xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 49ac215e)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 
33 #include <asm/div64.h>
34 #include <asm/io.h>
35 #include <asm/sizes.h>
36 
37 #include "mmci.h"
38 
39 #define DRIVER_NAME "mmci-pl18x"
40 
41 static unsigned int fmax = 515633;
42 
43 /**
44  * struct variant_data - MMCI variant-specific quirks
45  * @clkreg: default value for MCICLOCK register
46  * @clkreg_enable: enable value for MMCICLOCK register
47  * @datalength_bits: number of bits in the MMCIDATALENGTH register
48  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49  *	      is asserted (likewise for RX)
50  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51  *		  is asserted (likewise for RX)
52  * @sdio: variant supports SDIO
53  * @st_clkdiv: true if using a ST-specific clock divider algorithm
54  */
55 struct variant_data {
56 	unsigned int		clkreg;
57 	unsigned int		clkreg_enable;
58 	unsigned int		datalength_bits;
59 	unsigned int		fifosize;
60 	unsigned int		fifohalfsize;
61 	bool			sdio;
62 	bool			st_clkdiv;
63 };
64 
65 static struct variant_data variant_arm = {
66 	.fifosize		= 16 * 4,
67 	.fifohalfsize		= 8 * 4,
68 	.datalength_bits	= 16,
69 };
70 
71 static struct variant_data variant_arm_extended_fifo = {
72 	.fifosize		= 128 * 4,
73 	.fifohalfsize		= 64 * 4,
74 	.datalength_bits	= 16,
75 };
76 
77 static struct variant_data variant_u300 = {
78 	.fifosize		= 16 * 4,
79 	.fifohalfsize		= 8 * 4,
80 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
81 	.datalength_bits	= 16,
82 	.sdio			= true,
83 };
84 
85 static struct variant_data variant_ux500 = {
86 	.fifosize		= 30 * 4,
87 	.fifohalfsize		= 8 * 4,
88 	.clkreg			= MCI_CLK_ENABLE,
89 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
90 	.datalength_bits	= 24,
91 	.sdio			= true,
92 	.st_clkdiv		= true,
93 };
94 
95 /*
96  * This must be called with host->lock held
97  */
98 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
99 {
100 	struct variant_data *variant = host->variant;
101 	u32 clk = variant->clkreg;
102 
103 	if (desired) {
104 		if (desired >= host->mclk) {
105 			clk = MCI_CLK_BYPASS;
106 			host->cclk = host->mclk;
107 		} else if (variant->st_clkdiv) {
108 			/*
109 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
110 			 * => clkdiv = (mclk / f) - 2
111 			 * Round the divider up so we don't exceed the max
112 			 * frequency
113 			 */
114 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
115 			if (clk >= 256)
116 				clk = 255;
117 			host->cclk = host->mclk / (clk + 2);
118 		} else {
119 			/*
120 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
121 			 * => clkdiv = mclk / (2 * f) - 1
122 			 */
123 			clk = host->mclk / (2 * desired) - 1;
124 			if (clk >= 256)
125 				clk = 255;
126 			host->cclk = host->mclk / (2 * (clk + 1));
127 		}
128 
129 		clk |= variant->clkreg_enable;
130 		clk |= MCI_CLK_ENABLE;
131 		/* This hasn't proven to be worthwhile */
132 		/* clk |= MCI_CLK_PWRSAVE; */
133 	}
134 
135 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
136 		clk |= MCI_4BIT_BUS;
137 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
138 		clk |= MCI_ST_8BIT_BUS;
139 
140 	writel(clk, host->base + MMCICLOCK);
141 }
142 
143 static void
144 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
145 {
146 	writel(0, host->base + MMCICOMMAND);
147 
148 	BUG_ON(host->data);
149 
150 	host->mrq = NULL;
151 	host->cmd = NULL;
152 
153 	/*
154 	 * Need to drop the host lock here; mmc_request_done may call
155 	 * back into the driver...
156 	 */
157 	spin_unlock(&host->lock);
158 	mmc_request_done(host->mmc, mrq);
159 	spin_lock(&host->lock);
160 }
161 
162 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
163 {
164 	void __iomem *base = host->base;
165 
166 	if (host->singleirq) {
167 		unsigned int mask0 = readl(base + MMCIMASK0);
168 
169 		mask0 &= ~MCI_IRQ1MASK;
170 		mask0 |= mask;
171 
172 		writel(mask0, base + MMCIMASK0);
173 	}
174 
175 	writel(mask, base + MMCIMASK1);
176 }
177 
178 static void mmci_stop_data(struct mmci_host *host)
179 {
180 	writel(0, host->base + MMCIDATACTRL);
181 	mmci_set_mask1(host, 0);
182 	host->data = NULL;
183 }
184 
185 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
186 {
187 	unsigned int flags = SG_MITER_ATOMIC;
188 
189 	if (data->flags & MMC_DATA_READ)
190 		flags |= SG_MITER_TO_SG;
191 	else
192 		flags |= SG_MITER_FROM_SG;
193 
194 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
195 }
196 
197 /*
198  * All the DMA operation mode stuff goes inside this ifdef.
199  * This assumes that you have a generic DMA device interface,
200  * no custom DMA interfaces are supported.
201  */
202 #ifdef CONFIG_DMA_ENGINE
203 static void __devinit mmci_dma_setup(struct mmci_host *host)
204 {
205 	struct mmci_platform_data *plat = host->plat;
206 	const char *rxname, *txname;
207 	dma_cap_mask_t mask;
208 
209 	if (!plat || !plat->dma_filter) {
210 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
211 		return;
212 	}
213 
214 	/* Try to acquire a generic DMA engine slave channel */
215 	dma_cap_zero(mask);
216 	dma_cap_set(DMA_SLAVE, mask);
217 
218 	/*
219 	 * If only an RX channel is specified, the driver will
220 	 * attempt to use it bidirectionally, however if it is
221 	 * is specified but cannot be located, DMA will be disabled.
222 	 */
223 	if (plat->dma_rx_param) {
224 		host->dma_rx_channel = dma_request_channel(mask,
225 							   plat->dma_filter,
226 							   plat->dma_rx_param);
227 		/* E.g if no DMA hardware is present */
228 		if (!host->dma_rx_channel)
229 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
230 	}
231 
232 	if (plat->dma_tx_param) {
233 		host->dma_tx_channel = dma_request_channel(mask,
234 							   plat->dma_filter,
235 							   plat->dma_tx_param);
236 		if (!host->dma_tx_channel)
237 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
238 	} else {
239 		host->dma_tx_channel = host->dma_rx_channel;
240 	}
241 
242 	if (host->dma_rx_channel)
243 		rxname = dma_chan_name(host->dma_rx_channel);
244 	else
245 		rxname = "none";
246 
247 	if (host->dma_tx_channel)
248 		txname = dma_chan_name(host->dma_tx_channel);
249 	else
250 		txname = "none";
251 
252 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
253 		 rxname, txname);
254 
255 	/*
256 	 * Limit the maximum segment size in any SG entry according to
257 	 * the parameters of the DMA engine device.
258 	 */
259 	if (host->dma_tx_channel) {
260 		struct device *dev = host->dma_tx_channel->device->dev;
261 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
262 
263 		if (max_seg_size < host->mmc->max_seg_size)
264 			host->mmc->max_seg_size = max_seg_size;
265 	}
266 	if (host->dma_rx_channel) {
267 		struct device *dev = host->dma_rx_channel->device->dev;
268 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
269 
270 		if (max_seg_size < host->mmc->max_seg_size)
271 			host->mmc->max_seg_size = max_seg_size;
272 	}
273 }
274 
275 /*
276  * This is used in __devinit or __devexit so inline it
277  * so it can be discarded.
278  */
279 static inline void mmci_dma_release(struct mmci_host *host)
280 {
281 	struct mmci_platform_data *plat = host->plat;
282 
283 	if (host->dma_rx_channel)
284 		dma_release_channel(host->dma_rx_channel);
285 	if (host->dma_tx_channel && plat->dma_tx_param)
286 		dma_release_channel(host->dma_tx_channel);
287 	host->dma_rx_channel = host->dma_tx_channel = NULL;
288 }
289 
290 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
291 {
292 	struct dma_chan *chan = host->dma_current;
293 	enum dma_data_direction dir;
294 	u32 status;
295 	int i;
296 
297 	/* Wait up to 1ms for the DMA to complete */
298 	for (i = 0; ; i++) {
299 		status = readl(host->base + MMCISTATUS);
300 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
301 			break;
302 		udelay(10);
303 	}
304 
305 	/*
306 	 * Check to see whether we still have some data left in the FIFO -
307 	 * this catches DMA controllers which are unable to monitor the
308 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
309 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
310 	 */
311 	if (status & MCI_RXDATAAVLBLMASK) {
312 		dmaengine_terminate_all(chan);
313 		if (!data->error)
314 			data->error = -EIO;
315 	}
316 
317 	if (data->flags & MMC_DATA_WRITE) {
318 		dir = DMA_TO_DEVICE;
319 	} else {
320 		dir = DMA_FROM_DEVICE;
321 	}
322 
323 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
324 
325 	/*
326 	 * Use of DMA with scatter-gather is impossible.
327 	 * Give up with DMA and switch back to PIO mode.
328 	 */
329 	if (status & MCI_RXDATAAVLBLMASK) {
330 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
331 		mmci_dma_release(host);
332 	}
333 }
334 
335 static void mmci_dma_data_error(struct mmci_host *host)
336 {
337 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
338 	dmaengine_terminate_all(host->dma_current);
339 }
340 
341 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
342 {
343 	struct variant_data *variant = host->variant;
344 	struct dma_slave_config conf = {
345 		.src_addr = host->phybase + MMCIFIFO,
346 		.dst_addr = host->phybase + MMCIFIFO,
347 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
348 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
349 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
350 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
351 	};
352 	struct mmc_data *data = host->data;
353 	struct dma_chan *chan;
354 	struct dma_device *device;
355 	struct dma_async_tx_descriptor *desc;
356 	int nr_sg;
357 
358 	host->dma_current = NULL;
359 
360 	if (data->flags & MMC_DATA_READ) {
361 		conf.direction = DMA_FROM_DEVICE;
362 		chan = host->dma_rx_channel;
363 	} else {
364 		conf.direction = DMA_TO_DEVICE;
365 		chan = host->dma_tx_channel;
366 	}
367 
368 	/* If there's no DMA channel, fall back to PIO */
369 	if (!chan)
370 		return -EINVAL;
371 
372 	/* If less than or equal to the fifo size, don't bother with DMA */
373 	if (host->size <= variant->fifosize)
374 		return -EINVAL;
375 
376 	device = chan->device;
377 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
378 	if (nr_sg == 0)
379 		return -EINVAL;
380 
381 	dmaengine_slave_config(chan, &conf);
382 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
383 					    conf.direction, DMA_CTRL_ACK);
384 	if (!desc)
385 		goto unmap_exit;
386 
387 	/* Okay, go for it. */
388 	host->dma_current = chan;
389 
390 	dev_vdbg(mmc_dev(host->mmc),
391 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
392 		 data->sg_len, data->blksz, data->blocks, data->flags);
393 	dmaengine_submit(desc);
394 	dma_async_issue_pending(chan);
395 
396 	datactrl |= MCI_DPSM_DMAENABLE;
397 
398 	/* Trigger the DMA transfer */
399 	writel(datactrl, host->base + MMCIDATACTRL);
400 
401 	/*
402 	 * Let the MMCI say when the data is ended and it's time
403 	 * to fire next DMA request. When that happens, MMCI will
404 	 * call mmci_data_end()
405 	 */
406 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
407 	       host->base + MMCIMASK0);
408 	return 0;
409 
410 unmap_exit:
411 	dmaengine_terminate_all(chan);
412 	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
413 	return -ENOMEM;
414 }
415 #else
416 /* Blank functions if the DMA engine is not available */
417 static inline void mmci_dma_setup(struct mmci_host *host)
418 {
419 }
420 
421 static inline void mmci_dma_release(struct mmci_host *host)
422 {
423 }
424 
425 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
426 {
427 }
428 
429 static inline void mmci_dma_data_error(struct mmci_host *host)
430 {
431 }
432 
433 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
434 {
435 	return -ENOSYS;
436 }
437 #endif
438 
439 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
440 {
441 	struct variant_data *variant = host->variant;
442 	unsigned int datactrl, timeout, irqmask;
443 	unsigned long long clks;
444 	void __iomem *base;
445 	int blksz_bits;
446 
447 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
448 		data->blksz, data->blocks, data->flags);
449 
450 	host->data = data;
451 	host->size = data->blksz * data->blocks;
452 	data->bytes_xfered = 0;
453 
454 	clks = (unsigned long long)data->timeout_ns * host->cclk;
455 	do_div(clks, 1000000000UL);
456 
457 	timeout = data->timeout_clks + (unsigned int)clks;
458 
459 	base = host->base;
460 	writel(timeout, base + MMCIDATATIMER);
461 	writel(host->size, base + MMCIDATALENGTH);
462 
463 	blksz_bits = ffs(data->blksz) - 1;
464 	BUG_ON(1 << blksz_bits != data->blksz);
465 
466 	datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
467 
468 	if (data->flags & MMC_DATA_READ)
469 		datactrl |= MCI_DPSM_DIRECTION;
470 
471 	/*
472 	 * Attempt to use DMA operation mode, if this
473 	 * should fail, fall back to PIO mode
474 	 */
475 	if (!mmci_dma_start_data(host, datactrl))
476 		return;
477 
478 	/* IRQ mode, map the SG list for CPU reading/writing */
479 	mmci_init_sg(host, data);
480 
481 	if (data->flags & MMC_DATA_READ) {
482 		irqmask = MCI_RXFIFOHALFFULLMASK;
483 
484 		/*
485 		 * If we have less than the fifo 'half-full' threshold to
486 		 * transfer, trigger a PIO interrupt as soon as any data
487 		 * is available.
488 		 */
489 		if (host->size < variant->fifohalfsize)
490 			irqmask |= MCI_RXDATAAVLBLMASK;
491 	} else {
492 		/*
493 		 * We don't actually need to include "FIFO empty" here
494 		 * since its implicit in "FIFO half empty".
495 		 */
496 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
497 	}
498 
499 	/* The ST Micro variants has a special bit to enable SDIO */
500 	if (variant->sdio && host->mmc->card)
501 		if (mmc_card_sdio(host->mmc->card))
502 			datactrl |= MCI_ST_DPSM_SDIOEN;
503 
504 	writel(datactrl, base + MMCIDATACTRL);
505 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
506 	mmci_set_mask1(host, irqmask);
507 }
508 
509 static void
510 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
511 {
512 	void __iomem *base = host->base;
513 
514 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
515 	    cmd->opcode, cmd->arg, cmd->flags);
516 
517 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
518 		writel(0, base + MMCICOMMAND);
519 		udelay(1);
520 	}
521 
522 	c |= cmd->opcode | MCI_CPSM_ENABLE;
523 	if (cmd->flags & MMC_RSP_PRESENT) {
524 		if (cmd->flags & MMC_RSP_136)
525 			c |= MCI_CPSM_LONGRSP;
526 		c |= MCI_CPSM_RESPONSE;
527 	}
528 	if (/*interrupt*/0)
529 		c |= MCI_CPSM_INTERRUPT;
530 
531 	host->cmd = cmd;
532 
533 	writel(cmd->arg, base + MMCIARGUMENT);
534 	writel(c, base + MMCICOMMAND);
535 }
536 
537 static void
538 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
539 	      unsigned int status)
540 {
541 	/* First check for errors */
542 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
543 		u32 remain, success;
544 
545 		/* Terminate the DMA transfer */
546 		if (dma_inprogress(host))
547 			mmci_dma_data_error(host);
548 
549 		/*
550 		 * Calculate how far we are into the transfer.  Note that
551 		 * the data counter gives the number of bytes transferred
552 		 * on the MMC bus, not on the host side.  On reads, this
553 		 * can be as much as a FIFO-worth of data ahead.  This
554 		 * matters for FIFO overruns only.
555 		 */
556 		remain = readl(host->base + MMCIDATACNT);
557 		success = data->blksz * data->blocks - remain;
558 
559 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
560 			status, success);
561 		if (status & MCI_DATACRCFAIL) {
562 			/* Last block was not successful */
563 			success -= 1;
564 			data->error = -EILSEQ;
565 		} else if (status & MCI_DATATIMEOUT) {
566 			data->error = -ETIMEDOUT;
567 		} else if (status & MCI_TXUNDERRUN) {
568 			data->error = -EIO;
569 		} else if (status & MCI_RXOVERRUN) {
570 			if (success > host->variant->fifosize)
571 				success -= host->variant->fifosize;
572 			else
573 				success = 0;
574 			data->error = -EIO;
575 		}
576 		data->bytes_xfered = round_down(success, data->blksz);
577 	}
578 
579 	if (status & MCI_DATABLOCKEND)
580 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
581 
582 	if (status & MCI_DATAEND || data->error) {
583 		if (dma_inprogress(host))
584 			mmci_dma_unmap(host, data);
585 		mmci_stop_data(host);
586 
587 		if (!data->error)
588 			/* The error clause is handled above, success! */
589 			data->bytes_xfered = data->blksz * data->blocks;
590 
591 		if (!data->stop) {
592 			mmci_request_end(host, data->mrq);
593 		} else {
594 			mmci_start_command(host, data->stop, 0);
595 		}
596 	}
597 }
598 
599 static void
600 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
601 	     unsigned int status)
602 {
603 	void __iomem *base = host->base;
604 
605 	host->cmd = NULL;
606 
607 	if (status & MCI_CMDTIMEOUT) {
608 		cmd->error = -ETIMEDOUT;
609 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
610 		cmd->error = -EILSEQ;
611 	} else {
612 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
613 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
614 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
615 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
616 	}
617 
618 	if (!cmd->data || cmd->error) {
619 		if (host->data)
620 			mmci_stop_data(host);
621 		mmci_request_end(host, cmd->mrq);
622 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
623 		mmci_start_data(host, cmd->data);
624 	}
625 }
626 
627 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
628 {
629 	void __iomem *base = host->base;
630 	char *ptr = buffer;
631 	u32 status;
632 	int host_remain = host->size;
633 
634 	do {
635 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
636 
637 		if (count > remain)
638 			count = remain;
639 
640 		if (count <= 0)
641 			break;
642 
643 		readsl(base + MMCIFIFO, ptr, count >> 2);
644 
645 		ptr += count;
646 		remain -= count;
647 		host_remain -= count;
648 
649 		if (remain == 0)
650 			break;
651 
652 		status = readl(base + MMCISTATUS);
653 	} while (status & MCI_RXDATAAVLBL);
654 
655 	return ptr - buffer;
656 }
657 
658 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
659 {
660 	struct variant_data *variant = host->variant;
661 	void __iomem *base = host->base;
662 	char *ptr = buffer;
663 
664 	do {
665 		unsigned int count, maxcnt;
666 
667 		maxcnt = status & MCI_TXFIFOEMPTY ?
668 			 variant->fifosize : variant->fifohalfsize;
669 		count = min(remain, maxcnt);
670 
671 		/*
672 		 * The ST Micro variant for SDIO transfer sizes
673 		 * less then 8 bytes should have clock H/W flow
674 		 * control disabled.
675 		 */
676 		if (variant->sdio &&
677 		    mmc_card_sdio(host->mmc->card)) {
678 			if (count < 8)
679 				writel(readl(host->base + MMCICLOCK) &
680 					~variant->clkreg_enable,
681 					host->base + MMCICLOCK);
682 			else
683 				writel(readl(host->base + MMCICLOCK) |
684 					variant->clkreg_enable,
685 					host->base + MMCICLOCK);
686 		}
687 
688 		/*
689 		 * SDIO especially may want to send something that is
690 		 * not divisible by 4 (as opposed to card sectors
691 		 * etc), and the FIFO only accept full 32-bit writes.
692 		 * So compensate by adding +3 on the count, a single
693 		 * byte become a 32bit write, 7 bytes will be two
694 		 * 32bit writes etc.
695 		 */
696 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
697 
698 		ptr += count;
699 		remain -= count;
700 
701 		if (remain == 0)
702 			break;
703 
704 		status = readl(base + MMCISTATUS);
705 	} while (status & MCI_TXFIFOHALFEMPTY);
706 
707 	return ptr - buffer;
708 }
709 
710 /*
711  * PIO data transfer IRQ handler.
712  */
713 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
714 {
715 	struct mmci_host *host = dev_id;
716 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
717 	struct variant_data *variant = host->variant;
718 	void __iomem *base = host->base;
719 	unsigned long flags;
720 	u32 status;
721 
722 	status = readl(base + MMCISTATUS);
723 
724 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
725 
726 	local_irq_save(flags);
727 
728 	do {
729 		unsigned int remain, len;
730 		char *buffer;
731 
732 		/*
733 		 * For write, we only need to test the half-empty flag
734 		 * here - if the FIFO is completely empty, then by
735 		 * definition it is more than half empty.
736 		 *
737 		 * For read, check for data available.
738 		 */
739 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
740 			break;
741 
742 		if (!sg_miter_next(sg_miter))
743 			break;
744 
745 		buffer = sg_miter->addr;
746 		remain = sg_miter->length;
747 
748 		len = 0;
749 		if (status & MCI_RXACTIVE)
750 			len = mmci_pio_read(host, buffer, remain);
751 		if (status & MCI_TXACTIVE)
752 			len = mmci_pio_write(host, buffer, remain, status);
753 
754 		sg_miter->consumed = len;
755 
756 		host->size -= len;
757 		remain -= len;
758 
759 		if (remain)
760 			break;
761 
762 		status = readl(base + MMCISTATUS);
763 	} while (1);
764 
765 	sg_miter_stop(sg_miter);
766 
767 	local_irq_restore(flags);
768 
769 	/*
770 	 * If we have less than the fifo 'half-full' threshold to transfer,
771 	 * trigger a PIO interrupt as soon as any data is available.
772 	 */
773 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
774 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
775 
776 	/*
777 	 * If we run out of data, disable the data IRQs; this
778 	 * prevents a race where the FIFO becomes empty before
779 	 * the chip itself has disabled the data path, and
780 	 * stops us racing with our data end IRQ.
781 	 */
782 	if (host->size == 0) {
783 		mmci_set_mask1(host, 0);
784 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
785 	}
786 
787 	return IRQ_HANDLED;
788 }
789 
790 /*
791  * Handle completion of command and data transfers.
792  */
793 static irqreturn_t mmci_irq(int irq, void *dev_id)
794 {
795 	struct mmci_host *host = dev_id;
796 	u32 status;
797 	int ret = 0;
798 
799 	spin_lock(&host->lock);
800 
801 	do {
802 		struct mmc_command *cmd;
803 		struct mmc_data *data;
804 
805 		status = readl(host->base + MMCISTATUS);
806 
807 		if (host->singleirq) {
808 			if (status & readl(host->base + MMCIMASK1))
809 				mmci_pio_irq(irq, dev_id);
810 
811 			status &= ~MCI_IRQ1MASK;
812 		}
813 
814 		status &= readl(host->base + MMCIMASK0);
815 		writel(status, host->base + MMCICLEAR);
816 
817 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
818 
819 		data = host->data;
820 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
821 			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
822 			mmci_data_irq(host, data, status);
823 
824 		cmd = host->cmd;
825 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
826 			mmci_cmd_irq(host, cmd, status);
827 
828 		ret = 1;
829 	} while (status);
830 
831 	spin_unlock(&host->lock);
832 
833 	return IRQ_RETVAL(ret);
834 }
835 
836 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
837 {
838 	struct mmci_host *host = mmc_priv(mmc);
839 	unsigned long flags;
840 
841 	WARN_ON(host->mrq != NULL);
842 
843 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
844 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
845 			mrq->data->blksz);
846 		mrq->cmd->error = -EINVAL;
847 		mmc_request_done(mmc, mrq);
848 		return;
849 	}
850 
851 	spin_lock_irqsave(&host->lock, flags);
852 
853 	host->mrq = mrq;
854 
855 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
856 		mmci_start_data(host, mrq->data);
857 
858 	mmci_start_command(host, mrq->cmd, 0);
859 
860 	spin_unlock_irqrestore(&host->lock, flags);
861 }
862 
863 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
864 {
865 	struct mmci_host *host = mmc_priv(mmc);
866 	u32 pwr = 0;
867 	unsigned long flags;
868 	int ret;
869 
870 	switch (ios->power_mode) {
871 	case MMC_POWER_OFF:
872 		if (host->vcc)
873 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
874 		break;
875 	case MMC_POWER_UP:
876 		if (host->vcc) {
877 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
878 			if (ret) {
879 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
880 				/*
881 				 * The .set_ios() function in the mmc_host_ops
882 				 * struct return void, and failing to set the
883 				 * power should be rare so we print an error
884 				 * and return here.
885 				 */
886 				return;
887 			}
888 		}
889 		if (host->plat->vdd_handler)
890 			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
891 						       ios->power_mode);
892 		/* The ST version does not have this, fall through to POWER_ON */
893 		if (host->hw_designer != AMBA_VENDOR_ST) {
894 			pwr |= MCI_PWR_UP;
895 			break;
896 		}
897 	case MMC_POWER_ON:
898 		pwr |= MCI_PWR_ON;
899 		break;
900 	}
901 
902 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
903 		if (host->hw_designer != AMBA_VENDOR_ST)
904 			pwr |= MCI_ROD;
905 		else {
906 			/*
907 			 * The ST Micro variant use the ROD bit for something
908 			 * else and only has OD (Open Drain).
909 			 */
910 			pwr |= MCI_OD;
911 		}
912 	}
913 
914 	spin_lock_irqsave(&host->lock, flags);
915 
916 	mmci_set_clkreg(host, ios->clock);
917 
918 	if (host->pwr != pwr) {
919 		host->pwr = pwr;
920 		writel(pwr, host->base + MMCIPOWER);
921 	}
922 
923 	spin_unlock_irqrestore(&host->lock, flags);
924 }
925 
926 static int mmci_get_ro(struct mmc_host *mmc)
927 {
928 	struct mmci_host *host = mmc_priv(mmc);
929 
930 	if (host->gpio_wp == -ENOSYS)
931 		return -ENOSYS;
932 
933 	return gpio_get_value_cansleep(host->gpio_wp);
934 }
935 
936 static int mmci_get_cd(struct mmc_host *mmc)
937 {
938 	struct mmci_host *host = mmc_priv(mmc);
939 	struct mmci_platform_data *plat = host->plat;
940 	unsigned int status;
941 
942 	if (host->gpio_cd == -ENOSYS) {
943 		if (!plat->status)
944 			return 1; /* Assume always present */
945 
946 		status = plat->status(mmc_dev(host->mmc));
947 	} else
948 		status = !!gpio_get_value_cansleep(host->gpio_cd)
949 			^ plat->cd_invert;
950 
951 	/*
952 	 * Use positive logic throughout - status is zero for no card,
953 	 * non-zero for card inserted.
954 	 */
955 	return status;
956 }
957 
958 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
959 {
960 	struct mmci_host *host = dev_id;
961 
962 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
963 
964 	return IRQ_HANDLED;
965 }
966 
967 static const struct mmc_host_ops mmci_ops = {
968 	.request	= mmci_request,
969 	.set_ios	= mmci_set_ios,
970 	.get_ro		= mmci_get_ro,
971 	.get_cd		= mmci_get_cd,
972 };
973 
974 static int __devinit mmci_probe(struct amba_device *dev,
975 	const struct amba_id *id)
976 {
977 	struct mmci_platform_data *plat = dev->dev.platform_data;
978 	struct variant_data *variant = id->data;
979 	struct mmci_host *host;
980 	struct mmc_host *mmc;
981 	int ret;
982 
983 	/* must have platform data */
984 	if (!plat) {
985 		ret = -EINVAL;
986 		goto out;
987 	}
988 
989 	ret = amba_request_regions(dev, DRIVER_NAME);
990 	if (ret)
991 		goto out;
992 
993 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
994 	if (!mmc) {
995 		ret = -ENOMEM;
996 		goto rel_regions;
997 	}
998 
999 	host = mmc_priv(mmc);
1000 	host->mmc = mmc;
1001 
1002 	host->gpio_wp = -ENOSYS;
1003 	host->gpio_cd = -ENOSYS;
1004 	host->gpio_cd_irq = -1;
1005 
1006 	host->hw_designer = amba_manf(dev);
1007 	host->hw_revision = amba_rev(dev);
1008 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1009 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1010 
1011 	host->clk = clk_get(&dev->dev, NULL);
1012 	if (IS_ERR(host->clk)) {
1013 		ret = PTR_ERR(host->clk);
1014 		host->clk = NULL;
1015 		goto host_free;
1016 	}
1017 
1018 	ret = clk_enable(host->clk);
1019 	if (ret)
1020 		goto clk_free;
1021 
1022 	host->plat = plat;
1023 	host->variant = variant;
1024 	host->mclk = clk_get_rate(host->clk);
1025 	/*
1026 	 * According to the spec, mclk is max 100 MHz,
1027 	 * so we try to adjust the clock down to this,
1028 	 * (if possible).
1029 	 */
1030 	if (host->mclk > 100000000) {
1031 		ret = clk_set_rate(host->clk, 100000000);
1032 		if (ret < 0)
1033 			goto clk_disable;
1034 		host->mclk = clk_get_rate(host->clk);
1035 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1036 			host->mclk);
1037 	}
1038 	host->phybase = dev->res.start;
1039 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1040 	if (!host->base) {
1041 		ret = -ENOMEM;
1042 		goto clk_disable;
1043 	}
1044 
1045 	mmc->ops = &mmci_ops;
1046 	mmc->f_min = (host->mclk + 511) / 512;
1047 	/*
1048 	 * If the platform data supplies a maximum operating
1049 	 * frequency, this takes precedence. Else, we fall back
1050 	 * to using the module parameter, which has a (low)
1051 	 * default value in case it is not specified. Either
1052 	 * value must not exceed the clock rate into the block,
1053 	 * of course.
1054 	 */
1055 	if (plat->f_max)
1056 		mmc->f_max = min(host->mclk, plat->f_max);
1057 	else
1058 		mmc->f_max = min(host->mclk, fmax);
1059 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1060 
1061 #ifdef CONFIG_REGULATOR
1062 	/* If we're using the regulator framework, try to fetch a regulator */
1063 	host->vcc = regulator_get(&dev->dev, "vmmc");
1064 	if (IS_ERR(host->vcc))
1065 		host->vcc = NULL;
1066 	else {
1067 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1068 
1069 		if (mask < 0)
1070 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1071 				mask);
1072 		else {
1073 			host->mmc->ocr_avail = (u32) mask;
1074 			if (plat->ocr_mask)
1075 				dev_warn(&dev->dev,
1076 				 "Provided ocr_mask/setpower will not be used "
1077 				 "(using regulator instead)\n");
1078 		}
1079 	}
1080 #endif
1081 	/* Fall back to platform data if no regulator is found */
1082 	if (host->vcc == NULL)
1083 		mmc->ocr_avail = plat->ocr_mask;
1084 	mmc->caps = plat->capabilities;
1085 
1086 	/*
1087 	 * We can do SGIO
1088 	 */
1089 	mmc->max_segs = NR_SG;
1090 
1091 	/*
1092 	 * Since only a certain number of bits are valid in the data length
1093 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1094 	 * single request.
1095 	 */
1096 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1097 
1098 	/*
1099 	 * Set the maximum segment size.  Since we aren't doing DMA
1100 	 * (yet) we are only limited by the data length register.
1101 	 */
1102 	mmc->max_seg_size = mmc->max_req_size;
1103 
1104 	/*
1105 	 * Block size can be up to 2048 bytes, but must be a power of two.
1106 	 */
1107 	mmc->max_blk_size = 2048;
1108 
1109 	/*
1110 	 * No limit on the number of blocks transferred.
1111 	 */
1112 	mmc->max_blk_count = mmc->max_req_size;
1113 
1114 	spin_lock_init(&host->lock);
1115 
1116 	writel(0, host->base + MMCIMASK0);
1117 	writel(0, host->base + MMCIMASK1);
1118 	writel(0xfff, host->base + MMCICLEAR);
1119 
1120 	if (gpio_is_valid(plat->gpio_cd)) {
1121 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1122 		if (ret == 0)
1123 			ret = gpio_direction_input(plat->gpio_cd);
1124 		if (ret == 0)
1125 			host->gpio_cd = plat->gpio_cd;
1126 		else if (ret != -ENOSYS)
1127 			goto err_gpio_cd;
1128 
1129 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1130 					      mmci_cd_irq, 0,
1131 					      DRIVER_NAME " (cd)", host);
1132 		if (ret >= 0)
1133 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1134 	}
1135 	if (gpio_is_valid(plat->gpio_wp)) {
1136 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1137 		if (ret == 0)
1138 			ret = gpio_direction_input(plat->gpio_wp);
1139 		if (ret == 0)
1140 			host->gpio_wp = plat->gpio_wp;
1141 		else if (ret != -ENOSYS)
1142 			goto err_gpio_wp;
1143 	}
1144 
1145 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1146 	    && host->gpio_cd_irq < 0)
1147 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1148 
1149 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1150 	if (ret)
1151 		goto unmap;
1152 
1153 	if (dev->irq[1] == NO_IRQ)
1154 		host->singleirq = true;
1155 	else {
1156 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1157 				  DRIVER_NAME " (pio)", host);
1158 		if (ret)
1159 			goto irq0_free;
1160 	}
1161 
1162 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1163 
1164 	amba_set_drvdata(dev, mmc);
1165 
1166 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1167 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1168 		 amba_rev(dev), (unsigned long long)dev->res.start,
1169 		 dev->irq[0], dev->irq[1]);
1170 
1171 	mmci_dma_setup(host);
1172 
1173 	mmc_add_host(mmc);
1174 
1175 	return 0;
1176 
1177  irq0_free:
1178 	free_irq(dev->irq[0], host);
1179  unmap:
1180 	if (host->gpio_wp != -ENOSYS)
1181 		gpio_free(host->gpio_wp);
1182  err_gpio_wp:
1183 	if (host->gpio_cd_irq >= 0)
1184 		free_irq(host->gpio_cd_irq, host);
1185 	if (host->gpio_cd != -ENOSYS)
1186 		gpio_free(host->gpio_cd);
1187  err_gpio_cd:
1188 	iounmap(host->base);
1189  clk_disable:
1190 	clk_disable(host->clk);
1191  clk_free:
1192 	clk_put(host->clk);
1193  host_free:
1194 	mmc_free_host(mmc);
1195  rel_regions:
1196 	amba_release_regions(dev);
1197  out:
1198 	return ret;
1199 }
1200 
1201 static int __devexit mmci_remove(struct amba_device *dev)
1202 {
1203 	struct mmc_host *mmc = amba_get_drvdata(dev);
1204 
1205 	amba_set_drvdata(dev, NULL);
1206 
1207 	if (mmc) {
1208 		struct mmci_host *host = mmc_priv(mmc);
1209 
1210 		mmc_remove_host(mmc);
1211 
1212 		writel(0, host->base + MMCIMASK0);
1213 		writel(0, host->base + MMCIMASK1);
1214 
1215 		writel(0, host->base + MMCICOMMAND);
1216 		writel(0, host->base + MMCIDATACTRL);
1217 
1218 		mmci_dma_release(host);
1219 		free_irq(dev->irq[0], host);
1220 		if (!host->singleirq)
1221 			free_irq(dev->irq[1], host);
1222 
1223 		if (host->gpio_wp != -ENOSYS)
1224 			gpio_free(host->gpio_wp);
1225 		if (host->gpio_cd_irq >= 0)
1226 			free_irq(host->gpio_cd_irq, host);
1227 		if (host->gpio_cd != -ENOSYS)
1228 			gpio_free(host->gpio_cd);
1229 
1230 		iounmap(host->base);
1231 		clk_disable(host->clk);
1232 		clk_put(host->clk);
1233 
1234 		if (host->vcc)
1235 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1236 		regulator_put(host->vcc);
1237 
1238 		mmc_free_host(mmc);
1239 
1240 		amba_release_regions(dev);
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 #ifdef CONFIG_PM
1247 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1248 {
1249 	struct mmc_host *mmc = amba_get_drvdata(dev);
1250 	int ret = 0;
1251 
1252 	if (mmc) {
1253 		struct mmci_host *host = mmc_priv(mmc);
1254 
1255 		ret = mmc_suspend_host(mmc);
1256 		if (ret == 0)
1257 			writel(0, host->base + MMCIMASK0);
1258 	}
1259 
1260 	return ret;
1261 }
1262 
1263 static int mmci_resume(struct amba_device *dev)
1264 {
1265 	struct mmc_host *mmc = amba_get_drvdata(dev);
1266 	int ret = 0;
1267 
1268 	if (mmc) {
1269 		struct mmci_host *host = mmc_priv(mmc);
1270 
1271 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1272 
1273 		ret = mmc_resume_host(mmc);
1274 	}
1275 
1276 	return ret;
1277 }
1278 #else
1279 #define mmci_suspend	NULL
1280 #define mmci_resume	NULL
1281 #endif
1282 
1283 static struct amba_id mmci_ids[] = {
1284 	{
1285 		.id	= 0x00041180,
1286 		.mask	= 0xff0fffff,
1287 		.data	= &variant_arm,
1288 	},
1289 	{
1290 		.id	= 0x01041180,
1291 		.mask	= 0xff0fffff,
1292 		.data	= &variant_arm_extended_fifo,
1293 	},
1294 	{
1295 		.id	= 0x00041181,
1296 		.mask	= 0x000fffff,
1297 		.data	= &variant_arm,
1298 	},
1299 	/* ST Micro variants */
1300 	{
1301 		.id     = 0x00180180,
1302 		.mask   = 0x00ffffff,
1303 		.data	= &variant_u300,
1304 	},
1305 	{
1306 		.id     = 0x00280180,
1307 		.mask   = 0x00ffffff,
1308 		.data	= &variant_u300,
1309 	},
1310 	{
1311 		.id     = 0x00480180,
1312 		.mask   = 0x00ffffff,
1313 		.data	= &variant_ux500,
1314 	},
1315 	{ 0, 0 },
1316 };
1317 
1318 static struct amba_driver mmci_driver = {
1319 	.drv		= {
1320 		.name	= DRIVER_NAME,
1321 	},
1322 	.probe		= mmci_probe,
1323 	.remove		= __devexit_p(mmci_remove),
1324 	.suspend	= mmci_suspend,
1325 	.resume		= mmci_resume,
1326 	.id_table	= mmci_ids,
1327 };
1328 
1329 static int __init mmci_init(void)
1330 {
1331 	return amba_driver_register(&mmci_driver);
1332 }
1333 
1334 static void __exit mmci_exit(void)
1335 {
1336 	amba_driver_unregister(&mmci_driver);
1337 }
1338 
1339 module_init(mmci_init);
1340 module_exit(mmci_exit);
1341 module_param(fmax, uint, 0444);
1342 
1343 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1344 MODULE_LICENSE("GPL");
1345