xref: /openbmc/linux/drivers/mmc/host/mmc_spi.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Access SD/MMC cards through SPI master controllers
4  *
5  * (C) Copyright 2005, Intec Automation,
6  *		Mike Lavender (mike@steroidmicros)
7  * (C) Copyright 2006-2007, David Brownell
8  * (C) Copyright 2007, Axis Communications,
9  *		Hans-Peter Nilsson (hp@axis.com)
10  * (C) Copyright 2007, ATRON electronic GmbH,
11  *		Jan Nikitenko <jan.nikitenko@gmail.com>
12  */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
22 
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
26 
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
29 
30 #include <asm/unaligned.h>
31 
32 
33 /* NOTES:
34  *
35  * - For now, we won't try to interoperate with a real mmc/sd/sdio
36  *   controller, although some of them do have hardware support for
37  *   SPI protocol.  The main reason for such configs would be mmc-ish
38  *   cards like DataFlash, which don't support that "native" protocol.
39  *
40  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41  *   switch between driver stacks, and in any case if "native" mode
42  *   is available, it will be faster and hence preferable.
43  *
44  * - MMC depends on a different chipselect management policy than the
45  *   SPI interface currently supports for shared bus segments:  it needs
46  *   to issue multiple spi_message requests with the chipselect active,
47  *   using the results of one message to decide the next one to issue.
48  *
49  *   Pending updates to the programming interface, this driver expects
50  *   that it not share the bus with other drivers (precluding conflicts).
51  *
52  * - We tell the controller to keep the chipselect active from the
53  *   beginning of an mmc_host_ops.request until the end.  So beware
54  *   of SPI controller drivers that mis-handle the cs_change flag!
55  *
56  *   However, many cards seem OK with chipselect flapping up/down
57  *   during that time ... at least on unshared bus segments.
58  */
59 
60 
61 /*
62  * Local protocol constants, internal to data block protocols.
63  */
64 
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
70 
71 /* Read and write blocks start with these tokens and end with crc;
72  * on error, read tokens act like a subset of R2_SPI_* values.
73  */
74 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
77 
78 #define MMC_SPI_BLOCKSIZE	512
79 
80 
81 /* These fixed timeouts come from the latest SD specs, which say to ignore
82  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
83  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
84  * reads which takes nowhere near that long.  Older cards may be able to use
85  * shorter timeouts ... but why bother?
86  */
87 #define r1b_timeout		(HZ * 3)
88 
89 /* One of the critical speed parameters is the amount of data which may
90  * be transferred in one command. If this value is too low, the SD card
91  * controller has to do multiple partial block writes (argggh!). With
92  * today (2008) SD cards there is little speed gain if we transfer more
93  * than 64 KBytes at a time. So use this value until there is any indication
94  * that we should do more here.
95  */
96 #define MMC_SPI_BLOCKSATONCE	128
97 
98 /****************************************************************************/
99 
100 /*
101  * Local Data Structures
102  */
103 
104 /* "scratch" is per-{command,block} data exchanged with the card */
105 struct scratch {
106 	u8			status[29];
107 	u8			data_token;
108 	__be16			crc_val;
109 };
110 
111 struct mmc_spi_host {
112 	struct mmc_host		*mmc;
113 	struct spi_device	*spi;
114 
115 	unsigned char		power_mode;
116 	u16			powerup_msecs;
117 
118 	struct mmc_spi_platform_data	*pdata;
119 
120 	/* for bulk data transfers */
121 	struct spi_transfer	token, t, crc, early_status;
122 	struct spi_message	m;
123 
124 	/* for status readback */
125 	struct spi_transfer	status;
126 	struct spi_message	readback;
127 
128 	/* underlying DMA-aware controller, or null */
129 	struct device		*dma_dev;
130 
131 	/* buffer used for commands and for message "overhead" */
132 	struct scratch		*data;
133 	dma_addr_t		data_dma;
134 
135 	/* Specs say to write ones most of the time, even when the card
136 	 * has no need to read its input data; and many cards won't care.
137 	 * This is our source of those ones.
138 	 */
139 	void			*ones;
140 	dma_addr_t		ones_dma;
141 };
142 
143 
144 /****************************************************************************/
145 
146 /*
147  * MMC-over-SPI protocol glue, used by the MMC stack interface
148  */
149 
150 static inline int mmc_cs_off(struct mmc_spi_host *host)
151 {
152 	/* chipselect will always be inactive after setup() */
153 	return spi_setup(host->spi);
154 }
155 
156 static int
157 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
158 {
159 	int status;
160 
161 	if (len > sizeof(*host->data)) {
162 		WARN_ON(1);
163 		return -EIO;
164 	}
165 
166 	host->status.len = len;
167 
168 	if (host->dma_dev)
169 		dma_sync_single_for_device(host->dma_dev,
170 				host->data_dma, sizeof(*host->data),
171 				DMA_FROM_DEVICE);
172 
173 	status = spi_sync_locked(host->spi, &host->readback);
174 
175 	if (host->dma_dev)
176 		dma_sync_single_for_cpu(host->dma_dev,
177 				host->data_dma, sizeof(*host->data),
178 				DMA_FROM_DEVICE);
179 
180 	return status;
181 }
182 
183 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
184 			unsigned n, u8 byte)
185 {
186 	u8 *cp = host->data->status;
187 	unsigned long start = jiffies;
188 
189 	while (1) {
190 		int		status;
191 		unsigned	i;
192 
193 		status = mmc_spi_readbytes(host, n);
194 		if (status < 0)
195 			return status;
196 
197 		for (i = 0; i < n; i++) {
198 			if (cp[i] != byte)
199 				return cp[i];
200 		}
201 
202 		if (time_is_before_jiffies(start + timeout))
203 			break;
204 
205 		/* If we need long timeouts, we may release the CPU.
206 		 * We use jiffies here because we want to have a relation
207 		 * between elapsed time and the blocking of the scheduler.
208 		 */
209 		if (time_is_before_jiffies(start + 1))
210 			schedule();
211 	}
212 	return -ETIMEDOUT;
213 }
214 
215 static inline int
216 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
217 {
218 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
219 }
220 
221 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
222 {
223 	return mmc_spi_skip(host, timeout, 1, 0xff);
224 }
225 
226 
227 /*
228  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
229  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
230  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
231  *
232  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
233  * newer cards R7 (IF_COND).
234  */
235 
236 static char *maptype(struct mmc_command *cmd)
237 {
238 	switch (mmc_spi_resp_type(cmd)) {
239 	case MMC_RSP_SPI_R1:	return "R1";
240 	case MMC_RSP_SPI_R1B:	return "R1B";
241 	case MMC_RSP_SPI_R2:	return "R2/R5";
242 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
243 	default:		return "?";
244 	}
245 }
246 
247 /* return zero, else negative errno after setting cmd->error */
248 static int mmc_spi_response_get(struct mmc_spi_host *host,
249 		struct mmc_command *cmd, int cs_on)
250 {
251 	u8	*cp = host->data->status;
252 	u8	*end = cp + host->t.len;
253 	int	value = 0;
254 	int	bitshift;
255 	u8 	leftover = 0;
256 	unsigned short rotator;
257 	int 	i;
258 	char	tag[32];
259 
260 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
261 		cmd->opcode, maptype(cmd));
262 
263 	/* Except for data block reads, the whole response will already
264 	 * be stored in the scratch buffer.  It's somewhere after the
265 	 * command and the first byte we read after it.  We ignore that
266 	 * first byte.  After STOP_TRANSMISSION command it may include
267 	 * two data bits, but otherwise it's all ones.
268 	 */
269 	cp += 8;
270 	while (cp < end && *cp == 0xff)
271 		cp++;
272 
273 	/* Data block reads (R1 response types) may need more data... */
274 	if (cp == end) {
275 		cp = host->data->status;
276 		end = cp+1;
277 
278 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
279 		 * status byte ... and we already scanned 2 bytes.
280 		 *
281 		 * REVISIT block read paths use nasty byte-at-a-time I/O
282 		 * so it can always DMA directly into the target buffer.
283 		 * It'd probably be better to memcpy() the first chunk and
284 		 * avoid extra i/o calls...
285 		 *
286 		 * Note we check for more than 8 bytes, because in practice,
287 		 * some SD cards are slow...
288 		 */
289 		for (i = 2; i < 16; i++) {
290 			value = mmc_spi_readbytes(host, 1);
291 			if (value < 0)
292 				goto done;
293 			if (*cp != 0xff)
294 				goto checkstatus;
295 		}
296 		value = -ETIMEDOUT;
297 		goto done;
298 	}
299 
300 checkstatus:
301 	bitshift = 0;
302 	if (*cp & 0x80)	{
303 		/* Houston, we have an ugly card with a bit-shifted response */
304 		rotator = *cp++ << 8;
305 		/* read the next byte */
306 		if (cp == end) {
307 			value = mmc_spi_readbytes(host, 1);
308 			if (value < 0)
309 				goto done;
310 			cp = host->data->status;
311 			end = cp+1;
312 		}
313 		rotator |= *cp++;
314 		while (rotator & 0x8000) {
315 			bitshift++;
316 			rotator <<= 1;
317 		}
318 		cmd->resp[0] = rotator >> 8;
319 		leftover = rotator;
320 	} else {
321 		cmd->resp[0] = *cp++;
322 	}
323 	cmd->error = 0;
324 
325 	/* Status byte: the entire seven-bit R1 response.  */
326 	if (cmd->resp[0] != 0) {
327 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
328 				& cmd->resp[0])
329 			value = -EFAULT; /* Bad address */
330 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
331 			value = -ENOSYS; /* Function not implemented */
332 		else if (R1_SPI_COM_CRC & cmd->resp[0])
333 			value = -EILSEQ; /* Illegal byte sequence */
334 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
335 				& cmd->resp[0])
336 			value = -EIO;    /* I/O error */
337 		/* else R1_SPI_IDLE, "it's resetting" */
338 	}
339 
340 	switch (mmc_spi_resp_type(cmd)) {
341 
342 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
343 	 * and less-common stuff like various erase operations.
344 	 */
345 	case MMC_RSP_SPI_R1B:
346 		/* maybe we read all the busy tokens already */
347 		while (cp < end && *cp == 0)
348 			cp++;
349 		if (cp == end)
350 			mmc_spi_wait_unbusy(host, r1b_timeout);
351 		break;
352 
353 	/* SPI R2 == R1 + second status byte; SEND_STATUS
354 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
355 	 */
356 	case MMC_RSP_SPI_R2:
357 		/* read the next byte */
358 		if (cp == end) {
359 			value = mmc_spi_readbytes(host, 1);
360 			if (value < 0)
361 				goto done;
362 			cp = host->data->status;
363 			end = cp+1;
364 		}
365 		if (bitshift) {
366 			rotator = leftover << 8;
367 			rotator |= *cp << bitshift;
368 			cmd->resp[0] |= (rotator & 0xFF00);
369 		} else {
370 			cmd->resp[0] |= *cp << 8;
371 		}
372 		break;
373 
374 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
375 	case MMC_RSP_SPI_R3:
376 		rotator = leftover << 8;
377 		cmd->resp[1] = 0;
378 		for (i = 0; i < 4; i++) {
379 			cmd->resp[1] <<= 8;
380 			/* read the next byte */
381 			if (cp == end) {
382 				value = mmc_spi_readbytes(host, 1);
383 				if (value < 0)
384 					goto done;
385 				cp = host->data->status;
386 				end = cp+1;
387 			}
388 			if (bitshift) {
389 				rotator |= *cp++ << bitshift;
390 				cmd->resp[1] |= (rotator >> 8);
391 				rotator <<= 8;
392 			} else {
393 				cmd->resp[1] |= *cp++;
394 			}
395 		}
396 		break;
397 
398 	/* SPI R1 == just one status byte */
399 	case MMC_RSP_SPI_R1:
400 		break;
401 
402 	default:
403 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
404 			mmc_spi_resp_type(cmd));
405 		if (value >= 0)
406 			value = -EINVAL;
407 		goto done;
408 	}
409 
410 	if (value < 0)
411 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
412 			tag, cmd->resp[0], cmd->resp[1]);
413 
414 	/* disable chipselect on errors and some success cases */
415 	if (value >= 0 && cs_on)
416 		return value;
417 done:
418 	if (value < 0)
419 		cmd->error = value;
420 	mmc_cs_off(host);
421 	return value;
422 }
423 
424 /* Issue command and read its response.
425  * Returns zero on success, negative for error.
426  *
427  * On error, caller must cope with mmc core retry mechanism.  That
428  * means immediate low-level resubmit, which affects the bus lock...
429  */
430 static int
431 mmc_spi_command_send(struct mmc_spi_host *host,
432 		struct mmc_request *mrq,
433 		struct mmc_command *cmd, int cs_on)
434 {
435 	struct scratch		*data = host->data;
436 	u8			*cp = data->status;
437 	int			status;
438 	struct spi_transfer	*t;
439 
440 	/* We can handle most commands (except block reads) in one full
441 	 * duplex I/O operation before either starting the next transfer
442 	 * (data block or command) or else deselecting the card.
443 	 *
444 	 * First, write 7 bytes:
445 	 *  - an all-ones byte to ensure the card is ready
446 	 *  - opcode byte (plus start and transmission bits)
447 	 *  - four bytes of big-endian argument
448 	 *  - crc7 (plus end bit) ... always computed, it's cheap
449 	 *
450 	 * We init the whole buffer to all-ones, which is what we need
451 	 * to write while we're reading (later) response data.
452 	 */
453 	memset(cp, 0xff, sizeof(data->status));
454 
455 	cp[1] = 0x40 | cmd->opcode;
456 	put_unaligned_be32(cmd->arg, cp + 2);
457 	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
458 	cp += 7;
459 
460 	/* Then, read up to 13 bytes (while writing all-ones):
461 	 *  - N(CR) (== 1..8) bytes of all-ones
462 	 *  - status byte (for all response types)
463 	 *  - the rest of the response, either:
464 	 *      + nothing, for R1 or R1B responses
465 	 *	+ second status byte, for R2 responses
466 	 *	+ four data bytes, for R3 and R7 responses
467 	 *
468 	 * Finally, read some more bytes ... in the nice cases we know in
469 	 * advance how many, and reading 1 more is always OK:
470 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
471 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
472 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
473 	 *
474 	 * So in those cases one full duplex I/O of at most 21 bytes will
475 	 * handle the whole command, leaving the card ready to receive a
476 	 * data block or new command.  We do that whenever we can, shaving
477 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
478 	 *
479 	 * There are two other cases, where it's not generally practical
480 	 * to rely on a single I/O:
481 	 *
482 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
483 	 *
484 	 *    In this case we can *try* to fit it into one I/O, then
485 	 *    maybe read more data later.
486 	 *
487 	 *  - Data block reads are more troublesome, since a variable
488 	 *    number of padding bytes precede the token and data.
489 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
490 	 *      + N(AC) (== 1..many) bytes of all-ones
491 	 *
492 	 *    In this case we currently only have minimal speedups here:
493 	 *    when N(CR) == 1 we can avoid I/O in response_get().
494 	 */
495 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
496 		cp += 2;	/* min(N(CR)) + status */
497 		/* R1 */
498 	} else {
499 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
500 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
501 			cp++;
502 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
503 			cp += 4;
504 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
505 			cp = data->status + sizeof(data->status);
506 		/* else:  R1 (most commands) */
507 	}
508 
509 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
510 		cmd->opcode, maptype(cmd));
511 
512 	/* send command, leaving chipselect active */
513 	spi_message_init(&host->m);
514 
515 	t = &host->t;
516 	memset(t, 0, sizeof(*t));
517 	t->tx_buf = t->rx_buf = data->status;
518 	t->tx_dma = t->rx_dma = host->data_dma;
519 	t->len = cp - data->status;
520 	t->cs_change = 1;
521 	spi_message_add_tail(t, &host->m);
522 
523 	if (host->dma_dev) {
524 		host->m.is_dma_mapped = 1;
525 		dma_sync_single_for_device(host->dma_dev,
526 				host->data_dma, sizeof(*host->data),
527 				DMA_BIDIRECTIONAL);
528 	}
529 	status = spi_sync_locked(host->spi, &host->m);
530 
531 	if (host->dma_dev)
532 		dma_sync_single_for_cpu(host->dma_dev,
533 				host->data_dma, sizeof(*host->data),
534 				DMA_BIDIRECTIONAL);
535 	if (status < 0) {
536 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
537 		cmd->error = status;
538 		return status;
539 	}
540 
541 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
542 	return mmc_spi_response_get(host, cmd, cs_on);
543 }
544 
545 /* Build data message with up to four separate transfers.  For TX, we
546  * start by writing the data token.  And in most cases, we finish with
547  * a status transfer.
548  *
549  * We always provide TX data for data and CRC.  The MMC/SD protocol
550  * requires us to write ones; but Linux defaults to writing zeroes;
551  * so we explicitly initialize it to all ones on RX paths.
552  *
553  * We also handle DMA mapping, so the underlying SPI controller does
554  * not need to (re)do it for each message.
555  */
556 static void
557 mmc_spi_setup_data_message(
558 	struct mmc_spi_host	*host,
559 	int			multiple,
560 	enum dma_data_direction	direction)
561 {
562 	struct spi_transfer	*t;
563 	struct scratch		*scratch = host->data;
564 	dma_addr_t		dma = host->data_dma;
565 
566 	spi_message_init(&host->m);
567 	if (dma)
568 		host->m.is_dma_mapped = 1;
569 
570 	/* for reads, readblock() skips 0xff bytes before finding
571 	 * the token; for writes, this transfer issues that token.
572 	 */
573 	if (direction == DMA_TO_DEVICE) {
574 		t = &host->token;
575 		memset(t, 0, sizeof(*t));
576 		t->len = 1;
577 		if (multiple)
578 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
579 		else
580 			scratch->data_token = SPI_TOKEN_SINGLE;
581 		t->tx_buf = &scratch->data_token;
582 		if (dma)
583 			t->tx_dma = dma + offsetof(struct scratch, data_token);
584 		spi_message_add_tail(t, &host->m);
585 	}
586 
587 	/* Body of transfer is buffer, then CRC ...
588 	 * either TX-only, or RX with TX-ones.
589 	 */
590 	t = &host->t;
591 	memset(t, 0, sizeof(*t));
592 	t->tx_buf = host->ones;
593 	t->tx_dma = host->ones_dma;
594 	/* length and actual buffer info are written later */
595 	spi_message_add_tail(t, &host->m);
596 
597 	t = &host->crc;
598 	memset(t, 0, sizeof(*t));
599 	t->len = 2;
600 	if (direction == DMA_TO_DEVICE) {
601 		/* the actual CRC may get written later */
602 		t->tx_buf = &scratch->crc_val;
603 		if (dma)
604 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
605 	} else {
606 		t->tx_buf = host->ones;
607 		t->tx_dma = host->ones_dma;
608 		t->rx_buf = &scratch->crc_val;
609 		if (dma)
610 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
611 	}
612 	spi_message_add_tail(t, &host->m);
613 
614 	/*
615 	 * A single block read is followed by N(EC) [0+] all-ones bytes
616 	 * before deselect ... don't bother.
617 	 *
618 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
619 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
620 	 * collect that single byte, so readblock() doesn't need to.
621 	 *
622 	 * For a write, the one-byte data response follows immediately, then
623 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
624 	 * Then single block reads may deselect, and multiblock ones issue
625 	 * the next token (next data block, or STOP_TRAN).  We can try to
626 	 * minimize I/O ops by using a single read to collect end-of-busy.
627 	 */
628 	if (multiple || direction == DMA_TO_DEVICE) {
629 		t = &host->early_status;
630 		memset(t, 0, sizeof(*t));
631 		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
632 		t->tx_buf = host->ones;
633 		t->tx_dma = host->ones_dma;
634 		t->rx_buf = scratch->status;
635 		if (dma)
636 			t->rx_dma = dma + offsetof(struct scratch, status);
637 		t->cs_change = 1;
638 		spi_message_add_tail(t, &host->m);
639 	}
640 }
641 
642 /*
643  * Write one block:
644  *  - caller handled preceding N(WR) [1+] all-ones bytes
645  *  - data block
646  *	+ token
647  *	+ data bytes
648  *	+ crc16
649  *  - an all-ones byte ... card writes a data-response byte
650  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
651  *
652  * Return negative errno, else success.
653  */
654 static int
655 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
656 	unsigned long timeout)
657 {
658 	struct spi_device	*spi = host->spi;
659 	int			status, i;
660 	struct scratch		*scratch = host->data;
661 	u32			pattern;
662 
663 	if (host->mmc->use_spi_crc)
664 		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
665 	if (host->dma_dev)
666 		dma_sync_single_for_device(host->dma_dev,
667 				host->data_dma, sizeof(*scratch),
668 				DMA_BIDIRECTIONAL);
669 
670 	status = spi_sync_locked(spi, &host->m);
671 
672 	if (status != 0) {
673 		dev_dbg(&spi->dev, "write error (%d)\n", status);
674 		return status;
675 	}
676 
677 	if (host->dma_dev)
678 		dma_sync_single_for_cpu(host->dma_dev,
679 				host->data_dma, sizeof(*scratch),
680 				DMA_BIDIRECTIONAL);
681 
682 	/*
683 	 * Get the transmission data-response reply.  It must follow
684 	 * immediately after the data block we transferred.  This reply
685 	 * doesn't necessarily tell whether the write operation succeeded;
686 	 * it just says if the transmission was ok and whether *earlier*
687 	 * writes succeeded; see the standard.
688 	 *
689 	 * In practice, there are (even modern SDHC-)cards which are late
690 	 * in sending the response, and miss the time frame by a few bits,
691 	 * so we have to cope with this situation and check the response
692 	 * bit-by-bit. Arggh!!!
693 	 */
694 	pattern = get_unaligned_be32(scratch->status);
695 
696 	/* First 3 bit of pattern are undefined */
697 	pattern |= 0xE0000000;
698 
699 	/* left-adjust to leading 0 bit */
700 	while (pattern & 0x80000000)
701 		pattern <<= 1;
702 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
703 	pattern >>= 27;
704 
705 	switch (pattern) {
706 	case SPI_RESPONSE_ACCEPTED:
707 		status = 0;
708 		break;
709 	case SPI_RESPONSE_CRC_ERR:
710 		/* host shall then issue MMC_STOP_TRANSMISSION */
711 		status = -EILSEQ;
712 		break;
713 	case SPI_RESPONSE_WRITE_ERR:
714 		/* host shall then issue MMC_STOP_TRANSMISSION,
715 		 * and should MMC_SEND_STATUS to sort it out
716 		 */
717 		status = -EIO;
718 		break;
719 	default:
720 		status = -EPROTO;
721 		break;
722 	}
723 	if (status != 0) {
724 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
725 			scratch->status[0], status);
726 		return status;
727 	}
728 
729 	t->tx_buf += t->len;
730 	if (host->dma_dev)
731 		t->tx_dma += t->len;
732 
733 	/* Return when not busy.  If we didn't collect that status yet,
734 	 * we'll need some more I/O.
735 	 */
736 	for (i = 4; i < sizeof(scratch->status); i++) {
737 		/* card is non-busy if the most recent bit is 1 */
738 		if (scratch->status[i] & 0x01)
739 			return 0;
740 	}
741 	return mmc_spi_wait_unbusy(host, timeout);
742 }
743 
744 /*
745  * Read one block:
746  *  - skip leading all-ones bytes ... either
747  *      + N(AC) [1..f(clock,CSD)] usually, else
748  *      + N(CX) [0..8] when reading CSD or CID
749  *  - data block
750  *	+ token ... if error token, no data or crc
751  *	+ data bytes
752  *	+ crc16
753  *
754  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
755  * before dropping chipselect.
756  *
757  * For multiblock reads, caller either reads the next block or issues a
758  * STOP_TRANSMISSION command.
759  */
760 static int
761 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
762 	unsigned long timeout)
763 {
764 	struct spi_device	*spi = host->spi;
765 	int			status;
766 	struct scratch		*scratch = host->data;
767 	unsigned int 		bitshift;
768 	u8			leftover;
769 
770 	/* At least one SD card sends an all-zeroes byte when N(CX)
771 	 * applies, before the all-ones bytes ... just cope with that.
772 	 */
773 	status = mmc_spi_readbytes(host, 1);
774 	if (status < 0)
775 		return status;
776 	status = scratch->status[0];
777 	if (status == 0xff || status == 0)
778 		status = mmc_spi_readtoken(host, timeout);
779 
780 	if (status < 0) {
781 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
782 		return status;
783 	}
784 
785 	/* The token may be bit-shifted...
786 	 * the first 0-bit precedes the data stream.
787 	 */
788 	bitshift = 7;
789 	while (status & 0x80) {
790 		status <<= 1;
791 		bitshift--;
792 	}
793 	leftover = status << 1;
794 
795 	if (host->dma_dev) {
796 		dma_sync_single_for_device(host->dma_dev,
797 				host->data_dma, sizeof(*scratch),
798 				DMA_BIDIRECTIONAL);
799 		dma_sync_single_for_device(host->dma_dev,
800 				t->rx_dma, t->len,
801 				DMA_FROM_DEVICE);
802 	}
803 
804 	status = spi_sync_locked(spi, &host->m);
805 	if (status < 0) {
806 		dev_dbg(&spi->dev, "read error %d\n", status);
807 		return status;
808 	}
809 
810 	if (host->dma_dev) {
811 		dma_sync_single_for_cpu(host->dma_dev,
812 				host->data_dma, sizeof(*scratch),
813 				DMA_BIDIRECTIONAL);
814 		dma_sync_single_for_cpu(host->dma_dev,
815 				t->rx_dma, t->len,
816 				DMA_FROM_DEVICE);
817 	}
818 
819 	if (bitshift) {
820 		/* Walk through the data and the crc and do
821 		 * all the magic to get byte-aligned data.
822 		 */
823 		u8 *cp = t->rx_buf;
824 		unsigned int len;
825 		unsigned int bitright = 8 - bitshift;
826 		u8 temp;
827 		for (len = t->len; len; len--) {
828 			temp = *cp;
829 			*cp++ = leftover | (temp >> bitshift);
830 			leftover = temp << bitright;
831 		}
832 		cp = (u8 *) &scratch->crc_val;
833 		temp = *cp;
834 		*cp++ = leftover | (temp >> bitshift);
835 		leftover = temp << bitright;
836 		temp = *cp;
837 		*cp = leftover | (temp >> bitshift);
838 	}
839 
840 	if (host->mmc->use_spi_crc) {
841 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
842 
843 		be16_to_cpus(&scratch->crc_val);
844 		if (scratch->crc_val != crc) {
845 			dev_dbg(&spi->dev,
846 				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
847 				scratch->crc_val, crc, t->len);
848 			return -EILSEQ;
849 		}
850 	}
851 
852 	t->rx_buf += t->len;
853 	if (host->dma_dev)
854 		t->rx_dma += t->len;
855 
856 	return 0;
857 }
858 
859 /*
860  * An MMC/SD data stage includes one or more blocks, optional CRCs,
861  * and inline handshaking.  That handhaking makes it unlike most
862  * other SPI protocol stacks.
863  */
864 static void
865 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
866 		struct mmc_data *data, u32 blk_size)
867 {
868 	struct spi_device	*spi = host->spi;
869 	struct device		*dma_dev = host->dma_dev;
870 	struct spi_transfer	*t;
871 	enum dma_data_direction	direction;
872 	struct scatterlist	*sg;
873 	unsigned		n_sg;
874 	int			multiple = (data->blocks > 1);
875 	u32			clock_rate;
876 	unsigned long		timeout;
877 
878 	direction = mmc_get_dma_dir(data);
879 	mmc_spi_setup_data_message(host, multiple, direction);
880 	t = &host->t;
881 
882 	if (t->speed_hz)
883 		clock_rate = t->speed_hz;
884 	else
885 		clock_rate = spi->max_speed_hz;
886 
887 	timeout = data->timeout_ns +
888 		  data->timeout_clks * 1000000 / clock_rate;
889 	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
890 
891 	/* Handle scatterlist segments one at a time, with synch for
892 	 * each 512-byte block
893 	 */
894 	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
895 		int			status = 0;
896 		dma_addr_t		dma_addr = 0;
897 		void			*kmap_addr;
898 		unsigned		length = sg->length;
899 		enum dma_data_direction	dir = direction;
900 
901 		/* set up dma mapping for controller drivers that might
902 		 * use DMA ... though they may fall back to PIO
903 		 */
904 		if (dma_dev) {
905 			/* never invalidate whole *shared* pages ... */
906 			if ((sg->offset != 0 || length != PAGE_SIZE)
907 					&& dir == DMA_FROM_DEVICE)
908 				dir = DMA_BIDIRECTIONAL;
909 
910 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
911 						PAGE_SIZE, dir);
912 			if (dma_mapping_error(dma_dev, dma_addr)) {
913 				data->error = -EFAULT;
914 				break;
915 			}
916 			if (direction == DMA_TO_DEVICE)
917 				t->tx_dma = dma_addr + sg->offset;
918 			else
919 				t->rx_dma = dma_addr + sg->offset;
920 		}
921 
922 		/* allow pio too; we don't allow highmem */
923 		kmap_addr = kmap(sg_page(sg));
924 		if (direction == DMA_TO_DEVICE)
925 			t->tx_buf = kmap_addr + sg->offset;
926 		else
927 			t->rx_buf = kmap_addr + sg->offset;
928 
929 		/* transfer each block, and update request status */
930 		while (length) {
931 			t->len = min(length, blk_size);
932 
933 			dev_dbg(&host->spi->dev,
934 				"    mmc_spi: %s block, %d bytes\n",
935 				(direction == DMA_TO_DEVICE) ? "write" : "read",
936 				t->len);
937 
938 			if (direction == DMA_TO_DEVICE)
939 				status = mmc_spi_writeblock(host, t, timeout);
940 			else
941 				status = mmc_spi_readblock(host, t, timeout);
942 			if (status < 0)
943 				break;
944 
945 			data->bytes_xfered += t->len;
946 			length -= t->len;
947 
948 			if (!multiple)
949 				break;
950 		}
951 
952 		/* discard mappings */
953 		if (direction == DMA_FROM_DEVICE)
954 			flush_kernel_dcache_page(sg_page(sg));
955 		kunmap(sg_page(sg));
956 		if (dma_dev)
957 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
958 
959 		if (status < 0) {
960 			data->error = status;
961 			dev_dbg(&spi->dev, "%s status %d\n",
962 				(direction == DMA_TO_DEVICE) ? "write" : "read",
963 				status);
964 			break;
965 		}
966 	}
967 
968 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
969 	 * can be issued before multiblock writes.  Unlike its more widely
970 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
971 	 * that can affect the STOP_TRAN logic.   Complete (and current)
972 	 * MMC specs should sort that out before Linux starts using CMD23.
973 	 */
974 	if (direction == DMA_TO_DEVICE && multiple) {
975 		struct scratch	*scratch = host->data;
976 		int		tmp;
977 		const unsigned	statlen = sizeof(scratch->status);
978 
979 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
980 
981 		/* Tweak the per-block message we set up earlier by morphing
982 		 * it to hold single buffer with the token followed by some
983 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
984 		 * "not busy any longer" status, and leave chip selected.
985 		 */
986 		INIT_LIST_HEAD(&host->m.transfers);
987 		list_add(&host->early_status.transfer_list,
988 				&host->m.transfers);
989 
990 		memset(scratch->status, 0xff, statlen);
991 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
992 
993 		host->early_status.tx_buf = host->early_status.rx_buf;
994 		host->early_status.tx_dma = host->early_status.rx_dma;
995 		host->early_status.len = statlen;
996 
997 		if (host->dma_dev)
998 			dma_sync_single_for_device(host->dma_dev,
999 					host->data_dma, sizeof(*scratch),
1000 					DMA_BIDIRECTIONAL);
1001 
1002 		tmp = spi_sync_locked(spi, &host->m);
1003 
1004 		if (host->dma_dev)
1005 			dma_sync_single_for_cpu(host->dma_dev,
1006 					host->data_dma, sizeof(*scratch),
1007 					DMA_BIDIRECTIONAL);
1008 
1009 		if (tmp < 0) {
1010 			if (!data->error)
1011 				data->error = tmp;
1012 			return;
1013 		}
1014 
1015 		/* Ideally we collected "not busy" status with one I/O,
1016 		 * avoiding wasteful byte-at-a-time scanning... but more
1017 		 * I/O is often needed.
1018 		 */
1019 		for (tmp = 2; tmp < statlen; tmp++) {
1020 			if (scratch->status[tmp] != 0)
1021 				return;
1022 		}
1023 		tmp = mmc_spi_wait_unbusy(host, timeout);
1024 		if (tmp < 0 && !data->error)
1025 			data->error = tmp;
1026 	}
1027 }
1028 
1029 /****************************************************************************/
1030 
1031 /*
1032  * MMC driver implementation -- the interface to the MMC stack
1033  */
1034 
1035 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1036 {
1037 	struct mmc_spi_host	*host = mmc_priv(mmc);
1038 	int			status = -EINVAL;
1039 	int			crc_retry = 5;
1040 	struct mmc_command	stop;
1041 
1042 #ifdef DEBUG
1043 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1044 	{
1045 		struct mmc_command	*cmd;
1046 		int			invalid = 0;
1047 
1048 		cmd = mrq->cmd;
1049 		if (!mmc_spi_resp_type(cmd)) {
1050 			dev_dbg(&host->spi->dev, "bogus command\n");
1051 			cmd->error = -EINVAL;
1052 			invalid = 1;
1053 		}
1054 
1055 		cmd = mrq->stop;
1056 		if (cmd && !mmc_spi_resp_type(cmd)) {
1057 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1058 			cmd->error = -EINVAL;
1059 			invalid = 1;
1060 		}
1061 
1062 		if (invalid) {
1063 			dump_stack();
1064 			mmc_request_done(host->mmc, mrq);
1065 			return;
1066 		}
1067 	}
1068 #endif
1069 
1070 	/* request exclusive bus access */
1071 	spi_bus_lock(host->spi->master);
1072 
1073 crc_recover:
1074 	/* issue command; then optionally data and stop */
1075 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1076 	if (status == 0 && mrq->data) {
1077 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1078 
1079 		/*
1080 		 * The SPI bus is not always reliable for large data transfers.
1081 		 * If an occasional crc error is reported by the SD device with
1082 		 * data read/write over SPI, it may be recovered by repeating
1083 		 * the last SD command again. The retry count is set to 5 to
1084 		 * ensure the driver passes stress tests.
1085 		 */
1086 		if (mrq->data->error == -EILSEQ && crc_retry) {
1087 			stop.opcode = MMC_STOP_TRANSMISSION;
1088 			stop.arg = 0;
1089 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1090 			status = mmc_spi_command_send(host, mrq, &stop, 0);
1091 			crc_retry--;
1092 			mrq->data->error = 0;
1093 			goto crc_recover;
1094 		}
1095 
1096 		if (mrq->stop)
1097 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1098 		else
1099 			mmc_cs_off(host);
1100 	}
1101 
1102 	/* release the bus */
1103 	spi_bus_unlock(host->spi->master);
1104 
1105 	mmc_request_done(host->mmc, mrq);
1106 }
1107 
1108 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1109  *
1110  * NOTE that here we can't know that the card has just been powered up;
1111  * not all MMC/SD sockets support power switching.
1112  *
1113  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1114  * this doesn't seem to do the right thing at all...
1115  */
1116 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1117 {
1118 	/* Try to be very sure any previous command has completed;
1119 	 * wait till not-busy, skip debris from any old commands.
1120 	 */
1121 	mmc_spi_wait_unbusy(host, r1b_timeout);
1122 	mmc_spi_readbytes(host, 10);
1123 
1124 	/*
1125 	 * Do a burst with chipselect active-high.  We need to do this to
1126 	 * meet the requirement of 74 clock cycles with both chipselect
1127 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1128 	 * powered up to Vdd(min), and so is ready to take commands.
1129 	 *
1130 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1131 	 * while most others don't seem to care.
1132 	 *
1133 	 * Note that this is one of the places MMC/SD plays games with the
1134 	 * SPI protocol.  Another is that when chipselect is released while
1135 	 * the card returns BUSY status, the clock must issue several cycles
1136 	 * with chipselect high before the card will stop driving its output.
1137 	 *
1138 	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1139 	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1140 	 * inverted by gpiolib, so if we want to ascertain to drive it high
1141 	 * we should toggle the default with an XOR as we do here.
1142 	 */
1143 	host->spi->mode ^= SPI_CS_HIGH;
1144 	if (spi_setup(host->spi) != 0) {
1145 		/* Just warn; most cards work without it. */
1146 		dev_warn(&host->spi->dev,
1147 				"can't change chip-select polarity\n");
1148 		host->spi->mode ^= SPI_CS_HIGH;
1149 	} else {
1150 		mmc_spi_readbytes(host, 18);
1151 
1152 		host->spi->mode ^= SPI_CS_HIGH;
1153 		if (spi_setup(host->spi) != 0) {
1154 			/* Wot, we can't get the same setup we had before? */
1155 			dev_err(&host->spi->dev,
1156 					"can't restore chip-select polarity\n");
1157 		}
1158 	}
1159 }
1160 
1161 static char *mmc_powerstring(u8 power_mode)
1162 {
1163 	switch (power_mode) {
1164 	case MMC_POWER_OFF: return "off";
1165 	case MMC_POWER_UP:  return "up";
1166 	case MMC_POWER_ON:  return "on";
1167 	}
1168 	return "?";
1169 }
1170 
1171 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1172 {
1173 	struct mmc_spi_host *host = mmc_priv(mmc);
1174 
1175 	if (host->power_mode != ios->power_mode) {
1176 		int		canpower;
1177 
1178 		canpower = host->pdata && host->pdata->setpower;
1179 
1180 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1181 				mmc_powerstring(ios->power_mode),
1182 				ios->vdd,
1183 				canpower ? ", can switch" : "");
1184 
1185 		/* switch power on/off if possible, accounting for
1186 		 * max 250msec powerup time if needed.
1187 		 */
1188 		if (canpower) {
1189 			switch (ios->power_mode) {
1190 			case MMC_POWER_OFF:
1191 			case MMC_POWER_UP:
1192 				host->pdata->setpower(&host->spi->dev,
1193 						ios->vdd);
1194 				if (ios->power_mode == MMC_POWER_UP)
1195 					msleep(host->powerup_msecs);
1196 			}
1197 		}
1198 
1199 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1200 		if (ios->power_mode == MMC_POWER_ON)
1201 			mmc_spi_initsequence(host);
1202 
1203 		/* If powering down, ground all card inputs to avoid power
1204 		 * delivery from data lines!  On a shared SPI bus, this
1205 		 * will probably be temporary; 6.4.2 of the simplified SD
1206 		 * spec says this must last at least 1msec.
1207 		 *
1208 		 *   - Clock low means CPOL 0, e.g. mode 0
1209 		 *   - MOSI low comes from writing zero
1210 		 *   - Chipselect is usually active low...
1211 		 */
1212 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1213 			int mres;
1214 			u8 nullbyte = 0;
1215 
1216 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1217 			mres = spi_setup(host->spi);
1218 			if (mres < 0)
1219 				dev_dbg(&host->spi->dev,
1220 					"switch to SPI mode 0 failed\n");
1221 
1222 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1223 				dev_dbg(&host->spi->dev,
1224 					"put spi signals to low failed\n");
1225 
1226 			/*
1227 			 * Now clock should be low due to spi mode 0;
1228 			 * MOSI should be low because of written 0x00;
1229 			 * chipselect should be low (it is active low)
1230 			 * power supply is off, so now MMC is off too!
1231 			 *
1232 			 * FIXME no, chipselect can be high since the
1233 			 * device is inactive and SPI_CS_HIGH is clear...
1234 			 */
1235 			msleep(10);
1236 			if (mres == 0) {
1237 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1238 				mres = spi_setup(host->spi);
1239 				if (mres < 0)
1240 					dev_dbg(&host->spi->dev,
1241 						"switch back to SPI mode 3 failed\n");
1242 			}
1243 		}
1244 
1245 		host->power_mode = ios->power_mode;
1246 	}
1247 
1248 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1249 		int		status;
1250 
1251 		host->spi->max_speed_hz = ios->clock;
1252 		status = spi_setup(host->spi);
1253 		dev_dbg(&host->spi->dev,
1254 			"mmc_spi:  clock to %d Hz, %d\n",
1255 			host->spi->max_speed_hz, status);
1256 	}
1257 }
1258 
1259 static const struct mmc_host_ops mmc_spi_ops = {
1260 	.request	= mmc_spi_request,
1261 	.set_ios	= mmc_spi_set_ios,
1262 	.get_ro		= mmc_gpio_get_ro,
1263 	.get_cd		= mmc_gpio_get_cd,
1264 };
1265 
1266 
1267 /****************************************************************************/
1268 
1269 /*
1270  * SPI driver implementation
1271  */
1272 
1273 static irqreturn_t
1274 mmc_spi_detect_irq(int irq, void *mmc)
1275 {
1276 	struct mmc_spi_host *host = mmc_priv(mmc);
1277 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1278 
1279 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1280 	return IRQ_HANDLED;
1281 }
1282 
1283 static int mmc_spi_probe(struct spi_device *spi)
1284 {
1285 	void			*ones;
1286 	struct mmc_host		*mmc;
1287 	struct mmc_spi_host	*host;
1288 	int			status;
1289 	bool			has_ro = false;
1290 
1291 	/* We rely on full duplex transfers, mostly to reduce
1292 	 * per-transfer overheads (by making fewer transfers).
1293 	 */
1294 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1295 		return -EINVAL;
1296 
1297 	/* MMC and SD specs only seem to care that sampling is on the
1298 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1299 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1300 	 * which is appropriate for hotplugging, unless the platform data
1301 	 * specify mode 3 (if hardware is not compatible to mode 0).
1302 	 */
1303 	if (spi->mode != SPI_MODE_3)
1304 		spi->mode = SPI_MODE_0;
1305 	spi->bits_per_word = 8;
1306 
1307 	status = spi_setup(spi);
1308 	if (status < 0) {
1309 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1310 				spi->mode, spi->max_speed_hz / 1000,
1311 				status);
1312 		return status;
1313 	}
1314 
1315 	/* We need a supply of ones to transmit.  This is the only time
1316 	 * the CPU touches these, so cache coherency isn't a concern.
1317 	 *
1318 	 * NOTE if many systems use more than one MMC-over-SPI connector
1319 	 * it'd save some memory to share this.  That's evidently rare.
1320 	 */
1321 	status = -ENOMEM;
1322 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1323 	if (!ones)
1324 		goto nomem;
1325 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1326 
1327 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1328 	if (!mmc)
1329 		goto nomem;
1330 
1331 	mmc->ops = &mmc_spi_ops;
1332 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1333 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1334 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1335 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1336 
1337 	mmc->caps = MMC_CAP_SPI;
1338 
1339 	/* SPI doesn't need the lowspeed device identification thing for
1340 	 * MMC or SD cards, since it never comes up in open drain mode.
1341 	 * That's good; some SPI masters can't handle very low speeds!
1342 	 *
1343 	 * However, low speed SDIO cards need not handle over 400 KHz;
1344 	 * that's the only reason not to use a few MHz for f_min (until
1345 	 * the upper layer reads the target frequency from the CSD).
1346 	 */
1347 	mmc->f_min = 400000;
1348 	mmc->f_max = spi->max_speed_hz;
1349 
1350 	host = mmc_priv(mmc);
1351 	host->mmc = mmc;
1352 	host->spi = spi;
1353 
1354 	host->ones = ones;
1355 
1356 	/* Platform data is used to hook up things like card sensing
1357 	 * and power switching gpios.
1358 	 */
1359 	host->pdata = mmc_spi_get_pdata(spi);
1360 	if (host->pdata)
1361 		mmc->ocr_avail = host->pdata->ocr_mask;
1362 	if (!mmc->ocr_avail) {
1363 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1364 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1365 	}
1366 	if (host->pdata && host->pdata->setpower) {
1367 		host->powerup_msecs = host->pdata->powerup_msecs;
1368 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1369 			host->powerup_msecs = 250;
1370 	}
1371 
1372 	dev_set_drvdata(&spi->dev, mmc);
1373 
1374 	/* preallocate dma buffers */
1375 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1376 	if (!host->data)
1377 		goto fail_nobuf1;
1378 
1379 	if (spi->master->dev.parent->dma_mask) {
1380 		struct device	*dev = spi->master->dev.parent;
1381 
1382 		host->dma_dev = dev;
1383 		host->ones_dma = dma_map_single(dev, ones,
1384 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1385 		if (dma_mapping_error(dev, host->ones_dma))
1386 			goto fail_ones_dma;
1387 		host->data_dma = dma_map_single(dev, host->data,
1388 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1389 		if (dma_mapping_error(dev, host->data_dma))
1390 			goto fail_data_dma;
1391 
1392 		dma_sync_single_for_cpu(host->dma_dev,
1393 				host->data_dma, sizeof(*host->data),
1394 				DMA_BIDIRECTIONAL);
1395 	}
1396 
1397 	/* setup message for status/busy readback */
1398 	spi_message_init(&host->readback);
1399 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1400 
1401 	spi_message_add_tail(&host->status, &host->readback);
1402 	host->status.tx_buf = host->ones;
1403 	host->status.tx_dma = host->ones_dma;
1404 	host->status.rx_buf = &host->data->status;
1405 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1406 	host->status.cs_change = 1;
1407 
1408 	/* register card detect irq */
1409 	if (host->pdata && host->pdata->init) {
1410 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1411 		if (status != 0)
1412 			goto fail_glue_init;
1413 	}
1414 
1415 	/* pass platform capabilities, if any */
1416 	if (host->pdata) {
1417 		mmc->caps |= host->pdata->caps;
1418 		mmc->caps2 |= host->pdata->caps2;
1419 	}
1420 
1421 	status = mmc_add_host(mmc);
1422 	if (status != 0)
1423 		goto fail_add_host;
1424 
1425 	/*
1426 	 * Index 0 is card detect
1427 	 * Old boardfiles were specifying 1 ms as debounce
1428 	 */
1429 	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1430 	if (status == -EPROBE_DEFER)
1431 		goto fail_add_host;
1432 	if (!status) {
1433 		/*
1434 		 * The platform has a CD GPIO signal that may support
1435 		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1436 		 * if polling is needed or not.
1437 		 */
1438 		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1439 		mmc_gpiod_request_cd_irq(mmc);
1440 	}
1441 	mmc_detect_change(mmc, 0);
1442 
1443 	/* Index 1 is write protect/read only */
1444 	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1445 	if (status == -EPROBE_DEFER)
1446 		goto fail_add_host;
1447 	if (!status)
1448 		has_ro = true;
1449 
1450 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1451 			dev_name(&mmc->class_dev),
1452 			host->dma_dev ? "" : ", no DMA",
1453 			has_ro ? "" : ", no WP",
1454 			(host->pdata && host->pdata->setpower)
1455 				? "" : ", no poweroff",
1456 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1457 				? ", cd polling" : "");
1458 	return 0;
1459 
1460 fail_add_host:
1461 	mmc_remove_host(mmc);
1462 fail_glue_init:
1463 	if (host->dma_dev)
1464 		dma_unmap_single(host->dma_dev, host->data_dma,
1465 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1466 fail_data_dma:
1467 	if (host->dma_dev)
1468 		dma_unmap_single(host->dma_dev, host->ones_dma,
1469 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1470 fail_ones_dma:
1471 	kfree(host->data);
1472 
1473 fail_nobuf1:
1474 	mmc_free_host(mmc);
1475 	mmc_spi_put_pdata(spi);
1476 
1477 nomem:
1478 	kfree(ones);
1479 	return status;
1480 }
1481 
1482 
1483 static int mmc_spi_remove(struct spi_device *spi)
1484 {
1485 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1486 	struct mmc_spi_host	*host = mmc_priv(mmc);
1487 
1488 	/* prevent new mmc_detect_change() calls */
1489 	if (host->pdata && host->pdata->exit)
1490 		host->pdata->exit(&spi->dev, mmc);
1491 
1492 	mmc_remove_host(mmc);
1493 
1494 	if (host->dma_dev) {
1495 		dma_unmap_single(host->dma_dev, host->ones_dma,
1496 			MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1497 		dma_unmap_single(host->dma_dev, host->data_dma,
1498 			sizeof(*host->data), DMA_BIDIRECTIONAL);
1499 	}
1500 
1501 	kfree(host->data);
1502 	kfree(host->ones);
1503 
1504 	spi->max_speed_hz = mmc->f_max;
1505 	mmc_free_host(mmc);
1506 	mmc_spi_put_pdata(spi);
1507 	return 0;
1508 }
1509 
1510 static const struct of_device_id mmc_spi_of_match_table[] = {
1511 	{ .compatible = "mmc-spi-slot", },
1512 	{},
1513 };
1514 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1515 
1516 static struct spi_driver mmc_spi_driver = {
1517 	.driver = {
1518 		.name =		"mmc_spi",
1519 		.of_match_table = mmc_spi_of_match_table,
1520 	},
1521 	.probe =	mmc_spi_probe,
1522 	.remove =	mmc_spi_remove,
1523 };
1524 
1525 module_spi_driver(mmc_spi_driver);
1526 
1527 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1528 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1529 MODULE_LICENSE("GPL");
1530 MODULE_ALIAS("spi:mmc_spi");
1531