xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 261a9af6)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 
33 #include <asm/div64.h>
34 #include <asm/io.h>
35 #include <asm/sizes.h>
36 
37 #include "mmci.h"
38 
39 #define DRIVER_NAME "mmci-pl18x"
40 
41 static unsigned int fmax = 515633;
42 
43 /**
44  * struct variant_data - MMCI variant-specific quirks
45  * @clkreg: default value for MCICLOCK register
46  * @clkreg_enable: enable value for MMCICLOCK register
47  * @datalength_bits: number of bits in the MMCIDATALENGTH register
48  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49  *	      is asserted (likewise for RX)
50  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51  *		  is asserted (likewise for RX)
52  * @sdio: variant supports SDIO
53  * @st_clkdiv: true if using a ST-specific clock divider algorithm
54  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
55  */
56 struct variant_data {
57 	unsigned int		clkreg;
58 	unsigned int		clkreg_enable;
59 	unsigned int		datalength_bits;
60 	unsigned int		fifosize;
61 	unsigned int		fifohalfsize;
62 	bool			sdio;
63 	bool			st_clkdiv;
64 	bool			blksz_datactrl16;
65 };
66 
67 static struct variant_data variant_arm = {
68 	.fifosize		= 16 * 4,
69 	.fifohalfsize		= 8 * 4,
70 	.datalength_bits	= 16,
71 };
72 
73 static struct variant_data variant_arm_extended_fifo = {
74 	.fifosize		= 128 * 4,
75 	.fifohalfsize		= 64 * 4,
76 	.datalength_bits	= 16,
77 };
78 
79 static struct variant_data variant_u300 = {
80 	.fifosize		= 16 * 4,
81 	.fifohalfsize		= 8 * 4,
82 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
83 	.datalength_bits	= 16,
84 	.sdio			= true,
85 };
86 
87 static struct variant_data variant_ux500 = {
88 	.fifosize		= 30 * 4,
89 	.fifohalfsize		= 8 * 4,
90 	.clkreg			= MCI_CLK_ENABLE,
91 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
92 	.datalength_bits	= 24,
93 	.sdio			= true,
94 	.st_clkdiv		= true,
95 };
96 
97 static struct variant_data variant_ux500v2 = {
98 	.fifosize		= 30 * 4,
99 	.fifohalfsize		= 8 * 4,
100 	.clkreg			= MCI_CLK_ENABLE,
101 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
102 	.datalength_bits	= 24,
103 	.sdio			= true,
104 	.st_clkdiv		= true,
105 	.blksz_datactrl16	= true,
106 };
107 
108 /*
109  * This must be called with host->lock held
110  */
111 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
112 {
113 	struct variant_data *variant = host->variant;
114 	u32 clk = variant->clkreg;
115 
116 	if (desired) {
117 		if (desired >= host->mclk) {
118 			clk = MCI_CLK_BYPASS;
119 			if (variant->st_clkdiv)
120 				clk |= MCI_ST_UX500_NEG_EDGE;
121 			host->cclk = host->mclk;
122 		} else if (variant->st_clkdiv) {
123 			/*
124 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
125 			 * => clkdiv = (mclk / f) - 2
126 			 * Round the divider up so we don't exceed the max
127 			 * frequency
128 			 */
129 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
130 			if (clk >= 256)
131 				clk = 255;
132 			host->cclk = host->mclk / (clk + 2);
133 		} else {
134 			/*
135 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136 			 * => clkdiv = mclk / (2 * f) - 1
137 			 */
138 			clk = host->mclk / (2 * desired) - 1;
139 			if (clk >= 256)
140 				clk = 255;
141 			host->cclk = host->mclk / (2 * (clk + 1));
142 		}
143 
144 		clk |= variant->clkreg_enable;
145 		clk |= MCI_CLK_ENABLE;
146 		/* This hasn't proven to be worthwhile */
147 		/* clk |= MCI_CLK_PWRSAVE; */
148 	}
149 
150 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
151 		clk |= MCI_4BIT_BUS;
152 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
153 		clk |= MCI_ST_8BIT_BUS;
154 
155 	writel(clk, host->base + MMCICLOCK);
156 }
157 
158 static void
159 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
160 {
161 	writel(0, host->base + MMCICOMMAND);
162 
163 	BUG_ON(host->data);
164 
165 	host->mrq = NULL;
166 	host->cmd = NULL;
167 
168 	/*
169 	 * Need to drop the host lock here; mmc_request_done may call
170 	 * back into the driver...
171 	 */
172 	spin_unlock(&host->lock);
173 	mmc_request_done(host->mmc, mrq);
174 	spin_lock(&host->lock);
175 }
176 
177 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
178 {
179 	void __iomem *base = host->base;
180 
181 	if (host->singleirq) {
182 		unsigned int mask0 = readl(base + MMCIMASK0);
183 
184 		mask0 &= ~MCI_IRQ1MASK;
185 		mask0 |= mask;
186 
187 		writel(mask0, base + MMCIMASK0);
188 	}
189 
190 	writel(mask, base + MMCIMASK1);
191 }
192 
193 static void mmci_stop_data(struct mmci_host *host)
194 {
195 	writel(0, host->base + MMCIDATACTRL);
196 	mmci_set_mask1(host, 0);
197 	host->data = NULL;
198 }
199 
200 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
201 {
202 	unsigned int flags = SG_MITER_ATOMIC;
203 
204 	if (data->flags & MMC_DATA_READ)
205 		flags |= SG_MITER_TO_SG;
206 	else
207 		flags |= SG_MITER_FROM_SG;
208 
209 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
210 }
211 
212 /*
213  * All the DMA operation mode stuff goes inside this ifdef.
214  * This assumes that you have a generic DMA device interface,
215  * no custom DMA interfaces are supported.
216  */
217 #ifdef CONFIG_DMA_ENGINE
218 static void __devinit mmci_dma_setup(struct mmci_host *host)
219 {
220 	struct mmci_platform_data *plat = host->plat;
221 	const char *rxname, *txname;
222 	dma_cap_mask_t mask;
223 
224 	if (!plat || !plat->dma_filter) {
225 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
226 		return;
227 	}
228 
229 	/* Try to acquire a generic DMA engine slave channel */
230 	dma_cap_zero(mask);
231 	dma_cap_set(DMA_SLAVE, mask);
232 
233 	/*
234 	 * If only an RX channel is specified, the driver will
235 	 * attempt to use it bidirectionally, however if it is
236 	 * is specified but cannot be located, DMA will be disabled.
237 	 */
238 	if (plat->dma_rx_param) {
239 		host->dma_rx_channel = dma_request_channel(mask,
240 							   plat->dma_filter,
241 							   plat->dma_rx_param);
242 		/* E.g if no DMA hardware is present */
243 		if (!host->dma_rx_channel)
244 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
245 	}
246 
247 	if (plat->dma_tx_param) {
248 		host->dma_tx_channel = dma_request_channel(mask,
249 							   plat->dma_filter,
250 							   plat->dma_tx_param);
251 		if (!host->dma_tx_channel)
252 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
253 	} else {
254 		host->dma_tx_channel = host->dma_rx_channel;
255 	}
256 
257 	if (host->dma_rx_channel)
258 		rxname = dma_chan_name(host->dma_rx_channel);
259 	else
260 		rxname = "none";
261 
262 	if (host->dma_tx_channel)
263 		txname = dma_chan_name(host->dma_tx_channel);
264 	else
265 		txname = "none";
266 
267 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
268 		 rxname, txname);
269 
270 	/*
271 	 * Limit the maximum segment size in any SG entry according to
272 	 * the parameters of the DMA engine device.
273 	 */
274 	if (host->dma_tx_channel) {
275 		struct device *dev = host->dma_tx_channel->device->dev;
276 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
277 
278 		if (max_seg_size < host->mmc->max_seg_size)
279 			host->mmc->max_seg_size = max_seg_size;
280 	}
281 	if (host->dma_rx_channel) {
282 		struct device *dev = host->dma_rx_channel->device->dev;
283 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
284 
285 		if (max_seg_size < host->mmc->max_seg_size)
286 			host->mmc->max_seg_size = max_seg_size;
287 	}
288 }
289 
290 /*
291  * This is used in __devinit or __devexit so inline it
292  * so it can be discarded.
293  */
294 static inline void mmci_dma_release(struct mmci_host *host)
295 {
296 	struct mmci_platform_data *plat = host->plat;
297 
298 	if (host->dma_rx_channel)
299 		dma_release_channel(host->dma_rx_channel);
300 	if (host->dma_tx_channel && plat->dma_tx_param)
301 		dma_release_channel(host->dma_tx_channel);
302 	host->dma_rx_channel = host->dma_tx_channel = NULL;
303 }
304 
305 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
306 {
307 	struct dma_chan *chan = host->dma_current;
308 	enum dma_data_direction dir;
309 	u32 status;
310 	int i;
311 
312 	/* Wait up to 1ms for the DMA to complete */
313 	for (i = 0; ; i++) {
314 		status = readl(host->base + MMCISTATUS);
315 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
316 			break;
317 		udelay(10);
318 	}
319 
320 	/*
321 	 * Check to see whether we still have some data left in the FIFO -
322 	 * this catches DMA controllers which are unable to monitor the
323 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
324 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
325 	 */
326 	if (status & MCI_RXDATAAVLBLMASK) {
327 		dmaengine_terminate_all(chan);
328 		if (!data->error)
329 			data->error = -EIO;
330 	}
331 
332 	if (data->flags & MMC_DATA_WRITE) {
333 		dir = DMA_TO_DEVICE;
334 	} else {
335 		dir = DMA_FROM_DEVICE;
336 	}
337 
338 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
339 
340 	/*
341 	 * Use of DMA with scatter-gather is impossible.
342 	 * Give up with DMA and switch back to PIO mode.
343 	 */
344 	if (status & MCI_RXDATAAVLBLMASK) {
345 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
346 		mmci_dma_release(host);
347 	}
348 }
349 
350 static void mmci_dma_data_error(struct mmci_host *host)
351 {
352 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
353 	dmaengine_terminate_all(host->dma_current);
354 }
355 
356 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
357 {
358 	struct variant_data *variant = host->variant;
359 	struct dma_slave_config conf = {
360 		.src_addr = host->phybase + MMCIFIFO,
361 		.dst_addr = host->phybase + MMCIFIFO,
362 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
363 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
364 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
365 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
366 	};
367 	struct mmc_data *data = host->data;
368 	struct dma_chan *chan;
369 	struct dma_device *device;
370 	struct dma_async_tx_descriptor *desc;
371 	int nr_sg;
372 
373 	host->dma_current = NULL;
374 
375 	if (data->flags & MMC_DATA_READ) {
376 		conf.direction = DMA_FROM_DEVICE;
377 		chan = host->dma_rx_channel;
378 	} else {
379 		conf.direction = DMA_TO_DEVICE;
380 		chan = host->dma_tx_channel;
381 	}
382 
383 	/* If there's no DMA channel, fall back to PIO */
384 	if (!chan)
385 		return -EINVAL;
386 
387 	/* If less than or equal to the fifo size, don't bother with DMA */
388 	if (host->size <= variant->fifosize)
389 		return -EINVAL;
390 
391 	device = chan->device;
392 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
393 	if (nr_sg == 0)
394 		return -EINVAL;
395 
396 	dmaengine_slave_config(chan, &conf);
397 	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
398 					    conf.direction, DMA_CTRL_ACK);
399 	if (!desc)
400 		goto unmap_exit;
401 
402 	/* Okay, go for it. */
403 	host->dma_current = chan;
404 
405 	dev_vdbg(mmc_dev(host->mmc),
406 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
407 		 data->sg_len, data->blksz, data->blocks, data->flags);
408 	dmaengine_submit(desc);
409 	dma_async_issue_pending(chan);
410 
411 	datactrl |= MCI_DPSM_DMAENABLE;
412 
413 	/* Trigger the DMA transfer */
414 	writel(datactrl, host->base + MMCIDATACTRL);
415 
416 	/*
417 	 * Let the MMCI say when the data is ended and it's time
418 	 * to fire next DMA request. When that happens, MMCI will
419 	 * call mmci_data_end()
420 	 */
421 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
422 	       host->base + MMCIMASK0);
423 	return 0;
424 
425 unmap_exit:
426 	dmaengine_terminate_all(chan);
427 	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
428 	return -ENOMEM;
429 }
430 #else
431 /* Blank functions if the DMA engine is not available */
432 static inline void mmci_dma_setup(struct mmci_host *host)
433 {
434 }
435 
436 static inline void mmci_dma_release(struct mmci_host *host)
437 {
438 }
439 
440 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
441 {
442 }
443 
444 static inline void mmci_dma_data_error(struct mmci_host *host)
445 {
446 }
447 
448 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
449 {
450 	return -ENOSYS;
451 }
452 #endif
453 
454 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
455 {
456 	struct variant_data *variant = host->variant;
457 	unsigned int datactrl, timeout, irqmask;
458 	unsigned long long clks;
459 	void __iomem *base;
460 	int blksz_bits;
461 
462 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
463 		data->blksz, data->blocks, data->flags);
464 
465 	host->data = data;
466 	host->size = data->blksz * data->blocks;
467 	data->bytes_xfered = 0;
468 
469 	clks = (unsigned long long)data->timeout_ns * host->cclk;
470 	do_div(clks, 1000000000UL);
471 
472 	timeout = data->timeout_clks + (unsigned int)clks;
473 
474 	base = host->base;
475 	writel(timeout, base + MMCIDATATIMER);
476 	writel(host->size, base + MMCIDATALENGTH);
477 
478 	blksz_bits = ffs(data->blksz) - 1;
479 	BUG_ON(1 << blksz_bits != data->blksz);
480 
481 	if (variant->blksz_datactrl16)
482 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
483 	else
484 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
485 
486 	if (data->flags & MMC_DATA_READ)
487 		datactrl |= MCI_DPSM_DIRECTION;
488 
489 	/*
490 	 * Attempt to use DMA operation mode, if this
491 	 * should fail, fall back to PIO mode
492 	 */
493 	if (!mmci_dma_start_data(host, datactrl))
494 		return;
495 
496 	/* IRQ mode, map the SG list for CPU reading/writing */
497 	mmci_init_sg(host, data);
498 
499 	if (data->flags & MMC_DATA_READ) {
500 		irqmask = MCI_RXFIFOHALFFULLMASK;
501 
502 		/*
503 		 * If we have less than the fifo 'half-full' threshold to
504 		 * transfer, trigger a PIO interrupt as soon as any data
505 		 * is available.
506 		 */
507 		if (host->size < variant->fifohalfsize)
508 			irqmask |= MCI_RXDATAAVLBLMASK;
509 	} else {
510 		/*
511 		 * We don't actually need to include "FIFO empty" here
512 		 * since its implicit in "FIFO half empty".
513 		 */
514 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
515 	}
516 
517 	/* The ST Micro variants has a special bit to enable SDIO */
518 	if (variant->sdio && host->mmc->card)
519 		if (mmc_card_sdio(host->mmc->card))
520 			datactrl |= MCI_ST_DPSM_SDIOEN;
521 
522 	writel(datactrl, base + MMCIDATACTRL);
523 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
524 	mmci_set_mask1(host, irqmask);
525 }
526 
527 static void
528 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
529 {
530 	void __iomem *base = host->base;
531 
532 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
533 	    cmd->opcode, cmd->arg, cmd->flags);
534 
535 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
536 		writel(0, base + MMCICOMMAND);
537 		udelay(1);
538 	}
539 
540 	c |= cmd->opcode | MCI_CPSM_ENABLE;
541 	if (cmd->flags & MMC_RSP_PRESENT) {
542 		if (cmd->flags & MMC_RSP_136)
543 			c |= MCI_CPSM_LONGRSP;
544 		c |= MCI_CPSM_RESPONSE;
545 	}
546 	if (/*interrupt*/0)
547 		c |= MCI_CPSM_INTERRUPT;
548 
549 	host->cmd = cmd;
550 
551 	writel(cmd->arg, base + MMCIARGUMENT);
552 	writel(c, base + MMCICOMMAND);
553 }
554 
555 static void
556 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
557 	      unsigned int status)
558 {
559 	/* First check for errors */
560 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
561 		u32 remain, success;
562 
563 		/* Terminate the DMA transfer */
564 		if (dma_inprogress(host))
565 			mmci_dma_data_error(host);
566 
567 		/*
568 		 * Calculate how far we are into the transfer.  Note that
569 		 * the data counter gives the number of bytes transferred
570 		 * on the MMC bus, not on the host side.  On reads, this
571 		 * can be as much as a FIFO-worth of data ahead.  This
572 		 * matters for FIFO overruns only.
573 		 */
574 		remain = readl(host->base + MMCIDATACNT);
575 		success = data->blksz * data->blocks - remain;
576 
577 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
578 			status, success);
579 		if (status & MCI_DATACRCFAIL) {
580 			/* Last block was not successful */
581 			success -= 1;
582 			data->error = -EILSEQ;
583 		} else if (status & MCI_DATATIMEOUT) {
584 			data->error = -ETIMEDOUT;
585 		} else if (status & MCI_TXUNDERRUN) {
586 			data->error = -EIO;
587 		} else if (status & MCI_RXOVERRUN) {
588 			if (success > host->variant->fifosize)
589 				success -= host->variant->fifosize;
590 			else
591 				success = 0;
592 			data->error = -EIO;
593 		}
594 		data->bytes_xfered = round_down(success, data->blksz);
595 	}
596 
597 	if (status & MCI_DATABLOCKEND)
598 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
599 
600 	if (status & MCI_DATAEND || data->error) {
601 		if (dma_inprogress(host))
602 			mmci_dma_unmap(host, data);
603 		mmci_stop_data(host);
604 
605 		if (!data->error)
606 			/* The error clause is handled above, success! */
607 			data->bytes_xfered = data->blksz * data->blocks;
608 
609 		if (!data->stop) {
610 			mmci_request_end(host, data->mrq);
611 		} else {
612 			mmci_start_command(host, data->stop, 0);
613 		}
614 	}
615 }
616 
617 static void
618 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
619 	     unsigned int status)
620 {
621 	void __iomem *base = host->base;
622 
623 	host->cmd = NULL;
624 
625 	if (status & MCI_CMDTIMEOUT) {
626 		cmd->error = -ETIMEDOUT;
627 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
628 		cmd->error = -EILSEQ;
629 	} else {
630 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
631 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
632 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
633 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
634 	}
635 
636 	if (!cmd->data || cmd->error) {
637 		if (host->data)
638 			mmci_stop_data(host);
639 		mmci_request_end(host, cmd->mrq);
640 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
641 		mmci_start_data(host, cmd->data);
642 	}
643 }
644 
645 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
646 {
647 	void __iomem *base = host->base;
648 	char *ptr = buffer;
649 	u32 status;
650 	int host_remain = host->size;
651 
652 	do {
653 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
654 
655 		if (count > remain)
656 			count = remain;
657 
658 		if (count <= 0)
659 			break;
660 
661 		readsl(base + MMCIFIFO, ptr, count >> 2);
662 
663 		ptr += count;
664 		remain -= count;
665 		host_remain -= count;
666 
667 		if (remain == 0)
668 			break;
669 
670 		status = readl(base + MMCISTATUS);
671 	} while (status & MCI_RXDATAAVLBL);
672 
673 	return ptr - buffer;
674 }
675 
676 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
677 {
678 	struct variant_data *variant = host->variant;
679 	void __iomem *base = host->base;
680 	char *ptr = buffer;
681 
682 	do {
683 		unsigned int count, maxcnt;
684 
685 		maxcnt = status & MCI_TXFIFOEMPTY ?
686 			 variant->fifosize : variant->fifohalfsize;
687 		count = min(remain, maxcnt);
688 
689 		/*
690 		 * The ST Micro variant for SDIO transfer sizes
691 		 * less then 8 bytes should have clock H/W flow
692 		 * control disabled.
693 		 */
694 		if (variant->sdio &&
695 		    mmc_card_sdio(host->mmc->card)) {
696 			if (count < 8)
697 				writel(readl(host->base + MMCICLOCK) &
698 					~variant->clkreg_enable,
699 					host->base + MMCICLOCK);
700 			else
701 				writel(readl(host->base + MMCICLOCK) |
702 					variant->clkreg_enable,
703 					host->base + MMCICLOCK);
704 		}
705 
706 		/*
707 		 * SDIO especially may want to send something that is
708 		 * not divisible by 4 (as opposed to card sectors
709 		 * etc), and the FIFO only accept full 32-bit writes.
710 		 * So compensate by adding +3 on the count, a single
711 		 * byte become a 32bit write, 7 bytes will be two
712 		 * 32bit writes etc.
713 		 */
714 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
715 
716 		ptr += count;
717 		remain -= count;
718 
719 		if (remain == 0)
720 			break;
721 
722 		status = readl(base + MMCISTATUS);
723 	} while (status & MCI_TXFIFOHALFEMPTY);
724 
725 	return ptr - buffer;
726 }
727 
728 /*
729  * PIO data transfer IRQ handler.
730  */
731 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
732 {
733 	struct mmci_host *host = dev_id;
734 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
735 	struct variant_data *variant = host->variant;
736 	void __iomem *base = host->base;
737 	unsigned long flags;
738 	u32 status;
739 
740 	status = readl(base + MMCISTATUS);
741 
742 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
743 
744 	local_irq_save(flags);
745 
746 	do {
747 		unsigned int remain, len;
748 		char *buffer;
749 
750 		/*
751 		 * For write, we only need to test the half-empty flag
752 		 * here - if the FIFO is completely empty, then by
753 		 * definition it is more than half empty.
754 		 *
755 		 * For read, check for data available.
756 		 */
757 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
758 			break;
759 
760 		if (!sg_miter_next(sg_miter))
761 			break;
762 
763 		buffer = sg_miter->addr;
764 		remain = sg_miter->length;
765 
766 		len = 0;
767 		if (status & MCI_RXACTIVE)
768 			len = mmci_pio_read(host, buffer, remain);
769 		if (status & MCI_TXACTIVE)
770 			len = mmci_pio_write(host, buffer, remain, status);
771 
772 		sg_miter->consumed = len;
773 
774 		host->size -= len;
775 		remain -= len;
776 
777 		if (remain)
778 			break;
779 
780 		status = readl(base + MMCISTATUS);
781 	} while (1);
782 
783 	sg_miter_stop(sg_miter);
784 
785 	local_irq_restore(flags);
786 
787 	/*
788 	 * If we have less than the fifo 'half-full' threshold to transfer,
789 	 * trigger a PIO interrupt as soon as any data is available.
790 	 */
791 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
792 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
793 
794 	/*
795 	 * If we run out of data, disable the data IRQs; this
796 	 * prevents a race where the FIFO becomes empty before
797 	 * the chip itself has disabled the data path, and
798 	 * stops us racing with our data end IRQ.
799 	 */
800 	if (host->size == 0) {
801 		mmci_set_mask1(host, 0);
802 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
803 	}
804 
805 	return IRQ_HANDLED;
806 }
807 
808 /*
809  * Handle completion of command and data transfers.
810  */
811 static irqreturn_t mmci_irq(int irq, void *dev_id)
812 {
813 	struct mmci_host *host = dev_id;
814 	u32 status;
815 	int ret = 0;
816 
817 	spin_lock(&host->lock);
818 
819 	do {
820 		struct mmc_command *cmd;
821 		struct mmc_data *data;
822 
823 		status = readl(host->base + MMCISTATUS);
824 
825 		if (host->singleirq) {
826 			if (status & readl(host->base + MMCIMASK1))
827 				mmci_pio_irq(irq, dev_id);
828 
829 			status &= ~MCI_IRQ1MASK;
830 		}
831 
832 		status &= readl(host->base + MMCIMASK0);
833 		writel(status, host->base + MMCICLEAR);
834 
835 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
836 
837 		data = host->data;
838 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
839 			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
840 			mmci_data_irq(host, data, status);
841 
842 		cmd = host->cmd;
843 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
844 			mmci_cmd_irq(host, cmd, status);
845 
846 		ret = 1;
847 	} while (status);
848 
849 	spin_unlock(&host->lock);
850 
851 	return IRQ_RETVAL(ret);
852 }
853 
854 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
855 {
856 	struct mmci_host *host = mmc_priv(mmc);
857 	unsigned long flags;
858 
859 	WARN_ON(host->mrq != NULL);
860 
861 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
862 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
863 			mrq->data->blksz);
864 		mrq->cmd->error = -EINVAL;
865 		mmc_request_done(mmc, mrq);
866 		return;
867 	}
868 
869 	spin_lock_irqsave(&host->lock, flags);
870 
871 	host->mrq = mrq;
872 
873 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
874 		mmci_start_data(host, mrq->data);
875 
876 	mmci_start_command(host, mrq->cmd, 0);
877 
878 	spin_unlock_irqrestore(&host->lock, flags);
879 }
880 
881 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
882 {
883 	struct mmci_host *host = mmc_priv(mmc);
884 	u32 pwr = 0;
885 	unsigned long flags;
886 	int ret;
887 
888 	switch (ios->power_mode) {
889 	case MMC_POWER_OFF:
890 		if (host->vcc)
891 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
892 		break;
893 	case MMC_POWER_UP:
894 		if (host->vcc) {
895 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
896 			if (ret) {
897 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
898 				/*
899 				 * The .set_ios() function in the mmc_host_ops
900 				 * struct return void, and failing to set the
901 				 * power should be rare so we print an error
902 				 * and return here.
903 				 */
904 				return;
905 			}
906 		}
907 		if (host->plat->vdd_handler)
908 			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
909 						       ios->power_mode);
910 		/* The ST version does not have this, fall through to POWER_ON */
911 		if (host->hw_designer != AMBA_VENDOR_ST) {
912 			pwr |= MCI_PWR_UP;
913 			break;
914 		}
915 	case MMC_POWER_ON:
916 		pwr |= MCI_PWR_ON;
917 		break;
918 	}
919 
920 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
921 		if (host->hw_designer != AMBA_VENDOR_ST)
922 			pwr |= MCI_ROD;
923 		else {
924 			/*
925 			 * The ST Micro variant use the ROD bit for something
926 			 * else and only has OD (Open Drain).
927 			 */
928 			pwr |= MCI_OD;
929 		}
930 	}
931 
932 	spin_lock_irqsave(&host->lock, flags);
933 
934 	mmci_set_clkreg(host, ios->clock);
935 
936 	if (host->pwr != pwr) {
937 		host->pwr = pwr;
938 		writel(pwr, host->base + MMCIPOWER);
939 	}
940 
941 	spin_unlock_irqrestore(&host->lock, flags);
942 }
943 
944 static int mmci_get_ro(struct mmc_host *mmc)
945 {
946 	struct mmci_host *host = mmc_priv(mmc);
947 
948 	if (host->gpio_wp == -ENOSYS)
949 		return -ENOSYS;
950 
951 	return gpio_get_value_cansleep(host->gpio_wp);
952 }
953 
954 static int mmci_get_cd(struct mmc_host *mmc)
955 {
956 	struct mmci_host *host = mmc_priv(mmc);
957 	struct mmci_platform_data *plat = host->plat;
958 	unsigned int status;
959 
960 	if (host->gpio_cd == -ENOSYS) {
961 		if (!plat->status)
962 			return 1; /* Assume always present */
963 
964 		status = plat->status(mmc_dev(host->mmc));
965 	} else
966 		status = !!gpio_get_value_cansleep(host->gpio_cd)
967 			^ plat->cd_invert;
968 
969 	/*
970 	 * Use positive logic throughout - status is zero for no card,
971 	 * non-zero for card inserted.
972 	 */
973 	return status;
974 }
975 
976 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
977 {
978 	struct mmci_host *host = dev_id;
979 
980 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
981 
982 	return IRQ_HANDLED;
983 }
984 
985 static const struct mmc_host_ops mmci_ops = {
986 	.request	= mmci_request,
987 	.set_ios	= mmci_set_ios,
988 	.get_ro		= mmci_get_ro,
989 	.get_cd		= mmci_get_cd,
990 };
991 
992 static int __devinit mmci_probe(struct amba_device *dev,
993 	const struct amba_id *id)
994 {
995 	struct mmci_platform_data *plat = dev->dev.platform_data;
996 	struct variant_data *variant = id->data;
997 	struct mmci_host *host;
998 	struct mmc_host *mmc;
999 	int ret;
1000 
1001 	/* must have platform data */
1002 	if (!plat) {
1003 		ret = -EINVAL;
1004 		goto out;
1005 	}
1006 
1007 	ret = amba_request_regions(dev, DRIVER_NAME);
1008 	if (ret)
1009 		goto out;
1010 
1011 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1012 	if (!mmc) {
1013 		ret = -ENOMEM;
1014 		goto rel_regions;
1015 	}
1016 
1017 	host = mmc_priv(mmc);
1018 	host->mmc = mmc;
1019 
1020 	host->gpio_wp = -ENOSYS;
1021 	host->gpio_cd = -ENOSYS;
1022 	host->gpio_cd_irq = -1;
1023 
1024 	host->hw_designer = amba_manf(dev);
1025 	host->hw_revision = amba_rev(dev);
1026 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1027 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1028 
1029 	host->clk = clk_get(&dev->dev, NULL);
1030 	if (IS_ERR(host->clk)) {
1031 		ret = PTR_ERR(host->clk);
1032 		host->clk = NULL;
1033 		goto host_free;
1034 	}
1035 
1036 	ret = clk_enable(host->clk);
1037 	if (ret)
1038 		goto clk_free;
1039 
1040 	host->plat = plat;
1041 	host->variant = variant;
1042 	host->mclk = clk_get_rate(host->clk);
1043 	/*
1044 	 * According to the spec, mclk is max 100 MHz,
1045 	 * so we try to adjust the clock down to this,
1046 	 * (if possible).
1047 	 */
1048 	if (host->mclk > 100000000) {
1049 		ret = clk_set_rate(host->clk, 100000000);
1050 		if (ret < 0)
1051 			goto clk_disable;
1052 		host->mclk = clk_get_rate(host->clk);
1053 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1054 			host->mclk);
1055 	}
1056 	host->phybase = dev->res.start;
1057 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1058 	if (!host->base) {
1059 		ret = -ENOMEM;
1060 		goto clk_disable;
1061 	}
1062 
1063 	mmc->ops = &mmci_ops;
1064 	mmc->f_min = (host->mclk + 511) / 512;
1065 	/*
1066 	 * If the platform data supplies a maximum operating
1067 	 * frequency, this takes precedence. Else, we fall back
1068 	 * to using the module parameter, which has a (low)
1069 	 * default value in case it is not specified. Either
1070 	 * value must not exceed the clock rate into the block,
1071 	 * of course.
1072 	 */
1073 	if (plat->f_max)
1074 		mmc->f_max = min(host->mclk, plat->f_max);
1075 	else
1076 		mmc->f_max = min(host->mclk, fmax);
1077 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1078 
1079 #ifdef CONFIG_REGULATOR
1080 	/* If we're using the regulator framework, try to fetch a regulator */
1081 	host->vcc = regulator_get(&dev->dev, "vmmc");
1082 	if (IS_ERR(host->vcc))
1083 		host->vcc = NULL;
1084 	else {
1085 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1086 
1087 		if (mask < 0)
1088 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1089 				mask);
1090 		else {
1091 			host->mmc->ocr_avail = (u32) mask;
1092 			if (plat->ocr_mask)
1093 				dev_warn(&dev->dev,
1094 				 "Provided ocr_mask/setpower will not be used "
1095 				 "(using regulator instead)\n");
1096 		}
1097 	}
1098 #endif
1099 	/* Fall back to platform data if no regulator is found */
1100 	if (host->vcc == NULL)
1101 		mmc->ocr_avail = plat->ocr_mask;
1102 	mmc->caps = plat->capabilities;
1103 
1104 	/*
1105 	 * We can do SGIO
1106 	 */
1107 	mmc->max_segs = NR_SG;
1108 
1109 	/*
1110 	 * Since only a certain number of bits are valid in the data length
1111 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1112 	 * single request.
1113 	 */
1114 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1115 
1116 	/*
1117 	 * Set the maximum segment size.  Since we aren't doing DMA
1118 	 * (yet) we are only limited by the data length register.
1119 	 */
1120 	mmc->max_seg_size = mmc->max_req_size;
1121 
1122 	/*
1123 	 * Block size can be up to 2048 bytes, but must be a power of two.
1124 	 */
1125 	mmc->max_blk_size = 2048;
1126 
1127 	/*
1128 	 * No limit on the number of blocks transferred.
1129 	 */
1130 	mmc->max_blk_count = mmc->max_req_size;
1131 
1132 	spin_lock_init(&host->lock);
1133 
1134 	writel(0, host->base + MMCIMASK0);
1135 	writel(0, host->base + MMCIMASK1);
1136 	writel(0xfff, host->base + MMCICLEAR);
1137 
1138 	if (gpio_is_valid(plat->gpio_cd)) {
1139 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1140 		if (ret == 0)
1141 			ret = gpio_direction_input(plat->gpio_cd);
1142 		if (ret == 0)
1143 			host->gpio_cd = plat->gpio_cd;
1144 		else if (ret != -ENOSYS)
1145 			goto err_gpio_cd;
1146 
1147 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1148 					      mmci_cd_irq, 0,
1149 					      DRIVER_NAME " (cd)", host);
1150 		if (ret >= 0)
1151 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1152 	}
1153 	if (gpio_is_valid(plat->gpio_wp)) {
1154 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1155 		if (ret == 0)
1156 			ret = gpio_direction_input(plat->gpio_wp);
1157 		if (ret == 0)
1158 			host->gpio_wp = plat->gpio_wp;
1159 		else if (ret != -ENOSYS)
1160 			goto err_gpio_wp;
1161 	}
1162 
1163 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1164 	    && host->gpio_cd_irq < 0)
1165 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1166 
1167 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1168 	if (ret)
1169 		goto unmap;
1170 
1171 	if (dev->irq[1] == NO_IRQ)
1172 		host->singleirq = true;
1173 	else {
1174 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1175 				  DRIVER_NAME " (pio)", host);
1176 		if (ret)
1177 			goto irq0_free;
1178 	}
1179 
1180 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1181 
1182 	amba_set_drvdata(dev, mmc);
1183 
1184 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1185 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1186 		 amba_rev(dev), (unsigned long long)dev->res.start,
1187 		 dev->irq[0], dev->irq[1]);
1188 
1189 	mmci_dma_setup(host);
1190 
1191 	mmc_add_host(mmc);
1192 
1193 	return 0;
1194 
1195  irq0_free:
1196 	free_irq(dev->irq[0], host);
1197  unmap:
1198 	if (host->gpio_wp != -ENOSYS)
1199 		gpio_free(host->gpio_wp);
1200  err_gpio_wp:
1201 	if (host->gpio_cd_irq >= 0)
1202 		free_irq(host->gpio_cd_irq, host);
1203 	if (host->gpio_cd != -ENOSYS)
1204 		gpio_free(host->gpio_cd);
1205  err_gpio_cd:
1206 	iounmap(host->base);
1207  clk_disable:
1208 	clk_disable(host->clk);
1209  clk_free:
1210 	clk_put(host->clk);
1211  host_free:
1212 	mmc_free_host(mmc);
1213  rel_regions:
1214 	amba_release_regions(dev);
1215  out:
1216 	return ret;
1217 }
1218 
1219 static int __devexit mmci_remove(struct amba_device *dev)
1220 {
1221 	struct mmc_host *mmc = amba_get_drvdata(dev);
1222 
1223 	amba_set_drvdata(dev, NULL);
1224 
1225 	if (mmc) {
1226 		struct mmci_host *host = mmc_priv(mmc);
1227 
1228 		mmc_remove_host(mmc);
1229 
1230 		writel(0, host->base + MMCIMASK0);
1231 		writel(0, host->base + MMCIMASK1);
1232 
1233 		writel(0, host->base + MMCICOMMAND);
1234 		writel(0, host->base + MMCIDATACTRL);
1235 
1236 		mmci_dma_release(host);
1237 		free_irq(dev->irq[0], host);
1238 		if (!host->singleirq)
1239 			free_irq(dev->irq[1], host);
1240 
1241 		if (host->gpio_wp != -ENOSYS)
1242 			gpio_free(host->gpio_wp);
1243 		if (host->gpio_cd_irq >= 0)
1244 			free_irq(host->gpio_cd_irq, host);
1245 		if (host->gpio_cd != -ENOSYS)
1246 			gpio_free(host->gpio_cd);
1247 
1248 		iounmap(host->base);
1249 		clk_disable(host->clk);
1250 		clk_put(host->clk);
1251 
1252 		if (host->vcc)
1253 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1254 		regulator_put(host->vcc);
1255 
1256 		mmc_free_host(mmc);
1257 
1258 		amba_release_regions(dev);
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 #ifdef CONFIG_PM
1265 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1266 {
1267 	struct mmc_host *mmc = amba_get_drvdata(dev);
1268 	int ret = 0;
1269 
1270 	if (mmc) {
1271 		struct mmci_host *host = mmc_priv(mmc);
1272 
1273 		ret = mmc_suspend_host(mmc);
1274 		if (ret == 0)
1275 			writel(0, host->base + MMCIMASK0);
1276 	}
1277 
1278 	return ret;
1279 }
1280 
1281 static int mmci_resume(struct amba_device *dev)
1282 {
1283 	struct mmc_host *mmc = amba_get_drvdata(dev);
1284 	int ret = 0;
1285 
1286 	if (mmc) {
1287 		struct mmci_host *host = mmc_priv(mmc);
1288 
1289 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1290 
1291 		ret = mmc_resume_host(mmc);
1292 	}
1293 
1294 	return ret;
1295 }
1296 #else
1297 #define mmci_suspend	NULL
1298 #define mmci_resume	NULL
1299 #endif
1300 
1301 static struct amba_id mmci_ids[] = {
1302 	{
1303 		.id	= 0x00041180,
1304 		.mask	= 0xff0fffff,
1305 		.data	= &variant_arm,
1306 	},
1307 	{
1308 		.id	= 0x01041180,
1309 		.mask	= 0xff0fffff,
1310 		.data	= &variant_arm_extended_fifo,
1311 	},
1312 	{
1313 		.id	= 0x00041181,
1314 		.mask	= 0x000fffff,
1315 		.data	= &variant_arm,
1316 	},
1317 	/* ST Micro variants */
1318 	{
1319 		.id     = 0x00180180,
1320 		.mask   = 0x00ffffff,
1321 		.data	= &variant_u300,
1322 	},
1323 	{
1324 		.id     = 0x00280180,
1325 		.mask   = 0x00ffffff,
1326 		.data	= &variant_u300,
1327 	},
1328 	{
1329 		.id     = 0x00480180,
1330 		.mask   = 0xf0ffffff,
1331 		.data	= &variant_ux500,
1332 	},
1333 	{
1334 		.id     = 0x10480180,
1335 		.mask   = 0xf0ffffff,
1336 		.data	= &variant_ux500v2,
1337 	},
1338 	{ 0, 0 },
1339 };
1340 
1341 static struct amba_driver mmci_driver = {
1342 	.drv		= {
1343 		.name	= DRIVER_NAME,
1344 	},
1345 	.probe		= mmci_probe,
1346 	.remove		= __devexit_p(mmci_remove),
1347 	.suspend	= mmci_suspend,
1348 	.resume		= mmci_resume,
1349 	.id_table	= mmci_ids,
1350 };
1351 
1352 static int __init mmci_init(void)
1353 {
1354 	return amba_driver_register(&mmci_driver);
1355 }
1356 
1357 static void __exit mmci_exit(void)
1358 {
1359 	amba_driver_unregister(&mmci_driver);
1360 }
1361 
1362 module_init(mmci_init);
1363 module_exit(mmci_exit);
1364 module_param(fmax, uint, 0444);
1365 
1366 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1367 MODULE_LICENSE("GPL");
1368