xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 3b6e3c73)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <asm/div64.h>
35 #include <asm/io.h>
36 #include <asm/sizes.h>
37 
38 #include "mmci.h"
39 
40 #define DRIVER_NAME "mmci-pl18x"
41 
42 static unsigned int fmax = 515633;
43 
44 /**
45  * struct variant_data - MMCI variant-specific quirks
46  * @clkreg: default value for MCICLOCK register
47  * @clkreg_enable: enable value for MMCICLOCK register
48  * @datalength_bits: number of bits in the MMCIDATALENGTH register
49  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50  *	      is asserted (likewise for RX)
51  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52  *		  is asserted (likewise for RX)
53  * @sdio: variant supports SDIO
54  * @st_clkdiv: true if using a ST-specific clock divider algorithm
55  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
56  */
57 struct variant_data {
58 	unsigned int		clkreg;
59 	unsigned int		clkreg_enable;
60 	unsigned int		datalength_bits;
61 	unsigned int		fifosize;
62 	unsigned int		fifohalfsize;
63 	bool			sdio;
64 	bool			st_clkdiv;
65 	bool			blksz_datactrl16;
66 };
67 
68 static struct variant_data variant_arm = {
69 	.fifosize		= 16 * 4,
70 	.fifohalfsize		= 8 * 4,
71 	.datalength_bits	= 16,
72 };
73 
74 static struct variant_data variant_arm_extended_fifo = {
75 	.fifosize		= 128 * 4,
76 	.fifohalfsize		= 64 * 4,
77 	.datalength_bits	= 16,
78 };
79 
80 static struct variant_data variant_u300 = {
81 	.fifosize		= 16 * 4,
82 	.fifohalfsize		= 8 * 4,
83 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
84 	.datalength_bits	= 16,
85 	.sdio			= true,
86 };
87 
88 static struct variant_data variant_ux500 = {
89 	.fifosize		= 30 * 4,
90 	.fifohalfsize		= 8 * 4,
91 	.clkreg			= MCI_CLK_ENABLE,
92 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
93 	.datalength_bits	= 24,
94 	.sdio			= true,
95 	.st_clkdiv		= true,
96 };
97 
98 static struct variant_data variant_ux500v2 = {
99 	.fifosize		= 30 * 4,
100 	.fifohalfsize		= 8 * 4,
101 	.clkreg			= MCI_CLK_ENABLE,
102 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
103 	.datalength_bits	= 24,
104 	.sdio			= true,
105 	.st_clkdiv		= true,
106 	.blksz_datactrl16	= true,
107 };
108 
109 /*
110  * This must be called with host->lock held
111  */
112 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
113 {
114 	struct variant_data *variant = host->variant;
115 	u32 clk = variant->clkreg;
116 
117 	if (desired) {
118 		if (desired >= host->mclk) {
119 			clk = MCI_CLK_BYPASS;
120 			if (variant->st_clkdiv)
121 				clk |= MCI_ST_UX500_NEG_EDGE;
122 			host->cclk = host->mclk;
123 		} else if (variant->st_clkdiv) {
124 			/*
125 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
126 			 * => clkdiv = (mclk / f) - 2
127 			 * Round the divider up so we don't exceed the max
128 			 * frequency
129 			 */
130 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
131 			if (clk >= 256)
132 				clk = 255;
133 			host->cclk = host->mclk / (clk + 2);
134 		} else {
135 			/*
136 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
137 			 * => clkdiv = mclk / (2 * f) - 1
138 			 */
139 			clk = host->mclk / (2 * desired) - 1;
140 			if (clk >= 256)
141 				clk = 255;
142 			host->cclk = host->mclk / (2 * (clk + 1));
143 		}
144 
145 		clk |= variant->clkreg_enable;
146 		clk |= MCI_CLK_ENABLE;
147 		/* This hasn't proven to be worthwhile */
148 		/* clk |= MCI_CLK_PWRSAVE; */
149 	}
150 
151 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
152 		clk |= MCI_4BIT_BUS;
153 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
154 		clk |= MCI_ST_8BIT_BUS;
155 
156 	writel(clk, host->base + MMCICLOCK);
157 }
158 
159 static void
160 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
161 {
162 	writel(0, host->base + MMCICOMMAND);
163 
164 	BUG_ON(host->data);
165 
166 	host->mrq = NULL;
167 	host->cmd = NULL;
168 
169 	/*
170 	 * Need to drop the host lock here; mmc_request_done may call
171 	 * back into the driver...
172 	 */
173 	spin_unlock(&host->lock);
174 	pm_runtime_put(mmc_dev(host->mmc));
175 	mmc_request_done(host->mmc, mrq);
176 	spin_lock(&host->lock);
177 }
178 
179 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
180 {
181 	void __iomem *base = host->base;
182 
183 	if (host->singleirq) {
184 		unsigned int mask0 = readl(base + MMCIMASK0);
185 
186 		mask0 &= ~MCI_IRQ1MASK;
187 		mask0 |= mask;
188 
189 		writel(mask0, base + MMCIMASK0);
190 	}
191 
192 	writel(mask, base + MMCIMASK1);
193 }
194 
195 static void mmci_stop_data(struct mmci_host *host)
196 {
197 	writel(0, host->base + MMCIDATACTRL);
198 	mmci_set_mask1(host, 0);
199 	host->data = NULL;
200 }
201 
202 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
203 {
204 	unsigned int flags = SG_MITER_ATOMIC;
205 
206 	if (data->flags & MMC_DATA_READ)
207 		flags |= SG_MITER_TO_SG;
208 	else
209 		flags |= SG_MITER_FROM_SG;
210 
211 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
212 }
213 
214 /*
215  * All the DMA operation mode stuff goes inside this ifdef.
216  * This assumes that you have a generic DMA device interface,
217  * no custom DMA interfaces are supported.
218  */
219 #ifdef CONFIG_DMA_ENGINE
220 static void __devinit mmci_dma_setup(struct mmci_host *host)
221 {
222 	struct mmci_platform_data *plat = host->plat;
223 	const char *rxname, *txname;
224 	dma_cap_mask_t mask;
225 
226 	if (!plat || !plat->dma_filter) {
227 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
228 		return;
229 	}
230 
231 	/* initialize pre request cookie */
232 	host->next_data.cookie = 1;
233 
234 	/* Try to acquire a generic DMA engine slave channel */
235 	dma_cap_zero(mask);
236 	dma_cap_set(DMA_SLAVE, mask);
237 
238 	/*
239 	 * If only an RX channel is specified, the driver will
240 	 * attempt to use it bidirectionally, however if it is
241 	 * is specified but cannot be located, DMA will be disabled.
242 	 */
243 	if (plat->dma_rx_param) {
244 		host->dma_rx_channel = dma_request_channel(mask,
245 							   plat->dma_filter,
246 							   plat->dma_rx_param);
247 		/* E.g if no DMA hardware is present */
248 		if (!host->dma_rx_channel)
249 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
250 	}
251 
252 	if (plat->dma_tx_param) {
253 		host->dma_tx_channel = dma_request_channel(mask,
254 							   plat->dma_filter,
255 							   plat->dma_tx_param);
256 		if (!host->dma_tx_channel)
257 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
258 	} else {
259 		host->dma_tx_channel = host->dma_rx_channel;
260 	}
261 
262 	if (host->dma_rx_channel)
263 		rxname = dma_chan_name(host->dma_rx_channel);
264 	else
265 		rxname = "none";
266 
267 	if (host->dma_tx_channel)
268 		txname = dma_chan_name(host->dma_tx_channel);
269 	else
270 		txname = "none";
271 
272 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
273 		 rxname, txname);
274 
275 	/*
276 	 * Limit the maximum segment size in any SG entry according to
277 	 * the parameters of the DMA engine device.
278 	 */
279 	if (host->dma_tx_channel) {
280 		struct device *dev = host->dma_tx_channel->device->dev;
281 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
282 
283 		if (max_seg_size < host->mmc->max_seg_size)
284 			host->mmc->max_seg_size = max_seg_size;
285 	}
286 	if (host->dma_rx_channel) {
287 		struct device *dev = host->dma_rx_channel->device->dev;
288 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
289 
290 		if (max_seg_size < host->mmc->max_seg_size)
291 			host->mmc->max_seg_size = max_seg_size;
292 	}
293 }
294 
295 /*
296  * This is used in __devinit or __devexit so inline it
297  * so it can be discarded.
298  */
299 static inline void mmci_dma_release(struct mmci_host *host)
300 {
301 	struct mmci_platform_data *plat = host->plat;
302 
303 	if (host->dma_rx_channel)
304 		dma_release_channel(host->dma_rx_channel);
305 	if (host->dma_tx_channel && plat->dma_tx_param)
306 		dma_release_channel(host->dma_tx_channel);
307 	host->dma_rx_channel = host->dma_tx_channel = NULL;
308 }
309 
310 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
311 {
312 	struct dma_chan *chan = host->dma_current;
313 	enum dma_data_direction dir;
314 	u32 status;
315 	int i;
316 
317 	/* Wait up to 1ms for the DMA to complete */
318 	for (i = 0; ; i++) {
319 		status = readl(host->base + MMCISTATUS);
320 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
321 			break;
322 		udelay(10);
323 	}
324 
325 	/*
326 	 * Check to see whether we still have some data left in the FIFO -
327 	 * this catches DMA controllers which are unable to monitor the
328 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
329 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
330 	 */
331 	if (status & MCI_RXDATAAVLBLMASK) {
332 		dmaengine_terminate_all(chan);
333 		if (!data->error)
334 			data->error = -EIO;
335 	}
336 
337 	if (data->flags & MMC_DATA_WRITE) {
338 		dir = DMA_TO_DEVICE;
339 	} else {
340 		dir = DMA_FROM_DEVICE;
341 	}
342 
343 	if (!data->host_cookie)
344 		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
345 
346 	/*
347 	 * Use of DMA with scatter-gather is impossible.
348 	 * Give up with DMA and switch back to PIO mode.
349 	 */
350 	if (status & MCI_RXDATAAVLBLMASK) {
351 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
352 		mmci_dma_release(host);
353 	}
354 }
355 
356 static void mmci_dma_data_error(struct mmci_host *host)
357 {
358 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
359 	dmaengine_terminate_all(host->dma_current);
360 }
361 
362 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
363 			      struct mmci_host_next *next)
364 {
365 	struct variant_data *variant = host->variant;
366 	struct dma_slave_config conf = {
367 		.src_addr = host->phybase + MMCIFIFO,
368 		.dst_addr = host->phybase + MMCIFIFO,
369 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
370 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
371 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
372 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
373 	};
374 	struct dma_chan *chan;
375 	struct dma_device *device;
376 	struct dma_async_tx_descriptor *desc;
377 	int nr_sg;
378 
379 	/* Check if next job is already prepared */
380 	if (data->host_cookie && !next &&
381 	    host->dma_current && host->dma_desc_current)
382 		return 0;
383 
384 	if (!next) {
385 		host->dma_current = NULL;
386 		host->dma_desc_current = NULL;
387 	}
388 
389 	if (data->flags & MMC_DATA_READ) {
390 		conf.direction = DMA_FROM_DEVICE;
391 		chan = host->dma_rx_channel;
392 	} else {
393 		conf.direction = DMA_TO_DEVICE;
394 		chan = host->dma_tx_channel;
395 	}
396 
397 	/* If there's no DMA channel, fall back to PIO */
398 	if (!chan)
399 		return -EINVAL;
400 
401 	/* If less than or equal to the fifo size, don't bother with DMA */
402 	if (data->blksz * data->blocks <= variant->fifosize)
403 		return -EINVAL;
404 
405 	device = chan->device;
406 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
407 	if (nr_sg == 0)
408 		return -EINVAL;
409 
410 	dmaengine_slave_config(chan, &conf);
411 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
412 					    conf.direction, DMA_CTRL_ACK);
413 	if (!desc)
414 		goto unmap_exit;
415 
416 	if (next) {
417 		next->dma_chan = chan;
418 		next->dma_desc = desc;
419 	} else {
420 		host->dma_current = chan;
421 		host->dma_desc_current = desc;
422 	}
423 
424 	return 0;
425 
426  unmap_exit:
427 	if (!next)
428 		dmaengine_terminate_all(chan);
429 	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
430 	return -ENOMEM;
431 }
432 
433 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
434 {
435 	int ret;
436 	struct mmc_data *data = host->data;
437 
438 	ret = mmci_dma_prep_data(host, host->data, NULL);
439 	if (ret)
440 		return ret;
441 
442 	/* Okay, go for it. */
443 	dev_vdbg(mmc_dev(host->mmc),
444 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
445 		 data->sg_len, data->blksz, data->blocks, data->flags);
446 	dmaengine_submit(host->dma_desc_current);
447 	dma_async_issue_pending(host->dma_current);
448 
449 	datactrl |= MCI_DPSM_DMAENABLE;
450 
451 	/* Trigger the DMA transfer */
452 	writel(datactrl, host->base + MMCIDATACTRL);
453 
454 	/*
455 	 * Let the MMCI say when the data is ended and it's time
456 	 * to fire next DMA request. When that happens, MMCI will
457 	 * call mmci_data_end()
458 	 */
459 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
460 	       host->base + MMCIMASK0);
461 	return 0;
462 }
463 
464 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
465 {
466 	struct mmci_host_next *next = &host->next_data;
467 
468 	if (data->host_cookie && data->host_cookie != next->cookie) {
469 		pr_warning("[%s] invalid cookie: data->host_cookie %d"
470 		       " host->next_data.cookie %d\n",
471 		       __func__, data->host_cookie, host->next_data.cookie);
472 		data->host_cookie = 0;
473 	}
474 
475 	if (!data->host_cookie)
476 		return;
477 
478 	host->dma_desc_current = next->dma_desc;
479 	host->dma_current = next->dma_chan;
480 
481 	next->dma_desc = NULL;
482 	next->dma_chan = NULL;
483 }
484 
485 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
486 			     bool is_first_req)
487 {
488 	struct mmci_host *host = mmc_priv(mmc);
489 	struct mmc_data *data = mrq->data;
490 	struct mmci_host_next *nd = &host->next_data;
491 
492 	if (!data)
493 		return;
494 
495 	if (data->host_cookie) {
496 		data->host_cookie = 0;
497 		return;
498 	}
499 
500 	/* if config for dma */
501 	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
502 	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
503 		if (mmci_dma_prep_data(host, data, nd))
504 			data->host_cookie = 0;
505 		else
506 			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
507 	}
508 }
509 
510 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
511 			      int err)
512 {
513 	struct mmci_host *host = mmc_priv(mmc);
514 	struct mmc_data *data = mrq->data;
515 	struct dma_chan *chan;
516 	enum dma_data_direction dir;
517 
518 	if (!data)
519 		return;
520 
521 	if (data->flags & MMC_DATA_READ) {
522 		dir = DMA_FROM_DEVICE;
523 		chan = host->dma_rx_channel;
524 	} else {
525 		dir = DMA_TO_DEVICE;
526 		chan = host->dma_tx_channel;
527 	}
528 
529 
530 	/* if config for dma */
531 	if (chan) {
532 		if (err)
533 			dmaengine_terminate_all(chan);
534 		if (data->host_cookie)
535 			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
536 				     data->sg_len, dir);
537 		mrq->data->host_cookie = 0;
538 	}
539 }
540 
541 #else
542 /* Blank functions if the DMA engine is not available */
543 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
544 {
545 }
546 static inline void mmci_dma_setup(struct mmci_host *host)
547 {
548 }
549 
550 static inline void mmci_dma_release(struct mmci_host *host)
551 {
552 }
553 
554 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
555 {
556 }
557 
558 static inline void mmci_dma_data_error(struct mmci_host *host)
559 {
560 }
561 
562 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
563 {
564 	return -ENOSYS;
565 }
566 
567 #define mmci_pre_request NULL
568 #define mmci_post_request NULL
569 
570 #endif
571 
572 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
573 {
574 	struct variant_data *variant = host->variant;
575 	unsigned int datactrl, timeout, irqmask;
576 	unsigned long long clks;
577 	void __iomem *base;
578 	int blksz_bits;
579 
580 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
581 		data->blksz, data->blocks, data->flags);
582 
583 	host->data = data;
584 	host->size = data->blksz * data->blocks;
585 	data->bytes_xfered = 0;
586 
587 	clks = (unsigned long long)data->timeout_ns * host->cclk;
588 	do_div(clks, 1000000000UL);
589 
590 	timeout = data->timeout_clks + (unsigned int)clks;
591 
592 	base = host->base;
593 	writel(timeout, base + MMCIDATATIMER);
594 	writel(host->size, base + MMCIDATALENGTH);
595 
596 	blksz_bits = ffs(data->blksz) - 1;
597 	BUG_ON(1 << blksz_bits != data->blksz);
598 
599 	if (variant->blksz_datactrl16)
600 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
601 	else
602 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
603 
604 	if (data->flags & MMC_DATA_READ)
605 		datactrl |= MCI_DPSM_DIRECTION;
606 
607 	/*
608 	 * Attempt to use DMA operation mode, if this
609 	 * should fail, fall back to PIO mode
610 	 */
611 	if (!mmci_dma_start_data(host, datactrl))
612 		return;
613 
614 	/* IRQ mode, map the SG list for CPU reading/writing */
615 	mmci_init_sg(host, data);
616 
617 	if (data->flags & MMC_DATA_READ) {
618 		irqmask = MCI_RXFIFOHALFFULLMASK;
619 
620 		/*
621 		 * If we have less than the fifo 'half-full' threshold to
622 		 * transfer, trigger a PIO interrupt as soon as any data
623 		 * is available.
624 		 */
625 		if (host->size < variant->fifohalfsize)
626 			irqmask |= MCI_RXDATAAVLBLMASK;
627 	} else {
628 		/*
629 		 * We don't actually need to include "FIFO empty" here
630 		 * since its implicit in "FIFO half empty".
631 		 */
632 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
633 	}
634 
635 	/* The ST Micro variants has a special bit to enable SDIO */
636 	if (variant->sdio && host->mmc->card)
637 		if (mmc_card_sdio(host->mmc->card))
638 			datactrl |= MCI_ST_DPSM_SDIOEN;
639 
640 	writel(datactrl, base + MMCIDATACTRL);
641 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
642 	mmci_set_mask1(host, irqmask);
643 }
644 
645 static void
646 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
647 {
648 	void __iomem *base = host->base;
649 
650 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
651 	    cmd->opcode, cmd->arg, cmd->flags);
652 
653 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
654 		writel(0, base + MMCICOMMAND);
655 		udelay(1);
656 	}
657 
658 	c |= cmd->opcode | MCI_CPSM_ENABLE;
659 	if (cmd->flags & MMC_RSP_PRESENT) {
660 		if (cmd->flags & MMC_RSP_136)
661 			c |= MCI_CPSM_LONGRSP;
662 		c |= MCI_CPSM_RESPONSE;
663 	}
664 	if (/*interrupt*/0)
665 		c |= MCI_CPSM_INTERRUPT;
666 
667 	host->cmd = cmd;
668 
669 	writel(cmd->arg, base + MMCIARGUMENT);
670 	writel(c, base + MMCICOMMAND);
671 }
672 
673 static void
674 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
675 	      unsigned int status)
676 {
677 	/* First check for errors */
678 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
679 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
680 		u32 remain, success;
681 
682 		/* Terminate the DMA transfer */
683 		if (dma_inprogress(host))
684 			mmci_dma_data_error(host);
685 
686 		/*
687 		 * Calculate how far we are into the transfer.  Note that
688 		 * the data counter gives the number of bytes transferred
689 		 * on the MMC bus, not on the host side.  On reads, this
690 		 * can be as much as a FIFO-worth of data ahead.  This
691 		 * matters for FIFO overruns only.
692 		 */
693 		remain = readl(host->base + MMCIDATACNT);
694 		success = data->blksz * data->blocks - remain;
695 
696 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
697 			status, success);
698 		if (status & MCI_DATACRCFAIL) {
699 			/* Last block was not successful */
700 			success -= 1;
701 			data->error = -EILSEQ;
702 		} else if (status & MCI_DATATIMEOUT) {
703 			data->error = -ETIMEDOUT;
704 		} else if (status & MCI_STARTBITERR) {
705 			data->error = -ECOMM;
706 		} else if (status & MCI_TXUNDERRUN) {
707 			data->error = -EIO;
708 		} else if (status & MCI_RXOVERRUN) {
709 			if (success > host->variant->fifosize)
710 				success -= host->variant->fifosize;
711 			else
712 				success = 0;
713 			data->error = -EIO;
714 		}
715 		data->bytes_xfered = round_down(success, data->blksz);
716 	}
717 
718 	if (status & MCI_DATABLOCKEND)
719 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
720 
721 	if (status & MCI_DATAEND || data->error) {
722 		if (dma_inprogress(host))
723 			mmci_dma_unmap(host, data);
724 		mmci_stop_data(host);
725 
726 		if (!data->error)
727 			/* The error clause is handled above, success! */
728 			data->bytes_xfered = data->blksz * data->blocks;
729 
730 		if (!data->stop) {
731 			mmci_request_end(host, data->mrq);
732 		} else {
733 			mmci_start_command(host, data->stop, 0);
734 		}
735 	}
736 }
737 
738 static void
739 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
740 	     unsigned int status)
741 {
742 	void __iomem *base = host->base;
743 
744 	host->cmd = NULL;
745 
746 	if (status & MCI_CMDTIMEOUT) {
747 		cmd->error = -ETIMEDOUT;
748 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
749 		cmd->error = -EILSEQ;
750 	} else {
751 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
752 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
753 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
754 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
755 	}
756 
757 	if (!cmd->data || cmd->error) {
758 		if (host->data) {
759 			/* Terminate the DMA transfer */
760 			if (dma_inprogress(host))
761 				mmci_dma_data_error(host);
762 			mmci_stop_data(host);
763 		}
764 		mmci_request_end(host, cmd->mrq);
765 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
766 		mmci_start_data(host, cmd->data);
767 	}
768 }
769 
770 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
771 {
772 	void __iomem *base = host->base;
773 	char *ptr = buffer;
774 	u32 status;
775 	int host_remain = host->size;
776 
777 	do {
778 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
779 
780 		if (count > remain)
781 			count = remain;
782 
783 		if (count <= 0)
784 			break;
785 
786 		readsl(base + MMCIFIFO, ptr, count >> 2);
787 
788 		ptr += count;
789 		remain -= count;
790 		host_remain -= count;
791 
792 		if (remain == 0)
793 			break;
794 
795 		status = readl(base + MMCISTATUS);
796 	} while (status & MCI_RXDATAAVLBL);
797 
798 	return ptr - buffer;
799 }
800 
801 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
802 {
803 	struct variant_data *variant = host->variant;
804 	void __iomem *base = host->base;
805 	char *ptr = buffer;
806 
807 	do {
808 		unsigned int count, maxcnt;
809 
810 		maxcnt = status & MCI_TXFIFOEMPTY ?
811 			 variant->fifosize : variant->fifohalfsize;
812 		count = min(remain, maxcnt);
813 
814 		/*
815 		 * The ST Micro variant for SDIO transfer sizes
816 		 * less then 8 bytes should have clock H/W flow
817 		 * control disabled.
818 		 */
819 		if (variant->sdio &&
820 		    mmc_card_sdio(host->mmc->card)) {
821 			if (count < 8)
822 				writel(readl(host->base + MMCICLOCK) &
823 					~variant->clkreg_enable,
824 					host->base + MMCICLOCK);
825 			else
826 				writel(readl(host->base + MMCICLOCK) |
827 					variant->clkreg_enable,
828 					host->base + MMCICLOCK);
829 		}
830 
831 		/*
832 		 * SDIO especially may want to send something that is
833 		 * not divisible by 4 (as opposed to card sectors
834 		 * etc), and the FIFO only accept full 32-bit writes.
835 		 * So compensate by adding +3 on the count, a single
836 		 * byte become a 32bit write, 7 bytes will be two
837 		 * 32bit writes etc.
838 		 */
839 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
840 
841 		ptr += count;
842 		remain -= count;
843 
844 		if (remain == 0)
845 			break;
846 
847 		status = readl(base + MMCISTATUS);
848 	} while (status & MCI_TXFIFOHALFEMPTY);
849 
850 	return ptr - buffer;
851 }
852 
853 /*
854  * PIO data transfer IRQ handler.
855  */
856 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
857 {
858 	struct mmci_host *host = dev_id;
859 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
860 	struct variant_data *variant = host->variant;
861 	void __iomem *base = host->base;
862 	unsigned long flags;
863 	u32 status;
864 
865 	status = readl(base + MMCISTATUS);
866 
867 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
868 
869 	local_irq_save(flags);
870 
871 	do {
872 		unsigned int remain, len;
873 		char *buffer;
874 
875 		/*
876 		 * For write, we only need to test the half-empty flag
877 		 * here - if the FIFO is completely empty, then by
878 		 * definition it is more than half empty.
879 		 *
880 		 * For read, check for data available.
881 		 */
882 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
883 			break;
884 
885 		if (!sg_miter_next(sg_miter))
886 			break;
887 
888 		buffer = sg_miter->addr;
889 		remain = sg_miter->length;
890 
891 		len = 0;
892 		if (status & MCI_RXACTIVE)
893 			len = mmci_pio_read(host, buffer, remain);
894 		if (status & MCI_TXACTIVE)
895 			len = mmci_pio_write(host, buffer, remain, status);
896 
897 		sg_miter->consumed = len;
898 
899 		host->size -= len;
900 		remain -= len;
901 
902 		if (remain)
903 			break;
904 
905 		status = readl(base + MMCISTATUS);
906 	} while (1);
907 
908 	sg_miter_stop(sg_miter);
909 
910 	local_irq_restore(flags);
911 
912 	/*
913 	 * If we have less than the fifo 'half-full' threshold to transfer,
914 	 * trigger a PIO interrupt as soon as any data is available.
915 	 */
916 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
917 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
918 
919 	/*
920 	 * If we run out of data, disable the data IRQs; this
921 	 * prevents a race where the FIFO becomes empty before
922 	 * the chip itself has disabled the data path, and
923 	 * stops us racing with our data end IRQ.
924 	 */
925 	if (host->size == 0) {
926 		mmci_set_mask1(host, 0);
927 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
928 	}
929 
930 	return IRQ_HANDLED;
931 }
932 
933 /*
934  * Handle completion of command and data transfers.
935  */
936 static irqreturn_t mmci_irq(int irq, void *dev_id)
937 {
938 	struct mmci_host *host = dev_id;
939 	u32 status;
940 	int ret = 0;
941 
942 	spin_lock(&host->lock);
943 
944 	do {
945 		struct mmc_command *cmd;
946 		struct mmc_data *data;
947 
948 		status = readl(host->base + MMCISTATUS);
949 
950 		if (host->singleirq) {
951 			if (status & readl(host->base + MMCIMASK1))
952 				mmci_pio_irq(irq, dev_id);
953 
954 			status &= ~MCI_IRQ1MASK;
955 		}
956 
957 		status &= readl(host->base + MMCIMASK0);
958 		writel(status, host->base + MMCICLEAR);
959 
960 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
961 
962 		data = host->data;
963 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
964 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
965 			      MCI_DATABLOCKEND) && data)
966 			mmci_data_irq(host, data, status);
967 
968 		cmd = host->cmd;
969 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
970 			mmci_cmd_irq(host, cmd, status);
971 
972 		ret = 1;
973 	} while (status);
974 
975 	spin_unlock(&host->lock);
976 
977 	return IRQ_RETVAL(ret);
978 }
979 
980 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
981 {
982 	struct mmci_host *host = mmc_priv(mmc);
983 	unsigned long flags;
984 
985 	WARN_ON(host->mrq != NULL);
986 
987 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
988 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
989 			mrq->data->blksz);
990 		mrq->cmd->error = -EINVAL;
991 		mmc_request_done(mmc, mrq);
992 		return;
993 	}
994 
995 	pm_runtime_get_sync(mmc_dev(mmc));
996 
997 	spin_lock_irqsave(&host->lock, flags);
998 
999 	host->mrq = mrq;
1000 
1001 	if (mrq->data)
1002 		mmci_get_next_data(host, mrq->data);
1003 
1004 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1005 		mmci_start_data(host, mrq->data);
1006 
1007 	mmci_start_command(host, mrq->cmd, 0);
1008 
1009 	spin_unlock_irqrestore(&host->lock, flags);
1010 }
1011 
1012 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1013 {
1014 	struct mmci_host *host = mmc_priv(mmc);
1015 	u32 pwr = 0;
1016 	unsigned long flags;
1017 	int ret;
1018 
1019 	switch (ios->power_mode) {
1020 	case MMC_POWER_OFF:
1021 		if (host->vcc)
1022 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1023 		break;
1024 	case MMC_POWER_UP:
1025 		if (host->vcc) {
1026 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1027 			if (ret) {
1028 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1029 				/*
1030 				 * The .set_ios() function in the mmc_host_ops
1031 				 * struct return void, and failing to set the
1032 				 * power should be rare so we print an error
1033 				 * and return here.
1034 				 */
1035 				return;
1036 			}
1037 		}
1038 		if (host->plat->vdd_handler)
1039 			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1040 						       ios->power_mode);
1041 		/* The ST version does not have this, fall through to POWER_ON */
1042 		if (host->hw_designer != AMBA_VENDOR_ST) {
1043 			pwr |= MCI_PWR_UP;
1044 			break;
1045 		}
1046 	case MMC_POWER_ON:
1047 		pwr |= MCI_PWR_ON;
1048 		break;
1049 	}
1050 
1051 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1052 		if (host->hw_designer != AMBA_VENDOR_ST)
1053 			pwr |= MCI_ROD;
1054 		else {
1055 			/*
1056 			 * The ST Micro variant use the ROD bit for something
1057 			 * else and only has OD (Open Drain).
1058 			 */
1059 			pwr |= MCI_OD;
1060 		}
1061 	}
1062 
1063 	spin_lock_irqsave(&host->lock, flags);
1064 
1065 	mmci_set_clkreg(host, ios->clock);
1066 
1067 	if (host->pwr != pwr) {
1068 		host->pwr = pwr;
1069 		writel(pwr, host->base + MMCIPOWER);
1070 	}
1071 
1072 	spin_unlock_irqrestore(&host->lock, flags);
1073 }
1074 
1075 static int mmci_get_ro(struct mmc_host *mmc)
1076 {
1077 	struct mmci_host *host = mmc_priv(mmc);
1078 
1079 	if (host->gpio_wp == -ENOSYS)
1080 		return -ENOSYS;
1081 
1082 	return gpio_get_value_cansleep(host->gpio_wp);
1083 }
1084 
1085 static int mmci_get_cd(struct mmc_host *mmc)
1086 {
1087 	struct mmci_host *host = mmc_priv(mmc);
1088 	struct mmci_platform_data *plat = host->plat;
1089 	unsigned int status;
1090 
1091 	if (host->gpio_cd == -ENOSYS) {
1092 		if (!plat->status)
1093 			return 1; /* Assume always present */
1094 
1095 		status = plat->status(mmc_dev(host->mmc));
1096 	} else
1097 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1098 			^ plat->cd_invert;
1099 
1100 	/*
1101 	 * Use positive logic throughout - status is zero for no card,
1102 	 * non-zero for card inserted.
1103 	 */
1104 	return status;
1105 }
1106 
1107 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1108 {
1109 	struct mmci_host *host = dev_id;
1110 
1111 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1112 
1113 	return IRQ_HANDLED;
1114 }
1115 
1116 static const struct mmc_host_ops mmci_ops = {
1117 	.request	= mmci_request,
1118 	.pre_req	= mmci_pre_request,
1119 	.post_req	= mmci_post_request,
1120 	.set_ios	= mmci_set_ios,
1121 	.get_ro		= mmci_get_ro,
1122 	.get_cd		= mmci_get_cd,
1123 };
1124 
1125 static int __devinit mmci_probe(struct amba_device *dev,
1126 	const struct amba_id *id)
1127 {
1128 	struct mmci_platform_data *plat = dev->dev.platform_data;
1129 	struct variant_data *variant = id->data;
1130 	struct mmci_host *host;
1131 	struct mmc_host *mmc;
1132 	int ret;
1133 
1134 	/* must have platform data */
1135 	if (!plat) {
1136 		ret = -EINVAL;
1137 		goto out;
1138 	}
1139 
1140 	ret = amba_request_regions(dev, DRIVER_NAME);
1141 	if (ret)
1142 		goto out;
1143 
1144 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1145 	if (!mmc) {
1146 		ret = -ENOMEM;
1147 		goto rel_regions;
1148 	}
1149 
1150 	host = mmc_priv(mmc);
1151 	host->mmc = mmc;
1152 
1153 	host->gpio_wp = -ENOSYS;
1154 	host->gpio_cd = -ENOSYS;
1155 	host->gpio_cd_irq = -1;
1156 
1157 	host->hw_designer = amba_manf(dev);
1158 	host->hw_revision = amba_rev(dev);
1159 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1160 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1161 
1162 	host->clk = clk_get(&dev->dev, NULL);
1163 	if (IS_ERR(host->clk)) {
1164 		ret = PTR_ERR(host->clk);
1165 		host->clk = NULL;
1166 		goto host_free;
1167 	}
1168 
1169 	ret = clk_prepare(host->clk);
1170 	if (ret)
1171 		goto clk_free;
1172 
1173 	ret = clk_enable(host->clk);
1174 	if (ret)
1175 		goto clk_unprep;
1176 
1177 	host->plat = plat;
1178 	host->variant = variant;
1179 	host->mclk = clk_get_rate(host->clk);
1180 	/*
1181 	 * According to the spec, mclk is max 100 MHz,
1182 	 * so we try to adjust the clock down to this,
1183 	 * (if possible).
1184 	 */
1185 	if (host->mclk > 100000000) {
1186 		ret = clk_set_rate(host->clk, 100000000);
1187 		if (ret < 0)
1188 			goto clk_disable;
1189 		host->mclk = clk_get_rate(host->clk);
1190 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1191 			host->mclk);
1192 	}
1193 	host->phybase = dev->res.start;
1194 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1195 	if (!host->base) {
1196 		ret = -ENOMEM;
1197 		goto clk_disable;
1198 	}
1199 
1200 	mmc->ops = &mmci_ops;
1201 	/*
1202 	 * The ARM and ST versions of the block have slightly different
1203 	 * clock divider equations which means that the minimum divider
1204 	 * differs too.
1205 	 */
1206 	if (variant->st_clkdiv)
1207 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1208 	else
1209 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1210 	/*
1211 	 * If the platform data supplies a maximum operating
1212 	 * frequency, this takes precedence. Else, we fall back
1213 	 * to using the module parameter, which has a (low)
1214 	 * default value in case it is not specified. Either
1215 	 * value must not exceed the clock rate into the block,
1216 	 * of course.
1217 	 */
1218 	if (plat->f_max)
1219 		mmc->f_max = min(host->mclk, plat->f_max);
1220 	else
1221 		mmc->f_max = min(host->mclk, fmax);
1222 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1223 
1224 #ifdef CONFIG_REGULATOR
1225 	/* If we're using the regulator framework, try to fetch a regulator */
1226 	host->vcc = regulator_get(&dev->dev, "vmmc");
1227 	if (IS_ERR(host->vcc))
1228 		host->vcc = NULL;
1229 	else {
1230 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1231 
1232 		if (mask < 0)
1233 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1234 				mask);
1235 		else {
1236 			host->mmc->ocr_avail = (u32) mask;
1237 			if (plat->ocr_mask)
1238 				dev_warn(&dev->dev,
1239 				 "Provided ocr_mask/setpower will not be used "
1240 				 "(using regulator instead)\n");
1241 		}
1242 	}
1243 #endif
1244 	/* Fall back to platform data if no regulator is found */
1245 	if (host->vcc == NULL)
1246 		mmc->ocr_avail = plat->ocr_mask;
1247 	mmc->caps = plat->capabilities;
1248 
1249 	/*
1250 	 * We can do SGIO
1251 	 */
1252 	mmc->max_segs = NR_SG;
1253 
1254 	/*
1255 	 * Since only a certain number of bits are valid in the data length
1256 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1257 	 * single request.
1258 	 */
1259 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1260 
1261 	/*
1262 	 * Set the maximum segment size.  Since we aren't doing DMA
1263 	 * (yet) we are only limited by the data length register.
1264 	 */
1265 	mmc->max_seg_size = mmc->max_req_size;
1266 
1267 	/*
1268 	 * Block size can be up to 2048 bytes, but must be a power of two.
1269 	 */
1270 	mmc->max_blk_size = 2048;
1271 
1272 	/*
1273 	 * No limit on the number of blocks transferred.
1274 	 */
1275 	mmc->max_blk_count = mmc->max_req_size;
1276 
1277 	spin_lock_init(&host->lock);
1278 
1279 	writel(0, host->base + MMCIMASK0);
1280 	writel(0, host->base + MMCIMASK1);
1281 	writel(0xfff, host->base + MMCICLEAR);
1282 
1283 	if (gpio_is_valid(plat->gpio_cd)) {
1284 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1285 		if (ret == 0)
1286 			ret = gpio_direction_input(plat->gpio_cd);
1287 		if (ret == 0)
1288 			host->gpio_cd = plat->gpio_cd;
1289 		else if (ret != -ENOSYS)
1290 			goto err_gpio_cd;
1291 
1292 		/*
1293 		 * A gpio pin that will detect cards when inserted and removed
1294 		 * will most likely want to trigger on the edges if it is
1295 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1296 		 * for the inverted case) so we request triggers on both
1297 		 * edges.
1298 		 */
1299 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1300 				mmci_cd_irq,
1301 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1302 				DRIVER_NAME " (cd)", host);
1303 		if (ret >= 0)
1304 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1305 	}
1306 	if (gpio_is_valid(plat->gpio_wp)) {
1307 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1308 		if (ret == 0)
1309 			ret = gpio_direction_input(plat->gpio_wp);
1310 		if (ret == 0)
1311 			host->gpio_wp = plat->gpio_wp;
1312 		else if (ret != -ENOSYS)
1313 			goto err_gpio_wp;
1314 	}
1315 
1316 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1317 	    && host->gpio_cd_irq < 0)
1318 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1319 
1320 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1321 	if (ret)
1322 		goto unmap;
1323 
1324 	if (dev->irq[1] == NO_IRQ)
1325 		host->singleirq = true;
1326 	else {
1327 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1328 				  DRIVER_NAME " (pio)", host);
1329 		if (ret)
1330 			goto irq0_free;
1331 	}
1332 
1333 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1334 
1335 	amba_set_drvdata(dev, mmc);
1336 
1337 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1338 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1339 		 amba_rev(dev), (unsigned long long)dev->res.start,
1340 		 dev->irq[0], dev->irq[1]);
1341 
1342 	mmci_dma_setup(host);
1343 
1344 	pm_runtime_put(&dev->dev);
1345 
1346 	mmc_add_host(mmc);
1347 
1348 	return 0;
1349 
1350  irq0_free:
1351 	free_irq(dev->irq[0], host);
1352  unmap:
1353 	if (host->gpio_wp != -ENOSYS)
1354 		gpio_free(host->gpio_wp);
1355  err_gpio_wp:
1356 	if (host->gpio_cd_irq >= 0)
1357 		free_irq(host->gpio_cd_irq, host);
1358 	if (host->gpio_cd != -ENOSYS)
1359 		gpio_free(host->gpio_cd);
1360  err_gpio_cd:
1361 	iounmap(host->base);
1362  clk_disable:
1363 	clk_disable(host->clk);
1364  clk_unprep:
1365 	clk_unprepare(host->clk);
1366  clk_free:
1367 	clk_put(host->clk);
1368  host_free:
1369 	mmc_free_host(mmc);
1370  rel_regions:
1371 	amba_release_regions(dev);
1372  out:
1373 	return ret;
1374 }
1375 
1376 static int __devexit mmci_remove(struct amba_device *dev)
1377 {
1378 	struct mmc_host *mmc = amba_get_drvdata(dev);
1379 
1380 	amba_set_drvdata(dev, NULL);
1381 
1382 	if (mmc) {
1383 		struct mmci_host *host = mmc_priv(mmc);
1384 
1385 		/*
1386 		 * Undo pm_runtime_put() in probe.  We use the _sync
1387 		 * version here so that we can access the primecell.
1388 		 */
1389 		pm_runtime_get_sync(&dev->dev);
1390 
1391 		mmc_remove_host(mmc);
1392 
1393 		writel(0, host->base + MMCIMASK0);
1394 		writel(0, host->base + MMCIMASK1);
1395 
1396 		writel(0, host->base + MMCICOMMAND);
1397 		writel(0, host->base + MMCIDATACTRL);
1398 
1399 		mmci_dma_release(host);
1400 		free_irq(dev->irq[0], host);
1401 		if (!host->singleirq)
1402 			free_irq(dev->irq[1], host);
1403 
1404 		if (host->gpio_wp != -ENOSYS)
1405 			gpio_free(host->gpio_wp);
1406 		if (host->gpio_cd_irq >= 0)
1407 			free_irq(host->gpio_cd_irq, host);
1408 		if (host->gpio_cd != -ENOSYS)
1409 			gpio_free(host->gpio_cd);
1410 
1411 		iounmap(host->base);
1412 		clk_disable(host->clk);
1413 		clk_unprepare(host->clk);
1414 		clk_put(host->clk);
1415 
1416 		if (host->vcc)
1417 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1418 		regulator_put(host->vcc);
1419 
1420 		mmc_free_host(mmc);
1421 
1422 		amba_release_regions(dev);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 #ifdef CONFIG_PM
1429 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1430 {
1431 	struct mmc_host *mmc = amba_get_drvdata(dev);
1432 	int ret = 0;
1433 
1434 	if (mmc) {
1435 		struct mmci_host *host = mmc_priv(mmc);
1436 
1437 		ret = mmc_suspend_host(mmc);
1438 		if (ret == 0)
1439 			writel(0, host->base + MMCIMASK0);
1440 	}
1441 
1442 	return ret;
1443 }
1444 
1445 static int mmci_resume(struct amba_device *dev)
1446 {
1447 	struct mmc_host *mmc = amba_get_drvdata(dev);
1448 	int ret = 0;
1449 
1450 	if (mmc) {
1451 		struct mmci_host *host = mmc_priv(mmc);
1452 
1453 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1454 
1455 		ret = mmc_resume_host(mmc);
1456 	}
1457 
1458 	return ret;
1459 }
1460 #else
1461 #define mmci_suspend	NULL
1462 #define mmci_resume	NULL
1463 #endif
1464 
1465 static struct amba_id mmci_ids[] = {
1466 	{
1467 		.id	= 0x00041180,
1468 		.mask	= 0xff0fffff,
1469 		.data	= &variant_arm,
1470 	},
1471 	{
1472 		.id	= 0x01041180,
1473 		.mask	= 0xff0fffff,
1474 		.data	= &variant_arm_extended_fifo,
1475 	},
1476 	{
1477 		.id	= 0x00041181,
1478 		.mask	= 0x000fffff,
1479 		.data	= &variant_arm,
1480 	},
1481 	/* ST Micro variants */
1482 	{
1483 		.id     = 0x00180180,
1484 		.mask   = 0x00ffffff,
1485 		.data	= &variant_u300,
1486 	},
1487 	{
1488 		.id     = 0x00280180,
1489 		.mask   = 0x00ffffff,
1490 		.data	= &variant_u300,
1491 	},
1492 	{
1493 		.id     = 0x00480180,
1494 		.mask   = 0xf0ffffff,
1495 		.data	= &variant_ux500,
1496 	},
1497 	{
1498 		.id     = 0x10480180,
1499 		.mask   = 0xf0ffffff,
1500 		.data	= &variant_ux500v2,
1501 	},
1502 	{ 0, 0 },
1503 };
1504 
1505 static struct amba_driver mmci_driver = {
1506 	.drv		= {
1507 		.name	= DRIVER_NAME,
1508 	},
1509 	.probe		= mmci_probe,
1510 	.remove		= __devexit_p(mmci_remove),
1511 	.suspend	= mmci_suspend,
1512 	.resume		= mmci_resume,
1513 	.id_table	= mmci_ids,
1514 };
1515 
1516 static int __init mmci_init(void)
1517 {
1518 	return amba_driver_register(&mmci_driver);
1519 }
1520 
1521 static void __exit mmci_exit(void)
1522 {
1523 	amba_driver_unregister(&mmci_driver);
1524 }
1525 
1526 module_init(mmci_init);
1527 module_exit(mmci_exit);
1528 module_param(fmax, uint, 0444);
1529 
1530 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1531 MODULE_LICENSE("GPL");
1532