xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/pm.h>
26 #include <linux/mmc/host.h>
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/slot-gpio.h>
29 #include <linux/amba/bus.h>
30 #include <linux/clk.h>
31 #include <linux/scatterlist.h>
32 #include <linux/of.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 #include <linux/reset.h>
41 
42 #include <asm/div64.h>
43 #include <asm/io.h>
44 
45 #include "mmci.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static void mmci_variant_init(struct mmci_host *host);
50 static void ux500v2_variant_init(struct mmci_host *host);
51 
52 static unsigned int fmax = 515633;
53 
54 static struct variant_data variant_arm = {
55 	.fifosize		= 16 * 4,
56 	.fifohalfsize		= 8 * 4,
57 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
58 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
59 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
60 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
61 	.datalength_bits	= 16,
62 	.datactrl_blocksz	= 11,
63 	.pwrreg_powerup		= MCI_PWR_UP,
64 	.f_max			= 100000000,
65 	.reversed_irq_handling	= true,
66 	.mmcimask1		= true,
67 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
68 	.start_err		= MCI_STARTBITERR,
69 	.opendrain		= MCI_ROD,
70 	.init			= mmci_variant_init,
71 };
72 
73 static struct variant_data variant_arm_extended_fifo = {
74 	.fifosize		= 128 * 4,
75 	.fifohalfsize		= 64 * 4,
76 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
77 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
78 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
79 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
80 	.datalength_bits	= 16,
81 	.datactrl_blocksz	= 11,
82 	.pwrreg_powerup		= MCI_PWR_UP,
83 	.f_max			= 100000000,
84 	.mmcimask1		= true,
85 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
86 	.start_err		= MCI_STARTBITERR,
87 	.opendrain		= MCI_ROD,
88 	.init			= mmci_variant_init,
89 };
90 
91 static struct variant_data variant_arm_extended_fifo_hwfc = {
92 	.fifosize		= 128 * 4,
93 	.fifohalfsize		= 64 * 4,
94 	.clkreg_enable		= MCI_ARM_HWFCEN,
95 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
96 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
97 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
98 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
99 	.datalength_bits	= 16,
100 	.datactrl_blocksz	= 11,
101 	.pwrreg_powerup		= MCI_PWR_UP,
102 	.f_max			= 100000000,
103 	.mmcimask1		= true,
104 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
105 	.start_err		= MCI_STARTBITERR,
106 	.opendrain		= MCI_ROD,
107 	.init			= mmci_variant_init,
108 };
109 
110 static struct variant_data variant_u300 = {
111 	.fifosize		= 16 * 4,
112 	.fifohalfsize		= 8 * 4,
113 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
114 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
115 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
116 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
117 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
118 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
119 	.datalength_bits	= 16,
120 	.datactrl_blocksz	= 11,
121 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
122 	.st_sdio			= true,
123 	.pwrreg_powerup		= MCI_PWR_ON,
124 	.f_max			= 100000000,
125 	.signal_direction	= true,
126 	.pwrreg_clkgate		= true,
127 	.pwrreg_nopower		= true,
128 	.mmcimask1		= true,
129 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
130 	.start_err		= MCI_STARTBITERR,
131 	.opendrain		= MCI_OD,
132 	.init			= mmci_variant_init,
133 };
134 
135 static struct variant_data variant_nomadik = {
136 	.fifosize		= 16 * 4,
137 	.fifohalfsize		= 8 * 4,
138 	.clkreg			= MCI_CLK_ENABLE,
139 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
141 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
142 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
143 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
144 	.datalength_bits	= 24,
145 	.datactrl_blocksz	= 11,
146 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
147 	.st_sdio		= true,
148 	.st_clkdiv		= true,
149 	.pwrreg_powerup		= MCI_PWR_ON,
150 	.f_max			= 100000000,
151 	.signal_direction	= true,
152 	.pwrreg_clkgate		= true,
153 	.pwrreg_nopower		= true,
154 	.mmcimask1		= true,
155 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
156 	.start_err		= MCI_STARTBITERR,
157 	.opendrain		= MCI_OD,
158 	.init			= mmci_variant_init,
159 };
160 
161 static struct variant_data variant_ux500 = {
162 	.fifosize		= 30 * 4,
163 	.fifohalfsize		= 8 * 4,
164 	.clkreg			= MCI_CLK_ENABLE,
165 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
166 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
167 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
168 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
169 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
170 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
171 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
172 	.datalength_bits	= 24,
173 	.datactrl_blocksz	= 11,
174 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
175 	.st_sdio		= true,
176 	.st_clkdiv		= true,
177 	.pwrreg_powerup		= MCI_PWR_ON,
178 	.f_max			= 100000000,
179 	.signal_direction	= true,
180 	.pwrreg_clkgate		= true,
181 	.busy_detect		= true,
182 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
183 	.busy_detect_flag	= MCI_ST_CARDBUSY,
184 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
185 	.pwrreg_nopower		= true,
186 	.mmcimask1		= true,
187 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
188 	.start_err		= MCI_STARTBITERR,
189 	.opendrain		= MCI_OD,
190 	.init			= mmci_variant_init,
191 };
192 
193 static struct variant_data variant_ux500v2 = {
194 	.fifosize		= 30 * 4,
195 	.fifohalfsize		= 8 * 4,
196 	.clkreg			= MCI_CLK_ENABLE,
197 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
198 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
199 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
200 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
201 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
202 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
203 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
204 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
205 	.datalength_bits	= 24,
206 	.datactrl_blocksz	= 11,
207 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
208 	.st_sdio		= true,
209 	.st_clkdiv		= true,
210 	.pwrreg_powerup		= MCI_PWR_ON,
211 	.f_max			= 100000000,
212 	.signal_direction	= true,
213 	.pwrreg_clkgate		= true,
214 	.busy_detect		= true,
215 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
216 	.busy_detect_flag	= MCI_ST_CARDBUSY,
217 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
218 	.pwrreg_nopower		= true,
219 	.mmcimask1		= true,
220 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
221 	.start_err		= MCI_STARTBITERR,
222 	.opendrain		= MCI_OD,
223 	.init			= ux500v2_variant_init,
224 };
225 
226 static struct variant_data variant_stm32 = {
227 	.fifosize		= 32 * 4,
228 	.fifohalfsize		= 8 * 4,
229 	.clkreg			= MCI_CLK_ENABLE,
230 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
231 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
232 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
233 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
234 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
235 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
236 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
237 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
238 	.datalength_bits	= 24,
239 	.datactrl_blocksz	= 11,
240 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
241 	.st_sdio		= true,
242 	.st_clkdiv		= true,
243 	.pwrreg_powerup		= MCI_PWR_ON,
244 	.f_max			= 48000000,
245 	.pwrreg_clkgate		= true,
246 	.pwrreg_nopower		= true,
247 	.init			= mmci_variant_init,
248 };
249 
250 static struct variant_data variant_stm32_sdmmc = {
251 	.fifosize		= 16 * 4,
252 	.fifohalfsize		= 8 * 4,
253 	.f_max			= 208000000,
254 	.stm32_clkdiv		= true,
255 	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
256 	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
257 	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
258 	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
259 	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
260 	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
261 	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
262 	.datactrl_first		= true,
263 	.datacnt_useless	= true,
264 	.datalength_bits	= 25,
265 	.datactrl_blocksz	= 14,
266 	.stm32_idmabsize_mask	= GENMASK(12, 5),
267 	.init			= sdmmc_variant_init,
268 };
269 
270 static struct variant_data variant_qcom = {
271 	.fifosize		= 16 * 4,
272 	.fifohalfsize		= 8 * 4,
273 	.clkreg			= MCI_CLK_ENABLE,
274 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
275 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
276 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
277 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
278 	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
279 	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
280 	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
281 	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
282 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
283 	.datalength_bits	= 24,
284 	.datactrl_blocksz	= 11,
285 	.pwrreg_powerup		= MCI_PWR_UP,
286 	.f_max			= 208000000,
287 	.explicit_mclk_control	= true,
288 	.qcom_fifo		= true,
289 	.qcom_dml		= true,
290 	.mmcimask1		= true,
291 	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
292 	.start_err		= MCI_STARTBITERR,
293 	.opendrain		= MCI_ROD,
294 	.init			= qcom_variant_init,
295 };
296 
297 /* Busy detection for the ST Micro variant */
298 static int mmci_card_busy(struct mmc_host *mmc)
299 {
300 	struct mmci_host *host = mmc_priv(mmc);
301 	unsigned long flags;
302 	int busy = 0;
303 
304 	spin_lock_irqsave(&host->lock, flags);
305 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
306 		busy = 1;
307 	spin_unlock_irqrestore(&host->lock, flags);
308 
309 	return busy;
310 }
311 
312 static void mmci_reg_delay(struct mmci_host *host)
313 {
314 	/*
315 	 * According to the spec, at least three feedback clock cycles
316 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
317 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
318 	 * Worst delay time during card init is at 100 kHz => 30 us.
319 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
320 	 */
321 	if (host->cclk < 25000000)
322 		udelay(30);
323 	else
324 		ndelay(120);
325 }
326 
327 /*
328  * This must be called with host->lock held
329  */
330 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
331 {
332 	if (host->clk_reg != clk) {
333 		host->clk_reg = clk;
334 		writel(clk, host->base + MMCICLOCK);
335 	}
336 }
337 
338 /*
339  * This must be called with host->lock held
340  */
341 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
342 {
343 	if (host->pwr_reg != pwr) {
344 		host->pwr_reg = pwr;
345 		writel(pwr, host->base + MMCIPOWER);
346 	}
347 }
348 
349 /*
350  * This must be called with host->lock held
351  */
352 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
353 {
354 	/* Keep busy mode in DPSM if enabled */
355 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
356 
357 	if (host->datactrl_reg != datactrl) {
358 		host->datactrl_reg = datactrl;
359 		writel(datactrl, host->base + MMCIDATACTRL);
360 	}
361 }
362 
363 /*
364  * This must be called with host->lock held
365  */
366 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
367 {
368 	struct variant_data *variant = host->variant;
369 	u32 clk = variant->clkreg;
370 
371 	/* Make sure cclk reflects the current calculated clock */
372 	host->cclk = 0;
373 
374 	if (desired) {
375 		if (variant->explicit_mclk_control) {
376 			host->cclk = host->mclk;
377 		} else if (desired >= host->mclk) {
378 			clk = MCI_CLK_BYPASS;
379 			if (variant->st_clkdiv)
380 				clk |= MCI_ST_UX500_NEG_EDGE;
381 			host->cclk = host->mclk;
382 		} else if (variant->st_clkdiv) {
383 			/*
384 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
385 			 * => clkdiv = (mclk / f) - 2
386 			 * Round the divider up so we don't exceed the max
387 			 * frequency
388 			 */
389 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
390 			if (clk >= 256)
391 				clk = 255;
392 			host->cclk = host->mclk / (clk + 2);
393 		} else {
394 			/*
395 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
396 			 * => clkdiv = mclk / (2 * f) - 1
397 			 */
398 			clk = host->mclk / (2 * desired) - 1;
399 			if (clk >= 256)
400 				clk = 255;
401 			host->cclk = host->mclk / (2 * (clk + 1));
402 		}
403 
404 		clk |= variant->clkreg_enable;
405 		clk |= MCI_CLK_ENABLE;
406 		/* This hasn't proven to be worthwhile */
407 		/* clk |= MCI_CLK_PWRSAVE; */
408 	}
409 
410 	/* Set actual clock for debug */
411 	host->mmc->actual_clock = host->cclk;
412 
413 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
414 		clk |= MCI_4BIT_BUS;
415 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
416 		clk |= variant->clkreg_8bit_bus_enable;
417 
418 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
419 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
420 		clk |= variant->clkreg_neg_edge_enable;
421 
422 	mmci_write_clkreg(host, clk);
423 }
424 
425 void mmci_dma_release(struct mmci_host *host)
426 {
427 	if (host->ops && host->ops->dma_release)
428 		host->ops->dma_release(host);
429 
430 	host->use_dma = false;
431 }
432 
433 void mmci_dma_setup(struct mmci_host *host)
434 {
435 	if (!host->ops || !host->ops->dma_setup)
436 		return;
437 
438 	if (host->ops->dma_setup(host))
439 		return;
440 
441 	/* initialize pre request cookie */
442 	host->next_cookie = 1;
443 
444 	host->use_dma = true;
445 }
446 
447 /*
448  * Validate mmc prerequisites
449  */
450 static int mmci_validate_data(struct mmci_host *host,
451 			      struct mmc_data *data)
452 {
453 	if (!data)
454 		return 0;
455 
456 	if (!is_power_of_2(data->blksz)) {
457 		dev_err(mmc_dev(host->mmc),
458 			"unsupported block size (%d bytes)\n", data->blksz);
459 		return -EINVAL;
460 	}
461 
462 	if (host->ops && host->ops->validate_data)
463 		return host->ops->validate_data(host, data);
464 
465 	return 0;
466 }
467 
468 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
469 {
470 	int err;
471 
472 	if (!host->ops || !host->ops->prep_data)
473 		return 0;
474 
475 	err = host->ops->prep_data(host, data, next);
476 
477 	if (next && !err)
478 		data->host_cookie = ++host->next_cookie < 0 ?
479 			1 : host->next_cookie;
480 
481 	return err;
482 }
483 
484 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
485 		      int err)
486 {
487 	if (host->ops && host->ops->unprep_data)
488 		host->ops->unprep_data(host, data, err);
489 
490 	data->host_cookie = 0;
491 }
492 
493 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
494 {
495 	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
496 
497 	if (host->ops && host->ops->get_next_data)
498 		host->ops->get_next_data(host, data);
499 }
500 
501 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
502 {
503 	struct mmc_data *data = host->data;
504 	int ret;
505 
506 	if (!host->use_dma)
507 		return -EINVAL;
508 
509 	ret = mmci_prep_data(host, data, false);
510 	if (ret)
511 		return ret;
512 
513 	if (!host->ops || !host->ops->dma_start)
514 		return -EINVAL;
515 
516 	/* Okay, go for it. */
517 	dev_vdbg(mmc_dev(host->mmc),
518 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
519 		 data->sg_len, data->blksz, data->blocks, data->flags);
520 
521 	host->ops->dma_start(host, &datactrl);
522 
523 	/* Trigger the DMA transfer */
524 	mmci_write_datactrlreg(host, datactrl);
525 
526 	/*
527 	 * Let the MMCI say when the data is ended and it's time
528 	 * to fire next DMA request. When that happens, MMCI will
529 	 * call mmci_data_end()
530 	 */
531 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
532 	       host->base + MMCIMASK0);
533 	return 0;
534 }
535 
536 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
537 {
538 	if (!host->use_dma)
539 		return;
540 
541 	if (host->ops && host->ops->dma_finalize)
542 		host->ops->dma_finalize(host, data);
543 }
544 
545 void mmci_dma_error(struct mmci_host *host)
546 {
547 	if (!host->use_dma)
548 		return;
549 
550 	if (host->ops && host->ops->dma_error)
551 		host->ops->dma_error(host);
552 }
553 
554 static void
555 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
556 {
557 	writel(0, host->base + MMCICOMMAND);
558 
559 	BUG_ON(host->data);
560 
561 	host->mrq = NULL;
562 	host->cmd = NULL;
563 
564 	mmc_request_done(host->mmc, mrq);
565 }
566 
567 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
568 {
569 	void __iomem *base = host->base;
570 	struct variant_data *variant = host->variant;
571 
572 	if (host->singleirq) {
573 		unsigned int mask0 = readl(base + MMCIMASK0);
574 
575 		mask0 &= ~variant->irq_pio_mask;
576 		mask0 |= mask;
577 
578 		writel(mask0, base + MMCIMASK0);
579 	}
580 
581 	if (variant->mmcimask1)
582 		writel(mask, base + MMCIMASK1);
583 
584 	host->mask1_reg = mask;
585 }
586 
587 static void mmci_stop_data(struct mmci_host *host)
588 {
589 	mmci_write_datactrlreg(host, 0);
590 	mmci_set_mask1(host, 0);
591 	host->data = NULL;
592 }
593 
594 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
595 {
596 	unsigned int flags = SG_MITER_ATOMIC;
597 
598 	if (data->flags & MMC_DATA_READ)
599 		flags |= SG_MITER_TO_SG;
600 	else
601 		flags |= SG_MITER_FROM_SG;
602 
603 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
604 }
605 
606 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
607 {
608 	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
609 }
610 
611 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
612 {
613 	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
614 }
615 
616 /*
617  * All the DMA operation mode stuff goes inside this ifdef.
618  * This assumes that you have a generic DMA device interface,
619  * no custom DMA interfaces are supported.
620  */
621 #ifdef CONFIG_DMA_ENGINE
622 struct mmci_dmae_next {
623 	struct dma_async_tx_descriptor *desc;
624 	struct dma_chan	*chan;
625 };
626 
627 struct mmci_dmae_priv {
628 	struct dma_chan	*cur;
629 	struct dma_chan	*rx_channel;
630 	struct dma_chan	*tx_channel;
631 	struct dma_async_tx_descriptor	*desc_current;
632 	struct mmci_dmae_next next_data;
633 };
634 
635 int mmci_dmae_setup(struct mmci_host *host)
636 {
637 	const char *rxname, *txname;
638 	struct mmci_dmae_priv *dmae;
639 
640 	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
641 	if (!dmae)
642 		return -ENOMEM;
643 
644 	host->dma_priv = dmae;
645 
646 	dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
647 						     "rx");
648 	dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
649 						     "tx");
650 
651 	/*
652 	 * If only an RX channel is specified, the driver will
653 	 * attempt to use it bidirectionally, however if it is
654 	 * is specified but cannot be located, DMA will be disabled.
655 	 */
656 	if (dmae->rx_channel && !dmae->tx_channel)
657 		dmae->tx_channel = dmae->rx_channel;
658 
659 	if (dmae->rx_channel)
660 		rxname = dma_chan_name(dmae->rx_channel);
661 	else
662 		rxname = "none";
663 
664 	if (dmae->tx_channel)
665 		txname = dma_chan_name(dmae->tx_channel);
666 	else
667 		txname = "none";
668 
669 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
670 		 rxname, txname);
671 
672 	/*
673 	 * Limit the maximum segment size in any SG entry according to
674 	 * the parameters of the DMA engine device.
675 	 */
676 	if (dmae->tx_channel) {
677 		struct device *dev = dmae->tx_channel->device->dev;
678 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
679 
680 		if (max_seg_size < host->mmc->max_seg_size)
681 			host->mmc->max_seg_size = max_seg_size;
682 	}
683 	if (dmae->rx_channel) {
684 		struct device *dev = dmae->rx_channel->device->dev;
685 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
686 
687 		if (max_seg_size < host->mmc->max_seg_size)
688 			host->mmc->max_seg_size = max_seg_size;
689 	}
690 
691 	if (!dmae->tx_channel || !dmae->rx_channel) {
692 		mmci_dmae_release(host);
693 		return -EINVAL;
694 	}
695 
696 	return 0;
697 }
698 
699 /*
700  * This is used in or so inline it
701  * so it can be discarded.
702  */
703 void mmci_dmae_release(struct mmci_host *host)
704 {
705 	struct mmci_dmae_priv *dmae = host->dma_priv;
706 
707 	if (dmae->rx_channel)
708 		dma_release_channel(dmae->rx_channel);
709 	if (dmae->tx_channel)
710 		dma_release_channel(dmae->tx_channel);
711 	dmae->rx_channel = dmae->tx_channel = NULL;
712 }
713 
714 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
715 {
716 	struct mmci_dmae_priv *dmae = host->dma_priv;
717 	struct dma_chan *chan;
718 
719 	if (data->flags & MMC_DATA_READ)
720 		chan = dmae->rx_channel;
721 	else
722 		chan = dmae->tx_channel;
723 
724 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
725 		     mmc_get_dma_dir(data));
726 }
727 
728 void mmci_dmae_error(struct mmci_host *host)
729 {
730 	struct mmci_dmae_priv *dmae = host->dma_priv;
731 
732 	if (!dma_inprogress(host))
733 		return;
734 
735 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
736 	dmaengine_terminate_all(dmae->cur);
737 	host->dma_in_progress = false;
738 	dmae->cur = NULL;
739 	dmae->desc_current = NULL;
740 	host->data->host_cookie = 0;
741 
742 	mmci_dma_unmap(host, host->data);
743 }
744 
745 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
746 {
747 	struct mmci_dmae_priv *dmae = host->dma_priv;
748 	u32 status;
749 	int i;
750 
751 	if (!dma_inprogress(host))
752 		return;
753 
754 	/* Wait up to 1ms for the DMA to complete */
755 	for (i = 0; ; i++) {
756 		status = readl(host->base + MMCISTATUS);
757 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
758 			break;
759 		udelay(10);
760 	}
761 
762 	/*
763 	 * Check to see whether we still have some data left in the FIFO -
764 	 * this catches DMA controllers which are unable to monitor the
765 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
766 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
767 	 */
768 	if (status & MCI_RXDATAAVLBLMASK) {
769 		mmci_dma_error(host);
770 		if (!data->error)
771 			data->error = -EIO;
772 	} else if (!data->host_cookie) {
773 		mmci_dma_unmap(host, data);
774 	}
775 
776 	/*
777 	 * Use of DMA with scatter-gather is impossible.
778 	 * Give up with DMA and switch back to PIO mode.
779 	 */
780 	if (status & MCI_RXDATAAVLBLMASK) {
781 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
782 		mmci_dma_release(host);
783 	}
784 
785 	host->dma_in_progress = false;
786 	dmae->cur = NULL;
787 	dmae->desc_current = NULL;
788 }
789 
790 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
791 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
792 				struct dma_chan **dma_chan,
793 				struct dma_async_tx_descriptor **dma_desc)
794 {
795 	struct mmci_dmae_priv *dmae = host->dma_priv;
796 	struct variant_data *variant = host->variant;
797 	struct dma_slave_config conf = {
798 		.src_addr = host->phybase + MMCIFIFO,
799 		.dst_addr = host->phybase + MMCIFIFO,
800 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
801 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
802 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
803 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
804 		.device_fc = false,
805 	};
806 	struct dma_chan *chan;
807 	struct dma_device *device;
808 	struct dma_async_tx_descriptor *desc;
809 	int nr_sg;
810 	unsigned long flags = DMA_CTRL_ACK;
811 
812 	if (data->flags & MMC_DATA_READ) {
813 		conf.direction = DMA_DEV_TO_MEM;
814 		chan = dmae->rx_channel;
815 	} else {
816 		conf.direction = DMA_MEM_TO_DEV;
817 		chan = dmae->tx_channel;
818 	}
819 
820 	/* If there's no DMA channel, fall back to PIO */
821 	if (!chan)
822 		return -EINVAL;
823 
824 	/* If less than or equal to the fifo size, don't bother with DMA */
825 	if (data->blksz * data->blocks <= variant->fifosize)
826 		return -EINVAL;
827 
828 	device = chan->device;
829 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
830 			   mmc_get_dma_dir(data));
831 	if (nr_sg == 0)
832 		return -EINVAL;
833 
834 	if (host->variant->qcom_dml)
835 		flags |= DMA_PREP_INTERRUPT;
836 
837 	dmaengine_slave_config(chan, &conf);
838 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
839 					    conf.direction, flags);
840 	if (!desc)
841 		goto unmap_exit;
842 
843 	*dma_chan = chan;
844 	*dma_desc = desc;
845 
846 	return 0;
847 
848  unmap_exit:
849 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
850 		     mmc_get_dma_dir(data));
851 	return -ENOMEM;
852 }
853 
854 int mmci_dmae_prep_data(struct mmci_host *host,
855 			struct mmc_data *data,
856 			bool next)
857 {
858 	struct mmci_dmae_priv *dmae = host->dma_priv;
859 	struct mmci_dmae_next *nd = &dmae->next_data;
860 
861 	if (!host->use_dma)
862 		return -EINVAL;
863 
864 	if (next)
865 		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
866 	/* Check if next job is already prepared. */
867 	if (dmae->cur && dmae->desc_current)
868 		return 0;
869 
870 	/* No job were prepared thus do it now. */
871 	return _mmci_dmae_prep_data(host, data, &dmae->cur,
872 				    &dmae->desc_current);
873 }
874 
875 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
876 {
877 	struct mmci_dmae_priv *dmae = host->dma_priv;
878 
879 	host->dma_in_progress = true;
880 	dmaengine_submit(dmae->desc_current);
881 	dma_async_issue_pending(dmae->cur);
882 
883 	*datactrl |= MCI_DPSM_DMAENABLE;
884 
885 	return 0;
886 }
887 
888 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
889 {
890 	struct mmci_dmae_priv *dmae = host->dma_priv;
891 	struct mmci_dmae_next *next = &dmae->next_data;
892 
893 	if (!host->use_dma)
894 		return;
895 
896 	WARN_ON(!data->host_cookie && (next->desc || next->chan));
897 
898 	dmae->desc_current = next->desc;
899 	dmae->cur = next->chan;
900 	next->desc = NULL;
901 	next->chan = NULL;
902 }
903 
904 void mmci_dmae_unprep_data(struct mmci_host *host,
905 			   struct mmc_data *data, int err)
906 
907 {
908 	struct mmci_dmae_priv *dmae = host->dma_priv;
909 
910 	if (!host->use_dma)
911 		return;
912 
913 	mmci_dma_unmap(host, data);
914 
915 	if (err) {
916 		struct mmci_dmae_next *next = &dmae->next_data;
917 		struct dma_chan *chan;
918 		if (data->flags & MMC_DATA_READ)
919 			chan = dmae->rx_channel;
920 		else
921 			chan = dmae->tx_channel;
922 		dmaengine_terminate_all(chan);
923 
924 		if (dmae->desc_current == next->desc)
925 			dmae->desc_current = NULL;
926 
927 		if (dmae->cur == next->chan) {
928 			host->dma_in_progress = false;
929 			dmae->cur = NULL;
930 		}
931 
932 		next->desc = NULL;
933 		next->chan = NULL;
934 	}
935 }
936 
937 static struct mmci_host_ops mmci_variant_ops = {
938 	.prep_data = mmci_dmae_prep_data,
939 	.unprep_data = mmci_dmae_unprep_data,
940 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
941 	.get_next_data = mmci_dmae_get_next_data,
942 	.dma_setup = mmci_dmae_setup,
943 	.dma_release = mmci_dmae_release,
944 	.dma_start = mmci_dmae_start,
945 	.dma_finalize = mmci_dmae_finalize,
946 	.dma_error = mmci_dmae_error,
947 };
948 #else
949 static struct mmci_host_ops mmci_variant_ops = {
950 	.get_datactrl_cfg = mmci_get_dctrl_cfg,
951 };
952 #endif
953 
954 void mmci_variant_init(struct mmci_host *host)
955 {
956 	host->ops = &mmci_variant_ops;
957 }
958 
959 void ux500v2_variant_init(struct mmci_host *host)
960 {
961 	host->ops = &mmci_variant_ops;
962 	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
963 }
964 
965 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
966 {
967 	struct mmci_host *host = mmc_priv(mmc);
968 	struct mmc_data *data = mrq->data;
969 
970 	if (!data)
971 		return;
972 
973 	WARN_ON(data->host_cookie);
974 
975 	if (mmci_validate_data(host, data))
976 		return;
977 
978 	mmci_prep_data(host, data, true);
979 }
980 
981 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
982 			      int err)
983 {
984 	struct mmci_host *host = mmc_priv(mmc);
985 	struct mmc_data *data = mrq->data;
986 
987 	if (!data || !data->host_cookie)
988 		return;
989 
990 	mmci_unprep_data(host, data, err);
991 }
992 
993 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
994 {
995 	struct variant_data *variant = host->variant;
996 	unsigned int datactrl, timeout, irqmask;
997 	unsigned long long clks;
998 	void __iomem *base;
999 
1000 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1001 		data->blksz, data->blocks, data->flags);
1002 
1003 	host->data = data;
1004 	host->size = data->blksz * data->blocks;
1005 	data->bytes_xfered = 0;
1006 
1007 	clks = (unsigned long long)data->timeout_ns * host->cclk;
1008 	do_div(clks, NSEC_PER_SEC);
1009 
1010 	timeout = data->timeout_clks + (unsigned int)clks;
1011 
1012 	base = host->base;
1013 	writel(timeout, base + MMCIDATATIMER);
1014 	writel(host->size, base + MMCIDATALENGTH);
1015 
1016 	datactrl = host->ops->get_datactrl_cfg(host);
1017 	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1018 
1019 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1020 		u32 clk;
1021 
1022 		datactrl |= variant->datactrl_mask_sdio;
1023 
1024 		/*
1025 		 * The ST Micro variant for SDIO small write transfers
1026 		 * needs to have clock H/W flow control disabled,
1027 		 * otherwise the transfer will not start. The threshold
1028 		 * depends on the rate of MCLK.
1029 		 */
1030 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1031 		    (host->size < 8 ||
1032 		     (host->size <= 8 && host->mclk > 50000000)))
1033 			clk = host->clk_reg & ~variant->clkreg_enable;
1034 		else
1035 			clk = host->clk_reg | variant->clkreg_enable;
1036 
1037 		mmci_write_clkreg(host, clk);
1038 	}
1039 
1040 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1041 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1042 		datactrl |= variant->datactrl_mask_ddrmode;
1043 
1044 	/*
1045 	 * Attempt to use DMA operation mode, if this
1046 	 * should fail, fall back to PIO mode
1047 	 */
1048 	if (!mmci_dma_start(host, datactrl))
1049 		return;
1050 
1051 	/* IRQ mode, map the SG list for CPU reading/writing */
1052 	mmci_init_sg(host, data);
1053 
1054 	if (data->flags & MMC_DATA_READ) {
1055 		irqmask = MCI_RXFIFOHALFFULLMASK;
1056 
1057 		/*
1058 		 * If we have less than the fifo 'half-full' threshold to
1059 		 * transfer, trigger a PIO interrupt as soon as any data
1060 		 * is available.
1061 		 */
1062 		if (host->size < variant->fifohalfsize)
1063 			irqmask |= MCI_RXDATAAVLBLMASK;
1064 	} else {
1065 		/*
1066 		 * We don't actually need to include "FIFO empty" here
1067 		 * since its implicit in "FIFO half empty".
1068 		 */
1069 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1070 	}
1071 
1072 	mmci_write_datactrlreg(host, datactrl);
1073 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1074 	mmci_set_mask1(host, irqmask);
1075 }
1076 
1077 static void
1078 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1079 {
1080 	void __iomem *base = host->base;
1081 
1082 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1083 	    cmd->opcode, cmd->arg, cmd->flags);
1084 
1085 	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1086 		writel(0, base + MMCICOMMAND);
1087 		mmci_reg_delay(host);
1088 	}
1089 
1090 	if (host->variant->cmdreg_stop &&
1091 	    cmd->opcode == MMC_STOP_TRANSMISSION)
1092 		c |= host->variant->cmdreg_stop;
1093 
1094 	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1095 	if (cmd->flags & MMC_RSP_PRESENT) {
1096 		if (cmd->flags & MMC_RSP_136)
1097 			c |= host->variant->cmdreg_lrsp_crc;
1098 		else if (cmd->flags & MMC_RSP_CRC)
1099 			c |= host->variant->cmdreg_srsp_crc;
1100 		else
1101 			c |= host->variant->cmdreg_srsp;
1102 	}
1103 	if (/*interrupt*/0)
1104 		c |= MCI_CPSM_INTERRUPT;
1105 
1106 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1107 		c |= host->variant->data_cmd_enable;
1108 
1109 	host->cmd = cmd;
1110 
1111 	writel(cmd->arg, base + MMCIARGUMENT);
1112 	writel(c, base + MMCICOMMAND);
1113 }
1114 
1115 static void mmci_stop_command(struct mmci_host *host)
1116 {
1117 	host->stop_abort.error = 0;
1118 	mmci_start_command(host, &host->stop_abort, 0);
1119 }
1120 
1121 static void
1122 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1123 	      unsigned int status)
1124 {
1125 	unsigned int status_err;
1126 
1127 	/* Make sure we have data to handle */
1128 	if (!data)
1129 		return;
1130 
1131 	/* First check for errors */
1132 	status_err = status & (host->variant->start_err |
1133 			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1134 			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1135 
1136 	if (status_err) {
1137 		u32 remain, success;
1138 
1139 		/* Terminate the DMA transfer */
1140 		mmci_dma_error(host);
1141 
1142 		/*
1143 		 * Calculate how far we are into the transfer.  Note that
1144 		 * the data counter gives the number of bytes transferred
1145 		 * on the MMC bus, not on the host side.  On reads, this
1146 		 * can be as much as a FIFO-worth of data ahead.  This
1147 		 * matters for FIFO overruns only.
1148 		 */
1149 		if (!host->variant->datacnt_useless) {
1150 			remain = readl(host->base + MMCIDATACNT);
1151 			success = data->blksz * data->blocks - remain;
1152 		} else {
1153 			success = 0;
1154 		}
1155 
1156 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1157 			status_err, success);
1158 		if (status_err & MCI_DATACRCFAIL) {
1159 			/* Last block was not successful */
1160 			success -= 1;
1161 			data->error = -EILSEQ;
1162 		} else if (status_err & MCI_DATATIMEOUT) {
1163 			data->error = -ETIMEDOUT;
1164 		} else if (status_err & MCI_STARTBITERR) {
1165 			data->error = -ECOMM;
1166 		} else if (status_err & MCI_TXUNDERRUN) {
1167 			data->error = -EIO;
1168 		} else if (status_err & MCI_RXOVERRUN) {
1169 			if (success > host->variant->fifosize)
1170 				success -= host->variant->fifosize;
1171 			else
1172 				success = 0;
1173 			data->error = -EIO;
1174 		}
1175 		data->bytes_xfered = round_down(success, data->blksz);
1176 	}
1177 
1178 	if (status & MCI_DATABLOCKEND)
1179 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1180 
1181 	if (status & MCI_DATAEND || data->error) {
1182 		mmci_dma_finalize(host, data);
1183 
1184 		mmci_stop_data(host);
1185 
1186 		if (!data->error)
1187 			/* The error clause is handled above, success! */
1188 			data->bytes_xfered = data->blksz * data->blocks;
1189 
1190 		if (!data->stop) {
1191 			if (host->variant->cmdreg_stop && data->error)
1192 				mmci_stop_command(host);
1193 			else
1194 				mmci_request_end(host, data->mrq);
1195 		} else if (host->mrq->sbc && !data->error) {
1196 			mmci_request_end(host, data->mrq);
1197 		} else {
1198 			mmci_start_command(host, data->stop, 0);
1199 		}
1200 	}
1201 }
1202 
1203 static void
1204 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1205 	     unsigned int status)
1206 {
1207 	void __iomem *base = host->base;
1208 	bool sbc, busy_resp;
1209 
1210 	if (!cmd)
1211 		return;
1212 
1213 	sbc = (cmd == host->mrq->sbc);
1214 	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1215 
1216 	/*
1217 	 * We need to be one of these interrupts to be considered worth
1218 	 * handling. Note that we tag on any latent IRQs postponed
1219 	 * due to waiting for busy status.
1220 	 */
1221 	if (!((status|host->busy_status) &
1222 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1223 		return;
1224 
1225 	/*
1226 	 * ST Micro variant: handle busy detection.
1227 	 */
1228 	if (busy_resp && host->variant->busy_detect) {
1229 
1230 		/* We are busy with a command, return */
1231 		if (host->busy_status &&
1232 		    (status & host->variant->busy_detect_flag))
1233 			return;
1234 
1235 		/*
1236 		 * We were not busy, but we now got a busy response on
1237 		 * something that was not an error, and we double-check
1238 		 * that the special busy status bit is still set before
1239 		 * proceeding.
1240 		 */
1241 		if (!host->busy_status &&
1242 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1243 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1244 
1245 			/* Clear the busy start IRQ */
1246 			writel(host->variant->busy_detect_mask,
1247 			       host->base + MMCICLEAR);
1248 
1249 			/* Unmask the busy end IRQ */
1250 			writel(readl(base + MMCIMASK0) |
1251 			       host->variant->busy_detect_mask,
1252 			       base + MMCIMASK0);
1253 			/*
1254 			 * Now cache the last response status code (until
1255 			 * the busy bit goes low), and return.
1256 			 */
1257 			host->busy_status =
1258 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1259 			return;
1260 		}
1261 
1262 		/*
1263 		 * At this point we are not busy with a command, we have
1264 		 * not received a new busy request, clear and mask the busy
1265 		 * end IRQ and fall through to process the IRQ.
1266 		 */
1267 		if (host->busy_status) {
1268 
1269 			writel(host->variant->busy_detect_mask,
1270 			       host->base + MMCICLEAR);
1271 
1272 			writel(readl(base + MMCIMASK0) &
1273 			       ~host->variant->busy_detect_mask,
1274 			       base + MMCIMASK0);
1275 			host->busy_status = 0;
1276 		}
1277 	}
1278 
1279 	host->cmd = NULL;
1280 
1281 	if (status & MCI_CMDTIMEOUT) {
1282 		cmd->error = -ETIMEDOUT;
1283 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1284 		cmd->error = -EILSEQ;
1285 	} else {
1286 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1287 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1288 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1289 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1290 	}
1291 
1292 	if ((!sbc && !cmd->data) || cmd->error) {
1293 		if (host->data) {
1294 			/* Terminate the DMA transfer */
1295 			mmci_dma_error(host);
1296 
1297 			mmci_stop_data(host);
1298 			if (host->variant->cmdreg_stop && cmd->error) {
1299 				mmci_stop_command(host);
1300 				return;
1301 			}
1302 		}
1303 		mmci_request_end(host, host->mrq);
1304 	} else if (sbc) {
1305 		mmci_start_command(host, host->mrq->cmd, 0);
1306 	} else if (!host->variant->datactrl_first &&
1307 		   !(cmd->data->flags & MMC_DATA_READ)) {
1308 		mmci_start_data(host, cmd->data);
1309 	}
1310 }
1311 
1312 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1313 {
1314 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1315 }
1316 
1317 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1318 {
1319 	/*
1320 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1321 	 * from the fifo range should be used
1322 	 */
1323 	if (status & MCI_RXFIFOHALFFULL)
1324 		return host->variant->fifohalfsize;
1325 	else if (status & MCI_RXDATAAVLBL)
1326 		return 4;
1327 
1328 	return 0;
1329 }
1330 
1331 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1332 {
1333 	void __iomem *base = host->base;
1334 	char *ptr = buffer;
1335 	u32 status = readl(host->base + MMCISTATUS);
1336 	int host_remain = host->size;
1337 
1338 	do {
1339 		int count = host->get_rx_fifocnt(host, status, host_remain);
1340 
1341 		if (count > remain)
1342 			count = remain;
1343 
1344 		if (count <= 0)
1345 			break;
1346 
1347 		/*
1348 		 * SDIO especially may want to send something that is
1349 		 * not divisible by 4 (as opposed to card sectors
1350 		 * etc). Therefore make sure to always read the last bytes
1351 		 * while only doing full 32-bit reads towards the FIFO.
1352 		 */
1353 		if (unlikely(count & 0x3)) {
1354 			if (count < 4) {
1355 				unsigned char buf[4];
1356 				ioread32_rep(base + MMCIFIFO, buf, 1);
1357 				memcpy(ptr, buf, count);
1358 			} else {
1359 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1360 				count &= ~0x3;
1361 			}
1362 		} else {
1363 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1364 		}
1365 
1366 		ptr += count;
1367 		remain -= count;
1368 		host_remain -= count;
1369 
1370 		if (remain == 0)
1371 			break;
1372 
1373 		status = readl(base + MMCISTATUS);
1374 	} while (status & MCI_RXDATAAVLBL);
1375 
1376 	return ptr - buffer;
1377 }
1378 
1379 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1380 {
1381 	struct variant_data *variant = host->variant;
1382 	void __iomem *base = host->base;
1383 	char *ptr = buffer;
1384 
1385 	do {
1386 		unsigned int count, maxcnt;
1387 
1388 		maxcnt = status & MCI_TXFIFOEMPTY ?
1389 			 variant->fifosize : variant->fifohalfsize;
1390 		count = min(remain, maxcnt);
1391 
1392 		/*
1393 		 * SDIO especially may want to send something that is
1394 		 * not divisible by 4 (as opposed to card sectors
1395 		 * etc), and the FIFO only accept full 32-bit writes.
1396 		 * So compensate by adding +3 on the count, a single
1397 		 * byte become a 32bit write, 7 bytes will be two
1398 		 * 32bit writes etc.
1399 		 */
1400 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1401 
1402 		ptr += count;
1403 		remain -= count;
1404 
1405 		if (remain == 0)
1406 			break;
1407 
1408 		status = readl(base + MMCISTATUS);
1409 	} while (status & MCI_TXFIFOHALFEMPTY);
1410 
1411 	return ptr - buffer;
1412 }
1413 
1414 /*
1415  * PIO data transfer IRQ handler.
1416  */
1417 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1418 {
1419 	struct mmci_host *host = dev_id;
1420 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1421 	struct variant_data *variant = host->variant;
1422 	void __iomem *base = host->base;
1423 	u32 status;
1424 
1425 	status = readl(base + MMCISTATUS);
1426 
1427 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1428 
1429 	do {
1430 		unsigned int remain, len;
1431 		char *buffer;
1432 
1433 		/*
1434 		 * For write, we only need to test the half-empty flag
1435 		 * here - if the FIFO is completely empty, then by
1436 		 * definition it is more than half empty.
1437 		 *
1438 		 * For read, check for data available.
1439 		 */
1440 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1441 			break;
1442 
1443 		if (!sg_miter_next(sg_miter))
1444 			break;
1445 
1446 		buffer = sg_miter->addr;
1447 		remain = sg_miter->length;
1448 
1449 		len = 0;
1450 		if (status & MCI_RXACTIVE)
1451 			len = mmci_pio_read(host, buffer, remain);
1452 		if (status & MCI_TXACTIVE)
1453 			len = mmci_pio_write(host, buffer, remain, status);
1454 
1455 		sg_miter->consumed = len;
1456 
1457 		host->size -= len;
1458 		remain -= len;
1459 
1460 		if (remain)
1461 			break;
1462 
1463 		status = readl(base + MMCISTATUS);
1464 	} while (1);
1465 
1466 	sg_miter_stop(sg_miter);
1467 
1468 	/*
1469 	 * If we have less than the fifo 'half-full' threshold to transfer,
1470 	 * trigger a PIO interrupt as soon as any data is available.
1471 	 */
1472 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1473 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1474 
1475 	/*
1476 	 * If we run out of data, disable the data IRQs; this
1477 	 * prevents a race where the FIFO becomes empty before
1478 	 * the chip itself has disabled the data path, and
1479 	 * stops us racing with our data end IRQ.
1480 	 */
1481 	if (host->size == 0) {
1482 		mmci_set_mask1(host, 0);
1483 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1484 	}
1485 
1486 	return IRQ_HANDLED;
1487 }
1488 
1489 /*
1490  * Handle completion of command and data transfers.
1491  */
1492 static irqreturn_t mmci_irq(int irq, void *dev_id)
1493 {
1494 	struct mmci_host *host = dev_id;
1495 	u32 status;
1496 	int ret = 0;
1497 
1498 	spin_lock(&host->lock);
1499 
1500 	do {
1501 		status = readl(host->base + MMCISTATUS);
1502 
1503 		if (host->singleirq) {
1504 			if (status & host->mask1_reg)
1505 				mmci_pio_irq(irq, dev_id);
1506 
1507 			status &= ~host->variant->irq_pio_mask;
1508 		}
1509 
1510 		/*
1511 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1512 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1513 		 * detection variant is handled. Considering the HW seems to be
1514 		 * triggering the IRQ on both edges while monitoring DAT0 for
1515 		 * busy completion and that same status bit is used to monitor
1516 		 * start and end of busy detection, special care must be taken
1517 		 * to make sure that both start and end interrupts are always
1518 		 * cleared one after the other.
1519 		 */
1520 		status &= readl(host->base + MMCIMASK0);
1521 		if (host->variant->busy_detect)
1522 			writel(status & ~host->variant->busy_detect_mask,
1523 			       host->base + MMCICLEAR);
1524 		else
1525 			writel(status, host->base + MMCICLEAR);
1526 
1527 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1528 
1529 		if (host->variant->reversed_irq_handling) {
1530 			mmci_data_irq(host, host->data, status);
1531 			mmci_cmd_irq(host, host->cmd, status);
1532 		} else {
1533 			mmci_cmd_irq(host, host->cmd, status);
1534 			mmci_data_irq(host, host->data, status);
1535 		}
1536 
1537 		/*
1538 		 * Busy detection has been handled by mmci_cmd_irq() above.
1539 		 * Clear the status bit to prevent polling in IRQ context.
1540 		 */
1541 		if (host->variant->busy_detect_flag)
1542 			status &= ~host->variant->busy_detect_flag;
1543 
1544 		ret = 1;
1545 	} while (status);
1546 
1547 	spin_unlock(&host->lock);
1548 
1549 	return IRQ_RETVAL(ret);
1550 }
1551 
1552 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1553 {
1554 	struct mmci_host *host = mmc_priv(mmc);
1555 	unsigned long flags;
1556 
1557 	WARN_ON(host->mrq != NULL);
1558 
1559 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1560 	if (mrq->cmd->error) {
1561 		mmc_request_done(mmc, mrq);
1562 		return;
1563 	}
1564 
1565 	spin_lock_irqsave(&host->lock, flags);
1566 
1567 	host->mrq = mrq;
1568 
1569 	if (mrq->data)
1570 		mmci_get_next_data(host, mrq->data);
1571 
1572 	if (mrq->data &&
1573 	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1574 		mmci_start_data(host, mrq->data);
1575 
1576 	if (mrq->sbc)
1577 		mmci_start_command(host, mrq->sbc, 0);
1578 	else
1579 		mmci_start_command(host, mrq->cmd, 0);
1580 
1581 	spin_unlock_irqrestore(&host->lock, flags);
1582 }
1583 
1584 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1585 {
1586 	struct mmci_host *host = mmc_priv(mmc);
1587 	struct variant_data *variant = host->variant;
1588 	u32 pwr = 0;
1589 	unsigned long flags;
1590 	int ret;
1591 
1592 	if (host->plat->ios_handler &&
1593 		host->plat->ios_handler(mmc_dev(mmc), ios))
1594 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1595 
1596 	switch (ios->power_mode) {
1597 	case MMC_POWER_OFF:
1598 		if (!IS_ERR(mmc->supply.vmmc))
1599 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1600 
1601 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1602 			regulator_disable(mmc->supply.vqmmc);
1603 			host->vqmmc_enabled = false;
1604 		}
1605 
1606 		break;
1607 	case MMC_POWER_UP:
1608 		if (!IS_ERR(mmc->supply.vmmc))
1609 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1610 
1611 		/*
1612 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1613 		 * and instead uses MCI_PWR_ON so apply whatever value is
1614 		 * configured in the variant data.
1615 		 */
1616 		pwr |= variant->pwrreg_powerup;
1617 
1618 		break;
1619 	case MMC_POWER_ON:
1620 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1621 			ret = regulator_enable(mmc->supply.vqmmc);
1622 			if (ret < 0)
1623 				dev_err(mmc_dev(mmc),
1624 					"failed to enable vqmmc regulator\n");
1625 			else
1626 				host->vqmmc_enabled = true;
1627 		}
1628 
1629 		pwr |= MCI_PWR_ON;
1630 		break;
1631 	}
1632 
1633 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1634 		/*
1635 		 * The ST Micro variant has some additional bits
1636 		 * indicating signal direction for the signals in
1637 		 * the SD/MMC bus and feedback-clock usage.
1638 		 */
1639 		pwr |= host->pwr_reg_add;
1640 
1641 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1642 			pwr &= ~MCI_ST_DATA74DIREN;
1643 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1644 			pwr &= (~MCI_ST_DATA74DIREN &
1645 				~MCI_ST_DATA31DIREN &
1646 				~MCI_ST_DATA2DIREN);
1647 	}
1648 
1649 	if (variant->opendrain) {
1650 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1651 			pwr |= variant->opendrain;
1652 	} else {
1653 		/*
1654 		 * If the variant cannot configure the pads by its own, then we
1655 		 * expect the pinctrl to be able to do that for us
1656 		 */
1657 		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1658 			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1659 		else
1660 			pinctrl_select_state(host->pinctrl, host->pins_default);
1661 	}
1662 
1663 	/*
1664 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1665 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1666 	 */
1667 	if (!ios->clock && variant->pwrreg_clkgate)
1668 		pwr &= ~MCI_PWR_ON;
1669 
1670 	if (host->variant->explicit_mclk_control &&
1671 	    ios->clock != host->clock_cache) {
1672 		ret = clk_set_rate(host->clk, ios->clock);
1673 		if (ret < 0)
1674 			dev_err(mmc_dev(host->mmc),
1675 				"Error setting clock rate (%d)\n", ret);
1676 		else
1677 			host->mclk = clk_get_rate(host->clk);
1678 	}
1679 	host->clock_cache = ios->clock;
1680 
1681 	spin_lock_irqsave(&host->lock, flags);
1682 
1683 	if (host->ops && host->ops->set_clkreg)
1684 		host->ops->set_clkreg(host, ios->clock);
1685 	else
1686 		mmci_set_clkreg(host, ios->clock);
1687 
1688 	if (host->ops && host->ops->set_pwrreg)
1689 		host->ops->set_pwrreg(host, pwr);
1690 	else
1691 		mmci_write_pwrreg(host, pwr);
1692 
1693 	mmci_reg_delay(host);
1694 
1695 	spin_unlock_irqrestore(&host->lock, flags);
1696 }
1697 
1698 static int mmci_get_cd(struct mmc_host *mmc)
1699 {
1700 	struct mmci_host *host = mmc_priv(mmc);
1701 	struct mmci_platform_data *plat = host->plat;
1702 	unsigned int status = mmc_gpio_get_cd(mmc);
1703 
1704 	if (status == -ENOSYS) {
1705 		if (!plat->status)
1706 			return 1; /* Assume always present */
1707 
1708 		status = plat->status(mmc_dev(host->mmc));
1709 	}
1710 	return status;
1711 }
1712 
1713 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1714 {
1715 	int ret = 0;
1716 
1717 	if (!IS_ERR(mmc->supply.vqmmc)) {
1718 
1719 		switch (ios->signal_voltage) {
1720 		case MMC_SIGNAL_VOLTAGE_330:
1721 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1722 						2700000, 3600000);
1723 			break;
1724 		case MMC_SIGNAL_VOLTAGE_180:
1725 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1726 						1700000, 1950000);
1727 			break;
1728 		case MMC_SIGNAL_VOLTAGE_120:
1729 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1730 						1100000, 1300000);
1731 			break;
1732 		}
1733 
1734 		if (ret)
1735 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1736 	}
1737 
1738 	return ret;
1739 }
1740 
1741 static struct mmc_host_ops mmci_ops = {
1742 	.request	= mmci_request,
1743 	.pre_req	= mmci_pre_request,
1744 	.post_req	= mmci_post_request,
1745 	.set_ios	= mmci_set_ios,
1746 	.get_ro		= mmc_gpio_get_ro,
1747 	.get_cd		= mmci_get_cd,
1748 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1749 };
1750 
1751 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1752 {
1753 	struct mmci_host *host = mmc_priv(mmc);
1754 	int ret = mmc_of_parse(mmc);
1755 
1756 	if (ret)
1757 		return ret;
1758 
1759 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1760 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1761 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1762 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1763 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1764 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1765 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1766 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1767 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1768 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1769 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1770 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1771 	if (of_get_property(np, "st,sig-dir", NULL))
1772 		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1773 	if (of_get_property(np, "st,neg-edge", NULL))
1774 		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1775 	if (of_get_property(np, "st,use-ckin", NULL))
1776 		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1777 
1778 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1779 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1780 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1781 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1782 
1783 	return 0;
1784 }
1785 
1786 static int mmci_probe(struct amba_device *dev,
1787 	const struct amba_id *id)
1788 {
1789 	struct mmci_platform_data *plat = dev->dev.platform_data;
1790 	struct device_node *np = dev->dev.of_node;
1791 	struct variant_data *variant = id->data;
1792 	struct mmci_host *host;
1793 	struct mmc_host *mmc;
1794 	int ret;
1795 
1796 	/* Must have platform data or Device Tree. */
1797 	if (!plat && !np) {
1798 		dev_err(&dev->dev, "No plat data or DT found\n");
1799 		return -EINVAL;
1800 	}
1801 
1802 	if (!plat) {
1803 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1804 		if (!plat)
1805 			return -ENOMEM;
1806 	}
1807 
1808 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1809 	if (!mmc)
1810 		return -ENOMEM;
1811 
1812 	ret = mmci_of_parse(np, mmc);
1813 	if (ret)
1814 		goto host_free;
1815 
1816 	host = mmc_priv(mmc);
1817 	host->mmc = mmc;
1818 
1819 	/*
1820 	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1821 	 * pins can be set accordingly using pinctrl
1822 	 */
1823 	if (!variant->opendrain) {
1824 		host->pinctrl = devm_pinctrl_get(&dev->dev);
1825 		if (IS_ERR(host->pinctrl)) {
1826 			dev_err(&dev->dev, "failed to get pinctrl");
1827 			ret = PTR_ERR(host->pinctrl);
1828 			goto host_free;
1829 		}
1830 
1831 		host->pins_default = pinctrl_lookup_state(host->pinctrl,
1832 							  PINCTRL_STATE_DEFAULT);
1833 		if (IS_ERR(host->pins_default)) {
1834 			dev_err(mmc_dev(mmc), "Can't select default pins\n");
1835 			ret = PTR_ERR(host->pins_default);
1836 			goto host_free;
1837 		}
1838 
1839 		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1840 							    MMCI_PINCTRL_STATE_OPENDRAIN);
1841 		if (IS_ERR(host->pins_opendrain)) {
1842 			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1843 			ret = PTR_ERR(host->pins_opendrain);
1844 			goto host_free;
1845 		}
1846 	}
1847 
1848 	host->hw_designer = amba_manf(dev);
1849 	host->hw_revision = amba_rev(dev);
1850 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1851 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1852 
1853 	host->clk = devm_clk_get(&dev->dev, NULL);
1854 	if (IS_ERR(host->clk)) {
1855 		ret = PTR_ERR(host->clk);
1856 		goto host_free;
1857 	}
1858 
1859 	ret = clk_prepare_enable(host->clk);
1860 	if (ret)
1861 		goto host_free;
1862 
1863 	if (variant->qcom_fifo)
1864 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1865 	else
1866 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1867 
1868 	host->plat = plat;
1869 	host->variant = variant;
1870 	host->mclk = clk_get_rate(host->clk);
1871 	/*
1872 	 * According to the spec, mclk is max 100 MHz,
1873 	 * so we try to adjust the clock down to this,
1874 	 * (if possible).
1875 	 */
1876 	if (host->mclk > variant->f_max) {
1877 		ret = clk_set_rate(host->clk, variant->f_max);
1878 		if (ret < 0)
1879 			goto clk_disable;
1880 		host->mclk = clk_get_rate(host->clk);
1881 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1882 			host->mclk);
1883 	}
1884 
1885 	host->phybase = dev->res.start;
1886 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1887 	if (IS_ERR(host->base)) {
1888 		ret = PTR_ERR(host->base);
1889 		goto clk_disable;
1890 	}
1891 
1892 	if (variant->init)
1893 		variant->init(host);
1894 
1895 	/*
1896 	 * The ARM and ST versions of the block have slightly different
1897 	 * clock divider equations which means that the minimum divider
1898 	 * differs too.
1899 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1900 	 */
1901 	if (variant->st_clkdiv)
1902 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1903 	else if (variant->stm32_clkdiv)
1904 		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1905 	else if (variant->explicit_mclk_control)
1906 		mmc->f_min = clk_round_rate(host->clk, 100000);
1907 	else
1908 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1909 	/*
1910 	 * If no maximum operating frequency is supplied, fall back to use
1911 	 * the module parameter, which has a (low) default value in case it
1912 	 * is not specified. Either value must not exceed the clock rate into
1913 	 * the block, of course.
1914 	 */
1915 	if (mmc->f_max)
1916 		mmc->f_max = variant->explicit_mclk_control ?
1917 				min(variant->f_max, mmc->f_max) :
1918 				min(host->mclk, mmc->f_max);
1919 	else
1920 		mmc->f_max = variant->explicit_mclk_control ?
1921 				fmax : min(host->mclk, fmax);
1922 
1923 
1924 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1925 
1926 	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1927 	if (IS_ERR(host->rst)) {
1928 		ret = PTR_ERR(host->rst);
1929 		goto clk_disable;
1930 	}
1931 
1932 	/* Get regulators and the supported OCR mask */
1933 	ret = mmc_regulator_get_supply(mmc);
1934 	if (ret)
1935 		goto clk_disable;
1936 
1937 	if (!mmc->ocr_avail)
1938 		mmc->ocr_avail = plat->ocr_mask;
1939 	else if (plat->ocr_mask)
1940 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1941 
1942 	/* We support these capabilities. */
1943 	mmc->caps |= MMC_CAP_CMD23;
1944 
1945 	/*
1946 	 * Enable busy detection.
1947 	 */
1948 	if (variant->busy_detect) {
1949 		mmci_ops.card_busy = mmci_card_busy;
1950 		/*
1951 		 * Not all variants have a flag to enable busy detection
1952 		 * in the DPSM, but if they do, set it here.
1953 		 */
1954 		if (variant->busy_dpsm_flag)
1955 			mmci_write_datactrlreg(host,
1956 					       host->variant->busy_dpsm_flag);
1957 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1958 		mmc->max_busy_timeout = 0;
1959 	}
1960 
1961 	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1962 	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1963 	host->stop_abort.arg = 0;
1964 	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1965 
1966 	mmc->ops = &mmci_ops;
1967 
1968 	/* We support these PM capabilities. */
1969 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1970 
1971 	/*
1972 	 * We can do SGIO
1973 	 */
1974 	mmc->max_segs = NR_SG;
1975 
1976 	/*
1977 	 * Since only a certain number of bits are valid in the data length
1978 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1979 	 * single request.
1980 	 */
1981 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1982 
1983 	/*
1984 	 * Set the maximum segment size.  Since we aren't doing DMA
1985 	 * (yet) we are only limited by the data length register.
1986 	 */
1987 	mmc->max_seg_size = mmc->max_req_size;
1988 
1989 	/*
1990 	 * Block size can be up to 2048 bytes, but must be a power of two.
1991 	 */
1992 	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1993 
1994 	/*
1995 	 * Limit the number of blocks transferred so that we don't overflow
1996 	 * the maximum request size.
1997 	 */
1998 	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
1999 
2000 	spin_lock_init(&host->lock);
2001 
2002 	writel(0, host->base + MMCIMASK0);
2003 
2004 	if (variant->mmcimask1)
2005 		writel(0, host->base + MMCIMASK1);
2006 
2007 	writel(0xfff, host->base + MMCICLEAR);
2008 
2009 	/*
2010 	 * If:
2011 	 * - not using DT but using a descriptor table, or
2012 	 * - using a table of descriptors ALONGSIDE DT, or
2013 	 * look up these descriptors named "cd" and "wp" right here, fail
2014 	 * silently of these do not exist
2015 	 */
2016 	if (!np) {
2017 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2018 		if (ret == -EPROBE_DEFER)
2019 			goto clk_disable;
2020 
2021 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2022 		if (ret == -EPROBE_DEFER)
2023 			goto clk_disable;
2024 	}
2025 
2026 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2027 			DRIVER_NAME " (cmd)", host);
2028 	if (ret)
2029 		goto clk_disable;
2030 
2031 	if (!dev->irq[1])
2032 		host->singleirq = true;
2033 	else {
2034 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2035 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2036 		if (ret)
2037 			goto clk_disable;
2038 	}
2039 
2040 	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2041 
2042 	amba_set_drvdata(dev, mmc);
2043 
2044 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2045 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2046 		 amba_rev(dev), (unsigned long long)dev->res.start,
2047 		 dev->irq[0], dev->irq[1]);
2048 
2049 	mmci_dma_setup(host);
2050 
2051 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2052 	pm_runtime_use_autosuspend(&dev->dev);
2053 
2054 	mmc_add_host(mmc);
2055 
2056 	pm_runtime_put(&dev->dev);
2057 	return 0;
2058 
2059  clk_disable:
2060 	clk_disable_unprepare(host->clk);
2061  host_free:
2062 	mmc_free_host(mmc);
2063 	return ret;
2064 }
2065 
2066 static int mmci_remove(struct amba_device *dev)
2067 {
2068 	struct mmc_host *mmc = amba_get_drvdata(dev);
2069 
2070 	if (mmc) {
2071 		struct mmci_host *host = mmc_priv(mmc);
2072 		struct variant_data *variant = host->variant;
2073 
2074 		/*
2075 		 * Undo pm_runtime_put() in probe.  We use the _sync
2076 		 * version here so that we can access the primecell.
2077 		 */
2078 		pm_runtime_get_sync(&dev->dev);
2079 
2080 		mmc_remove_host(mmc);
2081 
2082 		writel(0, host->base + MMCIMASK0);
2083 
2084 		if (variant->mmcimask1)
2085 			writel(0, host->base + MMCIMASK1);
2086 
2087 		writel(0, host->base + MMCICOMMAND);
2088 		writel(0, host->base + MMCIDATACTRL);
2089 
2090 		mmci_dma_release(host);
2091 		clk_disable_unprepare(host->clk);
2092 		mmc_free_host(mmc);
2093 	}
2094 
2095 	return 0;
2096 }
2097 
2098 #ifdef CONFIG_PM
2099 static void mmci_save(struct mmci_host *host)
2100 {
2101 	unsigned long flags;
2102 
2103 	spin_lock_irqsave(&host->lock, flags);
2104 
2105 	writel(0, host->base + MMCIMASK0);
2106 	if (host->variant->pwrreg_nopower) {
2107 		writel(0, host->base + MMCIDATACTRL);
2108 		writel(0, host->base + MMCIPOWER);
2109 		writel(0, host->base + MMCICLOCK);
2110 	}
2111 	mmci_reg_delay(host);
2112 
2113 	spin_unlock_irqrestore(&host->lock, flags);
2114 }
2115 
2116 static void mmci_restore(struct mmci_host *host)
2117 {
2118 	unsigned long flags;
2119 
2120 	spin_lock_irqsave(&host->lock, flags);
2121 
2122 	if (host->variant->pwrreg_nopower) {
2123 		writel(host->clk_reg, host->base + MMCICLOCK);
2124 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2125 		writel(host->pwr_reg, host->base + MMCIPOWER);
2126 	}
2127 	writel(MCI_IRQENABLE | host->variant->start_err,
2128 	       host->base + MMCIMASK0);
2129 	mmci_reg_delay(host);
2130 
2131 	spin_unlock_irqrestore(&host->lock, flags);
2132 }
2133 
2134 static int mmci_runtime_suspend(struct device *dev)
2135 {
2136 	struct amba_device *adev = to_amba_device(dev);
2137 	struct mmc_host *mmc = amba_get_drvdata(adev);
2138 
2139 	if (mmc) {
2140 		struct mmci_host *host = mmc_priv(mmc);
2141 		pinctrl_pm_select_sleep_state(dev);
2142 		mmci_save(host);
2143 		clk_disable_unprepare(host->clk);
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static int mmci_runtime_resume(struct device *dev)
2150 {
2151 	struct amba_device *adev = to_amba_device(dev);
2152 	struct mmc_host *mmc = amba_get_drvdata(adev);
2153 
2154 	if (mmc) {
2155 		struct mmci_host *host = mmc_priv(mmc);
2156 		clk_prepare_enable(host->clk);
2157 		mmci_restore(host);
2158 		pinctrl_pm_select_default_state(dev);
2159 	}
2160 
2161 	return 0;
2162 }
2163 #endif
2164 
2165 static const struct dev_pm_ops mmci_dev_pm_ops = {
2166 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2167 				pm_runtime_force_resume)
2168 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2169 };
2170 
2171 static const struct amba_id mmci_ids[] = {
2172 	{
2173 		.id	= 0x00041180,
2174 		.mask	= 0xff0fffff,
2175 		.data	= &variant_arm,
2176 	},
2177 	{
2178 		.id	= 0x01041180,
2179 		.mask	= 0xff0fffff,
2180 		.data	= &variant_arm_extended_fifo,
2181 	},
2182 	{
2183 		.id	= 0x02041180,
2184 		.mask	= 0xff0fffff,
2185 		.data	= &variant_arm_extended_fifo_hwfc,
2186 	},
2187 	{
2188 		.id	= 0x00041181,
2189 		.mask	= 0x000fffff,
2190 		.data	= &variant_arm,
2191 	},
2192 	/* ST Micro variants */
2193 	{
2194 		.id     = 0x00180180,
2195 		.mask   = 0x00ffffff,
2196 		.data	= &variant_u300,
2197 	},
2198 	{
2199 		.id     = 0x10180180,
2200 		.mask   = 0xf0ffffff,
2201 		.data	= &variant_nomadik,
2202 	},
2203 	{
2204 		.id     = 0x00280180,
2205 		.mask   = 0x00ffffff,
2206 		.data	= &variant_nomadik,
2207 	},
2208 	{
2209 		.id     = 0x00480180,
2210 		.mask   = 0xf0ffffff,
2211 		.data	= &variant_ux500,
2212 	},
2213 	{
2214 		.id     = 0x10480180,
2215 		.mask   = 0xf0ffffff,
2216 		.data	= &variant_ux500v2,
2217 	},
2218 	{
2219 		.id     = 0x00880180,
2220 		.mask   = 0x00ffffff,
2221 		.data	= &variant_stm32,
2222 	},
2223 	{
2224 		.id     = 0x10153180,
2225 		.mask	= 0xf0ffffff,
2226 		.data	= &variant_stm32_sdmmc,
2227 	},
2228 	/* Qualcomm variants */
2229 	{
2230 		.id     = 0x00051180,
2231 		.mask	= 0x000fffff,
2232 		.data	= &variant_qcom,
2233 	},
2234 	{ 0, 0 },
2235 };
2236 
2237 MODULE_DEVICE_TABLE(amba, mmci_ids);
2238 
2239 static struct amba_driver mmci_driver = {
2240 	.drv		= {
2241 		.name	= DRIVER_NAME,
2242 		.pm	= &mmci_dev_pm_ops,
2243 	},
2244 	.probe		= mmci_probe,
2245 	.remove		= mmci_remove,
2246 	.id_table	= mmci_ids,
2247 };
2248 
2249 module_amba_driver(mmci_driver);
2250 
2251 module_param(fmax, uint, 0444);
2252 
2253 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2254 MODULE_LICENSE("GPL");
2255