty flag
1544 		 * here - if the FIFO is completely empty, then by
1545 		 * definition it is more than half empty.
1546 		 *
1547 		 * For read, check for data available.
1548 		 */
1549 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1550 			break;
1551 
1552 		if (!sg_miter_next(sg_miter))
1553 			break;
1554 
1555 		buffer = sg_miter->addr;
1556 		remain = sg_miter->length;
1557 
1558 		len = 0;
1559 		if (status & MCI_RXACTIVE)
1560 			len = mmci_pio_read(host, buffer, remain);
1561 		if (status & MCI_TXACTIVE)
1562 			len = mmci_pio_write(host, buffer, remain, status);
1563 
1564 		sg_miter->consumed = len;
1565 
1566 		host->size -= len;
1567 		remain -= len;
1568 
1569 		if (remain)
1570 			break;
1571 
1572 		status = readl(base + MMCISTATUS);
1573 	} while (1);
1574 
1575 	sg_miter_stop(sg_miter);
1576 
1577 	/*
1578 	 * If we have less than the fifo 'half-full' threshold to transfer,
1579 	 * trigger a PIO interrupt as soon as any data is available.
1580 	 */
1581 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1582 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1583 
1584 	/*
1585 	 * If we run out of data, disable the data IRQs; this
1586 	 * prevents a race where the FIFO becomes empty before
1587 	 * the chip itself has disabled the data path, and
1588 	 * stops us racing with our data end IRQ.
1589 	 */
1590 	if (host->size == 0) {
1591 		mmci_set_mask1(host, 0);
1592 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1593 	}
1594 
1595 	return IRQ_HANDLED;
1596 }
1597 
1598 /*
1599  * Handle completion of command and data transfers.
1600  */
1601 static irqreturn_t mmci_irq(int irq, void *dev_id)
1602 {
1603 	struct mmci_host *host = dev_id;
1604 	u32 status;
1605 
1606 	spin_lock(&host->lock);
1607 	host->irq_action = IRQ_HANDLED;
1608 
1609 	do {
1610 		status = readl(host->base + MMCISTATUS);
1611 
1612 		if (host->singleirq) {
1613 			if (status & host->mask1_reg)
1614 				mmci_pio_irq(irq, dev_id);
1615 
1616 			status &= ~host->variant->irq_pio_mask;
1617 		}
1618 
1619 		/*
1620 		 * Busy detection is managed by mmci_cmd_irq(), including to
1621 		 * clear the corresponding IRQ.
1622 		 */
1623 		status &= readl(host->base + MMCIMASK0);
1624 		if (host->variant->busy_detect)
1625 			writel(status & ~host->variant->busy_detect_mask,
1626 			       host->base + MMCICLEAR);
1627 		else
1628 			writel(status, host->base + MMCICLEAR);
1629 
1630 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1631 
1632 		if (host->variant->reversed_irq_handling) {
1633 			mmci_data_irq(host, host->data, status);
1634 			mmci_cmd_irq(host, host->cmd, status);
1635 		} else {
1636 			mmci_cmd_irq(host, host->cmd, status);
1637 			mmci_data_irq(host, host->data, status);
1638 		}
1639 
1640 		/*
1641 		 * Busy detection has been handled by mmci_cmd_irq() above.
1642 		 * Clear the status bit to prevent polling in IRQ context.
1643 		 */
1644 		if (host->variant->busy_detect_flag)
1645 			status &= ~host->variant->busy_detect_flag;
1646 
1647 	} while (status);
1648 
1649 	spin_unlock(&host->lock);
1650 
1651 	return host->irq_action;
1652 }
1653 
1654 /*
1655  * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1656  *
1657  * A reset is needed for some variants, where a datatimeout for a R1B request
1658  * causes the DPSM to stay busy (non-functional).
1659  */
1660 static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1661 {
1662 	struct mmci_host *host = dev_id;
1663 	unsigned long flags;
1664 
1665 	if (host->rst) {
1666 		reset_control_assert(host->rst);
1667 		udelay(2);
1668 		reset_control_deassert(host->rst);
1669 	}
1670 
1671 	spin_lock_irqsave(&host->lock, flags);
1672 	writel(host->clk_reg, host->base + MMCICLOCK);
1673 	writel(host->pwr_reg, host->base + MMCIPOWER);
1674 	writel(MCI_IRQENABLE | host->variant->start_err,
1675 	       host->base + MMCIMASK0);
1676 
1677 	host->irq_action = IRQ_HANDLED;
1678 	mmci_request_end(host, host->mrq);
1679 	spin_unlock_irqrestore(&host->lock, flags);
1680 
1681 	return host->irq_action;
1682 }
1683 
1684 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1685 {
1686 	struct mmci_host *host = mmc_priv(mmc);
1687 	unsigned long flags;
1688 
1689 	WARN_ON(host->mrq != NULL);
1690 
1691 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1692 	if (mrq->cmd->error) {
1693 		mmc_request_done(mmc, mrq);
1694 		return;
1695 	}
1696 
1697 	spin_lock_irqsave(&host->lock, flags);
1698 
1699 	host->mrq = mrq;
1700 
1701 	if (mrq->data)
1702 		mmci_get_next_data(host, mrq->data);
1703 
1704 	if (mrq->data &&
1705 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1706 		mmci_start_data(host, mrq->data);
1707 
1708 	if (mrq->sbc)
1709 		mmci_start_command(host, mrq->sbc, 0);
1710 	else
1711 		mmci_start_command(host, mrq->cmd, 0);
1712 
1713 	spin_unlock_irqrestore(&host->lock, flags);
1714 }
1715 
1716 static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1717 {
1718 	struct mmci_host *host = mmc_priv(mmc);
1719 	u32 max_busy_timeout = 0;
1720 
1721 	if (!host->variant->busy_detect)
1722 		return;
1723 
1724 	if (host->variant->busy_timeout && mmc->actual_clock)
1725 		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1726 
1727 	mmc->max_busy_timeout = max_busy_timeout;
1728 }
1729 
1730 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1731 {
1732 	struct mmci_host *host = mmc_priv(mmc);
1733 	struct variant_data *variant = host->variant;
1734 	u32 pwr = 0;
1735 	unsigned long flags;
1736 	int ret;
1737 
1738 	if (host->plat->ios_handler &&
1739 		host->plat->ios_handler(mmc_dev(mmc), ios))
1740 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1741 
1742 	switch (ios->power_mode) {
1743 	case MMC_POWER_OFF:
1744 		if (!IS_ERR(mmc->supply.vmmc))
1745 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1746 
1747 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1748 			regulator_disable(mmc->supply.vqmmc);
1749 			host->vqmmc_enabled = false;
1750 		}
1751 
1752 		break;
1753 	case MMC_POWER_UP:
1754 		if (!IS_ERR(mmc->supply.vmmc))
1755 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1756 
1757 		/*
1758 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1759 		 * and instead uses MCI_PWR_ON so apply whatever value is
1760 		 * configured in the variant data.
1761 		 */
1762 		pwr |= variant->pwrreg_powerup;
1763 
1764 		break;
1765 	case MMC_POWER_ON:
1766 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1767 			ret = regulator_enable(mmc->supply.vqmmc);
1768 			if (ret < 0)
1769 				dev_err(mmc_dev(mmc),
1770 					"failed to enable vqmmc regulator\n");
1771 			else
1772 				host->vqmmc_enabled = true;
1773 		}
1774 
1775 		pwr |= MCI_PWR_ON;
1776 		break;
1777 	}
1778 
1779 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1780 		/*
1781 		 * The ST Micro variant has some additional bits
1782 		 * indicating signal direction for the signals in
1783 		 * the SD/MMC bus and feedback-clock usage.
1784 		 */
1785 		pwr |= host->pwr_reg_add;
1786 
1787 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1788 			pwr &= ~MCI_ST_DATA74DIREN;
1789 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1790 			pwr &= (~MCI_ST_DATA74DIREN &
1791 				~MCI_ST_DATA31DIREN &
1792 				~MCI_ST_DATA2DIREN);
1793 	}
1794 
1795 	if (variant->opendrain) {
1796 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1797 			pwr |= variant->opendrain;
1798 	} else {
1799 		/*
1800 		 * If the variant cannot configure the pads by its own, then we
1801 		 * expect the pinctrl to be able to do that for us
1802 		 */
1803 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1804 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1805 		else
1806 			pinctrl_select_default_state(mmc_dev(mmc));
1807 	}
1808 
1809 	/*
1810 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1811 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1812 	 */
1813 	if (!ios->clock && variant->pwrreg_clkgate)
1814 		pwr &= ~MCI_PWR_ON;
1815 
1816 	if (host->variant->explicit_mclk_control &&
1817 	    ios->clock != host->clock_cache) {
1818 		ret = clk_set_rate(host->clk, ios->clock);
1819 		if (ret < 0)
1820 			dev_err(mmc_dev(host->mmc),
1821 				"Error setting clock rate (%d)\n", ret);
1822 		else
1823 			host->mclk = clk_get_rate(host->clk);
1824 	}
1825 	host->clock_cache = ios->clock;
1826 
1827 	spin_lock_irqsave(&host->lock, flags);
1828 
1829 	if (host->ops && host->ops->set_clkreg)
1830 		host->ops->set_clkreg(host, ios->clock);
1831 	else
1832 		mmci_set_clkreg(host, ios->clock);
1833 
1834 	mmci_set_max_busy_timeout(mmc);
1835 
1836 	if (host->ops && host->ops->set_pwrreg)
1837 		host->ops->set_pwrreg(host, pwr);
1838 	else
1839 		mmci_write_pwrreg(host, pwr);
1840 
1841 	mmci_reg_delay(host);
1842 
1843 	spin_unlock_irqrestore(&host->lock, flags);
1844 }
1845 
1846 static int mmci_get_cd(struct mmc_host *mmc)
1847 {
1848 	struct mmci_host *host = mmc_priv(mmc);
1849 	struct mmci_platform_data *plat = host->plat;
1850 	unsigned int status = mmc_gpio_get_cd(mmc);
1851 
1852 	if (status == -ENOSYS) {
1853 		if (!plat->status)
1854 			return 1; /* Assume always present */
1855 
1856 		status = plat->status(mmc_dev(host->mmc));
1857 	}
1858 	return status;
1859 }
1860 
1861 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1862 {
1863 	struct mmci_host *host = mmc_priv(mmc);
1864 	int ret;
1865 
1866 	ret = mmc_regulator_set_vqmmc(mmc, ios);
1867 
1868 	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1869 		ret = host->ops->post_sig_volt_switch(host, ios);
1870 	else if (ret)
1871 		ret = 0;
1872 
1873 	if (ret < 0)
1874 		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1875 
1876 	return ret;
1877 }
1878 
1879 static struct mmc_host_ops mmci_ops = {
1880 	.request	= mmci_request,
1881 	.pre_req	= mmci_pre_request,
1882 	.post_req	= mmci_post_request,
1883 	.set_ios	= mmci_set_ios,
1884 	.get_ro		= mmc_gpio_get_ro,
1885 	.get_cd		= mmci_get_cd,
1886 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1887 };
1888 
1889 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1890 {
1891 	struct mmci_host *host = mmc_priv(mmc);
1892 	int ret = mmc_of_parse(mmc);
1893 
1894 	if (ret)
1895 		return ret;
1896 
1897 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1898 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1899 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1900 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1901 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1902 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1903 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1904 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1905 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1906 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1907 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1908 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1909 	if (of_get_property(np, "st,sig-dir", NULL))
1910 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1911 	if (of_get_property(np, "st,neg-edge", NULL))
1912 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1913 	if (of_get_property(np, "st,use-ckin", NULL))
1914 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1915 
1916 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1917 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1918 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1919 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1920 
1921 	return 0;
1922 }
1923 
1924 static int mmci_probe(struct amba_device *dev,
1925 	const struct amba_id *id)
1926 {
1927 	struct mmci_platform_data *plat = dev->dev.platform_data;
1928 	struct device_node *np = dev->dev.of_node;
1929 	struct variant_data *variant = id->data;
1930 	struct mmci_host *host;
1931 	struct mmc_host *mmc;
1932 	int ret;
1933 
1934 	/* Must have platform data or Device Tree. */
1935 	if (!plat && !np) {
1936 		dev_err(&dev->dev, "No plat data or DT found\n");
1937 		return -EINVAL;
1938 	}
1939 
1940 	if (!plat) {
1941 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1942 		if (!plat)
1943 			return -ENOMEM;
1944 	}
1945 
1946 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1947 	if (!mmc)
1948 		return -ENOMEM;
1949 
1950 	ret = mmci_of_parse(np, mmc);
1951 	if (ret)
1952 		goto host_free;
1953 
1954 	host = mmc_priv(mmc);
1955 	host->mmc = mmc;
1956 	host->mmc_ops = &mmci_ops;
1957 	mmc->ops = &mmci_ops;
1958 
1959 	/*
1960 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1961 	 * pins can be set accordingly using pinctrl
1962 	 */
1963 	if (!variant->opendrain) {
1964 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1965 		if (IS_ERR(host->pinctrl)) {
1966 			dev_err(&dev->dev, "failed to get pinctrl");
1967 			ret = PTR_ERR(host->pinctrl);
1968 			goto host_free;
1969 		}
1970 
1971 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1972 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1973 		if (IS_ERR(host->pins_opendrain)) {
1974 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1975 			ret = PTR_ERR(host->pins_opendrain);
1976 			goto host_free;
1977 		}
1978 	}
1979 
1980 	host->hw_designer = amba_manf(dev);
1981 	host->hw_revision = amba_rev(dev);
1982 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1983 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1984 
1985 	host->clk = devm_clk_get(&dev->dev, NULL);
1986 	if (IS_ERR(host->clk)) {
1987 		ret = PTR_ERR(host->clk);
1988 		goto host_free;
1989 	}
1990 
1991 	ret = clk_prepare_enable(host->clk);
1992 	if (ret)
1993 		goto host_free;
1994 
1995 	if (variant->qcom_fifo)
1996 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1997 	else
1998 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1999 
2000 	host->plat = plat;
2001 	host->variant = variant;
2002 	host->mclk = clk_get_rate(host->clk);
2003 	/*
2004 	 * According to the spec, mclk is max 100 MHz,
2005 	 * so we try to adjust the clock down to this,
2006 	 * (if possible).
2007 	 */
2008 	if (host->mclk > variant->f_max) {
2009 		ret = clk_set_rate(host->clk, variant->f_max);
2010 		if (ret < 0)
2011 			goto clk_disable;
2012 		host->mclk = clk_get_rate(host->clk);
2013 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2014 			host->mclk);
2015 	}
2016 
2017 	host->phybase = dev->res.start;
2018 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2019 	if (IS_ERR(host->base)) {
2020 		ret = PTR_ERR(host->base);
2021 		goto clk_disable;
2022 	}
2023 
2024 	if (variant->init)
2025 		variant->init(host);
2026 
2027 	/*
2028 	 * The ARM and ST versions of the block have slightly different
2029 	 * clock divider equations which means that the minimum divider
2030 	 * differs too.
2031 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2032 	 */
2033 	if (variant->st_clkdiv)
2034 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2035 	else if (variant->stm32_clkdiv)
2036 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2037 	else if (variant->explicit_mclk_control)
2038 		mmc->f_min = clk_round_rate(host->clk, 100000);
2039 	else
2040 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2041 	/*
2042 	 * If no maximum operating frequency is supplied, fall back to use
2043 	 * the module parameter, which has a (low) default value in case it
2044 	 * is not specified. Either value must not exceed the clock rate into
2045 	 * the block, of course.
2046 	 */
2047 	if (mmc->f_max)
2048 		mmc->f_max = variant->explicit_mclk_control ?
2049 				min(variant->f_max, mmc->f_max) :
2050 				min(host->mclk, mmc->f_max);
2051 	else
2052 		mmc->f_max = variant->explicit_mclk_control ?
2053 				fmax : min(host->mclk, fmax);
2054 
2055 
2056 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2057 
2058 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2059 	if (IS_ERR(host->rst)) {
2060 		ret = PTR_ERR(host->rst);
2061 		goto clk_disable;
2062 	}
2063 
2064 	/* Get regulators and the supported OCR mask */
2065 	ret = mmc_regulator_get_supply(mmc);
2066 	if (ret)
2067 		goto clk_disable;
2068 
2069 	if (!mmc->ocr_avail)
2070 		mmc->ocr_avail = plat->ocr_mask;
2071 	else if (plat->ocr_mask)
2072 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2073 
2074 	/* We support these capabilities. */
2075 	mmc->caps |= MMC_CAP_CMD23;
2076 
2077 	/*
2078 	 * Enable busy detection.
2079 	 */
2080 	if (variant->busy_detect) {
2081 		mmci_ops.card_busy = mmci_card_busy;
2082 		/*
2083 		 * Not all variants have a flag to enable busy detection
2084 		 * in the DPSM, but if they do, set it here.
2085 		 */
2086 		if (variant->busy_dpsm_flag)
2087 			mmci_write_datactrlreg(host,
2088 					       host->variant->busy_dpsm_flag);
2089 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2090 	}
2091 
2092 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2093 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2094 	host->stop_abort.arg = 0;
2095 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2096 
2097 	/* We support these PM capabilities. */
2098 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2099 
2100 	/*
2101 	 * We can do SGIO
2102 	 */
2103 	mmc->max_segs = NR_SG;
2104 
2105 	/*
2106 	 * Since only a certain number of bits are valid in the data length
2107 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2108 	 * single request.
2109 	 */
2110 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2111 
2112 	/*
2113 	 * Set the maximum segment size.  Since we aren't doing DMA
2114 	 * (yet) we are only limited by the data length register.
2115 	 */
2116 	mmc->max_seg_size = mmc->max_req_size;
2117 
2118 	/*
2119 	 * Block size can be up to 2048 bytes, but must be a power of two.
2120 	 */
2121 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2122 
2123 	/*
2124 	 * Limit the number of blocks transferred so that we don't overflow
2125 	 * the maximum request size.
2126 	 */
2127 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2128 
2129 	spin_lock_init(&host->lock);
2130 
2131 	writel(0, host->base + MMCIMASK0);
2132 
2133 	if (variant->mmcimask1)
2134 		writel(0, host->base + MMCIMASK1);
2135 
2136 	writel(0xfff, host->base + MMCICLEAR);
2137 
2138 	/*
2139 	 * If:
2140 	 * - not using DT but using a descriptor table, or
2141 	 * - using a table of descriptors ALONGSIDE DT, or
2142 	 * look up these descriptors named "cd" and "wp" right here, fail
2143 	 * silently of these do not exist
2144 	 */
2145 	if (!np) {
2146 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2147 		if (ret == -EPROBE_DEFER)
2148 			goto clk_disable;
2149 
2150 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2151 		if (ret == -EPROBE_DEFER)
2152 			goto clk_disable;
2153 	}
2154 
2155 	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2156 					mmci_irq_thread, IRQF_SHARED,
2157 					DRIVER_NAME " (cmd)", host);
2158 	if (ret)
2159 		goto clk_disable;
2160 
2161 	if (!dev->irq[1])
2162 		host->singleirq = true;
2163 	else {
2164 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2165 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2166 		if (ret)
2167 			goto clk_disable;
2168 	}
2169 
2170 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2171 
2172 	amba_set_drvdata(dev, mmc);
2173 
2174 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2175 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2176 		 amba_rev(dev), (unsigned long long)dev->res.start,
2177 		 dev->irq[0], dev->irq[1]);
2178 
2179 	mmci_dma_setup(host);
2180 
2181 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2182 	pm_runtime_use_autosuspend(&dev->dev);
2183 
2184 	mmc_add_host(mmc);
2185 
2186 	pm_runtime_put(&dev->dev);
2187 	return 0;
2188 
2189  clk_disable:
2190 	clk_disable_unprepare(host->clk);
2191  host_free:
2192 	mmc_free_host(mmc);
2193 	return ret;
2194 }
2195 
2196 static int mmci_remove(struct amba_device *dev)
2197 {
2198 	struct mmc_host *mmc = amba_get_drvdata(dev);
2199 
2200 	if (mmc) {
2201 		struct mmci_host *host = mmc_priv(mmc);
2202 		struct variant_data *variant = host->variant;
2203 
2204 		/*
2205 		 * Undo pm_runtime_put() in probe.  We use the _sync
2206 		 * version here so that we can access the primecell.
2207 		 */
2208 		pm_runtime_get_sync(&dev->dev);
2209 
2210 		mmc_remove_host(mmc);
2211 
2212 		writel(0, host->base + MMCIMASK0);
2213 
2214 		if (variant->mmcimask1)
2215 			writel(0, host->base + MMCIMASK1);
2216 
2217 		writel(0, host->base + MMCICOMMAND);
2218 		writel(0, host->base + MMCIDATACTRL);
2219 
2220 		mmci_dma_release(host);
2221 		clk_disable_unprepare(host->clk);
2222 		mmc_free_host(mmc);
2223 	}
2224 
2225 	return 0;
2226 }
2227 
2228 #ifdef CONFIG_PM
2229 static void mmci_save(struct mmci_host *host)
2230 {
2231 	unsigned long flags;
2232 
2233 	spin_lock_irqsave(&host->lock, flags);
2234 
2235 	writel(0, host->base + MMCIMASK0);
2236 	if (host->variant->pwrreg_nopower) {
2237 		writel(0, host->base + MMCIDATACTRL);
2238 		writel(0, host->base + MMCIPOWER);
2239 		writel(0, host->base + MMCICLOCK);
2240 	}
2241 	mmci_reg_delay(host);
2242 
2243 	spin_unlock_irqrestore(&host->lock, flags);
2244 }
2245 
2246 static void mmci_restore(struct mmci_host *host)
2247 {
2248 	unsigned long flags;
2249 
2250 	spin_lock_irqsave(&host->lock, flags);
2251 
2252 	if (host->variant->pwrreg_nopower) {
2253 		writel(host->clk_reg, host->base + MMCICLOCK);
2254 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2255 		writel(host->pwr_reg, host->base + MMCIPOWER);
2256 	}
2257 	writel(MCI_IRQENABLE | host->variant->start_err,
2258 	       host->base + MMCIMASK0);
2259 	mmci_reg_delay(host);
2260 
2261 	spin_unlock_irqrestore(&host->lock, flags);
2262 }
2263 
2264 static int mmci_runtime_suspend(struct device *dev)
2265 {
2266 	struct amba_device *adev = to_amba_device(dev);
2267 	struct mmc_host *mmc = amba_get_drvdata(adev);
2268 
2269 	if (mmc) {
2270 		struct mmci_host *host = mmc_priv(mmc);
2271 		pinctrl_pm_select_sleep_state(dev);
2272 		mmci_save(host);
2273 		clk_disable_unprepare(host->clk);
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 static int mmci_runtime_resume(struct device *dev)
2280 {
2281 	struct amba_device *adev = to_amba_device(dev);
2282 	struct mmc_host *mmc = amba_get_drvdata(adev);
2283 
2284 	if (mmc) {
2285 		struct mmci_host *host = mmc_priv(mmc);
2286 		clk_prepare_enable(host->clk);
2287 		mmci_restore(host);
2288 		pinctrl_select_default_state(dev);
2289 	}
2290 
2291 	return 0;
2292 }
2293 #endif
2294 
2295 static const struct dev_pm_ops mmci_dev_pm_ops = {
2296 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2297 				pm_runtime_force_resume)
2298 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2299 };
2300 
2301 static const struct amba_id mmci_ids[] = {
2302 	{
2303 		.id	= 0x00041180,
2304 		.mask	= 0xff0fffff,
2305 		.data	= &variant_arm,
2306 	},
2307 	{
2308 		.id	= 0x01041180,
2309 		.mask	= 0xff0fffff,
2310 		.data	= &variant_arm_extended_fifo,
2311 	},
2312 	{
2313 		.id	= 0x02041180,
2314 		.mask	= 0xff0fffff,
2315 		.data	= &variant_arm_extended_fifo_hwfc,
2316 	},
2317 	{
2318 		.id	= 0x00041181,
2319 		.mask	= 0x000fffff,
2320 		.data	= &variant_arm,
2321 	},
2322 	/* ST Micro variants */
2323 	{
2324 		.id     = 0x00180180,
2325 		.mask   = 0x00ffffff,
2326 		.data	= &variant_u300,
2327 	},
2328 	{
2329 		.id     = 0x10180180,
2330 		.mask   = 0xf0ffffff,
2331 		.data	= &variant_nomadik,
2332 	},
2333 	{
2334 		.id     = 0x00280180,
2335 		.mask   = 0x00ffffff,
2336 		.data	= &variant_nomadik,
2337 	},
2338 	{
2339 		.id     = 0x00480180,
2340 		.mask   = 0xf0ffffff,
2341 		.data	= &variant_ux500,
2342 	},
2343 	{
2344 		.id     = 0x10480180,
2345 		.mask   = 0xf0ffffff,
2346 		.data	= &variant_ux500v2,
2347 	},
2348 	{
2349 		.id     = 0x00880180,
2350 		.mask   = 0x00ffffff,
2351 		.data	= &variant_stm32,
2352 	},
2353 	{
2354 		.id     = 0x10153180,
2355 		.mask	= 0xf0ffffff,
2356 		.data	= &variant_stm32_sdmmc,
2357 	},
2358 	{
2359 		.id     = 0x00253180,
2360 		.mask	= 0xf0ffffff,
2361 		.data	= &variant_stm32_sdmmcv2,
2362 	},
2363 	/* Qualcomm variants */
2364 	{
2365 		.id     = 0x00051180,
2366 		.mask	= 0x000fffff,
2367 		.data	= &variant_qcom,
2368 	},
2369 	{ 0, 0 },
2370 };
2371 
2372 MODULE_DEVICE_TABLE(amba, mmci_ids);
2373 
2374 static struct amba_driver mmci_driver = {
2375 	.drv		= {
2376 		.name	= DRIVER_NAME,
2377 		.pm	= &mmci_dev_pm_ops,
2378 	},
2379 	.probe		= mmci_probe,
2380 	.remove		= mmci_remove,
2381 	.id_table	= mmci_ids,
2382 };
2383 
2384 module_amba_driver(mmci_driver);
2385 
2386 module_param(fmax, uint, 0444);
2387 
2388 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2389 MODULE_LICENSE("GPL");
2390