xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 1c2f87c2)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38 
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 #include <asm/sizes.h>
42 
43 #include "mmci.h"
44 
45 #define DRIVER_NAME "mmci-pl18x"
46 
47 static unsigned int fmax = 515633;
48 
49 /**
50  * struct variant_data - MMCI variant-specific quirks
51  * @clkreg: default value for MCICLOCK register
52  * @clkreg_enable: enable value for MMCICLOCK register
53  * @datalength_bits: number of bits in the MMCIDATALENGTH register
54  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55  *	      is asserted (likewise for RX)
56  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57  *		  is asserted (likewise for RX)
58  * @sdio: variant supports SDIO
59  * @st_clkdiv: true if using a ST-specific clock divider algorithm
60  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61  * @pwrreg_powerup: power up value for MMCIPOWER register
62  * @signal_direction: input/out direction of bus signals can be indicated
63  * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64  * @busy_detect: true if busy detection on dat0 is supported
65  * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
66  */
67 struct variant_data {
68 	unsigned int		clkreg;
69 	unsigned int		clkreg_enable;
70 	unsigned int		datalength_bits;
71 	unsigned int		fifosize;
72 	unsigned int		fifohalfsize;
73 	bool			sdio;
74 	bool			st_clkdiv;
75 	bool			blksz_datactrl16;
76 	u32			pwrreg_powerup;
77 	bool			signal_direction;
78 	bool			pwrreg_clkgate;
79 	bool			busy_detect;
80 	bool			pwrreg_nopower;
81 };
82 
83 static struct variant_data variant_arm = {
84 	.fifosize		= 16 * 4,
85 	.fifohalfsize		= 8 * 4,
86 	.datalength_bits	= 16,
87 	.pwrreg_powerup		= MCI_PWR_UP,
88 };
89 
90 static struct variant_data variant_arm_extended_fifo = {
91 	.fifosize		= 128 * 4,
92 	.fifohalfsize		= 64 * 4,
93 	.datalength_bits	= 16,
94 	.pwrreg_powerup		= MCI_PWR_UP,
95 };
96 
97 static struct variant_data variant_arm_extended_fifo_hwfc = {
98 	.fifosize		= 128 * 4,
99 	.fifohalfsize		= 64 * 4,
100 	.clkreg_enable		= MCI_ARM_HWFCEN,
101 	.datalength_bits	= 16,
102 	.pwrreg_powerup		= MCI_PWR_UP,
103 };
104 
105 static struct variant_data variant_u300 = {
106 	.fifosize		= 16 * 4,
107 	.fifohalfsize		= 8 * 4,
108 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
109 	.datalength_bits	= 16,
110 	.sdio			= true,
111 	.pwrreg_powerup		= MCI_PWR_ON,
112 	.signal_direction	= true,
113 	.pwrreg_clkgate		= true,
114 	.pwrreg_nopower		= true,
115 };
116 
117 static struct variant_data variant_nomadik = {
118 	.fifosize		= 16 * 4,
119 	.fifohalfsize		= 8 * 4,
120 	.clkreg			= MCI_CLK_ENABLE,
121 	.datalength_bits	= 24,
122 	.sdio			= true,
123 	.st_clkdiv		= true,
124 	.pwrreg_powerup		= MCI_PWR_ON,
125 	.signal_direction	= true,
126 	.pwrreg_clkgate		= true,
127 	.pwrreg_nopower		= true,
128 };
129 
130 static struct variant_data variant_ux500 = {
131 	.fifosize		= 30 * 4,
132 	.fifohalfsize		= 8 * 4,
133 	.clkreg			= MCI_CLK_ENABLE,
134 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
135 	.datalength_bits	= 24,
136 	.sdio			= true,
137 	.st_clkdiv		= true,
138 	.pwrreg_powerup		= MCI_PWR_ON,
139 	.signal_direction	= true,
140 	.pwrreg_clkgate		= true,
141 	.busy_detect		= true,
142 	.pwrreg_nopower		= true,
143 };
144 
145 static struct variant_data variant_ux500v2 = {
146 	.fifosize		= 30 * 4,
147 	.fifohalfsize		= 8 * 4,
148 	.clkreg			= MCI_CLK_ENABLE,
149 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
150 	.datalength_bits	= 24,
151 	.sdio			= true,
152 	.st_clkdiv		= true,
153 	.blksz_datactrl16	= true,
154 	.pwrreg_powerup		= MCI_PWR_ON,
155 	.signal_direction	= true,
156 	.pwrreg_clkgate		= true,
157 	.busy_detect		= true,
158 	.pwrreg_nopower		= true,
159 };
160 
161 static int mmci_card_busy(struct mmc_host *mmc)
162 {
163 	struct mmci_host *host = mmc_priv(mmc);
164 	unsigned long flags;
165 	int busy = 0;
166 
167 	pm_runtime_get_sync(mmc_dev(mmc));
168 
169 	spin_lock_irqsave(&host->lock, flags);
170 	if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
171 		busy = 1;
172 	spin_unlock_irqrestore(&host->lock, flags);
173 
174 	pm_runtime_mark_last_busy(mmc_dev(mmc));
175 	pm_runtime_put_autosuspend(mmc_dev(mmc));
176 
177 	return busy;
178 }
179 
180 /*
181  * Validate mmc prerequisites
182  */
183 static int mmci_validate_data(struct mmci_host *host,
184 			      struct mmc_data *data)
185 {
186 	if (!data)
187 		return 0;
188 
189 	if (!is_power_of_2(data->blksz)) {
190 		dev_err(mmc_dev(host->mmc),
191 			"unsupported block size (%d bytes)\n", data->blksz);
192 		return -EINVAL;
193 	}
194 
195 	return 0;
196 }
197 
198 static void mmci_reg_delay(struct mmci_host *host)
199 {
200 	/*
201 	 * According to the spec, at least three feedback clock cycles
202 	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
203 	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
204 	 * Worst delay time during card init is at 100 kHz => 30 us.
205 	 * Worst delay time when up and running is at 25 MHz => 120 ns.
206 	 */
207 	if (host->cclk < 25000000)
208 		udelay(30);
209 	else
210 		ndelay(120);
211 }
212 
213 /*
214  * This must be called with host->lock held
215  */
216 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
217 {
218 	if (host->clk_reg != clk) {
219 		host->clk_reg = clk;
220 		writel(clk, host->base + MMCICLOCK);
221 	}
222 }
223 
224 /*
225  * This must be called with host->lock held
226  */
227 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
228 {
229 	if (host->pwr_reg != pwr) {
230 		host->pwr_reg = pwr;
231 		writel(pwr, host->base + MMCIPOWER);
232 	}
233 }
234 
235 /*
236  * This must be called with host->lock held
237  */
238 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
239 {
240 	/* Keep ST Micro busy mode if enabled */
241 	datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
242 
243 	if (host->datactrl_reg != datactrl) {
244 		host->datactrl_reg = datactrl;
245 		writel(datactrl, host->base + MMCIDATACTRL);
246 	}
247 }
248 
249 /*
250  * This must be called with host->lock held
251  */
252 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
253 {
254 	struct variant_data *variant = host->variant;
255 	u32 clk = variant->clkreg;
256 
257 	/* Make sure cclk reflects the current calculated clock */
258 	host->cclk = 0;
259 
260 	if (desired) {
261 		if (desired >= host->mclk) {
262 			clk = MCI_CLK_BYPASS;
263 			if (variant->st_clkdiv)
264 				clk |= MCI_ST_UX500_NEG_EDGE;
265 			host->cclk = host->mclk;
266 		} else if (variant->st_clkdiv) {
267 			/*
268 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
269 			 * => clkdiv = (mclk / f) - 2
270 			 * Round the divider up so we don't exceed the max
271 			 * frequency
272 			 */
273 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
274 			if (clk >= 256)
275 				clk = 255;
276 			host->cclk = host->mclk / (clk + 2);
277 		} else {
278 			/*
279 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
280 			 * => clkdiv = mclk / (2 * f) - 1
281 			 */
282 			clk = host->mclk / (2 * desired) - 1;
283 			if (clk >= 256)
284 				clk = 255;
285 			host->cclk = host->mclk / (2 * (clk + 1));
286 		}
287 
288 		clk |= variant->clkreg_enable;
289 		clk |= MCI_CLK_ENABLE;
290 		/* This hasn't proven to be worthwhile */
291 		/* clk |= MCI_CLK_PWRSAVE; */
292 	}
293 
294 	/* Set actual clock for debug */
295 	host->mmc->actual_clock = host->cclk;
296 
297 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
298 		clk |= MCI_4BIT_BUS;
299 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
300 		clk |= MCI_ST_8BIT_BUS;
301 
302 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
303 		clk |= MCI_ST_UX500_NEG_EDGE;
304 
305 	mmci_write_clkreg(host, clk);
306 }
307 
308 static void
309 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
310 {
311 	writel(0, host->base + MMCICOMMAND);
312 
313 	BUG_ON(host->data);
314 
315 	host->mrq = NULL;
316 	host->cmd = NULL;
317 
318 	mmc_request_done(host->mmc, mrq);
319 
320 	pm_runtime_mark_last_busy(mmc_dev(host->mmc));
321 	pm_runtime_put_autosuspend(mmc_dev(host->mmc));
322 }
323 
324 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
325 {
326 	void __iomem *base = host->base;
327 
328 	if (host->singleirq) {
329 		unsigned int mask0 = readl(base + MMCIMASK0);
330 
331 		mask0 &= ~MCI_IRQ1MASK;
332 		mask0 |= mask;
333 
334 		writel(mask0, base + MMCIMASK0);
335 	}
336 
337 	writel(mask, base + MMCIMASK1);
338 }
339 
340 static void mmci_stop_data(struct mmci_host *host)
341 {
342 	mmci_write_datactrlreg(host, 0);
343 	mmci_set_mask1(host, 0);
344 	host->data = NULL;
345 }
346 
347 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
348 {
349 	unsigned int flags = SG_MITER_ATOMIC;
350 
351 	if (data->flags & MMC_DATA_READ)
352 		flags |= SG_MITER_TO_SG;
353 	else
354 		flags |= SG_MITER_FROM_SG;
355 
356 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
357 }
358 
359 /*
360  * All the DMA operation mode stuff goes inside this ifdef.
361  * This assumes that you have a generic DMA device interface,
362  * no custom DMA interfaces are supported.
363  */
364 #ifdef CONFIG_DMA_ENGINE
365 static void mmci_dma_setup(struct mmci_host *host)
366 {
367 	struct mmci_platform_data *plat = host->plat;
368 	const char *rxname, *txname;
369 	dma_cap_mask_t mask;
370 
371 	host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
372 	host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
373 
374 	/* initialize pre request cookie */
375 	host->next_data.cookie = 1;
376 
377 	/* Try to acquire a generic DMA engine slave channel */
378 	dma_cap_zero(mask);
379 	dma_cap_set(DMA_SLAVE, mask);
380 
381 	if (plat && plat->dma_filter) {
382 		if (!host->dma_rx_channel && plat->dma_rx_param) {
383 			host->dma_rx_channel = dma_request_channel(mask,
384 							   plat->dma_filter,
385 							   plat->dma_rx_param);
386 			/* E.g if no DMA hardware is present */
387 			if (!host->dma_rx_channel)
388 				dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
389 		}
390 
391 		if (!host->dma_tx_channel && plat->dma_tx_param) {
392 			host->dma_tx_channel = dma_request_channel(mask,
393 							   plat->dma_filter,
394 							   plat->dma_tx_param);
395 			if (!host->dma_tx_channel)
396 				dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
397 		}
398 	}
399 
400 	/*
401 	 * If only an RX channel is specified, the driver will
402 	 * attempt to use it bidirectionally, however if it is
403 	 * is specified but cannot be located, DMA will be disabled.
404 	 */
405 	if (host->dma_rx_channel && !host->dma_tx_channel)
406 		host->dma_tx_channel = host->dma_rx_channel;
407 
408 	if (host->dma_rx_channel)
409 		rxname = dma_chan_name(host->dma_rx_channel);
410 	else
411 		rxname = "none";
412 
413 	if (host->dma_tx_channel)
414 		txname = dma_chan_name(host->dma_tx_channel);
415 	else
416 		txname = "none";
417 
418 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
419 		 rxname, txname);
420 
421 	/*
422 	 * Limit the maximum segment size in any SG entry according to
423 	 * the parameters of the DMA engine device.
424 	 */
425 	if (host->dma_tx_channel) {
426 		struct device *dev = host->dma_tx_channel->device->dev;
427 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
428 
429 		if (max_seg_size < host->mmc->max_seg_size)
430 			host->mmc->max_seg_size = max_seg_size;
431 	}
432 	if (host->dma_rx_channel) {
433 		struct device *dev = host->dma_rx_channel->device->dev;
434 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
435 
436 		if (max_seg_size < host->mmc->max_seg_size)
437 			host->mmc->max_seg_size = max_seg_size;
438 	}
439 }
440 
441 /*
442  * This is used in or so inline it
443  * so it can be discarded.
444  */
445 static inline void mmci_dma_release(struct mmci_host *host)
446 {
447 	struct mmci_platform_data *plat = host->plat;
448 
449 	if (host->dma_rx_channel)
450 		dma_release_channel(host->dma_rx_channel);
451 	if (host->dma_tx_channel && plat->dma_tx_param)
452 		dma_release_channel(host->dma_tx_channel);
453 	host->dma_rx_channel = host->dma_tx_channel = NULL;
454 }
455 
456 static void mmci_dma_data_error(struct mmci_host *host)
457 {
458 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
459 	dmaengine_terminate_all(host->dma_current);
460 	host->dma_current = NULL;
461 	host->dma_desc_current = NULL;
462 	host->data->host_cookie = 0;
463 }
464 
465 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
466 {
467 	struct dma_chan *chan;
468 	enum dma_data_direction dir;
469 
470 	if (data->flags & MMC_DATA_READ) {
471 		dir = DMA_FROM_DEVICE;
472 		chan = host->dma_rx_channel;
473 	} else {
474 		dir = DMA_TO_DEVICE;
475 		chan = host->dma_tx_channel;
476 	}
477 
478 	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
479 }
480 
481 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
482 {
483 	u32 status;
484 	int i;
485 
486 	/* Wait up to 1ms for the DMA to complete */
487 	for (i = 0; ; i++) {
488 		status = readl(host->base + MMCISTATUS);
489 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
490 			break;
491 		udelay(10);
492 	}
493 
494 	/*
495 	 * Check to see whether we still have some data left in the FIFO -
496 	 * this catches DMA controllers which are unable to monitor the
497 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
498 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
499 	 */
500 	if (status & MCI_RXDATAAVLBLMASK) {
501 		mmci_dma_data_error(host);
502 		if (!data->error)
503 			data->error = -EIO;
504 	}
505 
506 	if (!data->host_cookie)
507 		mmci_dma_unmap(host, data);
508 
509 	/*
510 	 * Use of DMA with scatter-gather is impossible.
511 	 * Give up with DMA and switch back to PIO mode.
512 	 */
513 	if (status & MCI_RXDATAAVLBLMASK) {
514 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
515 		mmci_dma_release(host);
516 	}
517 
518 	host->dma_current = NULL;
519 	host->dma_desc_current = NULL;
520 }
521 
522 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
523 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
524 				struct dma_chan **dma_chan,
525 				struct dma_async_tx_descriptor **dma_desc)
526 {
527 	struct variant_data *variant = host->variant;
528 	struct dma_slave_config conf = {
529 		.src_addr = host->phybase + MMCIFIFO,
530 		.dst_addr = host->phybase + MMCIFIFO,
531 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
532 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
533 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
534 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
535 		.device_fc = false,
536 	};
537 	struct dma_chan *chan;
538 	struct dma_device *device;
539 	struct dma_async_tx_descriptor *desc;
540 	enum dma_data_direction buffer_dirn;
541 	int nr_sg;
542 
543 	if (data->flags & MMC_DATA_READ) {
544 		conf.direction = DMA_DEV_TO_MEM;
545 		buffer_dirn = DMA_FROM_DEVICE;
546 		chan = host->dma_rx_channel;
547 	} else {
548 		conf.direction = DMA_MEM_TO_DEV;
549 		buffer_dirn = DMA_TO_DEVICE;
550 		chan = host->dma_tx_channel;
551 	}
552 
553 	/* If there's no DMA channel, fall back to PIO */
554 	if (!chan)
555 		return -EINVAL;
556 
557 	/* If less than or equal to the fifo size, don't bother with DMA */
558 	if (data->blksz * data->blocks <= variant->fifosize)
559 		return -EINVAL;
560 
561 	device = chan->device;
562 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
563 	if (nr_sg == 0)
564 		return -EINVAL;
565 
566 	dmaengine_slave_config(chan, &conf);
567 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
568 					    conf.direction, DMA_CTRL_ACK);
569 	if (!desc)
570 		goto unmap_exit;
571 
572 	*dma_chan = chan;
573 	*dma_desc = desc;
574 
575 	return 0;
576 
577  unmap_exit:
578 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
579 	return -ENOMEM;
580 }
581 
582 static inline int mmci_dma_prep_data(struct mmci_host *host,
583 				     struct mmc_data *data)
584 {
585 	/* Check if next job is already prepared. */
586 	if (host->dma_current && host->dma_desc_current)
587 		return 0;
588 
589 	/* No job were prepared thus do it now. */
590 	return __mmci_dma_prep_data(host, data, &host->dma_current,
591 				    &host->dma_desc_current);
592 }
593 
594 static inline int mmci_dma_prep_next(struct mmci_host *host,
595 				     struct mmc_data *data)
596 {
597 	struct mmci_host_next *nd = &host->next_data;
598 	return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
599 }
600 
601 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
602 {
603 	int ret;
604 	struct mmc_data *data = host->data;
605 
606 	ret = mmci_dma_prep_data(host, host->data);
607 	if (ret)
608 		return ret;
609 
610 	/* Okay, go for it. */
611 	dev_vdbg(mmc_dev(host->mmc),
612 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
613 		 data->sg_len, data->blksz, data->blocks, data->flags);
614 	dmaengine_submit(host->dma_desc_current);
615 	dma_async_issue_pending(host->dma_current);
616 
617 	datactrl |= MCI_DPSM_DMAENABLE;
618 
619 	/* Trigger the DMA transfer */
620 	mmci_write_datactrlreg(host, datactrl);
621 
622 	/*
623 	 * Let the MMCI say when the data is ended and it's time
624 	 * to fire next DMA request. When that happens, MMCI will
625 	 * call mmci_data_end()
626 	 */
627 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
628 	       host->base + MMCIMASK0);
629 	return 0;
630 }
631 
632 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
633 {
634 	struct mmci_host_next *next = &host->next_data;
635 
636 	WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
637 	WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
638 
639 	host->dma_desc_current = next->dma_desc;
640 	host->dma_current = next->dma_chan;
641 	next->dma_desc = NULL;
642 	next->dma_chan = NULL;
643 }
644 
645 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
646 			     bool is_first_req)
647 {
648 	struct mmci_host *host = mmc_priv(mmc);
649 	struct mmc_data *data = mrq->data;
650 	struct mmci_host_next *nd = &host->next_data;
651 
652 	if (!data)
653 		return;
654 
655 	BUG_ON(data->host_cookie);
656 
657 	if (mmci_validate_data(host, data))
658 		return;
659 
660 	if (!mmci_dma_prep_next(host, data))
661 		data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
662 }
663 
664 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
665 			      int err)
666 {
667 	struct mmci_host *host = mmc_priv(mmc);
668 	struct mmc_data *data = mrq->data;
669 
670 	if (!data || !data->host_cookie)
671 		return;
672 
673 	mmci_dma_unmap(host, data);
674 
675 	if (err) {
676 		struct mmci_host_next *next = &host->next_data;
677 		struct dma_chan *chan;
678 		if (data->flags & MMC_DATA_READ)
679 			chan = host->dma_rx_channel;
680 		else
681 			chan = host->dma_tx_channel;
682 		dmaengine_terminate_all(chan);
683 
684 		next->dma_desc = NULL;
685 		next->dma_chan = NULL;
686 	}
687 }
688 
689 #else
690 /* Blank functions if the DMA engine is not available */
691 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
692 {
693 }
694 static inline void mmci_dma_setup(struct mmci_host *host)
695 {
696 }
697 
698 static inline void mmci_dma_release(struct mmci_host *host)
699 {
700 }
701 
702 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
703 {
704 }
705 
706 static inline void mmci_dma_finalize(struct mmci_host *host,
707 				     struct mmc_data *data)
708 {
709 }
710 
711 static inline void mmci_dma_data_error(struct mmci_host *host)
712 {
713 }
714 
715 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
716 {
717 	return -ENOSYS;
718 }
719 
720 #define mmci_pre_request NULL
721 #define mmci_post_request NULL
722 
723 #endif
724 
725 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
726 {
727 	struct variant_data *variant = host->variant;
728 	unsigned int datactrl, timeout, irqmask;
729 	unsigned long long clks;
730 	void __iomem *base;
731 	int blksz_bits;
732 
733 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
734 		data->blksz, data->blocks, data->flags);
735 
736 	host->data = data;
737 	host->size = data->blksz * data->blocks;
738 	data->bytes_xfered = 0;
739 
740 	clks = (unsigned long long)data->timeout_ns * host->cclk;
741 	do_div(clks, 1000000000UL);
742 
743 	timeout = data->timeout_clks + (unsigned int)clks;
744 
745 	base = host->base;
746 	writel(timeout, base + MMCIDATATIMER);
747 	writel(host->size, base + MMCIDATALENGTH);
748 
749 	blksz_bits = ffs(data->blksz) - 1;
750 	BUG_ON(1 << blksz_bits != data->blksz);
751 
752 	if (variant->blksz_datactrl16)
753 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
754 	else
755 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
756 
757 	if (data->flags & MMC_DATA_READ)
758 		datactrl |= MCI_DPSM_DIRECTION;
759 
760 	/* The ST Micro variants has a special bit to enable SDIO */
761 	if (variant->sdio && host->mmc->card)
762 		if (mmc_card_sdio(host->mmc->card)) {
763 			/*
764 			 * The ST Micro variants has a special bit
765 			 * to enable SDIO.
766 			 */
767 			u32 clk;
768 
769 			datactrl |= MCI_ST_DPSM_SDIOEN;
770 
771 			/*
772 			 * The ST Micro variant for SDIO small write transfers
773 			 * needs to have clock H/W flow control disabled,
774 			 * otherwise the transfer will not start. The threshold
775 			 * depends on the rate of MCLK.
776 			 */
777 			if (data->flags & MMC_DATA_WRITE &&
778 			    (host->size < 8 ||
779 			     (host->size <= 8 && host->mclk > 50000000)))
780 				clk = host->clk_reg & ~variant->clkreg_enable;
781 			else
782 				clk = host->clk_reg | variant->clkreg_enable;
783 
784 			mmci_write_clkreg(host, clk);
785 		}
786 
787 	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
788 		datactrl |= MCI_ST_DPSM_DDRMODE;
789 
790 	/*
791 	 * Attempt to use DMA operation mode, if this
792 	 * should fail, fall back to PIO mode
793 	 */
794 	if (!mmci_dma_start_data(host, datactrl))
795 		return;
796 
797 	/* IRQ mode, map the SG list for CPU reading/writing */
798 	mmci_init_sg(host, data);
799 
800 	if (data->flags & MMC_DATA_READ) {
801 		irqmask = MCI_RXFIFOHALFFULLMASK;
802 
803 		/*
804 		 * If we have less than the fifo 'half-full' threshold to
805 		 * transfer, trigger a PIO interrupt as soon as any data
806 		 * is available.
807 		 */
808 		if (host->size < variant->fifohalfsize)
809 			irqmask |= MCI_RXDATAAVLBLMASK;
810 	} else {
811 		/*
812 		 * We don't actually need to include "FIFO empty" here
813 		 * since its implicit in "FIFO half empty".
814 		 */
815 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
816 	}
817 
818 	mmci_write_datactrlreg(host, datactrl);
819 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
820 	mmci_set_mask1(host, irqmask);
821 }
822 
823 static void
824 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
825 {
826 	void __iomem *base = host->base;
827 
828 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
829 	    cmd->opcode, cmd->arg, cmd->flags);
830 
831 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
832 		writel(0, base + MMCICOMMAND);
833 		udelay(1);
834 	}
835 
836 	c |= cmd->opcode | MCI_CPSM_ENABLE;
837 	if (cmd->flags & MMC_RSP_PRESENT) {
838 		if (cmd->flags & MMC_RSP_136)
839 			c |= MCI_CPSM_LONGRSP;
840 		c |= MCI_CPSM_RESPONSE;
841 	}
842 	if (/*interrupt*/0)
843 		c |= MCI_CPSM_INTERRUPT;
844 
845 	host->cmd = cmd;
846 
847 	writel(cmd->arg, base + MMCIARGUMENT);
848 	writel(c, base + MMCICOMMAND);
849 }
850 
851 static void
852 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
853 	      unsigned int status)
854 {
855 	/* First check for errors */
856 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
857 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
858 		u32 remain, success;
859 
860 		/* Terminate the DMA transfer */
861 		if (dma_inprogress(host)) {
862 			mmci_dma_data_error(host);
863 			mmci_dma_unmap(host, data);
864 		}
865 
866 		/*
867 		 * Calculate how far we are into the transfer.  Note that
868 		 * the data counter gives the number of bytes transferred
869 		 * on the MMC bus, not on the host side.  On reads, this
870 		 * can be as much as a FIFO-worth of data ahead.  This
871 		 * matters for FIFO overruns only.
872 		 */
873 		remain = readl(host->base + MMCIDATACNT);
874 		success = data->blksz * data->blocks - remain;
875 
876 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
877 			status, success);
878 		if (status & MCI_DATACRCFAIL) {
879 			/* Last block was not successful */
880 			success -= 1;
881 			data->error = -EILSEQ;
882 		} else if (status & MCI_DATATIMEOUT) {
883 			data->error = -ETIMEDOUT;
884 		} else if (status & MCI_STARTBITERR) {
885 			data->error = -ECOMM;
886 		} else if (status & MCI_TXUNDERRUN) {
887 			data->error = -EIO;
888 		} else if (status & MCI_RXOVERRUN) {
889 			if (success > host->variant->fifosize)
890 				success -= host->variant->fifosize;
891 			else
892 				success = 0;
893 			data->error = -EIO;
894 		}
895 		data->bytes_xfered = round_down(success, data->blksz);
896 	}
897 
898 	if (status & MCI_DATABLOCKEND)
899 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
900 
901 	if (status & MCI_DATAEND || data->error) {
902 		if (dma_inprogress(host))
903 			mmci_dma_finalize(host, data);
904 		mmci_stop_data(host);
905 
906 		if (!data->error)
907 			/* The error clause is handled above, success! */
908 			data->bytes_xfered = data->blksz * data->blocks;
909 
910 		if (!data->stop || host->mrq->sbc) {
911 			mmci_request_end(host, data->mrq);
912 		} else {
913 			mmci_start_command(host, data->stop, 0);
914 		}
915 	}
916 }
917 
918 static void
919 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
920 	     unsigned int status)
921 {
922 	void __iomem *base = host->base;
923 	bool sbc = (cmd == host->mrq->sbc);
924 	bool busy_resp = host->variant->busy_detect &&
925 			(cmd->flags & MMC_RSP_BUSY);
926 
927 	/* Check if we need to wait for busy completion. */
928 	if (host->busy_status && (status & MCI_ST_CARDBUSY))
929 		return;
930 
931 	/* Enable busy completion if needed and supported. */
932 	if (!host->busy_status && busy_resp &&
933 		!(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
934 		(readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
935 		writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
936 			base + MMCIMASK0);
937 		host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
938 		return;
939 	}
940 
941 	/* At busy completion, mask the IRQ and complete the request. */
942 	if (host->busy_status) {
943 		writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
944 			base + MMCIMASK0);
945 		host->busy_status = 0;
946 	}
947 
948 	host->cmd = NULL;
949 
950 	if (status & MCI_CMDTIMEOUT) {
951 		cmd->error = -ETIMEDOUT;
952 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
953 		cmd->error = -EILSEQ;
954 	} else {
955 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
956 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
957 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
958 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
959 	}
960 
961 	if ((!sbc && !cmd->data) || cmd->error) {
962 		if (host->data) {
963 			/* Terminate the DMA transfer */
964 			if (dma_inprogress(host)) {
965 				mmci_dma_data_error(host);
966 				mmci_dma_unmap(host, host->data);
967 			}
968 			mmci_stop_data(host);
969 		}
970 		mmci_request_end(host, host->mrq);
971 	} else if (sbc) {
972 		mmci_start_command(host, host->mrq->cmd, 0);
973 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
974 		mmci_start_data(host, cmd->data);
975 	}
976 }
977 
978 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
979 {
980 	void __iomem *base = host->base;
981 	char *ptr = buffer;
982 	u32 status;
983 	int host_remain = host->size;
984 
985 	do {
986 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
987 
988 		if (count > remain)
989 			count = remain;
990 
991 		if (count <= 0)
992 			break;
993 
994 		/*
995 		 * SDIO especially may want to send something that is
996 		 * not divisible by 4 (as opposed to card sectors
997 		 * etc). Therefore make sure to always read the last bytes
998 		 * while only doing full 32-bit reads towards the FIFO.
999 		 */
1000 		if (unlikely(count & 0x3)) {
1001 			if (count < 4) {
1002 				unsigned char buf[4];
1003 				ioread32_rep(base + MMCIFIFO, buf, 1);
1004 				memcpy(ptr, buf, count);
1005 			} else {
1006 				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1007 				count &= ~0x3;
1008 			}
1009 		} else {
1010 			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1011 		}
1012 
1013 		ptr += count;
1014 		remain -= count;
1015 		host_remain -= count;
1016 
1017 		if (remain == 0)
1018 			break;
1019 
1020 		status = readl(base + MMCISTATUS);
1021 	} while (status & MCI_RXDATAAVLBL);
1022 
1023 	return ptr - buffer;
1024 }
1025 
1026 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1027 {
1028 	struct variant_data *variant = host->variant;
1029 	void __iomem *base = host->base;
1030 	char *ptr = buffer;
1031 
1032 	do {
1033 		unsigned int count, maxcnt;
1034 
1035 		maxcnt = status & MCI_TXFIFOEMPTY ?
1036 			 variant->fifosize : variant->fifohalfsize;
1037 		count = min(remain, maxcnt);
1038 
1039 		/*
1040 		 * SDIO especially may want to send something that is
1041 		 * not divisible by 4 (as opposed to card sectors
1042 		 * etc), and the FIFO only accept full 32-bit writes.
1043 		 * So compensate by adding +3 on the count, a single
1044 		 * byte become a 32bit write, 7 bytes will be two
1045 		 * 32bit writes etc.
1046 		 */
1047 		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1048 
1049 		ptr += count;
1050 		remain -= count;
1051 
1052 		if (remain == 0)
1053 			break;
1054 
1055 		status = readl(base + MMCISTATUS);
1056 	} while (status & MCI_TXFIFOHALFEMPTY);
1057 
1058 	return ptr - buffer;
1059 }
1060 
1061 /*
1062  * PIO data transfer IRQ handler.
1063  */
1064 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1065 {
1066 	struct mmci_host *host = dev_id;
1067 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1068 	struct variant_data *variant = host->variant;
1069 	void __iomem *base = host->base;
1070 	unsigned long flags;
1071 	u32 status;
1072 
1073 	status = readl(base + MMCISTATUS);
1074 
1075 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1076 
1077 	local_irq_save(flags);
1078 
1079 	do {
1080 		unsigned int remain, len;
1081 		char *buffer;
1082 
1083 		/*
1084 		 * For write, we only need to test the half-empty flag
1085 		 * here - if the FIFO is completely empty, then by
1086 		 * definition it is more than half empty.
1087 		 *
1088 		 * For read, check for data available.
1089 		 */
1090 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1091 			break;
1092 
1093 		if (!sg_miter_next(sg_miter))
1094 			break;
1095 
1096 		buffer = sg_miter->addr;
1097 		remain = sg_miter->length;
1098 
1099 		len = 0;
1100 		if (status & MCI_RXACTIVE)
1101 			len = mmci_pio_read(host, buffer, remain);
1102 		if (status & MCI_TXACTIVE)
1103 			len = mmci_pio_write(host, buffer, remain, status);
1104 
1105 		sg_miter->consumed = len;
1106 
1107 		host->size -= len;
1108 		remain -= len;
1109 
1110 		if (remain)
1111 			break;
1112 
1113 		status = readl(base + MMCISTATUS);
1114 	} while (1);
1115 
1116 	sg_miter_stop(sg_miter);
1117 
1118 	local_irq_restore(flags);
1119 
1120 	/*
1121 	 * If we have less than the fifo 'half-full' threshold to transfer,
1122 	 * trigger a PIO interrupt as soon as any data is available.
1123 	 */
1124 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1125 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1126 
1127 	/*
1128 	 * If we run out of data, disable the data IRQs; this
1129 	 * prevents a race where the FIFO becomes empty before
1130 	 * the chip itself has disabled the data path, and
1131 	 * stops us racing with our data end IRQ.
1132 	 */
1133 	if (host->size == 0) {
1134 		mmci_set_mask1(host, 0);
1135 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1136 	}
1137 
1138 	return IRQ_HANDLED;
1139 }
1140 
1141 /*
1142  * Handle completion of command and data transfers.
1143  */
1144 static irqreturn_t mmci_irq(int irq, void *dev_id)
1145 {
1146 	struct mmci_host *host = dev_id;
1147 	u32 status;
1148 	int ret = 0;
1149 
1150 	spin_lock(&host->lock);
1151 
1152 	do {
1153 		struct mmc_command *cmd;
1154 		struct mmc_data *data;
1155 
1156 		status = readl(host->base + MMCISTATUS);
1157 
1158 		if (host->singleirq) {
1159 			if (status & readl(host->base + MMCIMASK1))
1160 				mmci_pio_irq(irq, dev_id);
1161 
1162 			status &= ~MCI_IRQ1MASK;
1163 		}
1164 
1165 		/*
1166 		 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1167 		 * enabled) since the HW seems to be triggering the IRQ on both
1168 		 * edges while monitoring DAT0 for busy completion.
1169 		 */
1170 		status &= readl(host->base + MMCIMASK0);
1171 		writel(status, host->base + MMCICLEAR);
1172 
1173 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1174 
1175 		cmd = host->cmd;
1176 		if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1177 			MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1178 			mmci_cmd_irq(host, cmd, status);
1179 
1180 		data = host->data;
1181 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1182 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1183 			      MCI_DATABLOCKEND) && data)
1184 			mmci_data_irq(host, data, status);
1185 
1186 		/* Don't poll for busy completion in irq context. */
1187 		if (host->busy_status)
1188 			status &= ~MCI_ST_CARDBUSY;
1189 
1190 		ret = 1;
1191 	} while (status);
1192 
1193 	spin_unlock(&host->lock);
1194 
1195 	return IRQ_RETVAL(ret);
1196 }
1197 
1198 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1199 {
1200 	struct mmci_host *host = mmc_priv(mmc);
1201 	unsigned long flags;
1202 
1203 	WARN_ON(host->mrq != NULL);
1204 
1205 	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1206 	if (mrq->cmd->error) {
1207 		mmc_request_done(mmc, mrq);
1208 		return;
1209 	}
1210 
1211 	pm_runtime_get_sync(mmc_dev(mmc));
1212 
1213 	spin_lock_irqsave(&host->lock, flags);
1214 
1215 	host->mrq = mrq;
1216 
1217 	if (mrq->data)
1218 		mmci_get_next_data(host, mrq->data);
1219 
1220 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1221 		mmci_start_data(host, mrq->data);
1222 
1223 	if (mrq->sbc)
1224 		mmci_start_command(host, mrq->sbc, 0);
1225 	else
1226 		mmci_start_command(host, mrq->cmd, 0);
1227 
1228 	spin_unlock_irqrestore(&host->lock, flags);
1229 }
1230 
1231 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1232 {
1233 	struct mmci_host *host = mmc_priv(mmc);
1234 	struct variant_data *variant = host->variant;
1235 	u32 pwr = 0;
1236 	unsigned long flags;
1237 	int ret;
1238 
1239 	pm_runtime_get_sync(mmc_dev(mmc));
1240 
1241 	if (host->plat->ios_handler &&
1242 		host->plat->ios_handler(mmc_dev(mmc), ios))
1243 			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1244 
1245 	switch (ios->power_mode) {
1246 	case MMC_POWER_OFF:
1247 		if (!IS_ERR(mmc->supply.vmmc))
1248 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1249 
1250 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1251 			regulator_disable(mmc->supply.vqmmc);
1252 			host->vqmmc_enabled = false;
1253 		}
1254 
1255 		break;
1256 	case MMC_POWER_UP:
1257 		if (!IS_ERR(mmc->supply.vmmc))
1258 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1259 
1260 		/*
1261 		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1262 		 * and instead uses MCI_PWR_ON so apply whatever value is
1263 		 * configured in the variant data.
1264 		 */
1265 		pwr |= variant->pwrreg_powerup;
1266 
1267 		break;
1268 	case MMC_POWER_ON:
1269 		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1270 			ret = regulator_enable(mmc->supply.vqmmc);
1271 			if (ret < 0)
1272 				dev_err(mmc_dev(mmc),
1273 					"failed to enable vqmmc regulator\n");
1274 			else
1275 				host->vqmmc_enabled = true;
1276 		}
1277 
1278 		pwr |= MCI_PWR_ON;
1279 		break;
1280 	}
1281 
1282 	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1283 		/*
1284 		 * The ST Micro variant has some additional bits
1285 		 * indicating signal direction for the signals in
1286 		 * the SD/MMC bus and feedback-clock usage.
1287 		 */
1288 		pwr |= host->plat->sigdir;
1289 
1290 		if (ios->bus_width == MMC_BUS_WIDTH_4)
1291 			pwr &= ~MCI_ST_DATA74DIREN;
1292 		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1293 			pwr &= (~MCI_ST_DATA74DIREN &
1294 				~MCI_ST_DATA31DIREN &
1295 				~MCI_ST_DATA2DIREN);
1296 	}
1297 
1298 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1299 		if (host->hw_designer != AMBA_VENDOR_ST)
1300 			pwr |= MCI_ROD;
1301 		else {
1302 			/*
1303 			 * The ST Micro variant use the ROD bit for something
1304 			 * else and only has OD (Open Drain).
1305 			 */
1306 			pwr |= MCI_OD;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1312 	 * gating the clock, the MCI_PWR_ON bit is cleared.
1313 	 */
1314 	if (!ios->clock && variant->pwrreg_clkgate)
1315 		pwr &= ~MCI_PWR_ON;
1316 
1317 	spin_lock_irqsave(&host->lock, flags);
1318 
1319 	mmci_set_clkreg(host, ios->clock);
1320 	mmci_write_pwrreg(host, pwr);
1321 	mmci_reg_delay(host);
1322 
1323 	spin_unlock_irqrestore(&host->lock, flags);
1324 
1325 	pm_runtime_mark_last_busy(mmc_dev(mmc));
1326 	pm_runtime_put_autosuspend(mmc_dev(mmc));
1327 }
1328 
1329 static int mmci_get_ro(struct mmc_host *mmc)
1330 {
1331 	struct mmci_host *host = mmc_priv(mmc);
1332 
1333 	if (host->gpio_wp == -ENOSYS)
1334 		return -ENOSYS;
1335 
1336 	return gpio_get_value_cansleep(host->gpio_wp);
1337 }
1338 
1339 static int mmci_get_cd(struct mmc_host *mmc)
1340 {
1341 	struct mmci_host *host = mmc_priv(mmc);
1342 	struct mmci_platform_data *plat = host->plat;
1343 	unsigned int status;
1344 
1345 	if (host->gpio_cd == -ENOSYS) {
1346 		if (!plat->status)
1347 			return 1; /* Assume always present */
1348 
1349 		status = plat->status(mmc_dev(host->mmc));
1350 	} else
1351 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1352 			^ plat->cd_invert;
1353 
1354 	/*
1355 	 * Use positive logic throughout - status is zero for no card,
1356 	 * non-zero for card inserted.
1357 	 */
1358 	return status;
1359 }
1360 
1361 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1362 {
1363 	int ret = 0;
1364 
1365 	if (!IS_ERR(mmc->supply.vqmmc)) {
1366 
1367 		pm_runtime_get_sync(mmc_dev(mmc));
1368 
1369 		switch (ios->signal_voltage) {
1370 		case MMC_SIGNAL_VOLTAGE_330:
1371 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1372 						2700000, 3600000);
1373 			break;
1374 		case MMC_SIGNAL_VOLTAGE_180:
1375 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1376 						1700000, 1950000);
1377 			break;
1378 		case MMC_SIGNAL_VOLTAGE_120:
1379 			ret = regulator_set_voltage(mmc->supply.vqmmc,
1380 						1100000, 1300000);
1381 			break;
1382 		}
1383 
1384 		if (ret)
1385 			dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1386 
1387 		pm_runtime_mark_last_busy(mmc_dev(mmc));
1388 		pm_runtime_put_autosuspend(mmc_dev(mmc));
1389 	}
1390 
1391 	return ret;
1392 }
1393 
1394 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1395 {
1396 	struct mmci_host *host = dev_id;
1397 
1398 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1399 
1400 	return IRQ_HANDLED;
1401 }
1402 
1403 static struct mmc_host_ops mmci_ops = {
1404 	.request	= mmci_request,
1405 	.pre_req	= mmci_pre_request,
1406 	.post_req	= mmci_post_request,
1407 	.set_ios	= mmci_set_ios,
1408 	.get_ro		= mmci_get_ro,
1409 	.get_cd		= mmci_get_cd,
1410 	.start_signal_voltage_switch = mmci_sig_volt_switch,
1411 };
1412 
1413 #ifdef CONFIG_OF
1414 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1415 					struct mmci_platform_data *pdata)
1416 {
1417 	int bus_width = 0;
1418 
1419 	pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1420 	pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1421 
1422 	if (of_get_property(np, "cd-inverted", NULL))
1423 		pdata->cd_invert = true;
1424 	else
1425 		pdata->cd_invert = false;
1426 
1427 	of_property_read_u32(np, "max-frequency", &pdata->f_max);
1428 	if (!pdata->f_max)
1429 		pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1430 
1431 	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1432 		pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1433 	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1434 		pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1435 
1436 	of_property_read_u32(np, "bus-width", &bus_width);
1437 	switch (bus_width) {
1438 	case 0 :
1439 		/* No bus-width supplied. */
1440 		break;
1441 	case 4 :
1442 		pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1443 		break;
1444 	case 8 :
1445 		pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1446 		break;
1447 	default :
1448 		pr_warn("%s: Unsupported bus width\n", np->full_name);
1449 	}
1450 }
1451 #else
1452 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1453 					struct mmci_platform_data *pdata)
1454 {
1455 	return;
1456 }
1457 #endif
1458 
1459 static int mmci_probe(struct amba_device *dev,
1460 	const struct amba_id *id)
1461 {
1462 	struct mmci_platform_data *plat = dev->dev.platform_data;
1463 	struct device_node *np = dev->dev.of_node;
1464 	struct variant_data *variant = id->data;
1465 	struct mmci_host *host;
1466 	struct mmc_host *mmc;
1467 	int ret;
1468 
1469 	/* Must have platform data or Device Tree. */
1470 	if (!plat && !np) {
1471 		dev_err(&dev->dev, "No plat data or DT found\n");
1472 		return -EINVAL;
1473 	}
1474 
1475 	if (!plat) {
1476 		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1477 		if (!plat)
1478 			return -ENOMEM;
1479 	}
1480 
1481 	if (np)
1482 		mmci_dt_populate_generic_pdata(np, plat);
1483 
1484 	ret = amba_request_regions(dev, DRIVER_NAME);
1485 	if (ret)
1486 		goto out;
1487 
1488 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1489 	if (!mmc) {
1490 		ret = -ENOMEM;
1491 		goto rel_regions;
1492 	}
1493 
1494 	host = mmc_priv(mmc);
1495 	host->mmc = mmc;
1496 
1497 	host->gpio_wp = -ENOSYS;
1498 	host->gpio_cd = -ENOSYS;
1499 	host->gpio_cd_irq = -1;
1500 
1501 	host->hw_designer = amba_manf(dev);
1502 	host->hw_revision = amba_rev(dev);
1503 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1504 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1505 
1506 	host->clk = devm_clk_get(&dev->dev, NULL);
1507 	if (IS_ERR(host->clk)) {
1508 		ret = PTR_ERR(host->clk);
1509 		goto host_free;
1510 	}
1511 
1512 	ret = clk_prepare_enable(host->clk);
1513 	if (ret)
1514 		goto host_free;
1515 
1516 	host->plat = plat;
1517 	host->variant = variant;
1518 	host->mclk = clk_get_rate(host->clk);
1519 	/*
1520 	 * According to the spec, mclk is max 100 MHz,
1521 	 * so we try to adjust the clock down to this,
1522 	 * (if possible).
1523 	 */
1524 	if (host->mclk > 100000000) {
1525 		ret = clk_set_rate(host->clk, 100000000);
1526 		if (ret < 0)
1527 			goto clk_disable;
1528 		host->mclk = clk_get_rate(host->clk);
1529 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1530 			host->mclk);
1531 	}
1532 	host->phybase = dev->res.start;
1533 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1534 	if (!host->base) {
1535 		ret = -ENOMEM;
1536 		goto clk_disable;
1537 	}
1538 
1539 	/*
1540 	 * The ARM and ST versions of the block have slightly different
1541 	 * clock divider equations which means that the minimum divider
1542 	 * differs too.
1543 	 */
1544 	if (variant->st_clkdiv)
1545 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1546 	else
1547 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1548 	/*
1549 	 * If the platform data supplies a maximum operating
1550 	 * frequency, this takes precedence. Else, we fall back
1551 	 * to using the module parameter, which has a (low)
1552 	 * default value in case it is not specified. Either
1553 	 * value must not exceed the clock rate into the block,
1554 	 * of course.
1555 	 */
1556 	if (plat->f_max)
1557 		mmc->f_max = min(host->mclk, plat->f_max);
1558 	else
1559 		mmc->f_max = min(host->mclk, fmax);
1560 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1561 
1562 	/* Get regulators and the supported OCR mask */
1563 	mmc_regulator_get_supply(mmc);
1564 	if (!mmc->ocr_avail)
1565 		mmc->ocr_avail = plat->ocr_mask;
1566 	else if (plat->ocr_mask)
1567 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1568 
1569 	mmc->caps = plat->capabilities;
1570 	mmc->caps2 = plat->capabilities2;
1571 
1572 	if (variant->busy_detect) {
1573 		mmci_ops.card_busy = mmci_card_busy;
1574 		mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1575 		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1576 		mmc->max_busy_timeout = 0;
1577 	}
1578 
1579 	mmc->ops = &mmci_ops;
1580 
1581 	/* We support these PM capabilities. */
1582 	mmc->pm_caps = MMC_PM_KEEP_POWER;
1583 
1584 	/*
1585 	 * We can do SGIO
1586 	 */
1587 	mmc->max_segs = NR_SG;
1588 
1589 	/*
1590 	 * Since only a certain number of bits are valid in the data length
1591 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1592 	 * single request.
1593 	 */
1594 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1595 
1596 	/*
1597 	 * Set the maximum segment size.  Since we aren't doing DMA
1598 	 * (yet) we are only limited by the data length register.
1599 	 */
1600 	mmc->max_seg_size = mmc->max_req_size;
1601 
1602 	/*
1603 	 * Block size can be up to 2048 bytes, but must be a power of two.
1604 	 */
1605 	mmc->max_blk_size = 1 << 11;
1606 
1607 	/*
1608 	 * Limit the number of blocks transferred so that we don't overflow
1609 	 * the maximum request size.
1610 	 */
1611 	mmc->max_blk_count = mmc->max_req_size >> 11;
1612 
1613 	spin_lock_init(&host->lock);
1614 
1615 	writel(0, host->base + MMCIMASK0);
1616 	writel(0, host->base + MMCIMASK1);
1617 	writel(0xfff, host->base + MMCICLEAR);
1618 
1619 	if (plat->gpio_cd == -EPROBE_DEFER) {
1620 		ret = -EPROBE_DEFER;
1621 		goto err_gpio_cd;
1622 	}
1623 	if (gpio_is_valid(plat->gpio_cd)) {
1624 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1625 		if (ret == 0)
1626 			ret = gpio_direction_input(plat->gpio_cd);
1627 		if (ret == 0)
1628 			host->gpio_cd = plat->gpio_cd;
1629 		else if (ret != -ENOSYS)
1630 			goto err_gpio_cd;
1631 
1632 		/*
1633 		 * A gpio pin that will detect cards when inserted and removed
1634 		 * will most likely want to trigger on the edges if it is
1635 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1636 		 * for the inverted case) so we request triggers on both
1637 		 * edges.
1638 		 */
1639 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1640 				mmci_cd_irq,
1641 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1642 				DRIVER_NAME " (cd)", host);
1643 		if (ret >= 0)
1644 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1645 	}
1646 	if (plat->gpio_wp == -EPROBE_DEFER) {
1647 		ret = -EPROBE_DEFER;
1648 		goto err_gpio_wp;
1649 	}
1650 	if (gpio_is_valid(plat->gpio_wp)) {
1651 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1652 		if (ret == 0)
1653 			ret = gpio_direction_input(plat->gpio_wp);
1654 		if (ret == 0)
1655 			host->gpio_wp = plat->gpio_wp;
1656 		else if (ret != -ENOSYS)
1657 			goto err_gpio_wp;
1658 	}
1659 
1660 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1661 	    && host->gpio_cd_irq < 0)
1662 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1663 
1664 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1665 	if (ret)
1666 		goto unmap;
1667 
1668 	if (!dev->irq[1])
1669 		host->singleirq = true;
1670 	else {
1671 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1672 				  DRIVER_NAME " (pio)", host);
1673 		if (ret)
1674 			goto irq0_free;
1675 	}
1676 
1677 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1678 
1679 	amba_set_drvdata(dev, mmc);
1680 
1681 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1682 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1683 		 amba_rev(dev), (unsigned long long)dev->res.start,
1684 		 dev->irq[0], dev->irq[1]);
1685 
1686 	mmci_dma_setup(host);
1687 
1688 	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1689 	pm_runtime_use_autosuspend(&dev->dev);
1690 	pm_runtime_put(&dev->dev);
1691 
1692 	mmc_add_host(mmc);
1693 
1694 	return 0;
1695 
1696  irq0_free:
1697 	free_irq(dev->irq[0], host);
1698  unmap:
1699 	if (host->gpio_wp != -ENOSYS)
1700 		gpio_free(host->gpio_wp);
1701  err_gpio_wp:
1702 	if (host->gpio_cd_irq >= 0)
1703 		free_irq(host->gpio_cd_irq, host);
1704 	if (host->gpio_cd != -ENOSYS)
1705 		gpio_free(host->gpio_cd);
1706  err_gpio_cd:
1707 	iounmap(host->base);
1708  clk_disable:
1709 	clk_disable_unprepare(host->clk);
1710  host_free:
1711 	mmc_free_host(mmc);
1712  rel_regions:
1713 	amba_release_regions(dev);
1714  out:
1715 	return ret;
1716 }
1717 
1718 static int mmci_remove(struct amba_device *dev)
1719 {
1720 	struct mmc_host *mmc = amba_get_drvdata(dev);
1721 
1722 	if (mmc) {
1723 		struct mmci_host *host = mmc_priv(mmc);
1724 
1725 		/*
1726 		 * Undo pm_runtime_put() in probe.  We use the _sync
1727 		 * version here so that we can access the primecell.
1728 		 */
1729 		pm_runtime_get_sync(&dev->dev);
1730 
1731 		mmc_remove_host(mmc);
1732 
1733 		writel(0, host->base + MMCIMASK0);
1734 		writel(0, host->base + MMCIMASK1);
1735 
1736 		writel(0, host->base + MMCICOMMAND);
1737 		writel(0, host->base + MMCIDATACTRL);
1738 
1739 		mmci_dma_release(host);
1740 		free_irq(dev->irq[0], host);
1741 		if (!host->singleirq)
1742 			free_irq(dev->irq[1], host);
1743 
1744 		if (host->gpio_wp != -ENOSYS)
1745 			gpio_free(host->gpio_wp);
1746 		if (host->gpio_cd_irq >= 0)
1747 			free_irq(host->gpio_cd_irq, host);
1748 		if (host->gpio_cd != -ENOSYS)
1749 			gpio_free(host->gpio_cd);
1750 
1751 		iounmap(host->base);
1752 		clk_disable_unprepare(host->clk);
1753 
1754 		mmc_free_host(mmc);
1755 
1756 		amba_release_regions(dev);
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 #ifdef CONFIG_SUSPEND
1763 static int mmci_suspend(struct device *dev)
1764 {
1765 	struct amba_device *adev = to_amba_device(dev);
1766 	struct mmc_host *mmc = amba_get_drvdata(adev);
1767 
1768 	if (mmc) {
1769 		struct mmci_host *host = mmc_priv(mmc);
1770 		pm_runtime_get_sync(dev);
1771 		writel(0, host->base + MMCIMASK0);
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 static int mmci_resume(struct device *dev)
1778 {
1779 	struct amba_device *adev = to_amba_device(dev);
1780 	struct mmc_host *mmc = amba_get_drvdata(adev);
1781 
1782 	if (mmc) {
1783 		struct mmci_host *host = mmc_priv(mmc);
1784 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1785 		pm_runtime_put(dev);
1786 	}
1787 
1788 	return 0;
1789 }
1790 #endif
1791 
1792 #ifdef CONFIG_PM_RUNTIME
1793 static void mmci_save(struct mmci_host *host)
1794 {
1795 	unsigned long flags;
1796 
1797 	if (host->variant->pwrreg_nopower) {
1798 		spin_lock_irqsave(&host->lock, flags);
1799 
1800 		writel(0, host->base + MMCIMASK0);
1801 		writel(0, host->base + MMCIDATACTRL);
1802 		writel(0, host->base + MMCIPOWER);
1803 		writel(0, host->base + MMCICLOCK);
1804 		mmci_reg_delay(host);
1805 
1806 		spin_unlock_irqrestore(&host->lock, flags);
1807 	}
1808 
1809 }
1810 
1811 static void mmci_restore(struct mmci_host *host)
1812 {
1813 	unsigned long flags;
1814 
1815 	if (host->variant->pwrreg_nopower) {
1816 		spin_lock_irqsave(&host->lock, flags);
1817 
1818 		writel(host->clk_reg, host->base + MMCICLOCK);
1819 		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1820 		writel(host->pwr_reg, host->base + MMCIPOWER);
1821 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1822 		mmci_reg_delay(host);
1823 
1824 		spin_unlock_irqrestore(&host->lock, flags);
1825 	}
1826 }
1827 
1828 static int mmci_runtime_suspend(struct device *dev)
1829 {
1830 	struct amba_device *adev = to_amba_device(dev);
1831 	struct mmc_host *mmc = amba_get_drvdata(adev);
1832 
1833 	if (mmc) {
1834 		struct mmci_host *host = mmc_priv(mmc);
1835 		pinctrl_pm_select_sleep_state(dev);
1836 		mmci_save(host);
1837 		clk_disable_unprepare(host->clk);
1838 	}
1839 
1840 	return 0;
1841 }
1842 
1843 static int mmci_runtime_resume(struct device *dev)
1844 {
1845 	struct amba_device *adev = to_amba_device(dev);
1846 	struct mmc_host *mmc = amba_get_drvdata(adev);
1847 
1848 	if (mmc) {
1849 		struct mmci_host *host = mmc_priv(mmc);
1850 		clk_prepare_enable(host->clk);
1851 		mmci_restore(host);
1852 		pinctrl_pm_select_default_state(dev);
1853 	}
1854 
1855 	return 0;
1856 }
1857 #endif
1858 
1859 static const struct dev_pm_ops mmci_dev_pm_ops = {
1860 	SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1861 	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1862 };
1863 
1864 static struct amba_id mmci_ids[] = {
1865 	{
1866 		.id	= 0x00041180,
1867 		.mask	= 0xff0fffff,
1868 		.data	= &variant_arm,
1869 	},
1870 	{
1871 		.id	= 0x01041180,
1872 		.mask	= 0xff0fffff,
1873 		.data	= &variant_arm_extended_fifo,
1874 	},
1875 	{
1876 		.id	= 0x02041180,
1877 		.mask	= 0xff0fffff,
1878 		.data	= &variant_arm_extended_fifo_hwfc,
1879 	},
1880 	{
1881 		.id	= 0x00041181,
1882 		.mask	= 0x000fffff,
1883 		.data	= &variant_arm,
1884 	},
1885 	/* ST Micro variants */
1886 	{
1887 		.id     = 0x00180180,
1888 		.mask   = 0x00ffffff,
1889 		.data	= &variant_u300,
1890 	},
1891 	{
1892 		.id     = 0x10180180,
1893 		.mask   = 0xf0ffffff,
1894 		.data	= &variant_nomadik,
1895 	},
1896 	{
1897 		.id     = 0x00280180,
1898 		.mask   = 0x00ffffff,
1899 		.data	= &variant_u300,
1900 	},
1901 	{
1902 		.id     = 0x00480180,
1903 		.mask   = 0xf0ffffff,
1904 		.data	= &variant_ux500,
1905 	},
1906 	{
1907 		.id     = 0x10480180,
1908 		.mask   = 0xf0ffffff,
1909 		.data	= &variant_ux500v2,
1910 	},
1911 	{ 0, 0 },
1912 };
1913 
1914 MODULE_DEVICE_TABLE(amba, mmci_ids);
1915 
1916 static struct amba_driver mmci_driver = {
1917 	.drv		= {
1918 		.name	= DRIVER_NAME,
1919 		.pm	= &mmci_dev_pm_ops,
1920 	},
1921 	.probe		= mmci_probe,
1922 	.remove		= mmci_remove,
1923 	.id_table	= mmci_ids,
1924 };
1925 
1926 module_amba_driver(mmci_driver);
1927 
1928 module_param(fmax, uint, 0444);
1929 
1930 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1931 MODULE_LICENSE("GPL");
1932