xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 
44 #include "mmci.h"
45 #include "mmci_qcom_dml.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static unsigned int fmax = 515633;
50 
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @clkreg_8bit_bus_enable: enable value for 8 bit bus
56  * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
57  * @datalength_bits: number of bits in the MMCIDATALENGTH register
58  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
59  *	      is asserted (likewise for RX)
60  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
61  *		  is asserted (likewise for RX)
62  * @data_cmd_enable: enable value for data commands.
63  * @st_sdio: enable ST specific SDIO logic
64  * @st_clkdiv: true if using a ST-specific clock divider algorithm
65  * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
66  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
67  * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
68  *		     register
69  * @datactrl_mask_sdio: SDIO enable mask in datactrl register
70  * @pwrreg_powerup: power up value for MMCIPOWER register
71  * @f_max: maximum clk frequency supported by the controller.
72  * @signal_direction: input/out direction of bus signals can be indicated
73  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
74  * @busy_detect: true if the variant supports busy detection on DAT0.
75  * @busy_dpsm_flag: bitmask enabling busy detection in the DPSM
76  * @busy_detect_flag: bitmask identifying the bit in the MMCISTATUS register
77  *		      indicating that the card is busy
78  * @busy_detect_mask: bitmask identifying the bit in the MMCIMASK0 to mask for
79  *		      getting busy end detection interrupts
80  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
81  * @explicit_mclk_control: enable explicit mclk control in driver.
82  * @qcom_fifo: enables qcom specific fifo pio read logic.
83  * @qcom_dml: enables qcom specific dma glue for dma transfers.
84  * @reversed_irq_handling: handle data irq before cmd irq.
85  */
86 struct variant_data {
87 	unsigned int		clkreg;
88 	unsigned int		clkreg_enable;
89 	unsigned int		clkreg_8bit_bus_enable;
90 	unsigned int		clkreg_neg_edge_enable;
91 	unsigned int		datalength_bits;
92 	unsigned int		fifosize;
93 	unsigned int		fifohalfsize;
94 	unsigned int		data_cmd_enable;
95 	unsigned int		datactrl_mask_ddrmode;
96 	unsigned int		datactrl_mask_sdio;
97 	bool			st_sdio;
98 	bool			st_clkdiv;
99 	bool			blksz_datactrl16;
100 	bool			blksz_datactrl4;
101 	u32			pwrreg_powerup;
102 	u32			f_max;
103 	bool			signal_direction;
104 	bool			pwrreg_clkgate;
105 	bool			busy_detect;
106 	u32			busy_dpsm_flag;
107 	u32			busy_detect_flag;
108 	u32			busy_detect_mask;
109 	bool			pwrreg_nopower;
110 	bool			explicit_mclk_control;
111 	bool			qcom_fifo;
112 	bool			qcom_dml;
113 	bool			reversed_irq_handling;
114 };
115 
116 static struct variant_data variant_arm = {
117 	.fifosize		= 16 * 4,
118 	.fifohalfsize		= 8 * 4,
119 	.datalength_bits	= 16,
120 	.pwrreg_powerup		= MCI_PWR_UP,
121 	.f_max			= 100000000,
122 	.reversed_irq_handling	= true,
123 };
124 
125 static struct variant_data variant_arm_extended_fifo = {
126 	.fifosize		= 128 * 4,
127 	.fifohalfsize		= 64 * 4,
128 	.datalength_bits	= 16,
129 	.pwrreg_powerup		= MCI_PWR_UP,
130 	.f_max			= 100000000,
131 };
132 
133 static struct variant_data variant_arm_extended_fifo_hwfc = {
134 	.fifosize		= 128 * 4,
135 	.fifohalfsize		= 64 * 4,
136 	.clkreg_enable		= MCI_ARM_HWFCEN,
137 	.datalength_bits	= 16,
138 	.pwrreg_powerup		= MCI_PWR_UP,
139 	.f_max			= 100000000,
140 };
141 
142 static struct variant_data variant_u300 = {
143 	.fifosize		= 16 * 4,
144 	.fifohalfsize		= 8 * 4,
145 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
146 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
147 	.datalength_bits	= 16,
148 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
149 	.st_sdio			= true,
150 	.pwrreg_powerup		= MCI_PWR_ON,
151 	.f_max			= 100000000,
152 	.signal_direction	= true,
153 	.pwrreg_clkgate		= true,
154 	.pwrreg_nopower		= true,
155 };
156 
157 static struct variant_data variant_nomadik = {
158 	.fifosize		= 16 * 4,
159 	.fifohalfsize		= 8 * 4,
160 	.clkreg			= MCI_CLK_ENABLE,
161 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
162 	.datalength_bits	= 24,
163 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
164 	.st_sdio		= true,
165 	.st_clkdiv		= true,
166 	.pwrreg_powerup		= MCI_PWR_ON,
167 	.f_max			= 100000000,
168 	.signal_direction	= true,
169 	.pwrreg_clkgate		= true,
170 	.pwrreg_nopower		= true,
171 };
172 
173 static struct variant_data variant_ux500 = {
174 	.fifosize		= 30 * 4,
175 	.fifohalfsize		= 8 * 4,
176 	.clkreg			= MCI_CLK_ENABLE,
177 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
178 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
179 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
180 	.datalength_bits	= 24,
181 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
182 	.st_sdio		= true,
183 	.st_clkdiv		= true,
184 	.pwrreg_powerup		= MCI_PWR_ON,
185 	.f_max			= 100000000,
186 	.signal_direction	= true,
187 	.pwrreg_clkgate		= true,
188 	.busy_detect		= true,
189 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
190 	.busy_detect_flag	= MCI_ST_CARDBUSY,
191 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
192 	.pwrreg_nopower		= true,
193 };
194 
195 static struct variant_data variant_ux500v2 = {
196 	.fifosize		= 30 * 4,
197 	.fifohalfsize		= 8 * 4,
198 	.clkreg			= MCI_CLK_ENABLE,
199 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
200 	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
201 	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
202 	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
203 	.datalength_bits	= 24,
204 	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
205 	.st_sdio		= true,
206 	.st_clkdiv		= true,
207 	.blksz_datactrl16	= true,
208 	.pwrreg_powerup		= MCI_PWR_ON,
209 	.f_max			= 100000000,
210 	.signal_direction	= true,
211 	.pwrreg_clkgate		= true,
212 	.busy_detect		= true,
213 	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
214 	.busy_detect_flag	= MCI_ST_CARDBUSY,
215 	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
216 	.pwrreg_nopower		= true,
217 };
218 
219 static struct variant_data variant_qcom = {
220 	.fifosize		= 16 * 4,
221 	.fifohalfsize		= 8 * 4,
222 	.clkreg			= MCI_CLK_ENABLE,
223 	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
224 				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
225 	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
226 	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
227 	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
228 	.blksz_datactrl4	= true,
229 	.datalength_bits	= 24,
230 	.pwrreg_powerup		= MCI_PWR_UP,
231 	.f_max			= 208000000,
232 	.explicit_mclk_control	= true,
233 	.qcom_fifo		= true,
234 	.qcom_dml		= true,
235 };
236 
237 /* Busy detection for the ST Micro variant */
238 static int mmci_card_busy(struct mmc_host *mmc)
239 {
240 	struct mmci_host *host = mmc_priv(mmc);
241 	unsigned long flags;
242 	int busy = 0;
243 
244 	spin_lock_irqsave(&host->lock, flags);
245 	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
246 		busy = 1;
247 	spin_unlock_irqrestore(&host->lock, flags);
248 
249 	return busy;
250 }
251 
252 /*
253  * Validate mmc prerequisites
254  */
255 static int mmci_validate_data(struct mmci_host *host,
256 			      struct mmc_data *data)
257 {
258 	if (!data)
259 		return 0;
260 
261 	if (!is_power_of_2(data->blksz)) {
262 		dev_err(mmc_dev(host->mmc),
263 			"unsupported block size (%d bytes)\n", data->blksz);
264 		return -EINVAL;
265 	}
266 
267 	return 0;
268 }
269 
270 static void mmci_reg_delay(struct mmci_host *host)
271 {
272 	/*
273 	 * According to the spec, at least three feedback clock cycles
274 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
275 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
276 	 * Worst delay time during card init is at 100 kHz => 30 us.
277 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
278 	 */
279 	if (host->cclk < 25000000)
280 		udelay(30);
281 	else
282 		ndelay(120);
283 }
284 
285 /*
286  * This must be called with host->lock held
287  */
288 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
289 {
290 	if (host->clk_reg != clk) {
291 		host->clk_reg = clk;
292 		writel(clk, host->base + MMCICLOCK);
293 	}
294 }
295 
296 /*
297  * This must be called with host->lock held
298  */
299 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
300 {
301 	if (host->pwr_reg != pwr) {
302 		host->pwr_reg = pwr;
303 		writel(pwr, host->base + MMCIPOWER);
304 	}
305 }
306 
307 /*
308  * This must be called with host->lock held
309  */
310 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
311 {
312 	/* Keep busy mode in DPSM if enabled */
313 	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
314 
315 	if (host->datactrl_reg != datactrl) {
316 		host->datactrl_reg = datactrl;
317 		writel(datactrl, host->base + MMCIDATACTRL);
318 	}
319 }
320 
321 /*
322  * This must be called with host->lock held
323  */
324 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
325 {
326 	struct variant_data *variant = host->variant;
327 	u32 clk = variant->clkreg;
328 
329 	/* Make sure cclk reflects the current calculated clock */
330 	host->cclk = 0;
331 
332 	if (desired) {
333 		if (variant->explicit_mclk_control) {
334 			host->cclk = host->mclk;
335 		} else if (desired >= host->mclk) {
336 			clk = MCI_CLK_BYPASS;
337 			if (variant->st_clkdiv)
338 				clk |= MCI_ST_UX500_NEG_EDGE;
339 			host->cclk = host->mclk;
340 		} else if (variant->st_clkdiv) {
341 			/*
342 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
343 			 * => clkdiv = (mclk / f) - 2
344 			 * Round the divider up so we don't exceed the max
345 			 * frequency
346 			 */
347 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
348 			if (clk >= 256)
349 				clk = 255;
350 			host->cclk = host->mclk / (clk + 2);
351 		} else {
352 			/*
353 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
354 			 * => clkdiv = mclk / (2 * f) - 1
355 			 */
356 			clk = host->mclk / (2 * desired) - 1;
357 			if (clk >= 256)
358 				clk = 255;
359 			host->cclk = host->mclk / (2 * (clk + 1));
360 		}
361 
362 		clk |= variant->clkreg_enable;
363 		clk |= MCI_CLK_ENABLE;
364 		/* This hasn't proven to be worthwhile */
365 		/* clk |= MCI_CLK_PWRSAVE; */
366 	}
367 
368 	/* Set actual clock for debug */
369 	host->mmc->actual_clock = host->cclk;
370 
371 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
372 		clk |= MCI_4BIT_BUS;
373 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
374 		clk |= variant->clkreg_8bit_bus_enable;
375 
376 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
377 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
378 		clk |= variant->clkreg_neg_edge_enable;
379 
380 	mmci_write_clkreg(host, clk);
381 }
382 
383 static void
384 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
385 {
386 	writel(0, host->base + MMCICOMMAND);
387 
388 	BUG_ON(host->data);
389 
390 	host->mrq = NULL;
391 	host->cmd = NULL;
392 
393 	mmc_request_done(host->mmc, mrq);
394 }
395 
396 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
397 {
398 	void __iomem *base = host->base;
399 
400 	if (host->singleirq) {
401 		unsigned int mask0 = readl(base + MMCIMASK0);
402 
403 		mask0 &= ~MCI_IRQ1MASK;
404 		mask0 |= mask;
405 
406 		writel(mask0, base + MMCIMASK0);
407 	}
408 
409 	writel(mask, base + MMCIMASK1);
410 }
411 
412 static void mmci_stop_data(struct mmci_host *host)
413 {
414 	mmci_write_datactrlreg(host, 0);
415 	mmci_set_mask1(host, 0);
416 	host->data = NULL;
417 }
418 
419 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
420 {
421 	unsigned int flags = SG_MITER_ATOMIC;
422 
423 	if (data->flags & MMC_DATA_READ)
424 		flags |= SG_MITER_TO_SG;
425 	else
426 		flags |= SG_MITER_FROM_SG;
427 
428 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
429 }
430 
431 /*
432  * All the DMA operation mode stuff goes inside this ifdef.
433  * This assumes that you have a generic DMA device interface,
434  * no custom DMA interfaces are supported.
435  */
436 #ifdef CONFIG_DMA_ENGINE
437 static void mmci_dma_setup(struct mmci_host *host)
438 {
439 	const char *rxname, *txname;
440 	struct variant_data *variant = host->variant;
441 
442 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
443 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
444 
445 	/* initialize pre request cookie */
446 	host->next_data.cookie = 1;
447 
448 	/*
449 	 * If only an RX channel is specified, the driver will
450 	 * attempt to use it bidirectionally, however if it is
451 	 * is specified but cannot be located, DMA will be disabled.
452 	 */
453 	if (host->dma_rx_channel && !host->dma_tx_channel)
454 		host->dma_tx_channel = host->dma_rx_channel;
455 
456 	if (host->dma_rx_channel)
457 		rxname = dma_chan_name(host->dma_rx_channel);
458 	else
459 		rxname = "none";
460 
461 	if (host->dma_tx_channel)
462 		txname = dma_chan_name(host->dma_tx_channel);
463 	else
464 		txname = "none";
465 
466 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
467 		 rxname, txname);
468 
469 	/*
470 	 * Limit the maximum segment size in any SG entry according to
471 	 * the parameters of the DMA engine device.
472 	 */
473 	if (host->dma_tx_channel) {
474 		struct device *dev = host->dma_tx_channel->device->dev;
475 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
476 
477 		if (max_seg_size < host->mmc->max_seg_size)
478 			host->mmc->max_seg_size = max_seg_size;
479 	}
480 	if (host->dma_rx_channel) {
481 		struct device *dev = host->dma_rx_channel->device->dev;
482 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
483 
484 		if (max_seg_size < host->mmc->max_seg_size)
485 			host->mmc->max_seg_size = max_seg_size;
486 	}
487 
488 	if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
489 		if (dml_hw_init(host, host->mmc->parent->of_node))
490 			variant->qcom_dml = false;
491 }
492 
493 /*
494  * This is used in or so inline it
495  * so it can be discarded.
496  */
497 static inline void mmci_dma_release(struct mmci_host *host)
498 {
499 	if (host->dma_rx_channel)
500 		dma_release_channel(host->dma_rx_channel);
501 	if (host->dma_tx_channel)
502 		dma_release_channel(host->dma_tx_channel);
503 	host->dma_rx_channel = host->dma_tx_channel = NULL;
504 }
505 
506 static void mmci_dma_data_error(struct mmci_host *host)
507 {
508 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
509 	dmaengine_terminate_all(host->dma_current);
510 	host->dma_in_progress = false;
511 	host->dma_current = NULL;
512 	host->dma_desc_current = NULL;
513 	host->data->host_cookie = 0;
514 }
515 
516 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
517 {
518 	struct dma_chan *chan;
519 
520 	if (data->flags & MMC_DATA_READ)
521 		chan = host->dma_rx_channel;
522 	else
523 		chan = host->dma_tx_channel;
524 
525 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
526 		     mmc_get_dma_dir(data));
527 }
528 
529 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
530 {
531 	u32 status;
532 	int i;
533 
534 	/* Wait up to 1ms for the DMA to complete */
535 	for (i = 0; ; i++) {
536 		status = readl(host->base + MMCISTATUS);
537 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
538 			break;
539 		udelay(10);
540 	}
541 
542 	/*
543 	 * Check to see whether we still have some data left in the FIFO -
544 	 * this catches DMA controllers which are unable to monitor the
545 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
546 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
547 	 */
548 	if (status & MCI_RXDATAAVLBLMASK) {
549 		mmci_dma_data_error(host);
550 		if (!data->error)
551 			data->error = -EIO;
552 	}
553 
554 	if (!data->host_cookie)
555 		mmci_dma_unmap(host, data);
556 
557 	/*
558 	 * Use of DMA with scatter-gather is impossible.
559 	 * Give up with DMA and switch back to PIO mode.
560 	 */
561 	if (status & MCI_RXDATAAVLBLMASK) {
562 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
563 		mmci_dma_release(host);
564 	}
565 
566 	host->dma_in_progress = false;
567 	host->dma_current = NULL;
568 	host->dma_desc_current = NULL;
569 }
570 
571 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
572 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
573 				struct dma_chan **dma_chan,
574 				struct dma_async_tx_descriptor **dma_desc)
575 {
576 	struct variant_data *variant = host->variant;
577 	struct dma_slave_config conf = {
578 		.src_addr = host->phybase + MMCIFIFO,
579 		.dst_addr = host->phybase + MMCIFIFO,
580 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
581 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
582 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
583 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
584 		.device_fc = false,
585 	};
586 	struct dma_chan *chan;
587 	struct dma_device *device;
588 	struct dma_async_tx_descriptor *desc;
589 	int nr_sg;
590 	unsigned long flags = DMA_CTRL_ACK;
591 
592 	if (data->flags & MMC_DATA_READ) {
593 		conf.direction = DMA_DEV_TO_MEM;
594 		chan = host->dma_rx_channel;
595 	} else {
596 		conf.direction = DMA_MEM_TO_DEV;
597 		chan = host->dma_tx_channel;
598 	}
599 
600 	/* If there's no DMA channel, fall back to PIO */
601 	if (!chan)
602 		return -EINVAL;
603 
604 	/* If less than or equal to the fifo size, don't bother with DMA */
605 	if (data->blksz * data->blocks <= variant->fifosize)
606 		return -EINVAL;
607 
608 	device = chan->device;
609 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
610 			   mmc_get_dma_dir(data));
611 	if (nr_sg == 0)
612 		return -EINVAL;
613 
614 	if (host->variant->qcom_dml)
615 		flags |= DMA_PREP_INTERRUPT;
616 
617 	dmaengine_slave_config(chan, &conf);
618 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
619 					    conf.direction, flags);
620 	if (!desc)
621 		goto unmap_exit;
622 
623 	*dma_chan = chan;
624 	*dma_desc = desc;
625 
626 	return 0;
627 
628  unmap_exit:
629 	dma_unmap_sg(device->dev, data->sg, data->sg_len,
630 		     mmc_get_dma_dir(data));
631 	return -ENOMEM;
632 }
633 
634 static inline int mmci_dma_prep_data(struct mmci_host *host,
635 				     struct mmc_data *data)
636 {
637 	/* Check if next job is already prepared. */
638 	if (host->dma_current && host->dma_desc_current)
639 		return 0;
640 
641 	/* No job were prepared thus do it now. */
642 	return __mmci_dma_prep_data(host, data, &host->dma_current,
643 				    &host->dma_desc_current);
644 }
645 
646 static inline int mmci_dma_prep_next(struct mmci_host *host,
647 				     struct mmc_data *data)
648 {
649 	struct mmci_host_next *nd = &host->next_data;
650 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
651 }
652 
653 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
654 {
655 	int ret;
656 	struct mmc_data *data = host->data;
657 
658 	ret = mmci_dma_prep_data(host, host->data);
659 	if (ret)
660 		return ret;
661 
662 	/* Okay, go for it. */
663 	dev_vdbg(mmc_dev(host->mmc),
664 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
665 		 data->sg_len, data->blksz, data->blocks, data->flags);
666 	host->dma_in_progress = true;
667 	dmaengine_submit(host->dma_desc_current);
668 	dma_async_issue_pending(host->dma_current);
669 
670 	if (host->variant->qcom_dml)
671 		dml_start_xfer(host, data);
672 
673 	datactrl |= MCI_DPSM_DMAENABLE;
674 
675 	/* Trigger the DMA transfer */
676 	mmci_write_datactrlreg(host, datactrl);
677 
678 	/*
679 	 * Let the MMCI say when the data is ended and it's time
680 	 * to fire next DMA request. When that happens, MMCI will
681 	 * call mmci_data_end()
682 	 */
683 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
684 	       host->base + MMCIMASK0);
685 	return 0;
686 }
687 
688 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
689 {
690 	struct mmci_host_next *next = &host->next_data;
691 
692 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
693 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
694 
695 	host->dma_desc_current = next->dma_desc;
696 	host->dma_current = next->dma_chan;
697 	next->dma_desc = NULL;
698 	next->dma_chan = NULL;
699 }
700 
701 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
702 {
703 	struct mmci_host *host = mmc_priv(mmc);
704 	struct mmc_data *data = mrq->data;
705 	struct mmci_host_next *nd = &host->next_data;
706 
707 	if (!data)
708 		return;
709 
710 	BUG_ON(data->host_cookie);
711 
712 	if (mmci_validate_data(host, data))
713 		return;
714 
715 	if (!mmci_dma_prep_next(host, data))
716 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
717 }
718 
719 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
720 			      int err)
721 {
722 	struct mmci_host *host = mmc_priv(mmc);
723 	struct mmc_data *data = mrq->data;
724 
725 	if (!data || !data->host_cookie)
726 		return;
727 
728 	mmci_dma_unmap(host, data);
729 
730 	if (err) {
731 		struct mmci_host_next *next = &host->next_data;
732 		struct dma_chan *chan;
733 		if (data->flags & MMC_DATA_READ)
734 			chan = host->dma_rx_channel;
735 		else
736 			chan = host->dma_tx_channel;
737 		dmaengine_terminate_all(chan);
738 
739 		if (host->dma_desc_current == next->dma_desc)
740 			host->dma_desc_current = NULL;
741 
742 		if (host->dma_current == next->dma_chan) {
743 			host->dma_in_progress = false;
744 			host->dma_current = NULL;
745 		}
746 
747 		next->dma_desc = NULL;
748 		next->dma_chan = NULL;
749 		data->host_cookie = 0;
750 	}
751 }
752 
753 #else
754 /* Blank functions if the DMA engine is not available */
755 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
756 {
757 }
758 static inline void mmci_dma_setup(struct mmci_host *host)
759 {
760 }
761 
762 static inline void mmci_dma_release(struct mmci_host *host)
763 {
764 }
765 
766 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
767 {
768 }
769 
770 static inline void mmci_dma_finalize(struct mmci_host *host,
771 				     struct mmc_data *data)
772 {
773 }
774 
775 static inline void mmci_dma_data_error(struct mmci_host *host)
776 {
777 }
778 
779 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
780 {
781 	return -ENOSYS;
782 }
783 
784 #define mmci_pre_request NULL
785 #define mmci_post_request NULL
786 
787 #endif
788 
789 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
790 {
791 	struct variant_data *variant = host->variant;
792 	unsigned int datactrl, timeout, irqmask;
793 	unsigned long long clks;
794 	void __iomem *base;
795 	int blksz_bits;
796 
797 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
798 		data->blksz, data->blocks, data->flags);
799 
800 	host->data = data;
801 	host->size = data->blksz * data->blocks;
802 	data->bytes_xfered = 0;
803 
804 	clks = (unsigned long long)data->timeout_ns * host->cclk;
805 	do_div(clks, NSEC_PER_SEC);
806 
807 	timeout = data->timeout_clks + (unsigned int)clks;
808 
809 	base = host->base;
810 	writel(timeout, base + MMCIDATATIMER);
811 	writel(host->size, base + MMCIDATALENGTH);
812 
813 	blksz_bits = ffs(data->blksz) - 1;
814 	BUG_ON(1 << blksz_bits != data->blksz);
815 
816 	if (variant->blksz_datactrl16)
817 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
818 	else if (variant->blksz_datactrl4)
819 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
820 	else
821 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
822 
823 	if (data->flags & MMC_DATA_READ)
824 		datactrl |= MCI_DPSM_DIRECTION;
825 
826 	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
827 		u32 clk;
828 
829 		datactrl |= variant->datactrl_mask_sdio;
830 
831 		/*
832 		 * The ST Micro variant for SDIO small write transfers
833 		 * needs to have clock H/W flow control disabled,
834 		 * otherwise the transfer will not start. The threshold
835 		 * depends on the rate of MCLK.
836 		 */
837 		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
838 		    (host->size < 8 ||
839 		     (host->size <= 8 && host->mclk > 50000000)))
840 			clk = host->clk_reg & ~variant->clkreg_enable;
841 		else
842 			clk = host->clk_reg | variant->clkreg_enable;
843 
844 		mmci_write_clkreg(host, clk);
845 	}
846 
847 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
848 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
849 		datactrl |= variant->datactrl_mask_ddrmode;
850 
851 	/*
852 	 * Attempt to use DMA operation mode, if this
853 	 * should fail, fall back to PIO mode
854 	 */
855 	if (!mmci_dma_start_data(host, datactrl))
856 		return;
857 
858 	/* IRQ mode, map the SG list for CPU reading/writing */
859 	mmci_init_sg(host, data);
860 
861 	if (data->flags & MMC_DATA_READ) {
862 		irqmask = MCI_RXFIFOHALFFULLMASK;
863 
864 		/*
865 		 * If we have less than the fifo 'half-full' threshold to
866 		 * transfer, trigger a PIO interrupt as soon as any data
867 		 * is available.
868 		 */
869 		if (host->size < variant->fifohalfsize)
870 			irqmask |= MCI_RXDATAAVLBLMASK;
871 	} else {
872 		/*
873 		 * We don't actually need to include "FIFO empty" here
874 		 * since its implicit in "FIFO half empty".
875 		 */
876 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
877 	}
878 
879 	mmci_write_datactrlreg(host, datactrl);
880 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
881 	mmci_set_mask1(host, irqmask);
882 }
883 
884 static void
885 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
886 {
887 	void __iomem *base = host->base;
888 
889 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
890 	    cmd->opcode, cmd->arg, cmd->flags);
891 
892 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
893 		writel(0, base + MMCICOMMAND);
894 		mmci_reg_delay(host);
895 	}
896 
897 	c |= cmd->opcode | MCI_CPSM_ENABLE;
898 	if (cmd->flags & MMC_RSP_PRESENT) {
899 		if (cmd->flags & MMC_RSP_136)
900 			c |= MCI_CPSM_LONGRSP;
901 		c |= MCI_CPSM_RESPONSE;
902 	}
903 	if (/*interrupt*/0)
904 		c |= MCI_CPSM_INTERRUPT;
905 
906 	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
907 		c |= host->variant->data_cmd_enable;
908 
909 	host->cmd = cmd;
910 
911 	writel(cmd->arg, base + MMCIARGUMENT);
912 	writel(c, base + MMCICOMMAND);
913 }
914 
915 static void
916 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
917 	      unsigned int status)
918 {
919 	/* Make sure we have data to handle */
920 	if (!data)
921 		return;
922 
923 	/* First check for errors */
924 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
925 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
926 		u32 remain, success;
927 
928 		/* Terminate the DMA transfer */
929 		if (dma_inprogress(host)) {
930 			mmci_dma_data_error(host);
931 			mmci_dma_unmap(host, data);
932 		}
933 
934 		/*
935 		 * Calculate how far we are into the transfer.  Note that
936 		 * the data counter gives the number of bytes transferred
937 		 * on the MMC bus, not on the host side.  On reads, this
938 		 * can be as much as a FIFO-worth of data ahead.  This
939 		 * matters for FIFO overruns only.
940 		 */
941 		remain = readl(host->base + MMCIDATACNT);
942 		success = data->blksz * data->blocks - remain;
943 
944 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
945 			status, success);
946 		if (status & MCI_DATACRCFAIL) {
947 			/* Last block was not successful */
948 			success -= 1;
949 			data->error = -EILSEQ;
950 		} else if (status & MCI_DATATIMEOUT) {
951 			data->error = -ETIMEDOUT;
952 		} else if (status & MCI_STARTBITERR) {
953 			data->error = -ECOMM;
954 		} else if (status & MCI_TXUNDERRUN) {
955 			data->error = -EIO;
956 		} else if (status & MCI_RXOVERRUN) {
957 			if (success > host->variant->fifosize)
958 				success -= host->variant->fifosize;
959 			else
960 				success = 0;
961 			data->error = -EIO;
962 		}
963 		data->bytes_xfered = round_down(success, data->blksz);
964 	}
965 
966 	if (status & MCI_DATABLOCKEND)
967 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
968 
969 	if (status & MCI_DATAEND || data->error) {
970 		if (dma_inprogress(host))
971 			mmci_dma_finalize(host, data);
972 		mmci_stop_data(host);
973 
974 		if (!data->error)
975 			/* The error clause is handled above, success! */
976 			data->bytes_xfered = data->blksz * data->blocks;
977 
978 		if (!data->stop || host->mrq->sbc) {
979 			mmci_request_end(host, data->mrq);
980 		} else {
981 			mmci_start_command(host, data->stop, 0);
982 		}
983 	}
984 }
985 
986 static void
987 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
988 	     unsigned int status)
989 {
990 	void __iomem *base = host->base;
991 	bool sbc;
992 
993 	if (!cmd)
994 		return;
995 
996 	sbc = (cmd == host->mrq->sbc);
997 
998 	/*
999 	 * We need to be one of these interrupts to be considered worth
1000 	 * handling. Note that we tag on any latent IRQs postponed
1001 	 * due to waiting for busy status.
1002 	 */
1003 	if (!((status|host->busy_status) &
1004 	      (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1005 		return;
1006 
1007 	/*
1008 	 * ST Micro variant: handle busy detection.
1009 	 */
1010 	if (host->variant->busy_detect) {
1011 		bool busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1012 
1013 		/* We are busy with a command, return */
1014 		if (host->busy_status &&
1015 		    (status & host->variant->busy_detect_flag))
1016 			return;
1017 
1018 		/*
1019 		 * We were not busy, but we now got a busy response on
1020 		 * something that was not an error, and we double-check
1021 		 * that the special busy status bit is still set before
1022 		 * proceeding.
1023 		 */
1024 		if (!host->busy_status && busy_resp &&
1025 		    !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1026 		    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1027 
1028 			/* Clear the busy start IRQ */
1029 			writel(host->variant->busy_detect_mask,
1030 			       host->base + MMCICLEAR);
1031 
1032 			/* Unmask the busy end IRQ */
1033 			writel(readl(base + MMCIMASK0) |
1034 			       host->variant->busy_detect_mask,
1035 			       base + MMCIMASK0);
1036 			/*
1037 			 * Now cache the last response status code (until
1038 			 * the busy bit goes low), and return.
1039 			 */
1040 			host->busy_status =
1041 				status & (MCI_CMDSENT|MCI_CMDRESPEND);
1042 			return;
1043 		}
1044 
1045 		/*
1046 		 * At this point we are not busy with a command, we have
1047 		 * not received a new busy request, clear and mask the busy
1048 		 * end IRQ and fall through to process the IRQ.
1049 		 */
1050 		if (host->busy_status) {
1051 
1052 			writel(host->variant->busy_detect_mask,
1053 			       host->base + MMCICLEAR);
1054 
1055 			writel(readl(base + MMCIMASK0) &
1056 			       ~host->variant->busy_detect_mask,
1057 			       base + MMCIMASK0);
1058 			host->busy_status = 0;
1059 		}
1060 	}
1061 
1062 	host->cmd = NULL;
1063 
1064 	if (status & MCI_CMDTIMEOUT) {
1065 		cmd->error = -ETIMEDOUT;
1066 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1067 		cmd->error = -EILSEQ;
1068 	} else {
1069 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1070 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1071 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1072 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1073 	}
1074 
1075 	if ((!sbc && !cmd->data) || cmd->error) {
1076 		if (host->data) {
1077 			/* Terminate the DMA transfer */
1078 			if (dma_inprogress(host)) {
1079 				mmci_dma_data_error(host);
1080 				mmci_dma_unmap(host, host->data);
1081 			}
1082 			mmci_stop_data(host);
1083 		}
1084 		mmci_request_end(host, host->mrq);
1085 	} else if (sbc) {
1086 		mmci_start_command(host, host->mrq->cmd, 0);
1087 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
1088 		mmci_start_data(host, cmd->data);
1089 	}
1090 }
1091 
1092 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1093 {
1094 	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1095 }
1096 
1097 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1098 {
1099 	/*
1100 	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1101 	 * from the fifo range should be used
1102 	 */
1103 	if (status & MCI_RXFIFOHALFFULL)
1104 		return host->variant->fifohalfsize;
1105 	else if (status & MCI_RXDATAAVLBL)
1106 		return 4;
1107 
1108 	return 0;
1109 }
1110 
1111 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1112 {
1113 	void __iomem *base = host->base;
1114 	char *ptr = buffer;
1115 	u32 status = readl(host->base + MMCISTATUS);
1116 	int host_remain = host->size;
1117 
1118 	do {
1119 		int count = host->get_rx_fifocnt(host, status, host_remain);
1120 
1121 		if (count > remain)
1122 			count = remain;
1123 
1124 		if (count <= 0)
1125 			break;
1126 
1127 		/*
1128 		 * SDIO especially may want to send something that is
1129 		 * not divisible by 4 (as opposed to card sectors
1130 		 * etc). Therefore make sure to always read the last bytes
1131 		 * while only doing full 32-bit reads towards the FIFO.
1132 		 */
1133 		if (unlikely(count & 0x3)) {
1134 			if (count < 4) {
1135 				unsigned char buf[4];
1136 				ioread32_rep(base + MMCIFIFO, buf, 1);
1137 				memcpy(ptr, buf, count);
1138 			} else {
1139 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1140 				count &= ~0x3;
1141 			}
1142 		} else {
1143 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1144 		}
1145 
1146 		ptr += count;
1147 		remain -= count;
1148 		host_remain -= count;
1149 
1150 		if (remain == 0)
1151 			break;
1152 
1153 		status = readl(base + MMCISTATUS);
1154 	} while (status & MCI_RXDATAAVLBL);
1155 
1156 	return ptr - buffer;
1157 }
1158 
1159 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1160 {
1161 	struct variant_data *variant = host->variant;
1162 	void __iomem *base = host->base;
1163 	char *ptr = buffer;
1164 
1165 	do {
1166 		unsigned int count, maxcnt;
1167 
1168 		maxcnt = status & MCI_TXFIFOEMPTY ?
1169 			 variant->fifosize : variant->fifohalfsize;
1170 		count = min(remain, maxcnt);
1171 
1172 		/*
1173 		 * SDIO especially may want to send something that is
1174 		 * not divisible by 4 (as opposed to card sectors
1175 		 * etc), and the FIFO only accept full 32-bit writes.
1176 		 * So compensate by adding +3 on the count, a single
1177 		 * byte become a 32bit write, 7 bytes will be two
1178 		 * 32bit writes etc.
1179 		 */
1180 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1181 
1182 		ptr += count;
1183 		remain -= count;
1184 
1185 		if (remain == 0)
1186 			break;
1187 
1188 		status = readl(base + MMCISTATUS);
1189 	} while (status & MCI_TXFIFOHALFEMPTY);
1190 
1191 	return ptr - buffer;
1192 }
1193 
1194 /*
1195  * PIO data transfer IRQ handler.
1196  */
1197 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1198 {
1199 	struct mmci_host *host = dev_id;
1200 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1201 	struct variant_data *variant = host->variant;
1202 	void __iomem *base = host->base;
1203 	unsigned long flags;
1204 	u32 status;
1205 
1206 	status = readl(base + MMCISTATUS);
1207 
1208 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1209 
1210 	local_irq_save(flags);
1211 
1212 	do {
1213 		unsigned int remain, len;
1214 		char *buffer;
1215 
1216 		/*
1217 		 * For write, we only need to test the half-empty flag
1218 		 * here - if the FIFO is completely empty, then by
1219 		 * definition it is more than half empty.
1220 		 *
1221 		 * For read, check for data available.
1222 		 */
1223 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1224 			break;
1225 
1226 		if (!sg_miter_next(sg_miter))
1227 			break;
1228 
1229 		buffer = sg_miter->addr;
1230 		remain = sg_miter->length;
1231 
1232 		len = 0;
1233 		if (status & MCI_RXACTIVE)
1234 			len = mmci_pio_read(host, buffer, remain);
1235 		if (status & MCI_TXACTIVE)
1236 			len = mmci_pio_write(host, buffer, remain, status);
1237 
1238 		sg_miter->consumed = len;
1239 
1240 		host->size -= len;
1241 		remain -= len;
1242 
1243 		if (remain)
1244 			break;
1245 
1246 		status = readl(base + MMCISTATUS);
1247 	} while (1);
1248 
1249 	sg_miter_stop(sg_miter);
1250 
1251 	local_irq_restore(flags);
1252 
1253 	/*
1254 	 * If we have less than the fifo 'half-full' threshold to transfer,
1255 	 * trigger a PIO interrupt as soon as any data is available.
1256 	 */
1257 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1258 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1259 
1260 	/*
1261 	 * If we run out of data, disable the data IRQs; this
1262 	 * prevents a race where the FIFO becomes empty before
1263 	 * the chip itself has disabled the data path, and
1264 	 * stops us racing with our data end IRQ.
1265 	 */
1266 	if (host->size == 0) {
1267 		mmci_set_mask1(host, 0);
1268 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1269 	}
1270 
1271 	return IRQ_HANDLED;
1272 }
1273 
1274 /*
1275  * Handle completion of command and data transfers.
1276  */
1277 static irqreturn_t mmci_irq(int irq, void *dev_id)
1278 {
1279 	struct mmci_host *host = dev_id;
1280 	u32 status;
1281 	int ret = 0;
1282 
1283 	spin_lock(&host->lock);
1284 
1285 	do {
1286 		status = readl(host->base + MMCISTATUS);
1287 
1288 		if (host->singleirq) {
1289 			if (status & readl(host->base + MMCIMASK1))
1290 				mmci_pio_irq(irq, dev_id);
1291 
1292 			status &= ~MCI_IRQ1MASK;
1293 		}
1294 
1295 		/*
1296 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ (if it's
1297 		 * enabled) in mmci_cmd_irq() function where ST Micro busy
1298 		 * detection variant is handled. Considering the HW seems to be
1299 		 * triggering the IRQ on both edges while monitoring DAT0 for
1300 		 * busy completion and that same status bit is used to monitor
1301 		 * start and end of busy detection, special care must be taken
1302 		 * to make sure that both start and end interrupts are always
1303 		 * cleared one after the other.
1304 		 */
1305 		status &= readl(host->base + MMCIMASK0);
1306 		if (host->variant->busy_detect)
1307 			writel(status & ~host->variant->busy_detect_mask,
1308 			       host->base + MMCICLEAR);
1309 		else
1310 			writel(status, host->base + MMCICLEAR);
1311 
1312 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1313 
1314 		if (host->variant->reversed_irq_handling) {
1315 			mmci_data_irq(host, host->data, status);
1316 			mmci_cmd_irq(host, host->cmd, status);
1317 		} else {
1318 			mmci_cmd_irq(host, host->cmd, status);
1319 			mmci_data_irq(host, host->data, status);
1320 		}
1321 
1322 		/*
1323 		 * Don't poll for busy completion in irq context.
1324 		 */
1325 		if (host->variant->busy_detect && host->busy_status)
1326 			status &= ~host->variant->busy_detect_flag;
1327 
1328 		ret = 1;
1329 	} while (status);
1330 
1331 	spin_unlock(&host->lock);
1332 
1333 	return IRQ_RETVAL(ret);
1334 }
1335 
1336 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1337 {
1338 	struct mmci_host *host = mmc_priv(mmc);
1339 	unsigned long flags;
1340 
1341 	WARN_ON(host->mrq != NULL);
1342 
1343 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1344 	if (mrq->cmd->error) {
1345 		mmc_request_done(mmc, mrq);
1346 		return;
1347 	}
1348 
1349 	spin_lock_irqsave(&host->lock, flags);
1350 
1351 	host->mrq = mrq;
1352 
1353 	if (mrq->data)
1354 		mmci_get_next_data(host, mrq->data);
1355 
1356 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1357 		mmci_start_data(host, mrq->data);
1358 
1359 	if (mrq->sbc)
1360 		mmci_start_command(host, mrq->sbc, 0);
1361 	else
1362 		mmci_start_command(host, mrq->cmd, 0);
1363 
1364 	spin_unlock_irqrestore(&host->lock, flags);
1365 }
1366 
1367 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1368 {
1369 	struct mmci_host *host = mmc_priv(mmc);
1370 	struct variant_data *variant = host->variant;
1371 	u32 pwr = 0;
1372 	unsigned long flags;
1373 	int ret;
1374 
1375 	if (host->plat->ios_handler &&
1376 		host->plat->ios_handler(mmc_dev(mmc), ios))
1377 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1378 
1379 	switch (ios->power_mode) {
1380 	case MMC_POWER_OFF:
1381 		if (!IS_ERR(mmc->supply.vmmc))
1382 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1383 
1384 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1385 			regulator_disable(mmc->supply.vqmmc);
1386 			host->vqmmc_enabled = false;
1387 		}
1388 
1389 		break;
1390 	case MMC_POWER_UP:
1391 		if (!IS_ERR(mmc->supply.vmmc))
1392 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1393 
1394 		/*
1395 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1396 		 * and instead uses MCI_PWR_ON so apply whatever value is
1397 		 * configured in the variant data.
1398 		 */
1399 		pwr |= variant->pwrreg_powerup;
1400 
1401 		break;
1402 	case MMC_POWER_ON:
1403 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1404 			ret = regulator_enable(mmc->supply.vqmmc);
1405 			if (ret < 0)
1406 				dev_err(mmc_dev(mmc),
1407 					"failed to enable vqmmc regulator\n");
1408 			else
1409 				host->vqmmc_enabled = true;
1410 		}
1411 
1412 		pwr |= MCI_PWR_ON;
1413 		break;
1414 	}
1415 
1416 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1417 		/*
1418 		 * The ST Micro variant has some additional bits
1419 		 * indicating signal direction for the signals in
1420 		 * the SD/MMC bus and feedback-clock usage.
1421 		 */
1422 		pwr |= host->pwr_reg_add;
1423 
1424 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1425 			pwr &= ~MCI_ST_DATA74DIREN;
1426 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1427 			pwr &= (~MCI_ST_DATA74DIREN &
1428 				~MCI_ST_DATA31DIREN &
1429 				~MCI_ST_DATA2DIREN);
1430 	}
1431 
1432 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1433 		if (host->hw_designer != AMBA_VENDOR_ST)
1434 			pwr |= MCI_ROD;
1435 		else {
1436 			/*
1437 			 * The ST Micro variant use the ROD bit for something
1438 			 * else and only has OD (Open Drain).
1439 			 */
1440 			pwr |= MCI_OD;
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1446 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1447 	 */
1448 	if (!ios->clock && variant->pwrreg_clkgate)
1449 		pwr &= ~MCI_PWR_ON;
1450 
1451 	if (host->variant->explicit_mclk_control &&
1452 	    ios->clock != host->clock_cache) {
1453 		ret = clk_set_rate(host->clk, ios->clock);
1454 		if (ret < 0)
1455 			dev_err(mmc_dev(host->mmc),
1456 				"Error setting clock rate (%d)\n", ret);
1457 		else
1458 			host->mclk = clk_get_rate(host->clk);
1459 	}
1460 	host->clock_cache = ios->clock;
1461 
1462 	spin_lock_irqsave(&host->lock, flags);
1463 
1464 	mmci_set_clkreg(host, ios->clock);
1465 	mmci_write_pwrreg(host, pwr);
1466 	mmci_reg_delay(host);
1467 
1468 	spin_unlock_irqrestore(&host->lock, flags);
1469 }
1470 
1471 static int mmci_get_cd(struct mmc_host *mmc)
1472 {
1473 	struct mmci_host *host = mmc_priv(mmc);
1474 	struct mmci_platform_data *plat = host->plat;
1475 	unsigned int status = mmc_gpio_get_cd(mmc);
1476 
1477 	if (status == -ENOSYS) {
1478 		if (!plat->status)
1479 			return 1; /* Assume always present */
1480 
1481 		status = plat->status(mmc_dev(host->mmc));
1482 	}
1483 	return status;
1484 }
1485 
1486 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1487 {
1488 	int ret = 0;
1489 
1490 	if (!IS_ERR(mmc->supply.vqmmc)) {
1491 
1492 		switch (ios->signal_voltage) {
1493 		case MMC_SIGNAL_VOLTAGE_330:
1494 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1495 						2700000, 3600000);
1496 			break;
1497 		case MMC_SIGNAL_VOLTAGE_180:
1498 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1499 						1700000, 1950000);
1500 			break;
1501 		case MMC_SIGNAL_VOLTAGE_120:
1502 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1503 						1100000, 1300000);
1504 			break;
1505 		}
1506 
1507 		if (ret)
1508 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1509 	}
1510 
1511 	return ret;
1512 }
1513 
1514 static struct mmc_host_ops mmci_ops = {
1515 	.request	= mmci_request,
1516 	.pre_req	= mmci_pre_request,
1517 	.post_req	= mmci_post_request,
1518 	.set_ios	= mmci_set_ios,
1519 	.get_ro		= mmc_gpio_get_ro,
1520 	.get_cd		= mmci_get_cd,
1521 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1522 };
1523 
1524 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1525 {
1526 	struct mmci_host *host = mmc_priv(mmc);
1527 	int ret = mmc_of_parse(mmc);
1528 
1529 	if (ret)
1530 		return ret;
1531 
1532 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1533 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1534 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1535 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1536 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1537 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1538 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1539 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1540 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1541 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1542 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1543 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1544 
1545 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1546 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1547 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1548 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1549 
1550 	return 0;
1551 }
1552 
1553 static int mmci_probe(struct amba_device *dev,
1554 	const struct amba_id *id)
1555 {
1556 	struct mmci_platform_data *plat = dev->dev.platform_data;
1557 	struct device_node *np = dev->dev.of_node;
1558 	struct variant_data *variant = id->data;
1559 	struct mmci_host *host;
1560 	struct mmc_host *mmc;
1561 	int ret;
1562 
1563 	/* Must have platform data or Device Tree. */
1564 	if (!plat && !np) {
1565 		dev_err(&dev->dev, "No plat data or DT found\n");
1566 		return -EINVAL;
1567 	}
1568 
1569 	if (!plat) {
1570 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1571 		if (!plat)
1572 			return -ENOMEM;
1573 	}
1574 
1575 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1576 	if (!mmc)
1577 		return -ENOMEM;
1578 
1579 	ret = mmci_of_parse(np, mmc);
1580 	if (ret)
1581 		goto host_free;
1582 
1583 	host = mmc_priv(mmc);
1584 	host->mmc = mmc;
1585 
1586 	host->hw_designer = amba_manf(dev);
1587 	host->hw_revision = amba_rev(dev);
1588 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1589 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1590 
1591 	host->clk = devm_clk_get(&dev->dev, NULL);
1592 	if (IS_ERR(host->clk)) {
1593 		ret = PTR_ERR(host->clk);
1594 		goto host_free;
1595 	}
1596 
1597 	ret = clk_prepare_enable(host->clk);
1598 	if (ret)
1599 		goto host_free;
1600 
1601 	if (variant->qcom_fifo)
1602 		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1603 	else
1604 		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1605 
1606 	host->plat = plat;
1607 	host->variant = variant;
1608 	host->mclk = clk_get_rate(host->clk);
1609 	/*
1610 	 * According to the spec, mclk is max 100 MHz,
1611 	 * so we try to adjust the clock down to this,
1612 	 * (if possible).
1613 	 */
1614 	if (host->mclk > variant->f_max) {
1615 		ret = clk_set_rate(host->clk, variant->f_max);
1616 		if (ret < 0)
1617 			goto clk_disable;
1618 		host->mclk = clk_get_rate(host->clk);
1619 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1620 			host->mclk);
1621 	}
1622 
1623 	host->phybase = dev->res.start;
1624 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1625 	if (IS_ERR(host->base)) {
1626 		ret = PTR_ERR(host->base);
1627 		goto clk_disable;
1628 	}
1629 
1630 	/*
1631 	 * The ARM and ST versions of the block have slightly different
1632 	 * clock divider equations which means that the minimum divider
1633 	 * differs too.
1634 	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1635 	 */
1636 	if (variant->st_clkdiv)
1637 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1638 	else if (variant->explicit_mclk_control)
1639 		mmc->f_min = clk_round_rate(host->clk, 100000);
1640 	else
1641 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1642 	/*
1643 	 * If no maximum operating frequency is supplied, fall back to use
1644 	 * the module parameter, which has a (low) default value in case it
1645 	 * is not specified. Either value must not exceed the clock rate into
1646 	 * the block, of course.
1647 	 */
1648 	if (mmc->f_max)
1649 		mmc->f_max = variant->explicit_mclk_control ?
1650 				min(variant->f_max, mmc->f_max) :
1651 				min(host->mclk, mmc->f_max);
1652 	else
1653 		mmc->f_max = variant->explicit_mclk_control ?
1654 				fmax : min(host->mclk, fmax);
1655 
1656 
1657 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1658 
1659 	/* Get regulators and the supported OCR mask */
1660 	ret = mmc_regulator_get_supply(mmc);
1661 	if (ret == -EPROBE_DEFER)
1662 		goto clk_disable;
1663 
1664 	if (!mmc->ocr_avail)
1665 		mmc->ocr_avail = plat->ocr_mask;
1666 	else if (plat->ocr_mask)
1667 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1668 
1669 	/* DT takes precedence over platform data. */
1670 	if (!np) {
1671 		if (!plat->cd_invert)
1672 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1673 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1674 	}
1675 
1676 	/* We support these capabilities. */
1677 	mmc->caps |= MMC_CAP_CMD23;
1678 
1679 	/*
1680 	 * Enable busy detection.
1681 	 */
1682 	if (variant->busy_detect) {
1683 		mmci_ops.card_busy = mmci_card_busy;
1684 		/*
1685 		 * Not all variants have a flag to enable busy detection
1686 		 * in the DPSM, but if they do, set it here.
1687 		 */
1688 		if (variant->busy_dpsm_flag)
1689 			mmci_write_datactrlreg(host,
1690 					       host->variant->busy_dpsm_flag);
1691 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1692 		mmc->max_busy_timeout = 0;
1693 	}
1694 
1695 	mmc->ops = &mmci_ops;
1696 
1697 	/* We support these PM capabilities. */
1698 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1699 
1700 	/*
1701 	 * We can do SGIO
1702 	 */
1703 	mmc->max_segs = NR_SG;
1704 
1705 	/*
1706 	 * Since only a certain number of bits are valid in the data length
1707 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1708 	 * single request.
1709 	 */
1710 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1711 
1712 	/*
1713 	 * Set the maximum segment size.  Since we aren't doing DMA
1714 	 * (yet) we are only limited by the data length register.
1715 	 */
1716 	mmc->max_seg_size = mmc->max_req_size;
1717 
1718 	/*
1719 	 * Block size can be up to 2048 bytes, but must be a power of two.
1720 	 */
1721 	mmc->max_blk_size = 1 << 11;
1722 
1723 	/*
1724 	 * Limit the number of blocks transferred so that we don't overflow
1725 	 * the maximum request size.
1726 	 */
1727 	mmc->max_blk_count = mmc->max_req_size >> 11;
1728 
1729 	spin_lock_init(&host->lock);
1730 
1731 	writel(0, host->base + MMCIMASK0);
1732 	writel(0, host->base + MMCIMASK1);
1733 	writel(0xfff, host->base + MMCICLEAR);
1734 
1735 	/*
1736 	 * If:
1737 	 * - not using DT but using a descriptor table, or
1738 	 * - using a table of descriptors ALONGSIDE DT, or
1739 	 * look up these descriptors named "cd" and "wp" right here, fail
1740 	 * silently of these do not exist and proceed to try platform data
1741 	 */
1742 	if (!np) {
1743 		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1744 		if (ret < 0) {
1745 			if (ret == -EPROBE_DEFER)
1746 				goto clk_disable;
1747 			else if (gpio_is_valid(plat->gpio_cd)) {
1748 				ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1749 				if (ret)
1750 					goto clk_disable;
1751 			}
1752 		}
1753 
1754 		ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1755 		if (ret < 0) {
1756 			if (ret == -EPROBE_DEFER)
1757 				goto clk_disable;
1758 			else if (gpio_is_valid(plat->gpio_wp)) {
1759 				ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1760 				if (ret)
1761 					goto clk_disable;
1762 			}
1763 		}
1764 	}
1765 
1766 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1767 			DRIVER_NAME " (cmd)", host);
1768 	if (ret)
1769 		goto clk_disable;
1770 
1771 	if (!dev->irq[1])
1772 		host->singleirq = true;
1773 	else {
1774 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1775 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1776 		if (ret)
1777 			goto clk_disable;
1778 	}
1779 
1780 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1781 
1782 	amba_set_drvdata(dev, mmc);
1783 
1784 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1785 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1786 		 amba_rev(dev), (unsigned long long)dev->res.start,
1787 		 dev->irq[0], dev->irq[1]);
1788 
1789 	mmci_dma_setup(host);
1790 
1791 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1792 	pm_runtime_use_autosuspend(&dev->dev);
1793 
1794 	mmc_add_host(mmc);
1795 
1796 	pm_runtime_put(&dev->dev);
1797 	return 0;
1798 
1799  clk_disable:
1800 	clk_disable_unprepare(host->clk);
1801  host_free:
1802 	mmc_free_host(mmc);
1803 	return ret;
1804 }
1805 
1806 static int mmci_remove(struct amba_device *dev)
1807 {
1808 	struct mmc_host *mmc = amba_get_drvdata(dev);
1809 
1810 	if (mmc) {
1811 		struct mmci_host *host = mmc_priv(mmc);
1812 
1813 		/*
1814 		 * Undo pm_runtime_put() in probe.  We use the _sync
1815 		 * version here so that we can access the primecell.
1816 		 */
1817 		pm_runtime_get_sync(&dev->dev);
1818 
1819 		mmc_remove_host(mmc);
1820 
1821 		writel(0, host->base + MMCIMASK0);
1822 		writel(0, host->base + MMCIMASK1);
1823 
1824 		writel(0, host->base + MMCICOMMAND);
1825 		writel(0, host->base + MMCIDATACTRL);
1826 
1827 		mmci_dma_release(host);
1828 		clk_disable_unprepare(host->clk);
1829 		mmc_free_host(mmc);
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 #ifdef CONFIG_PM
1836 static void mmci_save(struct mmci_host *host)
1837 {
1838 	unsigned long flags;
1839 
1840 	spin_lock_irqsave(&host->lock, flags);
1841 
1842 	writel(0, host->base + MMCIMASK0);
1843 	if (host->variant->pwrreg_nopower) {
1844 		writel(0, host->base + MMCIDATACTRL);
1845 		writel(0, host->base + MMCIPOWER);
1846 		writel(0, host->base + MMCICLOCK);
1847 	}
1848 	mmci_reg_delay(host);
1849 
1850 	spin_unlock_irqrestore(&host->lock, flags);
1851 }
1852 
1853 static void mmci_restore(struct mmci_host *host)
1854 {
1855 	unsigned long flags;
1856 
1857 	spin_lock_irqsave(&host->lock, flags);
1858 
1859 	if (host->variant->pwrreg_nopower) {
1860 		writel(host->clk_reg, host->base + MMCICLOCK);
1861 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1862 		writel(host->pwr_reg, host->base + MMCIPOWER);
1863 	}
1864 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1865 	mmci_reg_delay(host);
1866 
1867 	spin_unlock_irqrestore(&host->lock, flags);
1868 }
1869 
1870 static int mmci_runtime_suspend(struct device *dev)
1871 {
1872 	struct amba_device *adev = to_amba_device(dev);
1873 	struct mmc_host *mmc = amba_get_drvdata(adev);
1874 
1875 	if (mmc) {
1876 		struct mmci_host *host = mmc_priv(mmc);
1877 		pinctrl_pm_select_sleep_state(dev);
1878 		mmci_save(host);
1879 		clk_disable_unprepare(host->clk);
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 static int mmci_runtime_resume(struct device *dev)
1886 {
1887 	struct amba_device *adev = to_amba_device(dev);
1888 	struct mmc_host *mmc = amba_get_drvdata(adev);
1889 
1890 	if (mmc) {
1891 		struct mmci_host *host = mmc_priv(mmc);
1892 		clk_prepare_enable(host->clk);
1893 		mmci_restore(host);
1894 		pinctrl_pm_select_default_state(dev);
1895 	}
1896 
1897 	return 0;
1898 }
1899 #endif
1900 
1901 static const struct dev_pm_ops mmci_dev_pm_ops = {
1902 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1903 				pm_runtime_force_resume)
1904 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1905 };
1906 
1907 static const struct amba_id mmci_ids[] = {
1908 	{
1909 		.id	= 0x00041180,
1910 		.mask	= 0xff0fffff,
1911 		.data	= &variant_arm,
1912 	},
1913 	{
1914 		.id	= 0x01041180,
1915 		.mask	= 0xff0fffff,
1916 		.data	= &variant_arm_extended_fifo,
1917 	},
1918 	{
1919 		.id	= 0x02041180,
1920 		.mask	= 0xff0fffff,
1921 		.data	= &variant_arm_extended_fifo_hwfc,
1922 	},
1923 	{
1924 		.id	= 0x00041181,
1925 		.mask	= 0x000fffff,
1926 		.data	= &variant_arm,
1927 	},
1928 	/* ST Micro variants */
1929 	{
1930 		.id     = 0x00180180,
1931 		.mask   = 0x00ffffff,
1932 		.data	= &variant_u300,
1933 	},
1934 	{
1935 		.id     = 0x10180180,
1936 		.mask   = 0xf0ffffff,
1937 		.data	= &variant_nomadik,
1938 	},
1939 	{
1940 		.id     = 0x00280180,
1941 		.mask   = 0x00ffffff,
1942 		.data	= &variant_nomadik,
1943 	},
1944 	{
1945 		.id     = 0x00480180,
1946 		.mask   = 0xf0ffffff,
1947 		.data	= &variant_ux500,
1948 	},
1949 	{
1950 		.id     = 0x10480180,
1951 		.mask   = 0xf0ffffff,
1952 		.data	= &variant_ux500v2,
1953 	},
1954 	/* Qualcomm variants */
1955 	{
1956 		.id     = 0x00051180,
1957 		.mask	= 0x000fffff,
1958 		.data	= &variant_qcom,
1959 	},
1960 	{ 0, 0 },
1961 };
1962 
1963 MODULE_DEVICE_TABLE(amba, mmci_ids);
1964 
1965 static struct amba_driver mmci_driver = {
1966 	.drv		= {
1967 		.name	= DRIVER_NAME,
1968 		.pm	= &mmci_dev_pm_ops,
1969 	},
1970 	.probe		= mmci_probe,
1971 	.remove		= mmci_remove,
1972 	.id_table	= mmci_ids,
1973 };
1974 
1975 module_amba_driver(mmci_driver);
1976 
1977 module_param(fmax, uint, 0444);
1978 
1979 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1980 MODULE_LICENSE("GPL");
1981