xref: /openbmc/linux/drivers/mmc/host/mmci.c (revision 16052827)
1 /*
2  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3  *
4  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5  *  Copyright (C) 2010 ST-Ericsson SA
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/types.h>
34 
35 #include <asm/div64.h>
36 #include <asm/io.h>
37 #include <asm/sizes.h>
38 
39 #include "mmci.h"
40 
41 #define DRIVER_NAME "mmci-pl18x"
42 
43 static unsigned int fmax = 515633;
44 
45 /**
46  * struct variant_data - MMCI variant-specific quirks
47  * @clkreg: default value for MCICLOCK register
48  * @clkreg_enable: enable value for MMCICLOCK register
49  * @datalength_bits: number of bits in the MMCIDATALENGTH register
50  * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
51  *	      is asserted (likewise for RX)
52  * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
53  *		  is asserted (likewise for RX)
54  * @sdio: variant supports SDIO
55  * @st_clkdiv: true if using a ST-specific clock divider algorithm
56  * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
57  */
58 struct variant_data {
59 	unsigned int		clkreg;
60 	unsigned int		clkreg_enable;
61 	unsigned int		datalength_bits;
62 	unsigned int		fifosize;
63 	unsigned int		fifohalfsize;
64 	bool			sdio;
65 	bool			st_clkdiv;
66 	bool			blksz_datactrl16;
67 };
68 
69 static struct variant_data variant_arm = {
70 	.fifosize		= 16 * 4,
71 	.fifohalfsize		= 8 * 4,
72 	.datalength_bits	= 16,
73 };
74 
75 static struct variant_data variant_arm_extended_fifo = {
76 	.fifosize		= 128 * 4,
77 	.fifohalfsize		= 64 * 4,
78 	.datalength_bits	= 16,
79 };
80 
81 static struct variant_data variant_u300 = {
82 	.fifosize		= 16 * 4,
83 	.fifohalfsize		= 8 * 4,
84 	.clkreg_enable		= MCI_ST_U300_HWFCEN,
85 	.datalength_bits	= 16,
86 	.sdio			= true,
87 };
88 
89 static struct variant_data variant_ux500 = {
90 	.fifosize		= 30 * 4,
91 	.fifohalfsize		= 8 * 4,
92 	.clkreg			= MCI_CLK_ENABLE,
93 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
94 	.datalength_bits	= 24,
95 	.sdio			= true,
96 	.st_clkdiv		= true,
97 };
98 
99 static struct variant_data variant_ux500v2 = {
100 	.fifosize		= 30 * 4,
101 	.fifohalfsize		= 8 * 4,
102 	.clkreg			= MCI_CLK_ENABLE,
103 	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
104 	.datalength_bits	= 24,
105 	.sdio			= true,
106 	.st_clkdiv		= true,
107 	.blksz_datactrl16	= true,
108 };
109 
110 /*
111  * This must be called with host->lock held
112  */
113 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
114 {
115 	struct variant_data *variant = host->variant;
116 	u32 clk = variant->clkreg;
117 
118 	if (desired) {
119 		if (desired >= host->mclk) {
120 			clk = MCI_CLK_BYPASS;
121 			if (variant->st_clkdiv)
122 				clk |= MCI_ST_UX500_NEG_EDGE;
123 			host->cclk = host->mclk;
124 		} else if (variant->st_clkdiv) {
125 			/*
126 			 * DB8500 TRM says f = mclk / (clkdiv + 2)
127 			 * => clkdiv = (mclk / f) - 2
128 			 * Round the divider up so we don't exceed the max
129 			 * frequency
130 			 */
131 			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
132 			if (clk >= 256)
133 				clk = 255;
134 			host->cclk = host->mclk / (clk + 2);
135 		} else {
136 			/*
137 			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
138 			 * => clkdiv = mclk / (2 * f) - 1
139 			 */
140 			clk = host->mclk / (2 * desired) - 1;
141 			if (clk >= 256)
142 				clk = 255;
143 			host->cclk = host->mclk / (2 * (clk + 1));
144 		}
145 
146 		clk |= variant->clkreg_enable;
147 		clk |= MCI_CLK_ENABLE;
148 		/* This hasn't proven to be worthwhile */
149 		/* clk |= MCI_CLK_PWRSAVE; */
150 	}
151 
152 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
153 		clk |= MCI_4BIT_BUS;
154 	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
155 		clk |= MCI_ST_8BIT_BUS;
156 
157 	writel(clk, host->base + MMCICLOCK);
158 }
159 
160 static void
161 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
162 {
163 	writel(0, host->base + MMCICOMMAND);
164 
165 	BUG_ON(host->data);
166 
167 	host->mrq = NULL;
168 	host->cmd = NULL;
169 
170 	/*
171 	 * Need to drop the host lock here; mmc_request_done may call
172 	 * back into the driver...
173 	 */
174 	spin_unlock(&host->lock);
175 	pm_runtime_put(mmc_dev(host->mmc));
176 	mmc_request_done(host->mmc, mrq);
177 	spin_lock(&host->lock);
178 }
179 
180 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
181 {
182 	void __iomem *base = host->base;
183 
184 	if (host->singleirq) {
185 		unsigned int mask0 = readl(base + MMCIMASK0);
186 
187 		mask0 &= ~MCI_IRQ1MASK;
188 		mask0 |= mask;
189 
190 		writel(mask0, base + MMCIMASK0);
191 	}
192 
193 	writel(mask, base + MMCIMASK1);
194 }
195 
196 static void mmci_stop_data(struct mmci_host *host)
197 {
198 	writel(0, host->base + MMCIDATACTRL);
199 	mmci_set_mask1(host, 0);
200 	host->data = NULL;
201 }
202 
203 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
204 {
205 	unsigned int flags = SG_MITER_ATOMIC;
206 
207 	if (data->flags & MMC_DATA_READ)
208 		flags |= SG_MITER_TO_SG;
209 	else
210 		flags |= SG_MITER_FROM_SG;
211 
212 	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
213 }
214 
215 /*
216  * All the DMA operation mode stuff goes inside this ifdef.
217  * This assumes that you have a generic DMA device interface,
218  * no custom DMA interfaces are supported.
219  */
220 #ifdef CONFIG_DMA_ENGINE
221 static void __devinit mmci_dma_setup(struct mmci_host *host)
222 {
223 	struct mmci_platform_data *plat = host->plat;
224 	const char *rxname, *txname;
225 	dma_cap_mask_t mask;
226 
227 	if (!plat || !plat->dma_filter) {
228 		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
229 		return;
230 	}
231 
232 	/* initialize pre request cookie */
233 	host->next_data.cookie = 1;
234 
235 	/* Try to acquire a generic DMA engine slave channel */
236 	dma_cap_zero(mask);
237 	dma_cap_set(DMA_SLAVE, mask);
238 
239 	/*
240 	 * If only an RX channel is specified, the driver will
241 	 * attempt to use it bidirectionally, however if it is
242 	 * is specified but cannot be located, DMA will be disabled.
243 	 */
244 	if (plat->dma_rx_param) {
245 		host->dma_rx_channel = dma_request_channel(mask,
246 							   plat->dma_filter,
247 							   plat->dma_rx_param);
248 		/* E.g if no DMA hardware is present */
249 		if (!host->dma_rx_channel)
250 			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
251 	}
252 
253 	if (plat->dma_tx_param) {
254 		host->dma_tx_channel = dma_request_channel(mask,
255 							   plat->dma_filter,
256 							   plat->dma_tx_param);
257 		if (!host->dma_tx_channel)
258 			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
259 	} else {
260 		host->dma_tx_channel = host->dma_rx_channel;
261 	}
262 
263 	if (host->dma_rx_channel)
264 		rxname = dma_chan_name(host->dma_rx_channel);
265 	else
266 		rxname = "none";
267 
268 	if (host->dma_tx_channel)
269 		txname = dma_chan_name(host->dma_tx_channel);
270 	else
271 		txname = "none";
272 
273 	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
274 		 rxname, txname);
275 
276 	/*
277 	 * Limit the maximum segment size in any SG entry according to
278 	 * the parameters of the DMA engine device.
279 	 */
280 	if (host->dma_tx_channel) {
281 		struct device *dev = host->dma_tx_channel->device->dev;
282 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
283 
284 		if (max_seg_size < host->mmc->max_seg_size)
285 			host->mmc->max_seg_size = max_seg_size;
286 	}
287 	if (host->dma_rx_channel) {
288 		struct device *dev = host->dma_rx_channel->device->dev;
289 		unsigned int max_seg_size = dma_get_max_seg_size(dev);
290 
291 		if (max_seg_size < host->mmc->max_seg_size)
292 			host->mmc->max_seg_size = max_seg_size;
293 	}
294 }
295 
296 /*
297  * This is used in __devinit or __devexit so inline it
298  * so it can be discarded.
299  */
300 static inline void mmci_dma_release(struct mmci_host *host)
301 {
302 	struct mmci_platform_data *plat = host->plat;
303 
304 	if (host->dma_rx_channel)
305 		dma_release_channel(host->dma_rx_channel);
306 	if (host->dma_tx_channel && plat->dma_tx_param)
307 		dma_release_channel(host->dma_tx_channel);
308 	host->dma_rx_channel = host->dma_tx_channel = NULL;
309 }
310 
311 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
312 {
313 	struct dma_chan *chan = host->dma_current;
314 	enum dma_data_direction dir;
315 	u32 status;
316 	int i;
317 
318 	/* Wait up to 1ms for the DMA to complete */
319 	for (i = 0; ; i++) {
320 		status = readl(host->base + MMCISTATUS);
321 		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
322 			break;
323 		udelay(10);
324 	}
325 
326 	/*
327 	 * Check to see whether we still have some data left in the FIFO -
328 	 * this catches DMA controllers which are unable to monitor the
329 	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
330 	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
331 	 */
332 	if (status & MCI_RXDATAAVLBLMASK) {
333 		dmaengine_terminate_all(chan);
334 		if (!data->error)
335 			data->error = -EIO;
336 	}
337 
338 	if (data->flags & MMC_DATA_WRITE) {
339 		dir = DMA_TO_DEVICE;
340 	} else {
341 		dir = DMA_FROM_DEVICE;
342 	}
343 
344 	if (!data->host_cookie)
345 		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
346 
347 	/*
348 	 * Use of DMA with scatter-gather is impossible.
349 	 * Give up with DMA and switch back to PIO mode.
350 	 */
351 	if (status & MCI_RXDATAAVLBLMASK) {
352 		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
353 		mmci_dma_release(host);
354 	}
355 }
356 
357 static void mmci_dma_data_error(struct mmci_host *host)
358 {
359 	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
360 	dmaengine_terminate_all(host->dma_current);
361 }
362 
363 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
364 			      struct mmci_host_next *next)
365 {
366 	struct variant_data *variant = host->variant;
367 	struct dma_slave_config conf = {
368 		.src_addr = host->phybase + MMCIFIFO,
369 		.dst_addr = host->phybase + MMCIFIFO,
370 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
371 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
372 		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
373 		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
374 		.device_fc = false,
375 	};
376 	struct dma_chan *chan;
377 	struct dma_device *device;
378 	struct dma_async_tx_descriptor *desc;
379 	enum dma_data_direction buffer_dirn;
380 	int nr_sg;
381 
382 	/* Check if next job is already prepared */
383 	if (data->host_cookie && !next &&
384 	    host->dma_current && host->dma_desc_current)
385 		return 0;
386 
387 	if (!next) {
388 		host->dma_current = NULL;
389 		host->dma_desc_current = NULL;
390 	}
391 
392 	if (data->flags & MMC_DATA_READ) {
393 		conf.direction = DMA_DEV_TO_MEM;
394 		buffer_dirn = DMA_FROM_DEVICE;
395 		chan = host->dma_rx_channel;
396 	} else {
397 		conf.direction = DMA_MEM_TO_DEV;
398 		buffer_dirn = DMA_TO_DEVICE;
399 		chan = host->dma_tx_channel;
400 	}
401 
402 	/* If there's no DMA channel, fall back to PIO */
403 	if (!chan)
404 		return -EINVAL;
405 
406 	/* If less than or equal to the fifo size, don't bother with DMA */
407 	if (data->blksz * data->blocks <= variant->fifosize)
408 		return -EINVAL;
409 
410 	device = chan->device;
411 	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
412 	if (nr_sg == 0)
413 		return -EINVAL;
414 
415 	dmaengine_slave_config(chan, &conf);
416 	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
417 					    conf.direction, DMA_CTRL_ACK);
418 	if (!desc)
419 		goto unmap_exit;
420 
421 	if (next) {
422 		next->dma_chan = chan;
423 		next->dma_desc = desc;
424 	} else {
425 		host->dma_current = chan;
426 		host->dma_desc_current = desc;
427 	}
428 
429 	return 0;
430 
431  unmap_exit:
432 	if (!next)
433 		dmaengine_terminate_all(chan);
434 	dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
435 	return -ENOMEM;
436 }
437 
438 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
439 {
440 	int ret;
441 	struct mmc_data *data = host->data;
442 
443 	ret = mmci_dma_prep_data(host, host->data, NULL);
444 	if (ret)
445 		return ret;
446 
447 	/* Okay, go for it. */
448 	dev_vdbg(mmc_dev(host->mmc),
449 		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
450 		 data->sg_len, data->blksz, data->blocks, data->flags);
451 	dmaengine_submit(host->dma_desc_current);
452 	dma_async_issue_pending(host->dma_current);
453 
454 	datactrl |= MCI_DPSM_DMAENABLE;
455 
456 	/* Trigger the DMA transfer */
457 	writel(datactrl, host->base + MMCIDATACTRL);
458 
459 	/*
460 	 * Let the MMCI say when the data is ended and it's time
461 	 * to fire next DMA request. When that happens, MMCI will
462 	 * call mmci_data_end()
463 	 */
464 	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
465 	       host->base + MMCIMASK0);
466 	return 0;
467 }
468 
469 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
470 {
471 	struct mmci_host_next *next = &host->next_data;
472 
473 	if (data->host_cookie && data->host_cookie != next->cookie) {
474 		pr_warning("[%s] invalid cookie: data->host_cookie %d"
475 		       " host->next_data.cookie %d\n",
476 		       __func__, data->host_cookie, host->next_data.cookie);
477 		data->host_cookie = 0;
478 	}
479 
480 	if (!data->host_cookie)
481 		return;
482 
483 	host->dma_desc_current = next->dma_desc;
484 	host->dma_current = next->dma_chan;
485 
486 	next->dma_desc = NULL;
487 	next->dma_chan = NULL;
488 }
489 
490 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
491 			     bool is_first_req)
492 {
493 	struct mmci_host *host = mmc_priv(mmc);
494 	struct mmc_data *data = mrq->data;
495 	struct mmci_host_next *nd = &host->next_data;
496 
497 	if (!data)
498 		return;
499 
500 	if (data->host_cookie) {
501 		data->host_cookie = 0;
502 		return;
503 	}
504 
505 	/* if config for dma */
506 	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
507 	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
508 		if (mmci_dma_prep_data(host, data, nd))
509 			data->host_cookie = 0;
510 		else
511 			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
512 	}
513 }
514 
515 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
516 			      int err)
517 {
518 	struct mmci_host *host = mmc_priv(mmc);
519 	struct mmc_data *data = mrq->data;
520 	struct dma_chan *chan;
521 	enum dma_data_direction dir;
522 
523 	if (!data)
524 		return;
525 
526 	if (data->flags & MMC_DATA_READ) {
527 		dir = DMA_FROM_DEVICE;
528 		chan = host->dma_rx_channel;
529 	} else {
530 		dir = DMA_TO_DEVICE;
531 		chan = host->dma_tx_channel;
532 	}
533 
534 
535 	/* if config for dma */
536 	if (chan) {
537 		if (err)
538 			dmaengine_terminate_all(chan);
539 		if (data->host_cookie)
540 			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
541 				     data->sg_len, dir);
542 		mrq->data->host_cookie = 0;
543 	}
544 }
545 
546 #else
547 /* Blank functions if the DMA engine is not available */
548 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
549 {
550 }
551 static inline void mmci_dma_setup(struct mmci_host *host)
552 {
553 }
554 
555 static inline void mmci_dma_release(struct mmci_host *host)
556 {
557 }
558 
559 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
560 {
561 }
562 
563 static inline void mmci_dma_data_error(struct mmci_host *host)
564 {
565 }
566 
567 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
568 {
569 	return -ENOSYS;
570 }
571 
572 #define mmci_pre_request NULL
573 #define mmci_post_request NULL
574 
575 #endif
576 
577 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
578 {
579 	struct variant_data *variant = host->variant;
580 	unsigned int datactrl, timeout, irqmask;
581 	unsigned long long clks;
582 	void __iomem *base;
583 	int blksz_bits;
584 
585 	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
586 		data->blksz, data->blocks, data->flags);
587 
588 	host->data = data;
589 	host->size = data->blksz * data->blocks;
590 	data->bytes_xfered = 0;
591 
592 	clks = (unsigned long long)data->timeout_ns * host->cclk;
593 	do_div(clks, 1000000000UL);
594 
595 	timeout = data->timeout_clks + (unsigned int)clks;
596 
597 	base = host->base;
598 	writel(timeout, base + MMCIDATATIMER);
599 	writel(host->size, base + MMCIDATALENGTH);
600 
601 	blksz_bits = ffs(data->blksz) - 1;
602 	BUG_ON(1 << blksz_bits != data->blksz);
603 
604 	if (variant->blksz_datactrl16)
605 		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
606 	else
607 		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
608 
609 	if (data->flags & MMC_DATA_READ)
610 		datactrl |= MCI_DPSM_DIRECTION;
611 
612 	/*
613 	 * Attempt to use DMA operation mode, if this
614 	 * should fail, fall back to PIO mode
615 	 */
616 	if (!mmci_dma_start_data(host, datactrl))
617 		return;
618 
619 	/* IRQ mode, map the SG list for CPU reading/writing */
620 	mmci_init_sg(host, data);
621 
622 	if (data->flags & MMC_DATA_READ) {
623 		irqmask = MCI_RXFIFOHALFFULLMASK;
624 
625 		/*
626 		 * If we have less than the fifo 'half-full' threshold to
627 		 * transfer, trigger a PIO interrupt as soon as any data
628 		 * is available.
629 		 */
630 		if (host->size < variant->fifohalfsize)
631 			irqmask |= MCI_RXDATAAVLBLMASK;
632 	} else {
633 		/*
634 		 * We don't actually need to include "FIFO empty" here
635 		 * since its implicit in "FIFO half empty".
636 		 */
637 		irqmask = MCI_TXFIFOHALFEMPTYMASK;
638 	}
639 
640 	/* The ST Micro variants has a special bit to enable SDIO */
641 	if (variant->sdio && host->mmc->card)
642 		if (mmc_card_sdio(host->mmc->card))
643 			datactrl |= MCI_ST_DPSM_SDIOEN;
644 
645 	writel(datactrl, base + MMCIDATACTRL);
646 	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
647 	mmci_set_mask1(host, irqmask);
648 }
649 
650 static void
651 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
652 {
653 	void __iomem *base = host->base;
654 
655 	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
656 	    cmd->opcode, cmd->arg, cmd->flags);
657 
658 	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
659 		writel(0, base + MMCICOMMAND);
660 		udelay(1);
661 	}
662 
663 	c |= cmd->opcode | MCI_CPSM_ENABLE;
664 	if (cmd->flags & MMC_RSP_PRESENT) {
665 		if (cmd->flags & MMC_RSP_136)
666 			c |= MCI_CPSM_LONGRSP;
667 		c |= MCI_CPSM_RESPONSE;
668 	}
669 	if (/*interrupt*/0)
670 		c |= MCI_CPSM_INTERRUPT;
671 
672 	host->cmd = cmd;
673 
674 	writel(cmd->arg, base + MMCIARGUMENT);
675 	writel(c, base + MMCICOMMAND);
676 }
677 
678 static void
679 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
680 	      unsigned int status)
681 {
682 	/* First check for errors */
683 	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
684 		      MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
685 		u32 remain, success;
686 
687 		/* Terminate the DMA transfer */
688 		if (dma_inprogress(host))
689 			mmci_dma_data_error(host);
690 
691 		/*
692 		 * Calculate how far we are into the transfer.  Note that
693 		 * the data counter gives the number of bytes transferred
694 		 * on the MMC bus, not on the host side.  On reads, this
695 		 * can be as much as a FIFO-worth of data ahead.  This
696 		 * matters for FIFO overruns only.
697 		 */
698 		remain = readl(host->base + MMCIDATACNT);
699 		success = data->blksz * data->blocks - remain;
700 
701 		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
702 			status, success);
703 		if (status & MCI_DATACRCFAIL) {
704 			/* Last block was not successful */
705 			success -= 1;
706 			data->error = -EILSEQ;
707 		} else if (status & MCI_DATATIMEOUT) {
708 			data->error = -ETIMEDOUT;
709 		} else if (status & MCI_STARTBITERR) {
710 			data->error = -ECOMM;
711 		} else if (status & MCI_TXUNDERRUN) {
712 			data->error = -EIO;
713 		} else if (status & MCI_RXOVERRUN) {
714 			if (success > host->variant->fifosize)
715 				success -= host->variant->fifosize;
716 			else
717 				success = 0;
718 			data->error = -EIO;
719 		}
720 		data->bytes_xfered = round_down(success, data->blksz);
721 	}
722 
723 	if (status & MCI_DATABLOCKEND)
724 		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
725 
726 	if (status & MCI_DATAEND || data->error) {
727 		if (dma_inprogress(host))
728 			mmci_dma_unmap(host, data);
729 		mmci_stop_data(host);
730 
731 		if (!data->error)
732 			/* The error clause is handled above, success! */
733 			data->bytes_xfered = data->blksz * data->blocks;
734 
735 		if (!data->stop) {
736 			mmci_request_end(host, data->mrq);
737 		} else {
738 			mmci_start_command(host, data->stop, 0);
739 		}
740 	}
741 }
742 
743 static void
744 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
745 	     unsigned int status)
746 {
747 	void __iomem *base = host->base;
748 
749 	host->cmd = NULL;
750 
751 	if (status & MCI_CMDTIMEOUT) {
752 		cmd->error = -ETIMEDOUT;
753 	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
754 		cmd->error = -EILSEQ;
755 	} else {
756 		cmd->resp[0] = readl(base + MMCIRESPONSE0);
757 		cmd->resp[1] = readl(base + MMCIRESPONSE1);
758 		cmd->resp[2] = readl(base + MMCIRESPONSE2);
759 		cmd->resp[3] = readl(base + MMCIRESPONSE3);
760 	}
761 
762 	if (!cmd->data || cmd->error) {
763 		if (host->data) {
764 			/* Terminate the DMA transfer */
765 			if (dma_inprogress(host))
766 				mmci_dma_data_error(host);
767 			mmci_stop_data(host);
768 		}
769 		mmci_request_end(host, cmd->mrq);
770 	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
771 		mmci_start_data(host, cmd->data);
772 	}
773 }
774 
775 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
776 {
777 	void __iomem *base = host->base;
778 	char *ptr = buffer;
779 	u32 status;
780 	int host_remain = host->size;
781 
782 	do {
783 		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
784 
785 		if (count > remain)
786 			count = remain;
787 
788 		if (count <= 0)
789 			break;
790 
791 		readsl(base + MMCIFIFO, ptr, count >> 2);
792 
793 		ptr += count;
794 		remain -= count;
795 		host_remain -= count;
796 
797 		if (remain == 0)
798 			break;
799 
800 		status = readl(base + MMCISTATUS);
801 	} while (status & MCI_RXDATAAVLBL);
802 
803 	return ptr - buffer;
804 }
805 
806 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
807 {
808 	struct variant_data *variant = host->variant;
809 	void __iomem *base = host->base;
810 	char *ptr = buffer;
811 
812 	do {
813 		unsigned int count, maxcnt;
814 
815 		maxcnt = status & MCI_TXFIFOEMPTY ?
816 			 variant->fifosize : variant->fifohalfsize;
817 		count = min(remain, maxcnt);
818 
819 		/*
820 		 * The ST Micro variant for SDIO transfer sizes
821 		 * less then 8 bytes should have clock H/W flow
822 		 * control disabled.
823 		 */
824 		if (variant->sdio &&
825 		    mmc_card_sdio(host->mmc->card)) {
826 			if (count < 8)
827 				writel(readl(host->base + MMCICLOCK) &
828 					~variant->clkreg_enable,
829 					host->base + MMCICLOCK);
830 			else
831 				writel(readl(host->base + MMCICLOCK) |
832 					variant->clkreg_enable,
833 					host->base + MMCICLOCK);
834 		}
835 
836 		/*
837 		 * SDIO especially may want to send something that is
838 		 * not divisible by 4 (as opposed to card sectors
839 		 * etc), and the FIFO only accept full 32-bit writes.
840 		 * So compensate by adding +3 on the count, a single
841 		 * byte become a 32bit write, 7 bytes will be two
842 		 * 32bit writes etc.
843 		 */
844 		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
845 
846 		ptr += count;
847 		remain -= count;
848 
849 		if (remain == 0)
850 			break;
851 
852 		status = readl(base + MMCISTATUS);
853 	} while (status & MCI_TXFIFOHALFEMPTY);
854 
855 	return ptr - buffer;
856 }
857 
858 /*
859  * PIO data transfer IRQ handler.
860  */
861 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
862 {
863 	struct mmci_host *host = dev_id;
864 	struct sg_mapping_iter *sg_miter = &host->sg_miter;
865 	struct variant_data *variant = host->variant;
866 	void __iomem *base = host->base;
867 	unsigned long flags;
868 	u32 status;
869 
870 	status = readl(base + MMCISTATUS);
871 
872 	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
873 
874 	local_irq_save(flags);
875 
876 	do {
877 		unsigned int remain, len;
878 		char *buffer;
879 
880 		/*
881 		 * For write, we only need to test the half-empty flag
882 		 * here - if the FIFO is completely empty, then by
883 		 * definition it is more than half empty.
884 		 *
885 		 * For read, check for data available.
886 		 */
887 		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
888 			break;
889 
890 		if (!sg_miter_next(sg_miter))
891 			break;
892 
893 		buffer = sg_miter->addr;
894 		remain = sg_miter->length;
895 
896 		len = 0;
897 		if (status & MCI_RXACTIVE)
898 			len = mmci_pio_read(host, buffer, remain);
899 		if (status & MCI_TXACTIVE)
900 			len = mmci_pio_write(host, buffer, remain, status);
901 
902 		sg_miter->consumed = len;
903 
904 		host->size -= len;
905 		remain -= len;
906 
907 		if (remain)
908 			break;
909 
910 		status = readl(base + MMCISTATUS);
911 	} while (1);
912 
913 	sg_miter_stop(sg_miter);
914 
915 	local_irq_restore(flags);
916 
917 	/*
918 	 * If we have less than the fifo 'half-full' threshold to transfer,
919 	 * trigger a PIO interrupt as soon as any data is available.
920 	 */
921 	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
922 		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
923 
924 	/*
925 	 * If we run out of data, disable the data IRQs; this
926 	 * prevents a race where the FIFO becomes empty before
927 	 * the chip itself has disabled the data path, and
928 	 * stops us racing with our data end IRQ.
929 	 */
930 	if (host->size == 0) {
931 		mmci_set_mask1(host, 0);
932 		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
933 	}
934 
935 	return IRQ_HANDLED;
936 }
937 
938 /*
939  * Handle completion of command and data transfers.
940  */
941 static irqreturn_t mmci_irq(int irq, void *dev_id)
942 {
943 	struct mmci_host *host = dev_id;
944 	u32 status;
945 	int ret = 0;
946 
947 	spin_lock(&host->lock);
948 
949 	do {
950 		struct mmc_command *cmd;
951 		struct mmc_data *data;
952 
953 		status = readl(host->base + MMCISTATUS);
954 
955 		if (host->singleirq) {
956 			if (status & readl(host->base + MMCIMASK1))
957 				mmci_pio_irq(irq, dev_id);
958 
959 			status &= ~MCI_IRQ1MASK;
960 		}
961 
962 		status &= readl(host->base + MMCIMASK0);
963 		writel(status, host->base + MMCICLEAR);
964 
965 		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
966 
967 		data = host->data;
968 		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
969 			      MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
970 			      MCI_DATABLOCKEND) && data)
971 			mmci_data_irq(host, data, status);
972 
973 		cmd = host->cmd;
974 		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
975 			mmci_cmd_irq(host, cmd, status);
976 
977 		ret = 1;
978 	} while (status);
979 
980 	spin_unlock(&host->lock);
981 
982 	return IRQ_RETVAL(ret);
983 }
984 
985 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
986 {
987 	struct mmci_host *host = mmc_priv(mmc);
988 	unsigned long flags;
989 
990 	WARN_ON(host->mrq != NULL);
991 
992 	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
993 		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
994 			mrq->data->blksz);
995 		mrq->cmd->error = -EINVAL;
996 		mmc_request_done(mmc, mrq);
997 		return;
998 	}
999 
1000 	pm_runtime_get_sync(mmc_dev(mmc));
1001 
1002 	spin_lock_irqsave(&host->lock, flags);
1003 
1004 	host->mrq = mrq;
1005 
1006 	if (mrq->data)
1007 		mmci_get_next_data(host, mrq->data);
1008 
1009 	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1010 		mmci_start_data(host, mrq->data);
1011 
1012 	mmci_start_command(host, mrq->cmd, 0);
1013 
1014 	spin_unlock_irqrestore(&host->lock, flags);
1015 }
1016 
1017 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1018 {
1019 	struct mmci_host *host = mmc_priv(mmc);
1020 	u32 pwr = 0;
1021 	unsigned long flags;
1022 	int ret;
1023 
1024 	switch (ios->power_mode) {
1025 	case MMC_POWER_OFF:
1026 		if (host->vcc)
1027 			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1028 		break;
1029 	case MMC_POWER_UP:
1030 		if (host->vcc) {
1031 			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1032 			if (ret) {
1033 				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1034 				/*
1035 				 * The .set_ios() function in the mmc_host_ops
1036 				 * struct return void, and failing to set the
1037 				 * power should be rare so we print an error
1038 				 * and return here.
1039 				 */
1040 				return;
1041 			}
1042 		}
1043 		if (host->plat->vdd_handler)
1044 			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1045 						       ios->power_mode);
1046 		/* The ST version does not have this, fall through to POWER_ON */
1047 		if (host->hw_designer != AMBA_VENDOR_ST) {
1048 			pwr |= MCI_PWR_UP;
1049 			break;
1050 		}
1051 	case MMC_POWER_ON:
1052 		pwr |= MCI_PWR_ON;
1053 		break;
1054 	}
1055 
1056 	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1057 		if (host->hw_designer != AMBA_VENDOR_ST)
1058 			pwr |= MCI_ROD;
1059 		else {
1060 			/*
1061 			 * The ST Micro variant use the ROD bit for something
1062 			 * else and only has OD (Open Drain).
1063 			 */
1064 			pwr |= MCI_OD;
1065 		}
1066 	}
1067 
1068 	spin_lock_irqsave(&host->lock, flags);
1069 
1070 	mmci_set_clkreg(host, ios->clock);
1071 
1072 	if (host->pwr != pwr) {
1073 		host->pwr = pwr;
1074 		writel(pwr, host->base + MMCIPOWER);
1075 	}
1076 
1077 	spin_unlock_irqrestore(&host->lock, flags);
1078 }
1079 
1080 static int mmci_get_ro(struct mmc_host *mmc)
1081 {
1082 	struct mmci_host *host = mmc_priv(mmc);
1083 
1084 	if (host->gpio_wp == -ENOSYS)
1085 		return -ENOSYS;
1086 
1087 	return gpio_get_value_cansleep(host->gpio_wp);
1088 }
1089 
1090 static int mmci_get_cd(struct mmc_host *mmc)
1091 {
1092 	struct mmci_host *host = mmc_priv(mmc);
1093 	struct mmci_platform_data *plat = host->plat;
1094 	unsigned int status;
1095 
1096 	if (host->gpio_cd == -ENOSYS) {
1097 		if (!plat->status)
1098 			return 1; /* Assume always present */
1099 
1100 		status = plat->status(mmc_dev(host->mmc));
1101 	} else
1102 		status = !!gpio_get_value_cansleep(host->gpio_cd)
1103 			^ plat->cd_invert;
1104 
1105 	/*
1106 	 * Use positive logic throughout - status is zero for no card,
1107 	 * non-zero for card inserted.
1108 	 */
1109 	return status;
1110 }
1111 
1112 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1113 {
1114 	struct mmci_host *host = dev_id;
1115 
1116 	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1117 
1118 	return IRQ_HANDLED;
1119 }
1120 
1121 static const struct mmc_host_ops mmci_ops = {
1122 	.request	= mmci_request,
1123 	.pre_req	= mmci_pre_request,
1124 	.post_req	= mmci_post_request,
1125 	.set_ios	= mmci_set_ios,
1126 	.get_ro		= mmci_get_ro,
1127 	.get_cd		= mmci_get_cd,
1128 };
1129 
1130 static int __devinit mmci_probe(struct amba_device *dev,
1131 	const struct amba_id *id)
1132 {
1133 	struct mmci_platform_data *plat = dev->dev.platform_data;
1134 	struct variant_data *variant = id->data;
1135 	struct mmci_host *host;
1136 	struct mmc_host *mmc;
1137 	int ret;
1138 
1139 	/* must have platform data */
1140 	if (!plat) {
1141 		ret = -EINVAL;
1142 		goto out;
1143 	}
1144 
1145 	ret = amba_request_regions(dev, DRIVER_NAME);
1146 	if (ret)
1147 		goto out;
1148 
1149 	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1150 	if (!mmc) {
1151 		ret = -ENOMEM;
1152 		goto rel_regions;
1153 	}
1154 
1155 	host = mmc_priv(mmc);
1156 	host->mmc = mmc;
1157 
1158 	host->gpio_wp = -ENOSYS;
1159 	host->gpio_cd = -ENOSYS;
1160 	host->gpio_cd_irq = -1;
1161 
1162 	host->hw_designer = amba_manf(dev);
1163 	host->hw_revision = amba_rev(dev);
1164 	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1165 	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1166 
1167 	host->clk = clk_get(&dev->dev, NULL);
1168 	if (IS_ERR(host->clk)) {
1169 		ret = PTR_ERR(host->clk);
1170 		host->clk = NULL;
1171 		goto host_free;
1172 	}
1173 
1174 	ret = clk_prepare(host->clk);
1175 	if (ret)
1176 		goto clk_free;
1177 
1178 	ret = clk_enable(host->clk);
1179 	if (ret)
1180 		goto clk_unprep;
1181 
1182 	host->plat = plat;
1183 	host->variant = variant;
1184 	host->mclk = clk_get_rate(host->clk);
1185 	/*
1186 	 * According to the spec, mclk is max 100 MHz,
1187 	 * so we try to adjust the clock down to this,
1188 	 * (if possible).
1189 	 */
1190 	if (host->mclk > 100000000) {
1191 		ret = clk_set_rate(host->clk, 100000000);
1192 		if (ret < 0)
1193 			goto clk_disable;
1194 		host->mclk = clk_get_rate(host->clk);
1195 		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1196 			host->mclk);
1197 	}
1198 	host->phybase = dev->res.start;
1199 	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1200 	if (!host->base) {
1201 		ret = -ENOMEM;
1202 		goto clk_disable;
1203 	}
1204 
1205 	mmc->ops = &mmci_ops;
1206 	/*
1207 	 * The ARM and ST versions of the block have slightly different
1208 	 * clock divider equations which means that the minimum divider
1209 	 * differs too.
1210 	 */
1211 	if (variant->st_clkdiv)
1212 		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1213 	else
1214 		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1215 	/*
1216 	 * If the platform data supplies a maximum operating
1217 	 * frequency, this takes precedence. Else, we fall back
1218 	 * to using the module parameter, which has a (low)
1219 	 * default value in case it is not specified. Either
1220 	 * value must not exceed the clock rate into the block,
1221 	 * of course.
1222 	 */
1223 	if (plat->f_max)
1224 		mmc->f_max = min(host->mclk, plat->f_max);
1225 	else
1226 		mmc->f_max = min(host->mclk, fmax);
1227 	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1228 
1229 #ifdef CONFIG_REGULATOR
1230 	/* If we're using the regulator framework, try to fetch a regulator */
1231 	host->vcc = regulator_get(&dev->dev, "vmmc");
1232 	if (IS_ERR(host->vcc))
1233 		host->vcc = NULL;
1234 	else {
1235 		int mask = mmc_regulator_get_ocrmask(host->vcc);
1236 
1237 		if (mask < 0)
1238 			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1239 				mask);
1240 		else {
1241 			host->mmc->ocr_avail = (u32) mask;
1242 			if (plat->ocr_mask)
1243 				dev_warn(&dev->dev,
1244 				 "Provided ocr_mask/setpower will not be used "
1245 				 "(using regulator instead)\n");
1246 		}
1247 	}
1248 #endif
1249 	/* Fall back to platform data if no regulator is found */
1250 	if (host->vcc == NULL)
1251 		mmc->ocr_avail = plat->ocr_mask;
1252 	mmc->caps = plat->capabilities;
1253 	mmc->caps2 = plat->capabilities2;
1254 
1255 	/*
1256 	 * We can do SGIO
1257 	 */
1258 	mmc->max_segs = NR_SG;
1259 
1260 	/*
1261 	 * Since only a certain number of bits are valid in the data length
1262 	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1263 	 * single request.
1264 	 */
1265 	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1266 
1267 	/*
1268 	 * Set the maximum segment size.  Since we aren't doing DMA
1269 	 * (yet) we are only limited by the data length register.
1270 	 */
1271 	mmc->max_seg_size = mmc->max_req_size;
1272 
1273 	/*
1274 	 * Block size can be up to 2048 bytes, but must be a power of two.
1275 	 */
1276 	mmc->max_blk_size = 2048;
1277 
1278 	/*
1279 	 * No limit on the number of blocks transferred.
1280 	 */
1281 	mmc->max_blk_count = mmc->max_req_size;
1282 
1283 	spin_lock_init(&host->lock);
1284 
1285 	writel(0, host->base + MMCIMASK0);
1286 	writel(0, host->base + MMCIMASK1);
1287 	writel(0xfff, host->base + MMCICLEAR);
1288 
1289 	if (gpio_is_valid(plat->gpio_cd)) {
1290 		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1291 		if (ret == 0)
1292 			ret = gpio_direction_input(plat->gpio_cd);
1293 		if (ret == 0)
1294 			host->gpio_cd = plat->gpio_cd;
1295 		else if (ret != -ENOSYS)
1296 			goto err_gpio_cd;
1297 
1298 		/*
1299 		 * A gpio pin that will detect cards when inserted and removed
1300 		 * will most likely want to trigger on the edges if it is
1301 		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1302 		 * for the inverted case) so we request triggers on both
1303 		 * edges.
1304 		 */
1305 		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1306 				mmci_cd_irq,
1307 				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1308 				DRIVER_NAME " (cd)", host);
1309 		if (ret >= 0)
1310 			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1311 	}
1312 	if (gpio_is_valid(plat->gpio_wp)) {
1313 		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1314 		if (ret == 0)
1315 			ret = gpio_direction_input(plat->gpio_wp);
1316 		if (ret == 0)
1317 			host->gpio_wp = plat->gpio_wp;
1318 		else if (ret != -ENOSYS)
1319 			goto err_gpio_wp;
1320 	}
1321 
1322 	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1323 	    && host->gpio_cd_irq < 0)
1324 		mmc->caps |= MMC_CAP_NEEDS_POLL;
1325 
1326 	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1327 	if (ret)
1328 		goto unmap;
1329 
1330 	if (dev->irq[1] == NO_IRQ)
1331 		host->singleirq = true;
1332 	else {
1333 		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1334 				  DRIVER_NAME " (pio)", host);
1335 		if (ret)
1336 			goto irq0_free;
1337 	}
1338 
1339 	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1340 
1341 	amba_set_drvdata(dev, mmc);
1342 
1343 	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1344 		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1345 		 amba_rev(dev), (unsigned long long)dev->res.start,
1346 		 dev->irq[0], dev->irq[1]);
1347 
1348 	mmci_dma_setup(host);
1349 
1350 	pm_runtime_put(&dev->dev);
1351 
1352 	mmc_add_host(mmc);
1353 
1354 	return 0;
1355 
1356  irq0_free:
1357 	free_irq(dev->irq[0], host);
1358  unmap:
1359 	if (host->gpio_wp != -ENOSYS)
1360 		gpio_free(host->gpio_wp);
1361  err_gpio_wp:
1362 	if (host->gpio_cd_irq >= 0)
1363 		free_irq(host->gpio_cd_irq, host);
1364 	if (host->gpio_cd != -ENOSYS)
1365 		gpio_free(host->gpio_cd);
1366  err_gpio_cd:
1367 	iounmap(host->base);
1368  clk_disable:
1369 	clk_disable(host->clk);
1370  clk_unprep:
1371 	clk_unprepare(host->clk);
1372  clk_free:
1373 	clk_put(host->clk);
1374  host_free:
1375 	mmc_free_host(mmc);
1376  rel_regions:
1377 	amba_release_regions(dev);
1378  out:
1379 	return ret;
1380 }
1381 
1382 static int __devexit mmci_remove(struct amba_device *dev)
1383 {
1384 	struct mmc_host *mmc = amba_get_drvdata(dev);
1385 
1386 	amba_set_drvdata(dev, NULL);
1387 
1388 	if (mmc) {
1389 		struct mmci_host *host = mmc_priv(mmc);
1390 
1391 		/*
1392 		 * Undo pm_runtime_put() in probe.  We use the _sync
1393 		 * version here so that we can access the primecell.
1394 		 */
1395 		pm_runtime_get_sync(&dev->dev);
1396 
1397 		mmc_remove_host(mmc);
1398 
1399 		writel(0, host->base + MMCIMASK0);
1400 		writel(0, host->base + MMCIMASK1);
1401 
1402 		writel(0, host->base + MMCICOMMAND);
1403 		writel(0, host->base + MMCIDATACTRL);
1404 
1405 		mmci_dma_release(host);
1406 		free_irq(dev->irq[0], host);
1407 		if (!host->singleirq)
1408 			free_irq(dev->irq[1], host);
1409 
1410 		if (host->gpio_wp != -ENOSYS)
1411 			gpio_free(host->gpio_wp);
1412 		if (host->gpio_cd_irq >= 0)
1413 			free_irq(host->gpio_cd_irq, host);
1414 		if (host->gpio_cd != -ENOSYS)
1415 			gpio_free(host->gpio_cd);
1416 
1417 		iounmap(host->base);
1418 		clk_disable(host->clk);
1419 		clk_unprepare(host->clk);
1420 		clk_put(host->clk);
1421 
1422 		if (host->vcc)
1423 			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1424 		regulator_put(host->vcc);
1425 
1426 		mmc_free_host(mmc);
1427 
1428 		amba_release_regions(dev);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 #ifdef CONFIG_PM
1435 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1436 {
1437 	struct mmc_host *mmc = amba_get_drvdata(dev);
1438 	int ret = 0;
1439 
1440 	if (mmc) {
1441 		struct mmci_host *host = mmc_priv(mmc);
1442 
1443 		ret = mmc_suspend_host(mmc);
1444 		if (ret == 0)
1445 			writel(0, host->base + MMCIMASK0);
1446 	}
1447 
1448 	return ret;
1449 }
1450 
1451 static int mmci_resume(struct amba_device *dev)
1452 {
1453 	struct mmc_host *mmc = amba_get_drvdata(dev);
1454 	int ret = 0;
1455 
1456 	if (mmc) {
1457 		struct mmci_host *host = mmc_priv(mmc);
1458 
1459 		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1460 
1461 		ret = mmc_resume_host(mmc);
1462 	}
1463 
1464 	return ret;
1465 }
1466 #else
1467 #define mmci_suspend	NULL
1468 #define mmci_resume	NULL
1469 #endif
1470 
1471 static struct amba_id mmci_ids[] = {
1472 	{
1473 		.id	= 0x00041180,
1474 		.mask	= 0xff0fffff,
1475 		.data	= &variant_arm,
1476 	},
1477 	{
1478 		.id	= 0x01041180,
1479 		.mask	= 0xff0fffff,
1480 		.data	= &variant_arm_extended_fifo,
1481 	},
1482 	{
1483 		.id	= 0x00041181,
1484 		.mask	= 0x000fffff,
1485 		.data	= &variant_arm,
1486 	},
1487 	/* ST Micro variants */
1488 	{
1489 		.id     = 0x00180180,
1490 		.mask   = 0x00ffffff,
1491 		.data	= &variant_u300,
1492 	},
1493 	{
1494 		.id     = 0x00280180,
1495 		.mask   = 0x00ffffff,
1496 		.data	= &variant_u300,
1497 	},
1498 	{
1499 		.id     = 0x00480180,
1500 		.mask   = 0xf0ffffff,
1501 		.data	= &variant_ux500,
1502 	},
1503 	{
1504 		.id     = 0x10480180,
1505 		.mask   = 0xf0ffffff,
1506 		.data	= &variant_ux500v2,
1507 	},
1508 	{ 0, 0 },
1509 };
1510 
1511 MODULE_DEVICE_TABLE(amba, mmci_ids);
1512 
1513 static struct amba_driver mmci_driver = {
1514 	.drv		= {
1515 		.name	= DRIVER_NAME,
1516 	},
1517 	.probe		= mmci_probe,
1518 	.remove		= __devexit_p(mmci_remove),
1519 	.suspend	= mmci_suspend,
1520 	.resume		= mmci_resume,
1521 	.id_table	= mmci_ids,
1522 };
1523 
1524 static int __init mmci_init(void)
1525 {
1526 	return amba_driver_register(&mmci_driver);
1527 }
1528 
1529 static void __exit mmci_exit(void)
1530 {
1531 	amba_driver_unregister(&mmci_driver);
1532 }
1533 
1534 module_init(mmci_init);
1535 module_exit(mmci_exit);
1536 module_param(fmax, uint, 0444);
1537 
1538 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1539 MODULE_LICENSE("GPL");
1540