xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 399bc486)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 
33 #include <asm/div64.h>
34 #include <asm/io.h>
35 #include <asm/sizes.h>
36 
37 #include "mmci.h"
38 
39 #define DRIVER_NAME "mmci-pl18x"
40 
41 static unsigned int fmax = 515633;
42 
43 /**
44  * struct variant_data - MMCI variant-specific quirks
45  * @clkreg: default value for MCICLOCK register
46  * @clkreg_enable: enable value for MMCICLOCK register
47  * @datalength_bits: number of bits in the MMCIDATALENGTH register
48  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49  *	      is asserted (likewise for RX)
50  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51  *		  is asserted (likewise for RX)
52  * @sdio: variant supports SDIO
53  * @st_clkdiv: true if using a ST-specific clock divider algorithm
54  */
55 struct variant_data {
56 	unsigned int		clkreg;
57 	unsigned int		clkreg_enable;
58 	unsigned int		datalength_bits;
59 	unsigned int		fifosize;
60 	unsigned int		fifohalfsize;
61 	bool			sdio;
62 	bool			st_clkdiv;
63 };
64 
65 static struct variant_data variant_arm = {
66 	.fifosize		= 16 * 4,
67 	.fifohalfsize		= 8 * 4,
68 	.datalength_bits	= 16,
69 };
70 
71 static struct variant_data variant_arm_extended_fifo = {
72 	.fifosize		= 128 * 4,
73 	.fifohalfsize		= 64 * 4,
74 	.datalength_bits	= 16,
75 };
76 
77 static struct variant_data variant_u300 = {
78 	.fifosize		= 16 * 4,
79 	.fifohalfsize		= 8 * 4,
80 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
81 	.datalength_bits	= 16,
82 	.sdio			= true,
83 };
84 
85 static struct variant_data variant_ux500 = {
86 	.fifosize		= 30 * 4,
87 	.fifohalfsize		= 8 * 4,
88 	.clkreg			= MCI_CLK_ENABLE,
89 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
90 	.datalength_bits	= 24,
91 	.sdio			= true,
92 	.st_clkdiv		= true,
93 };
94 
95 /*
96  * This must be called with host->lock held
97  */
98 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
99 {
100 	struct variant_data *variant = host->variant;
101 	u32 clk = variant->clkreg;
102 
103 	if (desired) {
104 		if (desired >= host->mclk) {
105 			clk = MCI_CLK_BYPASS;
106 			if (variant->st_clkdiv)
107 				clk |= MCI_ST_UX500_NEG_EDGE;
108 			host->cclk = host->mclk;
109 		} else if (variant->st_clkdiv) {
110 			/*
111 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
112 			 * => clkdiv = (mclk / f) - 2
113 			 * Round the divider up so we don't exceed the max
114 			 * frequency
115 			 */
116 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
117 			if (clk >= 256)
118 				clk = 255;
119 			host->cclk = host->mclk / (clk + 2);
120 		} else {
121 			/*
122 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
123 			 * => clkdiv = mclk / (2 * f) - 1
124 			 */
125 			clk = host->mclk / (2 * desired) - 1;
126 			if (clk >= 256)
127 				clk = 255;
128 			host->cclk = host->mclk / (2 * (clk + 1));
129 		}
130 
131 		clk |= variant->clkreg_enable;
132 		clk |= MCI_CLK_ENABLE;
133 		/* This hasn't proven to be worthwhile */
134 		/* clk |= MCI_CLK_PWRSAVE; */
135 	}
136 
137 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
138 		clk |= MCI_4BIT_BUS;
139 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
140 		clk |= MCI_ST_8BIT_BUS;
141 
142 	writel(clk, host->base + MMCICLOCK);
143 }
144 
145 static void
146 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
147 {
148 	writel(0, host->base + MMCICOMMAND);
149 
150 	BUG_ON(host->data);
151 
152 	host->mrq = NULL;
153 	host->cmd = NULL;
154 
155 	/*
156 	 * Need to drop the host lock here; mmc_request_done may call
157 	 * back into the driver...
158 	 */
159 	spin_unlock(&host->lock);
160 	mmc_request_done(host->mmc, mrq);
161 	spin_lock(&host->lock);
162 }
163 
164 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
165 {
166 	void __iomem *base = host->base;
167 
168 	if (host->singleirq) {
169 		unsigned int mask0 = readl(base + MMCIMASK0);
170 
171 		mask0 &= ~MCI_IRQ1MASK;
172 		mask0 |= mask;
173 
174 		writel(mask0, base + MMCIMASK0);
175 	}
176 
177 	writel(mask, base + MMCIMASK1);
178 }
179 
180 static void mmci_stop_data(struct mmci_host *host)
181 {
182 	writel(0, host->base + MMCIDATACTRL);
183 	mmci_set_mask1(host, 0);
184 	host->data = NULL;
185 }
186 
187 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
188 {
189 	unsigned int flags = SG_MITER_ATOMIC;
190 
191 	if (data->flags & MMC_DATA_READ)
192 		flags |= SG_MITER_TO_SG;
193 	else
194 		flags |= SG_MITER_FROM_SG;
195 
196 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
197 }
198 
199 /*
200  * All the DMA operation mode stuff goes inside this ifdef.
201  * This assumes that you have a generic DMA device interface,
202  * no custom DMA interfaces are supported.
203  */
204 #ifdef CONFIG_DMA_ENGINE
205 static void __devinit mmci_dma_setup(struct mmci_host *host)
206 {
207 	struct mmci_platform_data *plat = host->plat;
208 	const char *rxname, *txname;
209 	dma_cap_mask_t mask;
210 
211 	if (!plat || !plat->dma_filter) {
212 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
213 		return;
214 	}
215 
216 	/* Try to acquire a generic DMA engine slave channel */
217 	dma_cap_zero(mask);
218 	dma_cap_set(DMA_SLAVE, mask);
219 
220 	/*
221 	 * If only an RX channel is specified, the driver will
222 	 * attempt to use it bidirectionally, however if it is
223 	 * is specified but cannot be located, DMA will be disabled.
224 	 */
225 	if (plat->dma_rx_param) {
226 		host->dma_rx_channel = dma_request_channel(mask,
227 							   plat->dma_filter,
228 							   plat->dma_rx_param);
229 		/* E.g if no DMA hardware is present */
230 		if (!host->dma_rx_channel)
231 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
232 	}
233 
234 	if (plat->dma_tx_param) {
235 		host->dma_tx_channel = dma_request_channel(mask,
236 							   plat->dma_filter,
237 							   plat->dma_tx_param);
238 		if (!host->dma_tx_channel)
239 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
240 	} else {
241 		host->dma_tx_channel = host->dma_rx_channel;
242 	}
243 
244 	if (host->dma_rx_channel)
245 		rxname = dma_chan_name(host->dma_rx_channel);
246 	else
247 		rxname = "none";
248 
249 	if (host->dma_tx_channel)
250 		txname = dma_chan_name(host->dma_tx_channel);
251 	else
252 		txname = "none";
253 
254 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
255 		 rxname, txname);
256 
257 	/*
258 	 * Limit the maximum segment size in any SG entry according to
259 	 * the parameters of the DMA engine device.
260 	 */
261 	if (host->dma_tx_channel) {
262 		struct device *dev = host->dma_tx_channel->device->dev;
263 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
264 
265 		if (max_seg_size < host->mmc->max_seg_size)
266 			host->mmc->max_seg_size = max_seg_size;
267 	}
268 	if (host->dma_rx_channel) {
269 		struct device *dev = host->dma_rx_channel->device->dev;
270 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
271 
272 		if (max_seg_size < host->mmc->max_seg_size)
273 			host->mmc->max_seg_size = max_seg_size;
274 	}
275 }
276 
277 /*
278  * This is used in __devinit or __devexit so inline it
279  * so it can be discarded.
280  */
281 static inline void mmci_dma_release(struct mmci_host *host)
282 {
283 	struct mmci_platform_data *plat = host->plat;
284 
285 	if (host->dma_rx_channel)
286 		dma_release_channel(host->dma_rx_channel);
287 	if (host->dma_tx_channel && plat->dma_tx_param)
288 		dma_release_channel(host->dma_tx_channel);
289 	host->dma_rx_channel = host->dma_tx_channel = NULL;
290 }
291 
292 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
293 {
294 	struct dma_chan *chan = host->dma_current;
295 	enum dma_data_direction dir;
296 	u32 status;
297 	int i;
298 
299 	/* Wait up to 1ms for the DMA to complete */
300 	for (i = 0; ; i++) {
301 		status = readl(host->base + MMCISTATUS);
302 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
303 			break;
304 		udelay(10);
305 	}
306 
307 	/*
308 	 * Check to see whether we still have some data left in the FIFO -
309 	 * this catches DMA controllers which are unable to monitor the
310 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
311 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
312 	 */
313 	if (status & MCI_RXDATAAVLBLMASK) {
314 		dmaengine_terminate_all(chan);
315 		if (!data->error)
316 			data->error = -EIO;
317 	}
318 
319 	if (data->flags & MMC_DATA_WRITE) {
320 		dir = DMA_TO_DEVICE;
321 	} else {
322 		dir = DMA_FROM_DEVICE;
323 	}
324 
325 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
326 
327 	/*
328 	 * Use of DMA with scatter-gather is impossible.
329 	 * Give up with DMA and switch back to PIO mode.
330 	 */
331 	if (status & MCI_RXDATAAVLBLMASK) {
332 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
333 		mmci_dma_release(host);
334 	}
335 }
336 
337 static void mmci_dma_data_error(struct mmci_host *host)
338 {
339 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
340 	dmaengine_terminate_all(host->dma_current);
341 }
342 
343 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
344 {
345 	struct variant_data *variant = host->variant;
346 	struct dma_slave_config conf = {
347 		.src_addr = host->phybase + MMCIFIFO,
348 		.dst_addr = host->phybase + MMCIFIFO,
349 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
350 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
351 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
352 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
353 	};
354 	struct mmc_data *data = host->data;
355 	struct dma_chan *chan;
356 	struct dma_device *device;
357 	struct dma_async_tx_descriptor *desc;
358 	int nr_sg;
359 
360 	host->dma_current = NULL;
361 
362 	if (data->flags & MMC_DATA_READ) {
363 		conf.direction = DMA_FROM_DEVICE;
364 		chan = host->dma_rx_channel;
365 	} else {
366 		conf.direction = DMA_TO_DEVICE;
367 		chan = host->dma_tx_channel;
368 	}
369 
370 	/* If there's no DMA channel, fall back to PIO */
371 	if (!chan)
372 		return -EINVAL;
373 
374 	/* If less than or equal to the fifo size, don't bother with DMA */
375 	if (host->size <= variant->fifosize)
376 		return -EINVAL;
377 
378 	device = chan->device;
379 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
380 	if (nr_sg == 0)
381 		return -EINVAL;
382 
383 	dmaengine_slave_config(chan, &conf);
384 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
385 					    conf.direction, DMA_CTRL_ACK);
386 	if (!desc)
387 		goto unmap_exit;
388 
389 	/* Okay, go for it. */
390 	host->dma_current = chan;
391 
392 	dev_vdbg(mmc_dev(host->mmc),
393 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
394 		 data->sg_len, data->blksz, data->blocks, data->flags);
395 	dmaengine_submit(desc);
396 	dma_async_issue_pending(chan);
397 
398 	datactrl |= MCI_DPSM_DMAENABLE;
399 
400 	/* Trigger the DMA transfer */
401 	writel(datactrl, host->base + MMCIDATACTRL);
402 
403 	/*
404 	 * Let the MMCI say when the data is ended and it's time
405 	 * to fire next DMA request. When that happens, MMCI will
406 	 * call mmci_data_end()
407 	 */
408 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
409 	       host->base + MMCIMASK0);
410 	return 0;
411 
412 unmap_exit:
413 	dmaengine_terminate_all(chan);
414 	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
415 	return -ENOMEM;
416 }
417 #else
418 /* Blank functions if the DMA engine is not available */
419 static inline void mmci_dma_setup(struct mmci_host *host)
420 {
421 }
422 
423 static inline void mmci_dma_release(struct mmci_host *host)
424 {
425 }
426 
427 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
428 {
429 }
430 
431 static inline void mmci_dma_data_error(struct mmci_host *host)
432 {
433 }
434 
435 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
436 {
437 	return -ENOSYS;
438 }
439 #endif
440 
441 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
442 {
443 	struct variant_data *variant = host->variant;
444 	unsigned int datactrl, timeout, irqmask;
445 	unsigned long long clks;
446 	void __iomem *base;
447 	int blksz_bits;
448 
449 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
450 		data->blksz, data->blocks, data->flags);
451 
452 	host->data = data;
453 	host->size = data->blksz * data->blocks;
454 	data->bytes_xfered = 0;
455 
456 	clks = (unsigned long long)data->timeout_ns * host->cclk;
457 	do_div(clks, 1000000000UL);
458 
459 	timeout = data->timeout_clks + (unsigned int)clks;
460 
461 	base = host->base;
462 	writel(timeout, base + MMCIDATATIMER);
463 	writel(host->size, base + MMCIDATALENGTH);
464 
465 	blksz_bits = ffs(data->blksz) - 1;
466 	BUG_ON(1 << blksz_bits != data->blksz);
467 
468 	datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
469 
470 	if (data->flags & MMC_DATA_READ)
471 		datactrl |= MCI_DPSM_DIRECTION;
472 
473 	/*
474 	 * Attempt to use DMA operation mode, if this
475 	 * should fail, fall back to PIO mode
476 	 */
477 	if (!mmci_dma_start_data(host, datactrl))
478 		return;
479 
480 	/* IRQ mode, map the SG list for CPU reading/writing */
481 	mmci_init_sg(host, data);
482 
483 	if (data->flags & MMC_DATA_READ) {
484 		irqmask = MCI_RXFIFOHALFFULLMASK;
485 
486 		/*
487 		 * If we have less than the fifo 'half-full' threshold to
488 		 * transfer, trigger a PIO interrupt as soon as any data
489 		 * is available.
490 		 */
491 		if (host->size < variant->fifohalfsize)
492 			irqmask |= MCI_RXDATAAVLBLMASK;
493 	} else {
494 		/*
495 		 * We don't actually need to include "FIFO empty" here
496 		 * since its implicit in "FIFO half empty".
497 		 */
498 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
499 	}
500 
501 	/* The ST Micro variants has a special bit to enable SDIO */
502 	if (variant->sdio && host->mmc->card)
503 		if (mmc_card_sdio(host->mmc->card))
504 			datactrl |= MCI_ST_DPSM_SDIOEN;
505 
506 	writel(datactrl, base + MMCIDATACTRL);
507 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
508 	mmci_set_mask1(host, irqmask);
509 }
510 
511 static void
512 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
513 {
514 	void __iomem *base = host->base;
515 
516 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
517 	    cmd->opcode, cmd->arg, cmd->flags);
518 
519 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
520 		writel(0, base + MMCICOMMAND);
521 		udelay(1);
522 	}
523 
524 	c |= cmd->opcode | MCI_CPSM_ENABLE;
525 	if (cmd->flags & MMC_RSP_PRESENT) {
526 		if (cmd->flags & MMC_RSP_136)
527 			c |= MCI_CPSM_LONGRSP;
528 		c |= MCI_CPSM_RESPONSE;
529 	}
530 	if (/*interrupt*/0)
531 		c |= MCI_CPSM_INTERRUPT;
532 
533 	host->cmd = cmd;
534 
535 	writel(cmd->arg, base + MMCIARGUMENT);
536 	writel(c, base + MMCICOMMAND);
537 }
538 
539 static void
540 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
541 	      unsigned int status)
542 {
543 	/* First check for errors */
544 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
545 		u32 remain, success;
546 
547 		/* Terminate the DMA transfer */
548 		if (dma_inprogress(host))
549 			mmci_dma_data_error(host);
550 
551 		/*
552 		 * Calculate how far we are into the transfer.  Note that
553 		 * the data counter gives the number of bytes transferred
554 		 * on the MMC bus, not on the host side.  On reads, this
555 		 * can be as much as a FIFO-worth of data ahead.  This
556 		 * matters for FIFO overruns only.
557 		 */
558 		remain = readl(host->base + MMCIDATACNT);
559 		success = data->blksz * data->blocks - remain;
560 
561 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
562 			status, success);
563 		if (status & MCI_DATACRCFAIL) {
564 			/* Last block was not successful */
565 			success -= 1;
566 			data->error = -EILSEQ;
567 		} else if (status & MCI_DATATIMEOUT) {
568 			data->error = -ETIMEDOUT;
569 		} else if (status & MCI_TXUNDERRUN) {
570 			data->error = -EIO;
571 		} else if (status & MCI_RXOVERRUN) {
572 			if (success > host->variant->fifosize)
573 				success -= host->variant->fifosize;
574 			else
575 				success = 0;
576 			data->error = -EIO;
577 		}
578 		data->bytes_xfered = round_down(success, data->blksz);
579 	}
580 
581 	if (status & MCI_DATABLOCKEND)
582 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
583 
584 	if (status & MCI_DATAEND || data->error) {
585 		if (dma_inprogress(host))
586 			mmci_dma_unmap(host, data);
587 		mmci_stop_data(host);
588 
589 		if (!data->error)
590 			/* The error clause is handled above, success! */
591 			data->bytes_xfered = data->blksz * data->blocks;
592 
593 		if (!data->stop) {
594 			mmci_request_end(host, data->mrq);
595 		} else {
596 			mmci_start_command(host, data->stop, 0);
597 		}
598 	}
599 }
600 
601 static void
602 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
603 	     unsigned int status)
604 {
605 	void __iomem *base = host->base;
606 
607 	host->cmd = NULL;
608 
609 	if (status & MCI_CMDTIMEOUT) {
610 		cmd->error = -ETIMEDOUT;
611 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
612 		cmd->error = -EILSEQ;
613 	} else {
614 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
615 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
616 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
617 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
618 	}
619 
620 	if (!cmd->data || cmd->error) {
621 		if (host->data)
622 			mmci_stop_data(host);
623 		mmci_request_end(host, cmd->mrq);
624 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
625 		mmci_start_data(host, cmd->data);
626 	}
627 }
628 
629 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
630 {
631 	void __iomem *base = host->base;
632 	char *ptr = buffer;
633 	u32 status;
634 	int host_remain = host->size;
635 
636 	do {
637 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
638 
639 		if (count > remain)
640 			count = remain;
641 
642 		if (count <= 0)
643 			break;
644 
645 		readsl(base + MMCIFIFO, ptr, count >> 2);
646 
647 		ptr += count;
648 		remain -= count;
649 		host_remain -= count;
650 
651 		if (remain == 0)
652 			break;
653 
654 		status = readl(base + MMCISTATUS);
655 	} while (status & MCI_RXDATAAVLBL);
656 
657 	return ptr - buffer;
658 }
659 
660 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
661 {
662 	struct variant_data *variant = host->variant;
663 	void __iomem *base = host->base;
664 	char *ptr = buffer;
665 
666 	do {
667 		unsigned int count, maxcnt;
668 
669 		maxcnt = status & MCI_TXFIFOEMPTY ?
670 			 variant->fifosize : variant->fifohalfsize;
671 		count = min(remain, maxcnt);
672 
673 		/*
674 		 * The ST Micro variant for SDIO transfer sizes
675 		 * less then 8 bytes should have clock H/W flow
676 		 * control disabled.
677 		 */
678 		if (variant->sdio &&
679 		    mmc_card_sdio(host->mmc->card)) {
680 			if (count < 8)
681 				writel(readl(host->base + MMCICLOCK) &
682 					~variant->clkreg_enable,
683 					host->base + MMCICLOCK);
684 			else
685 				writel(readl(host->base + MMCICLOCK) |
686 					variant->clkreg_enable,
687 					host->base + MMCICLOCK);
688 		}
689 
690 		/*
691 		 * SDIO especially may want to send something that is
692 		 * not divisible by 4 (as opposed to card sectors
693 		 * etc), and the FIFO only accept full 32-bit writes.
694 		 * So compensate by adding +3 on the count, a single
695 		 * byte become a 32bit write, 7 bytes will be two
696 		 * 32bit writes etc.
697 		 */
698 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
699 
700 		ptr += count;
701 		remain -= count;
702 
703 		if (remain == 0)
704 			break;
705 
706 		status = readl(base + MMCISTATUS);
707 	} while (status & MCI_TXFIFOHALFEMPTY);
708 
709 	return ptr - buffer;
710 }
711 
712 /*
713  * PIO data transfer IRQ handler.
714  */
715 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
716 {
717 	struct mmci_host *host = dev_id;
718 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
719 	struct variant_data *variant = host->variant;
720 	void __iomem *base = host->base;
721 	unsigned long flags;
722 	u32 status;
723 
724 	status = readl(base + MMCISTATUS);
725 
726 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
727 
728 	local_irq_save(flags);
729 
730 	do {
731 		unsigned int remain, len;
732 		char *buffer;
733 
734 		/*
735 		 * For write, we only need to test the half-empty flag
736 		 * here - if the FIFO is completely empty, then by
737 		 * definition it is more than half empty.
738 		 *
739 		 * For read, check for data available.
740 		 */
741 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
742 			break;
743 
744 		if (!sg_miter_next(sg_miter))
745 			break;
746 
747 		buffer = sg_miter->addr;
748 		remain = sg_miter->length;
749 
750 		len = 0;
751 		if (status & MCI_RXACTIVE)
752 			len = mmci_pio_read(host, buffer, remain);
753 		if (status & MCI_TXACTIVE)
754 			len = mmci_pio_write(host, buffer, remain, status);
755 
756 		sg_miter->consumed = len;
757 
758 		host->size -= len;
759 		remain -= len;
760 
761 		if (remain)
762 			break;
763 
764 		status = readl(base + MMCISTATUS);
765 	} while (1);
766 
767 	sg_miter_stop(sg_miter);
768 
769 	local_irq_restore(flags);
770 
771 	/*
772 	 * If we have less than the fifo 'half-full' threshold to transfer,
773 	 * trigger a PIO interrupt as soon as any data is available.
774 	 */
775 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
776 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
777 
778 	/*
779 	 * If we run out of data, disable the data IRQs; this
780 	 * prevents a race where the FIFO becomes empty before
781 	 * the chip itself has disabled the data path, and
782 	 * stops us racing with our data end IRQ.
783 	 */
784 	if (host->size == 0) {
785 		mmci_set_mask1(host, 0);
786 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
787 	}
788 
789 	return IRQ_HANDLED;
790 }
791 
792 /*
793  * Handle completion of command and data transfers.
794  */
795 static irqreturn_t mmci_irq(int irq, void *dev_id)
796 {
797 	struct mmci_host *host = dev_id;
798 	u32 status;
799 	int ret = 0;
800 
801 	spin_lock(&host->lock);
802 
803 	do {
804 		struct mmc_command *cmd;
805 		struct mmc_data *data;
806 
807 		status = readl(host->base + MMCISTATUS);
808 
809 		if (host->singleirq) {
810 			if (status & readl(host->base + MMCIMASK1))
811 				mmci_pio_irq(irq, dev_id);
812 
813 			status &= ~MCI_IRQ1MASK;
814 		}
815 
816 		status &= readl(host->base + MMCIMASK0);
817 		writel(status, host->base + MMCICLEAR);
818 
819 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
820 
821 		data = host->data;
822 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
823 			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
824 			mmci_data_irq(host, data, status);
825 
826 		cmd = host->cmd;
827 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
828 			mmci_cmd_irq(host, cmd, status);
829 
830 		ret = 1;
831 	} while (status);
832 
833 	spin_unlock(&host->lock);
834 
835 	return IRQ_RETVAL(ret);
836 }
837 
838 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
839 {
840 	struct mmci_host *host = mmc_priv(mmc);
841 	unsigned long flags;
842 
843 	WARN_ON(host->mrq != NULL);
844 
845 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
846 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
847 			mrq->data->blksz);
848 		mrq->cmd->error = -EINVAL;
849 		mmc_request_done(mmc, mrq);
850 		return;
851 	}
852 
853 	spin_lock_irqsave(&host->lock, flags);
854 
855 	host->mrq = mrq;
856 
857 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
858 		mmci_start_data(host, mrq->data);
859 
860 	mmci_start_command(host, mrq->cmd, 0);
861 
862 	spin_unlock_irqrestore(&host->lock, flags);
863 }
864 
865 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
866 {
867 	struct mmci_host *host = mmc_priv(mmc);
868 	u32 pwr = 0;
869 	unsigned long flags;
870 	int ret;
871 
872 	switch (ios->power_mode) {
873 	case MMC_POWER_OFF:
874 		if (host->vcc)
875 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
876 		break;
877 	case MMC_POWER_UP:
878 		if (host->vcc) {
879 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
880 			if (ret) {
881 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
882 				/*
883 				 * The .set_ios() function in the mmc_host_ops
884 				 * struct return void, and failing to set the
885 				 * power should be rare so we print an error
886 				 * and return here.
887 				 */
888 				return;
889 			}
890 		}
891 		if (host->plat->vdd_handler)
892 			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
893 						       ios->power_mode);
894 		/* The ST version does not have this, fall through to POWER_ON */
895 		if (host->hw_designer != AMBA_VENDOR_ST) {
896 			pwr |= MCI_PWR_UP;
897 			break;
898 		}
899 	case MMC_POWER_ON:
900 		pwr |= MCI_PWR_ON;
901 		break;
902 	}
903 
904 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
905 		if (host->hw_designer != AMBA_VENDOR_ST)
906 			pwr |= MCI_ROD;
907 		else {
908 			/*
909 			 * The ST Micro variant use the ROD bit for something
910 			 * else and only has OD (Open Drain).
911 			 */
912 			pwr |= MCI_OD;
913 		}
914 	}
915 
916 	spin_lock_irqsave(&host->lock, flags);
917 
918 	mmci_set_clkreg(host, ios->clock);
919 
920 	if (host->pwr != pwr) {
921 		host->pwr = pwr;
922 		writel(pwr, host->base + MMCIPOWER);
923 	}
924 
925 	spin_unlock_irqrestore(&host->lock, flags);
926 }
927 
928 static int mmci_get_ro(struct mmc_host *mmc)
929 {
930 	struct mmci_host *host = mmc_priv(mmc);
931 
932 	if (host->gpio_wp == -ENOSYS)
933 		return -ENOSYS;
934 
935 	return gpio_get_value_cansleep(host->gpio_wp);
936 }
937 
938 static int mmci_get_cd(struct mmc_host *mmc)
939 {
940 	struct mmci_host *host = mmc_priv(mmc);
941 	struct mmci_platform_data *plat = host->plat;
942 	unsigned int status;
943 
944 	if (host->gpio_cd == -ENOSYS) {
945 		if (!plat->status)
946 			return 1; /* Assume always present */
947 
948 		status = plat->status(mmc_dev(host->mmc));
949 	} else
950 		status = !!gpio_get_value_cansleep(host->gpio_cd)
951 			^ plat->cd_invert;
952 
953 	/*
954 	 * Use positive logic throughout - status is zero for no card,
955 	 * non-zero for card inserted.
956 	 */
957 	return status;
958 }
959 
960 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
961 {
962 	struct mmci_host *host = dev_id;
963 
964 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
965 
966 	return IRQ_HANDLED;
967 }
968 
969 static const struct mmc_host_ops mmci_ops = {
970 	.request	= mmci_request,
971 	.set_ios	= mmci_set_ios,
972 	.get_ro		= mmci_get_ro,
973 	.get_cd		= mmci_get_cd,
974 };
975 
976 static int __devinit mmci_probe(struct amba_device *dev,
977 	const struct amba_id *id)
978 {
979 	struct mmci_platform_data *plat = dev->dev.platform_data;
980 	struct variant_data *variant = id->data;
981 	struct mmci_host *host;
982 	struct mmc_host *mmc;
983 	int ret;
984 
985 	/* must have platform data */
986 	if (!plat) {
987 		ret = -EINVAL;
988 		goto out;
989 	}
990 
991 	ret = amba_request_regions(dev, DRIVER_NAME);
992 	if (ret)
993 		goto out;
994 
995 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
996 	if (!mmc) {
997 		ret = -ENOMEM;
998 		goto rel_regions;
999 	}
1000 
1001 	host = mmc_priv(mmc);
1002 	host->mmc = mmc;
1003 
1004 	host->gpio_wp = -ENOSYS;
1005 	host->gpio_cd = -ENOSYS;
1006 	host->gpio_cd_irq = -1;
1007 
1008 	host->hw_designer = amba_manf(dev);
1009 	host->hw_revision = amba_rev(dev);
1010 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1011 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1012 
1013 	host->clk = clk_get(&dev->dev, NULL);
1014 	if (IS_ERR(host->clk)) {
1015 		ret = PTR_ERR(host->clk);
1016 		host->clk = NULL;
1017 		goto host_free;
1018 	}
1019 
1020 	ret = clk_enable(host->clk);
1021 	if (ret)
1022 		goto clk_free;
1023 
1024 	host->plat = plat;
1025 	host->variant = variant;
1026 	host->mclk = clk_get_rate(host->clk);
1027 	/*
1028 	 * According to the spec, mclk is max 100 MHz,
1029 	 * so we try to adjust the clock down to this,
1030 	 * (if possible).
1031 	 */
1032 	if (host->mclk > 100000000) {
1033 		ret = clk_set_rate(host->clk, 100000000);
1034 		if (ret < 0)
1035 			goto clk_disable;
1036 		host->mclk = clk_get_rate(host->clk);
1037 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1038 			host->mclk);
1039 	}
1040 	host->phybase = dev->res.start;
1041 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1042 	if (!host->base) {
1043 		ret = -ENOMEM;
1044 		goto clk_disable;
1045 	}
1046 
1047 	mmc->ops = &mmci_ops;
1048 	mmc->f_min = (host->mclk + 511) / 512;
1049 	/*
1050 	 * If the platform data supplies a maximum operating
1051 	 * frequency, this takes precedence. Else, we fall back
1052 	 * to using the module parameter, which has a (low)
1053 	 * default value in case it is not specified. Either
1054 	 * value must not exceed the clock rate into the block,
1055 	 * of course.
1056 	 */
1057 	if (plat->f_max)
1058 		mmc->f_max = min(host->mclk, plat->f_max);
1059 	else
1060 		mmc->f_max = min(host->mclk, fmax);
1061 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1062 
1063 #ifdef CONFIG_REGULATOR
1064 	/* If we're using the regulator framework, try to fetch a regulator */
1065 	host->vcc = regulator_get(&dev->dev, "vmmc");
1066 	if (IS_ERR(host->vcc))
1067 		host->vcc = NULL;
1068 	else {
1069 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1070 
1071 		if (mask < 0)
1072 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1073 				mask);
1074 		else {
1075 			host->mmc->ocr_avail = (u32) mask;
1076 			if (plat->ocr_mask)
1077 				dev_warn(&dev->dev,
1078 				 "Provided ocr_mask/setpower will not be used "
1079 				 "(using regulator instead)\n");
1080 		}
1081 	}
1082 #endif
1083 	/* Fall back to platform data if no regulator is found */
1084 	if (host->vcc == NULL)
1085 		mmc->ocr_avail = plat->ocr_mask;
1086 	mmc->caps = plat->capabilities;
1087 
1088 	/*
1089 	 * We can do SGIO
1090 	 */
1091 	mmc->max_segs = NR_SG;
1092 
1093 	/*
1094 	 * Since only a certain number of bits are valid in the data length
1095 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1096 	 * single request.
1097 	 */
1098 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1099 
1100 	/*
1101 	 * Set the maximum segment size.  Since we aren't doing DMA
1102 	 * (yet) we are only limited by the data length register.
1103 	 */
1104 	mmc->max_seg_size = mmc->max_req_size;
1105 
1106 	/*
1107 	 * Block size can be up to 2048 bytes, but must be a power of two.
1108 	 */
1109 	mmc->max_blk_size = 2048;
1110 
1111 	/*
1112 	 * No limit on the number of blocks transferred.
1113 	 */
1114 	mmc->max_blk_count = mmc->max_req_size;
1115 
1116 	spin_lock_init(&host->lock);
1117 
1118 	writel(0, host->base + MMCIMASK0);
1119 	writel(0, host->base + MMCIMASK1);
1120 	writel(0xfff, host->base + MMCICLEAR);
1121 
1122 	if (gpio_is_valid(plat->gpio_cd)) {
1123 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1124 		if (ret == 0)
1125 			ret = gpio_direction_input(plat->gpio_cd);
1126 		if (ret == 0)
1127 			host->gpio_cd = plat->gpio_cd;
1128 		else if (ret != -ENOSYS)
1129 			goto err_gpio_cd;
1130 
1131 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1132 					      mmci_cd_irq, 0,
1133 					      DRIVER_NAME " (cd)", host);
1134 		if (ret >= 0)
1135 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1136 	}
1137 	if (gpio_is_valid(plat->gpio_wp)) {
1138 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1139 		if (ret == 0)
1140 			ret = gpio_direction_input(plat->gpio_wp);
1141 		if (ret == 0)
1142 			host->gpio_wp = plat->gpio_wp;
1143 		else if (ret != -ENOSYS)
1144 			goto err_gpio_wp;
1145 	}
1146 
1147 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1148 	    && host->gpio_cd_irq < 0)
1149 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1150 
1151 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1152 	if (ret)
1153 		goto unmap;
1154 
1155 	if (dev->irq[1] == NO_IRQ)
1156 		host->singleirq = true;
1157 	else {
1158 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1159 				  DRIVER_NAME " (pio)", host);
1160 		if (ret)
1161 			goto irq0_free;
1162 	}
1163 
1164 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1165 
1166 	amba_set_drvdata(dev, mmc);
1167 
1168 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1169 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1170 		 amba_rev(dev), (unsigned long long)dev->res.start,
1171 		 dev->irq[0], dev->irq[1]);
1172 
1173 	mmci_dma_setup(host);
1174 
1175 	mmc_add_host(mmc);
1176 
1177 	return 0;
1178 
1179  irq0_free:
1180 	free_irq(dev->irq[0], host);
1181  unmap:
1182 	if (host->gpio_wp != -ENOSYS)
1183 		gpio_free(host->gpio_wp);
1184  err_gpio_wp:
1185 	if (host->gpio_cd_irq >= 0)
1186 		free_irq(host->gpio_cd_irq, host);
1187 	if (host->gpio_cd != -ENOSYS)
1188 		gpio_free(host->gpio_cd);
1189  err_gpio_cd:
1190 	iounmap(host->base);
1191  clk_disable:
1192 	clk_disable(host->clk);
1193  clk_free:
1194 	clk_put(host->clk);
1195  host_free:
1196 	mmc_free_host(mmc);
1197  rel_regions:
1198 	amba_release_regions(dev);
1199  out:
1200 	return ret;
1201 }
1202 
1203 static int __devexit mmci_remove(struct amba_device *dev)
1204 {
1205 	struct mmc_host *mmc = amba_get_drvdata(dev);
1206 
1207 	amba_set_drvdata(dev, NULL);
1208 
1209 	if (mmc) {
1210 		struct mmci_host *host = mmc_priv(mmc);
1211 
1212 		mmc_remove_host(mmc);
1213 
1214 		writel(0, host->base + MMCIMASK0);
1215 		writel(0, host->base + MMCIMASK1);
1216 
1217 		writel(0, host->base + MMCICOMMAND);
1218 		writel(0, host->base + MMCIDATACTRL);
1219 
1220 		mmci_dma_release(host);
1221 		free_irq(dev->irq[0], host);
1222 		if (!host->singleirq)
1223 			free_irq(dev->irq[1], host);
1224 
1225 		if (host->gpio_wp != -ENOSYS)
1226 			gpio_free(host->gpio_wp);
1227 		if (host->gpio_cd_irq >= 0)
1228 			free_irq(host->gpio_cd_irq, host);
1229 		if (host->gpio_cd != -ENOSYS)
1230 			gpio_free(host->gpio_cd);
1231 
1232 		iounmap(host->base);
1233 		clk_disable(host->clk);
1234 		clk_put(host->clk);
1235 
1236 		if (host->vcc)
1237 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1238 		regulator_put(host->vcc);
1239 
1240 		mmc_free_host(mmc);
1241 
1242 		amba_release_regions(dev);
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 #ifdef CONFIG_PM
1249 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1250 {
1251 	struct mmc_host *mmc = amba_get_drvdata(dev);
1252 	int ret = 0;
1253 
1254 	if (mmc) {
1255 		struct mmci_host *host = mmc_priv(mmc);
1256 
1257 		ret = mmc_suspend_host(mmc);
1258 		if (ret == 0)
1259 			writel(0, host->base + MMCIMASK0);
1260 	}
1261 
1262 	return ret;
1263 }
1264 
1265 static int mmci_resume(struct amba_device *dev)
1266 {
1267 	struct mmc_host *mmc = amba_get_drvdata(dev);
1268 	int ret = 0;
1269 
1270 	if (mmc) {
1271 		struct mmci_host *host = mmc_priv(mmc);
1272 
1273 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1274 
1275 		ret = mmc_resume_host(mmc);
1276 	}
1277 
1278 	return ret;
1279 }
1280 #else
1281 #define mmci_suspend	NULL
1282 #define mmci_resume	NULL
1283 #endif
1284 
1285 static struct amba_id mmci_ids[] = {
1286 	{
1287 		.id	= 0x00041180,
1288 		.mask	= 0xff0fffff,
1289 		.data	= &variant_arm,
1290 	},
1291 	{
1292 		.id	= 0x01041180,
1293 		.mask	= 0xff0fffff,
1294 		.data	= &variant_arm_extended_fifo,
1295 	},
1296 	{
1297 		.id	= 0x00041181,
1298 		.mask	= 0x000fffff,
1299 		.data	= &variant_arm,
1300 	},
1301 	/* ST Micro variants */
1302 	{
1303 		.id     = 0x00180180,
1304 		.mask   = 0x00ffffff,
1305 		.data	= &variant_u300,
1306 	},
1307 	{
1308 		.id     = 0x00280180,
1309 		.mask   = 0x00ffffff,
1310 		.data	= &variant_u300,
1311 	},
1312 	{
1313 		.id     = 0x00480180,
1314 		.mask   = 0x00ffffff,
1315 		.data	= &variant_ux500,
1316 	},
1317 	{ 0, 0 },
1318 };
1319 
1320 static struct amba_driver mmci_driver = {
1321 	.drv		= {
1322 		.name	= DRIVER_NAME,
1323 	},
1324 	.probe		= mmci_probe,
1325 	.remove		= __devexit_p(mmci_remove),
1326 	.suspend	= mmci_suspend,
1327 	.resume		= mmci_resume,
1328 	.id_table	= mmci_ids,
1329 };
1330 
1331 static int __init mmci_init(void)
1332 {
1333 	return amba_driver_register(&mmci_driver);
1334 }
1335 
1336 static void __exit mmci_exit(void)
1337 {
1338 	amba_driver_unregister(&mmci_driver);
1339 }
1340 
1341 module_init(mmci_init);
1342 module_exit(mmci_exit);
1343 module_param(fmax, uint, 0444);
1344 
1345 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1346 MODULE_LICENSE("GPL");
1347