xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 21278aea)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40 
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44 
45 #include "mmci.h"
46 
47 #define DRIVER_NAME "mmci-pl18x"
48 
49 static unsigned int fmax = 515633;
50 
51 /**
52  * struct variant_data - MMCI variant-specific quirks
53  * @clkreg: default value for MCICLOCK register
54  * @clkreg_enable: enable value for MMCICLOCK register
55  * @datalength_bits: number of bits in the MMCIDATALENGTH register
56  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
57  *	      is asserted (likewise for RX)
58  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
59  *		  is asserted (likewise for RX)
60  * @sdio: variant supports SDIO
61  * @st_clkdiv: true if using a ST-specific clock divider algorithm
62  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
63  * @pwrreg_powerup: power up value for MMCIPOWER register
64  * @signal_direction: input/out direction of bus signals can be indicated
65  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
66  * @busy_detect: true if busy detection on dat0 is supported
67  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
68  */
69 struct variant_data {
70 	unsigned int		clkreg;
71 	unsigned int		clkreg_enable;
72 	unsigned int		datalength_bits;
73 	unsigned int		fifosize;
74 	unsigned int		fifohalfsize;
75 	bool			sdio;
76 	bool			st_clkdiv;
77 	bool			blksz_datactrl16;
78 	u32			pwrreg_powerup;
79 	bool			signal_direction;
80 	bool			pwrreg_clkgate;
81 	bool			busy_detect;
82 	bool			pwrreg_nopower;
83 };
84 
85 static struct variant_data variant_arm = {
86 	.fifosize		= 16 * 4,
87 	.fifohalfsize		= 8 * 4,
88 	.datalength_bits	= 16,
89 	.pwrreg_powerup		= MCI_PWR_UP,
90 };
91 
92 static struct variant_data variant_arm_extended_fifo = {
93 	.fifosize		= 128 * 4,
94 	.fifohalfsize		= 64 * 4,
95 	.datalength_bits	= 16,
96 	.pwrreg_powerup		= MCI_PWR_UP,
97 };
98 
99 static struct variant_data variant_arm_extended_fifo_hwfc = {
100 	.fifosize		= 128 * 4,
101 	.fifohalfsize		= 64 * 4,
102 	.clkreg_enable		= MCI_ARM_HWFCEN,
103 	.datalength_bits	= 16,
104 	.pwrreg_powerup		= MCI_PWR_UP,
105 };
106 
107 static struct variant_data variant_u300 = {
108 	.fifosize		= 16 * 4,
109 	.fifohalfsize		= 8 * 4,
110 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
111 	.datalength_bits	= 16,
112 	.sdio			= true,
113 	.pwrreg_powerup		= MCI_PWR_ON,
114 	.signal_direction	= true,
115 	.pwrreg_clkgate		= true,
116 	.pwrreg_nopower		= true,
117 };
118 
119 static struct variant_data variant_nomadik = {
120 	.fifosize		= 16 * 4,
121 	.fifohalfsize		= 8 * 4,
122 	.clkreg			= MCI_CLK_ENABLE,
123 	.datalength_bits	= 24,
124 	.sdio			= true,
125 	.st_clkdiv		= true,
126 	.pwrreg_powerup		= MCI_PWR_ON,
127 	.signal_direction	= true,
128 	.pwrreg_clkgate		= true,
129 	.pwrreg_nopower		= true,
130 };
131 
132 static struct variant_data variant_ux500 = {
133 	.fifosize		= 30 * 4,
134 	.fifohalfsize		= 8 * 4,
135 	.clkreg			= MCI_CLK_ENABLE,
136 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
137 	.datalength_bits	= 24,
138 	.sdio			= true,
139 	.st_clkdiv		= true,
140 	.pwrreg_powerup		= MCI_PWR_ON,
141 	.signal_direction	= true,
142 	.pwrreg_clkgate		= true,
143 	.busy_detect		= true,
144 	.pwrreg_nopower		= true,
145 };
146 
147 static struct variant_data variant_ux500v2 = {
148 	.fifosize		= 30 * 4,
149 	.fifohalfsize		= 8 * 4,
150 	.clkreg			= MCI_CLK_ENABLE,
151 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
152 	.datalength_bits	= 24,
153 	.sdio			= true,
154 	.st_clkdiv		= true,
155 	.blksz_datactrl16	= true,
156 	.pwrreg_powerup		= MCI_PWR_ON,
157 	.signal_direction	= true,
158 	.pwrreg_clkgate		= true,
159 	.busy_detect		= true,
160 	.pwrreg_nopower		= true,
161 };
162 
163 static int mmci_card_busy(struct mmc_host *mmc)
164 {
165 	struct mmci_host *host = mmc_priv(mmc);
166 	unsigned long flags;
167 	int busy = 0;
168 
169 	pm_runtime_get_sync(mmc_dev(mmc));
170 
171 	spin_lock_irqsave(&host->lock, flags);
172 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
173 		busy = 1;
174 	spin_unlock_irqrestore(&host->lock, flags);
175 
176 	pm_runtime_mark_last_busy(mmc_dev(mmc));
177 	pm_runtime_put_autosuspend(mmc_dev(mmc));
178 
179 	return busy;
180 }
181 
182 /*
183  * Validate mmc prerequisites
184  */
185 static int mmci_validate_data(struct mmci_host *host,
186 			      struct mmc_data *data)
187 {
188 	if (!data)
189 		return 0;
190 
191 	if (!is_power_of_2(data->blksz)) {
192 		dev_err(mmc_dev(host->mmc),
193 			"unsupported block size (%d bytes)\n", data->blksz);
194 		return -EINVAL;
195 	}
196 
197 	return 0;
198 }
199 
200 static void mmci_reg_delay(struct mmci_host *host)
201 {
202 	/*
203 	 * According to the spec, at least three feedback clock cycles
204 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
205 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
206 	 * Worst delay time during card init is at 100 kHz => 30 us.
207 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
208 	 */
209 	if (host->cclk < 25000000)
210 		udelay(30);
211 	else
212 		ndelay(120);
213 }
214 
215 /*
216  * This must be called with host->lock held
217  */
218 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
219 {
220 	if (host->clk_reg != clk) {
221 		host->clk_reg = clk;
222 		writel(clk, host->base + MMCICLOCK);
223 	}
224 }
225 
226 /*
227  * This must be called with host->lock held
228  */
229 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
230 {
231 	if (host->pwr_reg != pwr) {
232 		host->pwr_reg = pwr;
233 		writel(pwr, host->base + MMCIPOWER);
234 	}
235 }
236 
237 /*
238  * This must be called with host->lock held
239  */
240 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
241 {
242 	/* Keep ST Micro busy mode if enabled */
243 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
244 
245 	if (host->datactrl_reg != datactrl) {
246 		host->datactrl_reg = datactrl;
247 		writel(datactrl, host->base + MMCIDATACTRL);
248 	}
249 }
250 
251 /*
252  * This must be called with host->lock held
253  */
254 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
255 {
256 	struct variant_data *variant = host->variant;
257 	u32 clk = variant->clkreg;
258 
259 	/* Make sure cclk reflects the current calculated clock */
260 	host->cclk = 0;
261 
262 	if (desired) {
263 		if (desired >= host->mclk) {
264 			clk = MCI_CLK_BYPASS;
265 			if (variant->st_clkdiv)
266 				clk |= MCI_ST_UX500_NEG_EDGE;
267 			host->cclk = host->mclk;
268 		} else if (variant->st_clkdiv) {
269 			/*
270 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
271 			 * => clkdiv = (mclk / f) - 2
272 			 * Round the divider up so we don't exceed the max
273 			 * frequency
274 			 */
275 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
276 			if (clk >= 256)
277 				clk = 255;
278 			host->cclk = host->mclk / (clk + 2);
279 		} else {
280 			/*
281 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
282 			 * => clkdiv = mclk / (2 * f) - 1
283 			 */
284 			clk = host->mclk / (2 * desired) - 1;
285 			if (clk >= 256)
286 				clk = 255;
287 			host->cclk = host->mclk / (2 * (clk + 1));
288 		}
289 
290 		clk |= variant->clkreg_enable;
291 		clk |= MCI_CLK_ENABLE;
292 		/* This hasn't proven to be worthwhile */
293 		/* clk |= MCI_CLK_PWRSAVE; */
294 	}
295 
296 	/* Set actual clock for debug */
297 	host->mmc->actual_clock = host->cclk;
298 
299 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
300 		clk |= MCI_4BIT_BUS;
301 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
302 		clk |= MCI_ST_8BIT_BUS;
303 
304 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
305 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
306 		clk |= MCI_ST_UX500_NEG_EDGE;
307 
308 	mmci_write_clkreg(host, clk);
309 }
310 
311 static void
312 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
313 {
314 	writel(0, host->base + MMCICOMMAND);
315 
316 	BUG_ON(host->data);
317 
318 	host->mrq = NULL;
319 	host->cmd = NULL;
320 
321 	mmc_request_done(host->mmc, mrq);
322 
323 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
324 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
325 }
326 
327 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
328 {
329 	void __iomem *base = host->base;
330 
331 	if (host->singleirq) {
332 		unsigned int mask0 = readl(base + MMCIMASK0);
333 
334 		mask0 &= ~MCI_IRQ1MASK;
335 		mask0 |= mask;
336 
337 		writel(mask0, base + MMCIMASK0);
338 	}
339 
340 	writel(mask, base + MMCIMASK1);
341 }
342 
343 static void mmci_stop_data(struct mmci_host *host)
344 {
345 	mmci_write_datactrlreg(host, 0);
346 	mmci_set_mask1(host, 0);
347 	host->data = NULL;
348 }
349 
350 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
351 {
352 	unsigned int flags = SG_MITER_ATOMIC;
353 
354 	if (data->flags & MMC_DATA_READ)
355 		flags |= SG_MITER_TO_SG;
356 	else
357 		flags |= SG_MITER_FROM_SG;
358 
359 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
360 }
361 
362 /*
363  * All the DMA operation mode stuff goes inside this ifdef.
364  * This assumes that you have a generic DMA device interface,
365  * no custom DMA interfaces are supported.
366  */
367 #ifdef CONFIG_DMA_ENGINE
368 static void mmci_dma_setup(struct mmci_host *host)
369 {
370 	const char *rxname, *txname;
371 	dma_cap_mask_t mask;
372 
373 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
374 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
375 
376 	/* initialize pre request cookie */
377 	host->next_data.cookie = 1;
378 
379 	/* Try to acquire a generic DMA engine slave channel */
380 	dma_cap_zero(mask);
381 	dma_cap_set(DMA_SLAVE, mask);
382 
383 	/*
384 	 * If only an RX channel is specified, the driver will
385 	 * attempt to use it bidirectionally, however if it is
386 	 * is specified but cannot be located, DMA will be disabled.
387 	 */
388 	if (host->dma_rx_channel && !host->dma_tx_channel)
389 		host->dma_tx_channel = host->dma_rx_channel;
390 
391 	if (host->dma_rx_channel)
392 		rxname = dma_chan_name(host->dma_rx_channel);
393 	else
394 		rxname = "none";
395 
396 	if (host->dma_tx_channel)
397 		txname = dma_chan_name(host->dma_tx_channel);
398 	else
399 		txname = "none";
400 
401 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
402 		 rxname, txname);
403 
404 	/*
405 	 * Limit the maximum segment size in any SG entry according to
406 	 * the parameters of the DMA engine device.
407 	 */
408 	if (host->dma_tx_channel) {
409 		struct device *dev = host->dma_tx_channel->device->dev;
410 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
411 
412 		if (max_seg_size < host->mmc->max_seg_size)
413 			host->mmc->max_seg_size = max_seg_size;
414 	}
415 	if (host->dma_rx_channel) {
416 		struct device *dev = host->dma_rx_channel->device->dev;
417 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
418 
419 		if (max_seg_size < host->mmc->max_seg_size)
420 			host->mmc->max_seg_size = max_seg_size;
421 	}
422 }
423 
424 /*
425  * This is used in or so inline it
426  * so it can be discarded.
427  */
428 static inline void mmci_dma_release(struct mmci_host *host)
429 {
430 	if (host->dma_rx_channel)
431 		dma_release_channel(host->dma_rx_channel);
432 	if (host->dma_tx_channel)
433 		dma_release_channel(host->dma_tx_channel);
434 	host->dma_rx_channel = host->dma_tx_channel = NULL;
435 }
436 
437 static void mmci_dma_data_error(struct mmci_host *host)
438 {
439 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
440 	dmaengine_terminate_all(host->dma_current);
441 	host->dma_current = NULL;
442 	host->dma_desc_current = NULL;
443 	host->data->host_cookie = 0;
444 }
445 
446 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
447 {
448 	struct dma_chan *chan;
449 	enum dma_data_direction dir;
450 
451 	if (data->flags & MMC_DATA_READ) {
452 		dir = DMA_FROM_DEVICE;
453 		chan = host->dma_rx_channel;
454 	} else {
455 		dir = DMA_TO_DEVICE;
456 		chan = host->dma_tx_channel;
457 	}
458 
459 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
460 }
461 
462 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
463 {
464 	u32 status;
465 	int i;
466 
467 	/* Wait up to 1ms for the DMA to complete */
468 	for (i = 0; ; i++) {
469 		status = readl(host->base + MMCISTATUS);
470 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
471 			break;
472 		udelay(10);
473 	}
474 
475 	/*
476 	 * Check to see whether we still have some data left in the FIFO -
477 	 * this catches DMA controllers which are unable to monitor the
478 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
479 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
480 	 */
481 	if (status & MCI_RXDATAAVLBLMASK) {
482 		mmci_dma_data_error(host);
483 		if (!data->error)
484 			data->error = -EIO;
485 	}
486 
487 	if (!data->host_cookie)
488 		mmci_dma_unmap(host, data);
489 
490 	/*
491 	 * Use of DMA with scatter-gather is impossible.
492 	 * Give up with DMA and switch back to PIO mode.
493 	 */
494 	if (status & MCI_RXDATAAVLBLMASK) {
495 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
496 		mmci_dma_release(host);
497 	}
498 
499 	host->dma_current = NULL;
500 	host->dma_desc_current = NULL;
501 }
502 
503 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
504 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
505 				struct dma_chan **dma_chan,
506 				struct dma_async_tx_descriptor **dma_desc)
507 {
508 	struct variant_data *variant = host->variant;
509 	struct dma_slave_config conf = {
510 		.src_addr = host->phybase + MMCIFIFO,
511 		.dst_addr = host->phybase + MMCIFIFO,
512 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
513 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
514 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
515 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
516 		.device_fc = false,
517 	};
518 	struct dma_chan *chan;
519 	struct dma_device *device;
520 	struct dma_async_tx_descriptor *desc;
521 	enum dma_data_direction buffer_dirn;
522 	int nr_sg;
523 
524 	if (data->flags & MMC_DATA_READ) {
525 		conf.direction = DMA_DEV_TO_MEM;
526 		buffer_dirn = DMA_FROM_DEVICE;
527 		chan = host->dma_rx_channel;
528 	} else {
529 		conf.direction = DMA_MEM_TO_DEV;
530 		buffer_dirn = DMA_TO_DEVICE;
531 		chan = host->dma_tx_channel;
532 	}
533 
534 	/* If there's no DMA channel, fall back to PIO */
535 	if (!chan)
536 		return -EINVAL;
537 
538 	/* If less than or equal to the fifo size, don't bother with DMA */
539 	if (data->blksz * data->blocks <= variant->fifosize)
540 		return -EINVAL;
541 
542 	device = chan->device;
543 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
544 	if (nr_sg == 0)
545 		return -EINVAL;
546 
547 	dmaengine_slave_config(chan, &conf);
548 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
549 					    conf.direction, DMA_CTRL_ACK);
550 	if (!desc)
551 		goto unmap_exit;
552 
553 	*dma_chan = chan;
554 	*dma_desc = desc;
555 
556 	return 0;
557 
558  unmap_exit:
559 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
560 	return -ENOMEM;
561 }
562 
563 static inline int mmci_dma_prep_data(struct mmci_host *host,
564 				     struct mmc_data *data)
565 {
566 	/* Check if next job is already prepared. */
567 	if (host->dma_current && host->dma_desc_current)
568 		return 0;
569 
570 	/* No job were prepared thus do it now. */
571 	return __mmci_dma_prep_data(host, data, &host->dma_current,
572 				    &host->dma_desc_current);
573 }
574 
575 static inline int mmci_dma_prep_next(struct mmci_host *host,
576 				     struct mmc_data *data)
577 {
578 	struct mmci_host_next *nd = &host->next_data;
579 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
580 }
581 
582 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
583 {
584 	int ret;
585 	struct mmc_data *data = host->data;
586 
587 	ret = mmci_dma_prep_data(host, host->data);
588 	if (ret)
589 		return ret;
590 
591 	/* Okay, go for it. */
592 	dev_vdbg(mmc_dev(host->mmc),
593 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
594 		 data->sg_len, data->blksz, data->blocks, data->flags);
595 	dmaengine_submit(host->dma_desc_current);
596 	dma_async_issue_pending(host->dma_current);
597 
598 	datactrl |= MCI_DPSM_DMAENABLE;
599 
600 	/* Trigger the DMA transfer */
601 	mmci_write_datactrlreg(host, datactrl);
602 
603 	/*
604 	 * Let the MMCI say when the data is ended and it's time
605 	 * to fire next DMA request. When that happens, MMCI will
606 	 * call mmci_data_end()
607 	 */
608 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
609 	       host->base + MMCIMASK0);
610 	return 0;
611 }
612 
613 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
614 {
615 	struct mmci_host_next *next = &host->next_data;
616 
617 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
618 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
619 
620 	host->dma_desc_current = next->dma_desc;
621 	host->dma_current = next->dma_chan;
622 	next->dma_desc = NULL;
623 	next->dma_chan = NULL;
624 }
625 
626 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
627 			     bool is_first_req)
628 {
629 	struct mmci_host *host = mmc_priv(mmc);
630 	struct mmc_data *data = mrq->data;
631 	struct mmci_host_next *nd = &host->next_data;
632 
633 	if (!data)
634 		return;
635 
636 	BUG_ON(data->host_cookie);
637 
638 	if (mmci_validate_data(host, data))
639 		return;
640 
641 	if (!mmci_dma_prep_next(host, data))
642 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
643 }
644 
645 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
646 			      int err)
647 {
648 	struct mmci_host *host = mmc_priv(mmc);
649 	struct mmc_data *data = mrq->data;
650 
651 	if (!data || !data->host_cookie)
652 		return;
653 
654 	mmci_dma_unmap(host, data);
655 
656 	if (err) {
657 		struct mmci_host_next *next = &host->next_data;
658 		struct dma_chan *chan;
659 		if (data->flags & MMC_DATA_READ)
660 			chan = host->dma_rx_channel;
661 		else
662 			chan = host->dma_tx_channel;
663 		dmaengine_terminate_all(chan);
664 
665 		next->dma_desc = NULL;
666 		next->dma_chan = NULL;
667 	}
668 }
669 
670 #else
671 /* Blank functions if the DMA engine is not available */
672 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
673 {
674 }
675 static inline void mmci_dma_setup(struct mmci_host *host)
676 {
677 }
678 
679 static inline void mmci_dma_release(struct mmci_host *host)
680 {
681 }
682 
683 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
684 {
685 }
686 
687 static inline void mmci_dma_finalize(struct mmci_host *host,
688 				     struct mmc_data *data)
689 {
690 }
691 
692 static inline void mmci_dma_data_error(struct mmci_host *host)
693 {
694 }
695 
696 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
697 {
698 	return -ENOSYS;
699 }
700 
701 #define mmci_pre_request NULL
702 #define mmci_post_request NULL
703 
704 #endif
705 
706 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
707 {
708 	struct variant_data *variant = host->variant;
709 	unsigned int datactrl, timeout, irqmask;
710 	unsigned long long clks;
711 	void __iomem *base;
712 	int blksz_bits;
713 
714 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
715 		data->blksz, data->blocks, data->flags);
716 
717 	host->data = data;
718 	host->size = data->blksz * data->blocks;
719 	data->bytes_xfered = 0;
720 
721 	clks = (unsigned long long)data->timeout_ns * host->cclk;
722 	do_div(clks, 1000000000UL);
723 
724 	timeout = data->timeout_clks + (unsigned int)clks;
725 
726 	base = host->base;
727 	writel(timeout, base + MMCIDATATIMER);
728 	writel(host->size, base + MMCIDATALENGTH);
729 
730 	blksz_bits = ffs(data->blksz) - 1;
731 	BUG_ON(1 << blksz_bits != data->blksz);
732 
733 	if (variant->blksz_datactrl16)
734 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
735 	else
736 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
737 
738 	if (data->flags & MMC_DATA_READ)
739 		datactrl |= MCI_DPSM_DIRECTION;
740 
741 	/* The ST Micro variants has a special bit to enable SDIO */
742 	if (variant->sdio && host->mmc->card)
743 		if (mmc_card_sdio(host->mmc->card)) {
744 			/*
745 			 * The ST Micro variants has a special bit
746 			 * to enable SDIO.
747 			 */
748 			u32 clk;
749 
750 			datactrl |= MCI_ST_DPSM_SDIOEN;
751 
752 			/*
753 			 * The ST Micro variant for SDIO small write transfers
754 			 * needs to have clock H/W flow control disabled,
755 			 * otherwise the transfer will not start. The threshold
756 			 * depends on the rate of MCLK.
757 			 */
758 			if (data->flags & MMC_DATA_WRITE &&
759 			    (host->size < 8 ||
760 			     (host->size <= 8 && host->mclk > 50000000)))
761 				clk = host->clk_reg & ~variant->clkreg_enable;
762 			else
763 				clk = host->clk_reg | variant->clkreg_enable;
764 
765 			mmci_write_clkreg(host, clk);
766 		}
767 
768 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
769 	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
770 		datactrl |= MCI_ST_DPSM_DDRMODE;
771 
772 	/*
773 	 * Attempt to use DMA operation mode, if this
774 	 * should fail, fall back to PIO mode
775 	 */
776 	if (!mmci_dma_start_data(host, datactrl))
777 		return;
778 
779 	/* IRQ mode, map the SG list for CPU reading/writing */
780 	mmci_init_sg(host, data);
781 
782 	if (data->flags & MMC_DATA_READ) {
783 		irqmask = MCI_RXFIFOHALFFULLMASK;
784 
785 		/*
786 		 * If we have less than the fifo 'half-full' threshold to
787 		 * transfer, trigger a PIO interrupt as soon as any data
788 		 * is available.
789 		 */
790 		if (host->size < variant->fifohalfsize)
791 			irqmask |= MCI_RXDATAAVLBLMASK;
792 	} else {
793 		/*
794 		 * We don't actually need to include "FIFO empty" here
795 		 * since its implicit in "FIFO half empty".
796 		 */
797 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
798 	}
799 
800 	mmci_write_datactrlreg(host, datactrl);
801 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
802 	mmci_set_mask1(host, irqmask);
803 }
804 
805 static void
806 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
807 {
808 	void __iomem *base = host->base;
809 
810 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
811 	    cmd->opcode, cmd->arg, cmd->flags);
812 
813 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
814 		writel(0, base + MMCICOMMAND);
815 		udelay(1);
816 	}
817 
818 	c |= cmd->opcode | MCI_CPSM_ENABLE;
819 	if (cmd->flags & MMC_RSP_PRESENT) {
820 		if (cmd->flags & MMC_RSP_136)
821 			c |= MCI_CPSM_LONGRSP;
822 		c |= MCI_CPSM_RESPONSE;
823 	}
824 	if (/*interrupt*/0)
825 		c |= MCI_CPSM_INTERRUPT;
826 
827 	host->cmd = cmd;
828 
829 	writel(cmd->arg, base + MMCIARGUMENT);
830 	writel(c, base + MMCICOMMAND);
831 }
832 
833 static void
834 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
835 	      unsigned int status)
836 {
837 	/* First check for errors */
838 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
839 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
840 		u32 remain, success;
841 
842 		/* Terminate the DMA transfer */
843 		if (dma_inprogress(host)) {
844 			mmci_dma_data_error(host);
845 			mmci_dma_unmap(host, data);
846 		}
847 
848 		/*
849 		 * Calculate how far we are into the transfer.  Note that
850 		 * the data counter gives the number of bytes transferred
851 		 * on the MMC bus, not on the host side.  On reads, this
852 		 * can be as much as a FIFO-worth of data ahead.  This
853 		 * matters for FIFO overruns only.
854 		 */
855 		remain = readl(host->base + MMCIDATACNT);
856 		success = data->blksz * data->blocks - remain;
857 
858 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
859 			status, success);
860 		if (status & MCI_DATACRCFAIL) {
861 			/* Last block was not successful */
862 			success -= 1;
863 			data->error = -EILSEQ;
864 		} else if (status & MCI_DATATIMEOUT) {
865 			data->error = -ETIMEDOUT;
866 		} else if (status & MCI_STARTBITERR) {
867 			data->error = -ECOMM;
868 		} else if (status & MCI_TXUNDERRUN) {
869 			data->error = -EIO;
870 		} else if (status & MCI_RXOVERRUN) {
871 			if (success > host->variant->fifosize)
872 				success -= host->variant->fifosize;
873 			else
874 				success = 0;
875 			data->error = -EIO;
876 		}
877 		data->bytes_xfered = round_down(success, data->blksz);
878 	}
879 
880 	if (status & MCI_DATABLOCKEND)
881 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
882 
883 	if (status & MCI_DATAEND || data->error) {
884 		if (dma_inprogress(host))
885 			mmci_dma_finalize(host, data);
886 		mmci_stop_data(host);
887 
888 		if (!data->error)
889 			/* The error clause is handled above, success! */
890 			data->bytes_xfered = data->blksz * data->blocks;
891 
892 		if (!data->stop || host->mrq->sbc) {
893 			mmci_request_end(host, data->mrq);
894 		} else {
895 			mmci_start_command(host, data->stop, 0);
896 		}
897 	}
898 }
899 
900 static void
901 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
902 	     unsigned int status)
903 {
904 	void __iomem *base = host->base;
905 	bool sbc = (cmd == host->mrq->sbc);
906 	bool busy_resp = host->variant->busy_detect &&
907 			(cmd->flags & MMC_RSP_BUSY);
908 
909 	/* Check if we need to wait for busy completion. */
910 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
911 		return;
912 
913 	/* Enable busy completion if needed and supported. */
914 	if (!host->busy_status && busy_resp &&
915 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
916 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
917 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
918 			base + MMCIMASK0);
919 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
920 		return;
921 	}
922 
923 	/* At busy completion, mask the IRQ and complete the request. */
924 	if (host->busy_status) {
925 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
926 			base + MMCIMASK0);
927 		host->busy_status = 0;
928 	}
929 
930 	host->cmd = NULL;
931 
932 	if (status & MCI_CMDTIMEOUT) {
933 		cmd->error = -ETIMEDOUT;
934 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
935 		cmd->error = -EILSEQ;
936 	} else {
937 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
938 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
939 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
940 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
941 	}
942 
943 	if ((!sbc && !cmd->data) || cmd->error) {
944 		if (host->data) {
945 			/* Terminate the DMA transfer */
946 			if (dma_inprogress(host)) {
947 				mmci_dma_data_error(host);
948 				mmci_dma_unmap(host, host->data);
949 			}
950 			mmci_stop_data(host);
951 		}
952 		mmci_request_end(host, host->mrq);
953 	} else if (sbc) {
954 		mmci_start_command(host, host->mrq->cmd, 0);
955 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
956 		mmci_start_data(host, cmd->data);
957 	}
958 }
959 
960 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
961 {
962 	void __iomem *base = host->base;
963 	char *ptr = buffer;
964 	u32 status;
965 	int host_remain = host->size;
966 
967 	do {
968 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
969 
970 		if (count > remain)
971 			count = remain;
972 
973 		if (count <= 0)
974 			break;
975 
976 		/*
977 		 * SDIO especially may want to send something that is
978 		 * not divisible by 4 (as opposed to card sectors
979 		 * etc). Therefore make sure to always read the last bytes
980 		 * while only doing full 32-bit reads towards the FIFO.
981 		 */
982 		if (unlikely(count & 0x3)) {
983 			if (count < 4) {
984 				unsigned char buf[4];
985 				ioread32_rep(base + MMCIFIFO, buf, 1);
986 				memcpy(ptr, buf, count);
987 			} else {
988 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
989 				count &= ~0x3;
990 			}
991 		} else {
992 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
993 		}
994 
995 		ptr += count;
996 		remain -= count;
997 		host_remain -= count;
998 
999 		if (remain == 0)
1000 			break;
1001 
1002 		status = readl(base + MMCISTATUS);
1003 	} while (status & MCI_RXDATAAVLBL);
1004 
1005 	return ptr - buffer;
1006 }
1007 
1008 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1009 {
1010 	struct variant_data *variant = host->variant;
1011 	void __iomem *base = host->base;
1012 	char *ptr = buffer;
1013 
1014 	do {
1015 		unsigned int count, maxcnt;
1016 
1017 		maxcnt = status & MCI_TXFIFOEMPTY ?
1018 			 variant->fifosize : variant->fifohalfsize;
1019 		count = min(remain, maxcnt);
1020 
1021 		/*
1022 		 * SDIO especially may want to send something that is
1023 		 * not divisible by 4 (as opposed to card sectors
1024 		 * etc), and the FIFO only accept full 32-bit writes.
1025 		 * So compensate by adding +3 on the count, a single
1026 		 * byte become a 32bit write, 7 bytes will be two
1027 		 * 32bit writes etc.
1028 		 */
1029 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1030 
1031 		ptr += count;
1032 		remain -= count;
1033 
1034 		if (remain == 0)
1035 			break;
1036 
1037 		status = readl(base + MMCISTATUS);
1038 	} while (status & MCI_TXFIFOHALFEMPTY);
1039 
1040 	return ptr - buffer;
1041 }
1042 
1043 /*
1044  * PIO data transfer IRQ handler.
1045  */
1046 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1047 {
1048 	struct mmci_host *host = dev_id;
1049 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1050 	struct variant_data *variant = host->variant;
1051 	void __iomem *base = host->base;
1052 	unsigned long flags;
1053 	u32 status;
1054 
1055 	status = readl(base + MMCISTATUS);
1056 
1057 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1058 
1059 	local_irq_save(flags);
1060 
1061 	do {
1062 		unsigned int remain, len;
1063 		char *buffer;
1064 
1065 		/*
1066 		 * For write, we only need to test the half-empty flag
1067 		 * here - if the FIFO is completely empty, then by
1068 		 * definition it is more than half empty.
1069 		 *
1070 		 * For read, check for data available.
1071 		 */
1072 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1073 			break;
1074 
1075 		if (!sg_miter_next(sg_miter))
1076 			break;
1077 
1078 		buffer = sg_miter->addr;
1079 		remain = sg_miter->length;
1080 
1081 		len = 0;
1082 		if (status & MCI_RXACTIVE)
1083 			len = mmci_pio_read(host, buffer, remain);
1084 		if (status & MCI_TXACTIVE)
1085 			len = mmci_pio_write(host, buffer, remain, status);
1086 
1087 		sg_miter->consumed = len;
1088 
1089 		host->size -= len;
1090 		remain -= len;
1091 
1092 		if (remain)
1093 			break;
1094 
1095 		status = readl(base + MMCISTATUS);
1096 	} while (1);
1097 
1098 	sg_miter_stop(sg_miter);
1099 
1100 	local_irq_restore(flags);
1101 
1102 	/*
1103 	 * If we have less than the fifo 'half-full' threshold to transfer,
1104 	 * trigger a PIO interrupt as soon as any data is available.
1105 	 */
1106 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1107 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1108 
1109 	/*
1110 	 * If we run out of data, disable the data IRQs; this
1111 	 * prevents a race where the FIFO becomes empty before
1112 	 * the chip itself has disabled the data path, and
1113 	 * stops us racing with our data end IRQ.
1114 	 */
1115 	if (host->size == 0) {
1116 		mmci_set_mask1(host, 0);
1117 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1118 	}
1119 
1120 	return IRQ_HANDLED;
1121 }
1122 
1123 /*
1124  * Handle completion of command and data transfers.
1125  */
1126 static irqreturn_t mmci_irq(int irq, void *dev_id)
1127 {
1128 	struct mmci_host *host = dev_id;
1129 	u32 status;
1130 	int ret = 0;
1131 
1132 	spin_lock(&host->lock);
1133 
1134 	do {
1135 		struct mmc_command *cmd;
1136 		struct mmc_data *data;
1137 
1138 		status = readl(host->base + MMCISTATUS);
1139 
1140 		if (host->singleirq) {
1141 			if (status & readl(host->base + MMCIMASK1))
1142 				mmci_pio_irq(irq, dev_id);
1143 
1144 			status &= ~MCI_IRQ1MASK;
1145 		}
1146 
1147 		/*
1148 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1149 		 * enabled) since the HW seems to be triggering the IRQ on both
1150 		 * edges while monitoring DAT0 for busy completion.
1151 		 */
1152 		status &= readl(host->base + MMCIMASK0);
1153 		writel(status, host->base + MMCICLEAR);
1154 
1155 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1156 
1157 		cmd = host->cmd;
1158 		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1159 			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1160 			mmci_cmd_irq(host, cmd, status);
1161 
1162 		data = host->data;
1163 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1164 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1165 			      MCI_DATABLOCKEND) && data)
1166 			mmci_data_irq(host, data, status);
1167 
1168 		/* Don't poll for busy completion in irq context. */
1169 		if (host->busy_status)
1170 			status &= ~MCI_ST_CARDBUSY;
1171 
1172 		ret = 1;
1173 	} while (status);
1174 
1175 	spin_unlock(&host->lock);
1176 
1177 	return IRQ_RETVAL(ret);
1178 }
1179 
1180 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1181 {
1182 	struct mmci_host *host = mmc_priv(mmc);
1183 	unsigned long flags;
1184 
1185 	WARN_ON(host->mrq != NULL);
1186 
1187 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1188 	if (mrq->cmd->error) {
1189 		mmc_request_done(mmc, mrq);
1190 		return;
1191 	}
1192 
1193 	pm_runtime_get_sync(mmc_dev(mmc));
1194 
1195 	spin_lock_irqsave(&host->lock, flags);
1196 
1197 	host->mrq = mrq;
1198 
1199 	if (mrq->data)
1200 		mmci_get_next_data(host, mrq->data);
1201 
1202 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1203 		mmci_start_data(host, mrq->data);
1204 
1205 	if (mrq->sbc)
1206 		mmci_start_command(host, mrq->sbc, 0);
1207 	else
1208 		mmci_start_command(host, mrq->cmd, 0);
1209 
1210 	spin_unlock_irqrestore(&host->lock, flags);
1211 }
1212 
1213 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1214 {
1215 	struct mmci_host *host = mmc_priv(mmc);
1216 	struct variant_data *variant = host->variant;
1217 	u32 pwr = 0;
1218 	unsigned long flags;
1219 	int ret;
1220 
1221 	pm_runtime_get_sync(mmc_dev(mmc));
1222 
1223 	if (host->plat->ios_handler &&
1224 		host->plat->ios_handler(mmc_dev(mmc), ios))
1225 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1226 
1227 	switch (ios->power_mode) {
1228 	case MMC_POWER_OFF:
1229 		if (!IS_ERR(mmc->supply.vmmc))
1230 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1231 
1232 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1233 			regulator_disable(mmc->supply.vqmmc);
1234 			host->vqmmc_enabled = false;
1235 		}
1236 
1237 		break;
1238 	case MMC_POWER_UP:
1239 		if (!IS_ERR(mmc->supply.vmmc))
1240 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1241 
1242 		/*
1243 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1244 		 * and instead uses MCI_PWR_ON so apply whatever value is
1245 		 * configured in the variant data.
1246 		 */
1247 		pwr |= variant->pwrreg_powerup;
1248 
1249 		break;
1250 	case MMC_POWER_ON:
1251 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1252 			ret = regulator_enable(mmc->supply.vqmmc);
1253 			if (ret < 0)
1254 				dev_err(mmc_dev(mmc),
1255 					"failed to enable vqmmc regulator\n");
1256 			else
1257 				host->vqmmc_enabled = true;
1258 		}
1259 
1260 		pwr |= MCI_PWR_ON;
1261 		break;
1262 	}
1263 
1264 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1265 		/*
1266 		 * The ST Micro variant has some additional bits
1267 		 * indicating signal direction for the signals in
1268 		 * the SD/MMC bus and feedback-clock usage.
1269 		 */
1270 		pwr |= host->pwr_reg_add;
1271 
1272 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1273 			pwr &= ~MCI_ST_DATA74DIREN;
1274 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1275 			pwr &= (~MCI_ST_DATA74DIREN &
1276 				~MCI_ST_DATA31DIREN &
1277 				~MCI_ST_DATA2DIREN);
1278 	}
1279 
1280 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1281 		if (host->hw_designer != AMBA_VENDOR_ST)
1282 			pwr |= MCI_ROD;
1283 		else {
1284 			/*
1285 			 * The ST Micro variant use the ROD bit for something
1286 			 * else and only has OD (Open Drain).
1287 			 */
1288 			pwr |= MCI_OD;
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1294 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1295 	 */
1296 	if (!ios->clock && variant->pwrreg_clkgate)
1297 		pwr &= ~MCI_PWR_ON;
1298 
1299 	spin_lock_irqsave(&host->lock, flags);
1300 
1301 	mmci_set_clkreg(host, ios->clock);
1302 	mmci_write_pwrreg(host, pwr);
1303 	mmci_reg_delay(host);
1304 
1305 	spin_unlock_irqrestore(&host->lock, flags);
1306 
1307 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1308 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1309 }
1310 
1311 static int mmci_get_cd(struct mmc_host *mmc)
1312 {
1313 	struct mmci_host *host = mmc_priv(mmc);
1314 	struct mmci_platform_data *plat = host->plat;
1315 	unsigned int status = mmc_gpio_get_cd(mmc);
1316 
1317 	if (status == -ENOSYS) {
1318 		if (!plat->status)
1319 			return 1; /* Assume always present */
1320 
1321 		status = plat->status(mmc_dev(host->mmc));
1322 	}
1323 	return status;
1324 }
1325 
1326 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1327 {
1328 	int ret = 0;
1329 
1330 	if (!IS_ERR(mmc->supply.vqmmc)) {
1331 
1332 		pm_runtime_get_sync(mmc_dev(mmc));
1333 
1334 		switch (ios->signal_voltage) {
1335 		case MMC_SIGNAL_VOLTAGE_330:
1336 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1337 						2700000, 3600000);
1338 			break;
1339 		case MMC_SIGNAL_VOLTAGE_180:
1340 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1341 						1700000, 1950000);
1342 			break;
1343 		case MMC_SIGNAL_VOLTAGE_120:
1344 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1345 						1100000, 1300000);
1346 			break;
1347 		}
1348 
1349 		if (ret)
1350 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1351 
1352 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1353 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1354 	}
1355 
1356 	return ret;
1357 }
1358 
1359 static struct mmc_host_ops mmci_ops = {
1360 	.request	= mmci_request,
1361 	.pre_req	= mmci_pre_request,
1362 	.post_req	= mmci_post_request,
1363 	.set_ios	= mmci_set_ios,
1364 	.get_ro		= mmc_gpio_get_ro,
1365 	.get_cd		= mmci_get_cd,
1366 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1367 };
1368 
1369 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1370 {
1371 	struct mmci_host *host = mmc_priv(mmc);
1372 	int ret = mmc_of_parse(mmc);
1373 
1374 	if (ret)
1375 		return ret;
1376 
1377 	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1378 		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1379 	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1380 		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1381 	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1382 		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1383 	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1384 		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1385 	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1386 		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1387 	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1388 		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1389 
1390 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1391 		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1392 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1393 		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1394 
1395 	return 0;
1396 }
1397 
1398 static int mmci_probe(struct amba_device *dev,
1399 	const struct amba_id *id)
1400 {
1401 	struct mmci_platform_data *plat = dev->dev.platform_data;
1402 	struct device_node *np = dev->dev.of_node;
1403 	struct variant_data *variant = id->data;
1404 	struct mmci_host *host;
1405 	struct mmc_host *mmc;
1406 	int ret;
1407 
1408 	/* Must have platform data or Device Tree. */
1409 	if (!plat && !np) {
1410 		dev_err(&dev->dev, "No plat data or DT found\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	if (!plat) {
1415 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1416 		if (!plat)
1417 			return -ENOMEM;
1418 	}
1419 
1420 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1421 	if (!mmc)
1422 		return -ENOMEM;
1423 
1424 	ret = mmci_of_parse(np, mmc);
1425 	if (ret)
1426 		goto host_free;
1427 
1428 	host = mmc_priv(mmc);
1429 	host->mmc = mmc;
1430 
1431 	host->hw_designer = amba_manf(dev);
1432 	host->hw_revision = amba_rev(dev);
1433 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1434 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1435 
1436 	host->clk = devm_clk_get(&dev->dev, NULL);
1437 	if (IS_ERR(host->clk)) {
1438 		ret = PTR_ERR(host->clk);
1439 		goto host_free;
1440 	}
1441 
1442 	ret = clk_prepare_enable(host->clk);
1443 	if (ret)
1444 		goto host_free;
1445 
1446 	host->plat = plat;
1447 	host->variant = variant;
1448 	host->mclk = clk_get_rate(host->clk);
1449 	/*
1450 	 * According to the spec, mclk is max 100 MHz,
1451 	 * so we try to adjust the clock down to this,
1452 	 * (if possible).
1453 	 */
1454 	if (host->mclk > 100000000) {
1455 		ret = clk_set_rate(host->clk, 100000000);
1456 		if (ret < 0)
1457 			goto clk_disable;
1458 		host->mclk = clk_get_rate(host->clk);
1459 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1460 			host->mclk);
1461 	}
1462 
1463 	host->phybase = dev->res.start;
1464 	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1465 	if (IS_ERR(host->base)) {
1466 		ret = PTR_ERR(host->base);
1467 		goto clk_disable;
1468 	}
1469 
1470 	/*
1471 	 * The ARM and ST versions of the block have slightly different
1472 	 * clock divider equations which means that the minimum divider
1473 	 * differs too.
1474 	 */
1475 	if (variant->st_clkdiv)
1476 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1477 	else
1478 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1479 	/*
1480 	 * If no maximum operating frequency is supplied, fall back to use
1481 	 * the module parameter, which has a (low) default value in case it
1482 	 * is not specified. Either value must not exceed the clock rate into
1483 	 * the block, of course.
1484 	 */
1485 	if (mmc->f_max)
1486 		mmc->f_max = min(host->mclk, mmc->f_max);
1487 	else
1488 		mmc->f_max = min(host->mclk, fmax);
1489 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1490 
1491 	/* Get regulators and the supported OCR mask */
1492 	mmc_regulator_get_supply(mmc);
1493 	if (!mmc->ocr_avail)
1494 		mmc->ocr_avail = plat->ocr_mask;
1495 	else if (plat->ocr_mask)
1496 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1497 
1498 	/* DT takes precedence over platform data. */
1499 	if (!np) {
1500 		if (!plat->cd_invert)
1501 			mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1502 		mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1503 	}
1504 
1505 	/* We support these capabilities. */
1506 	mmc->caps |= MMC_CAP_CMD23;
1507 
1508 	if (variant->busy_detect) {
1509 		mmci_ops.card_busy = mmci_card_busy;
1510 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1511 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1512 		mmc->max_busy_timeout = 0;
1513 	}
1514 
1515 	mmc->ops = &mmci_ops;
1516 
1517 	/* We support these PM capabilities. */
1518 	mmc->pm_caps |= MMC_PM_KEEP_POWER;
1519 
1520 	/*
1521 	 * We can do SGIO
1522 	 */
1523 	mmc->max_segs = NR_SG;
1524 
1525 	/*
1526 	 * Since only a certain number of bits are valid in the data length
1527 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1528 	 * single request.
1529 	 */
1530 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1531 
1532 	/*
1533 	 * Set the maximum segment size.  Since we aren't doing DMA
1534 	 * (yet) we are only limited by the data length register.
1535 	 */
1536 	mmc->max_seg_size = mmc->max_req_size;
1537 
1538 	/*
1539 	 * Block size can be up to 2048 bytes, but must be a power of two.
1540 	 */
1541 	mmc->max_blk_size = 1 << 11;
1542 
1543 	/*
1544 	 * Limit the number of blocks transferred so that we don't overflow
1545 	 * the maximum request size.
1546 	 */
1547 	mmc->max_blk_count = mmc->max_req_size >> 11;
1548 
1549 	spin_lock_init(&host->lock);
1550 
1551 	writel(0, host->base + MMCIMASK0);
1552 	writel(0, host->base + MMCIMASK1);
1553 	writel(0xfff, host->base + MMCICLEAR);
1554 
1555 	/* If DT, cd/wp gpios must be supplied through it. */
1556 	if (!np && gpio_is_valid(plat->gpio_cd)) {
1557 		ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1558 		if (ret)
1559 			goto clk_disable;
1560 	}
1561 	if (!np && gpio_is_valid(plat->gpio_wp)) {
1562 		ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1563 		if (ret)
1564 			goto clk_disable;
1565 	}
1566 
1567 	ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1568 			DRIVER_NAME " (cmd)", host);
1569 	if (ret)
1570 		goto clk_disable;
1571 
1572 	if (!dev->irq[1])
1573 		host->singleirq = true;
1574 	else {
1575 		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1576 				IRQF_SHARED, DRIVER_NAME " (pio)", host);
1577 		if (ret)
1578 			goto clk_disable;
1579 	}
1580 
1581 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1582 
1583 	amba_set_drvdata(dev, mmc);
1584 
1585 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1586 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1587 		 amba_rev(dev), (unsigned long long)dev->res.start,
1588 		 dev->irq[0], dev->irq[1]);
1589 
1590 	mmci_dma_setup(host);
1591 
1592 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1593 	pm_runtime_use_autosuspend(&dev->dev);
1594 	pm_runtime_put(&dev->dev);
1595 
1596 	mmc_add_host(mmc);
1597 
1598 	return 0;
1599 
1600  clk_disable:
1601 	clk_disable_unprepare(host->clk);
1602  host_free:
1603 	mmc_free_host(mmc);
1604 	return ret;
1605 }
1606 
1607 static int mmci_remove(struct amba_device *dev)
1608 {
1609 	struct mmc_host *mmc = amba_get_drvdata(dev);
1610 
1611 	if (mmc) {
1612 		struct mmci_host *host = mmc_priv(mmc);
1613 
1614 		/*
1615 		 * Undo pm_runtime_put() in probe.  We use the _sync
1616 		 * version here so that we can access the primecell.
1617 		 */
1618 		pm_runtime_get_sync(&dev->dev);
1619 
1620 		mmc_remove_host(mmc);
1621 
1622 		writel(0, host->base + MMCIMASK0);
1623 		writel(0, host->base + MMCIMASK1);
1624 
1625 		writel(0, host->base + MMCICOMMAND);
1626 		writel(0, host->base + MMCIDATACTRL);
1627 
1628 		mmci_dma_release(host);
1629 		clk_disable_unprepare(host->clk);
1630 		mmc_free_host(mmc);
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 #ifdef CONFIG_PM
1637 static void mmci_save(struct mmci_host *host)
1638 {
1639 	unsigned long flags;
1640 
1641 	spin_lock_irqsave(&host->lock, flags);
1642 
1643 	writel(0, host->base + MMCIMASK0);
1644 	if (host->variant->pwrreg_nopower) {
1645 		writel(0, host->base + MMCIDATACTRL);
1646 		writel(0, host->base + MMCIPOWER);
1647 		writel(0, host->base + MMCICLOCK);
1648 	}
1649 	mmci_reg_delay(host);
1650 
1651 	spin_unlock_irqrestore(&host->lock, flags);
1652 }
1653 
1654 static void mmci_restore(struct mmci_host *host)
1655 {
1656 	unsigned long flags;
1657 
1658 	spin_lock_irqsave(&host->lock, flags);
1659 
1660 	if (host->variant->pwrreg_nopower) {
1661 		writel(host->clk_reg, host->base + MMCICLOCK);
1662 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1663 		writel(host->pwr_reg, host->base + MMCIPOWER);
1664 	}
1665 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1666 	mmci_reg_delay(host);
1667 
1668 	spin_unlock_irqrestore(&host->lock, flags);
1669 }
1670 
1671 static int mmci_runtime_suspend(struct device *dev)
1672 {
1673 	struct amba_device *adev = to_amba_device(dev);
1674 	struct mmc_host *mmc = amba_get_drvdata(adev);
1675 
1676 	if (mmc) {
1677 		struct mmci_host *host = mmc_priv(mmc);
1678 		pinctrl_pm_select_sleep_state(dev);
1679 		mmci_save(host);
1680 		clk_disable_unprepare(host->clk);
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static int mmci_runtime_resume(struct device *dev)
1687 {
1688 	struct amba_device *adev = to_amba_device(dev);
1689 	struct mmc_host *mmc = amba_get_drvdata(adev);
1690 
1691 	if (mmc) {
1692 		struct mmci_host *host = mmc_priv(mmc);
1693 		clk_prepare_enable(host->clk);
1694 		mmci_restore(host);
1695 		pinctrl_pm_select_default_state(dev);
1696 	}
1697 
1698 	return 0;
1699 }
1700 #endif
1701 
1702 static const struct dev_pm_ops mmci_dev_pm_ops = {
1703 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1704 				pm_runtime_force_resume)
1705 	SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1706 };
1707 
1708 static struct amba_id mmci_ids[] = {
1709 	{
1710 		.id	= 0x00041180,
1711 		.mask	= 0xff0fffff,
1712 		.data	= &variant_arm,
1713 	},
1714 	{
1715 		.id	= 0x01041180,
1716 		.mask	= 0xff0fffff,
1717 		.data	= &variant_arm_extended_fifo,
1718 	},
1719 	{
1720 		.id	= 0x02041180,
1721 		.mask	= 0xff0fffff,
1722 		.data	= &variant_arm_extended_fifo_hwfc,
1723 	},
1724 	{
1725 		.id	= 0x00041181,
1726 		.mask	= 0x000fffff,
1727 		.data	= &variant_arm,
1728 	},
1729 	/* ST Micro variants */
1730 	{
1731 		.id     = 0x00180180,
1732 		.mask   = 0x00ffffff,
1733 		.data	= &variant_u300,
1734 	},
1735 	{
1736 		.id     = 0x10180180,
1737 		.mask   = 0xf0ffffff,
1738 		.data	= &variant_nomadik,
1739 	},
1740 	{
1741 		.id     = 0x00280180,
1742 		.mask   = 0x00ffffff,
1743 		.data	= &variant_u300,
1744 	},
1745 	{
1746 		.id     = 0x00480180,
1747 		.mask   = 0xf0ffffff,
1748 		.data	= &variant_ux500,
1749 	},
1750 	{
1751 		.id     = 0x10480180,
1752 		.mask   = 0xf0ffffff,
1753 		.data	= &variant_ux500v2,
1754 	},
1755 	{ 0, 0 },
1756 };
1757 
1758 MODULE_DEVICE_TABLE(amba, mmci_ids);
1759 
1760 static struct amba_driver mmci_driver = {
1761 	.drv		= {
1762 		.name	= DRIVER_NAME,
1763 		.pm	= &mmci_dev_pm_ops,
1764 	},
1765 	.probe		= mmci_probe,
1766 	.remove		= mmci_remove,
1767 	.id_table	= mmci_ids,
1768 };
1769 
1770 module_amba_driver(mmci_driver);
1771 
1772 module_param(fmax, uint, 0444);
1773 
1774 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1775 MODULE_LICENSE("GPL");
1776