xref: /openbmc/linux/drivers/mmc/host/mmc_spi.c (revision b34e08d5)
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 #include <linux/bio.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/crc7.h>
34 #include <linux/crc-itu-t.h>
35 #include <linux/scatterlist.h>
36 
37 #include <linux/mmc/host.h>
38 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
39 #include <linux/mmc/slot-gpio.h>
40 
41 #include <linux/spi/spi.h>
42 #include <linux/spi/mmc_spi.h>
43 
44 #include <asm/unaligned.h>
45 
46 
47 /* NOTES:
48  *
49  * - For now, we won't try to interoperate with a real mmc/sd/sdio
50  *   controller, although some of them do have hardware support for
51  *   SPI protocol.  The main reason for such configs would be mmc-ish
52  *   cards like DataFlash, which don't support that "native" protocol.
53  *
54  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
55  *   switch between driver stacks, and in any case if "native" mode
56  *   is available, it will be faster and hence preferable.
57  *
58  * - MMC depends on a different chipselect management policy than the
59  *   SPI interface currently supports for shared bus segments:  it needs
60  *   to issue multiple spi_message requests with the chipselect active,
61  *   using the results of one message to decide the next one to issue.
62  *
63  *   Pending updates to the programming interface, this driver expects
64  *   that it not share the bus with other drivers (precluding conflicts).
65  *
66  * - We tell the controller to keep the chipselect active from the
67  *   beginning of an mmc_host_ops.request until the end.  So beware
68  *   of SPI controller drivers that mis-handle the cs_change flag!
69  *
70  *   However, many cards seem OK with chipselect flapping up/down
71  *   during that time ... at least on unshared bus segments.
72  */
73 
74 
75 /*
76  * Local protocol constants, internal to data block protocols.
77  */
78 
79 /* Response tokens used to ack each block written: */
80 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
81 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
82 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
83 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
84 
85 /* Read and write blocks start with these tokens and end with crc;
86  * on error, read tokens act like a subset of R2_SPI_* values.
87  */
88 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
89 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
90 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
91 
92 #define MMC_SPI_BLOCKSIZE	512
93 
94 
95 /* These fixed timeouts come from the latest SD specs, which say to ignore
96  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
97  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
98  * reads which takes nowhere near that long.  Older cards may be able to use
99  * shorter timeouts ... but why bother?
100  */
101 #define r1b_timeout		(HZ * 3)
102 
103 /* One of the critical speed parameters is the amount of data which may
104  * be transferred in one command. If this value is too low, the SD card
105  * controller has to do multiple partial block writes (argggh!). With
106  * today (2008) SD cards there is little speed gain if we transfer more
107  * than 64 KBytes at a time. So use this value until there is any indication
108  * that we should do more here.
109  */
110 #define MMC_SPI_BLOCKSATONCE	128
111 
112 /****************************************************************************/
113 
114 /*
115  * Local Data Structures
116  */
117 
118 /* "scratch" is per-{command,block} data exchanged with the card */
119 struct scratch {
120 	u8			status[29];
121 	u8			data_token;
122 	__be16			crc_val;
123 };
124 
125 struct mmc_spi_host {
126 	struct mmc_host		*mmc;
127 	struct spi_device	*spi;
128 
129 	unsigned char		power_mode;
130 	u16			powerup_msecs;
131 
132 	struct mmc_spi_platform_data	*pdata;
133 
134 	/* for bulk data transfers */
135 	struct spi_transfer	token, t, crc, early_status;
136 	struct spi_message	m;
137 
138 	/* for status readback */
139 	struct spi_transfer	status;
140 	struct spi_message	readback;
141 
142 	/* underlying DMA-aware controller, or null */
143 	struct device		*dma_dev;
144 
145 	/* buffer used for commands and for message "overhead" */
146 	struct scratch		*data;
147 	dma_addr_t		data_dma;
148 
149 	/* Specs say to write ones most of the time, even when the card
150 	 * has no need to read its input data; and many cards won't care.
151 	 * This is our source of those ones.
152 	 */
153 	void			*ones;
154 	dma_addr_t		ones_dma;
155 };
156 
157 
158 /****************************************************************************/
159 
160 /*
161  * MMC-over-SPI protocol glue, used by the MMC stack interface
162  */
163 
164 static inline int mmc_cs_off(struct mmc_spi_host *host)
165 {
166 	/* chipselect will always be inactive after setup() */
167 	return spi_setup(host->spi);
168 }
169 
170 static int
171 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
172 {
173 	int status;
174 
175 	if (len > sizeof(*host->data)) {
176 		WARN_ON(1);
177 		return -EIO;
178 	}
179 
180 	host->status.len = len;
181 
182 	if (host->dma_dev)
183 		dma_sync_single_for_device(host->dma_dev,
184 				host->data_dma, sizeof(*host->data),
185 				DMA_FROM_DEVICE);
186 
187 	status = spi_sync_locked(host->spi, &host->readback);
188 
189 	if (host->dma_dev)
190 		dma_sync_single_for_cpu(host->dma_dev,
191 				host->data_dma, sizeof(*host->data),
192 				DMA_FROM_DEVICE);
193 
194 	return status;
195 }
196 
197 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
198 			unsigned n, u8 byte)
199 {
200 	u8		*cp = host->data->status;
201 	unsigned long start = jiffies;
202 
203 	while (1) {
204 		int		status;
205 		unsigned	i;
206 
207 		status = mmc_spi_readbytes(host, n);
208 		if (status < 0)
209 			return status;
210 
211 		for (i = 0; i < n; i++) {
212 			if (cp[i] != byte)
213 				return cp[i];
214 		}
215 
216 		if (time_is_before_jiffies(start + timeout))
217 			break;
218 
219 		/* If we need long timeouts, we may release the CPU.
220 		 * We use jiffies here because we want to have a relation
221 		 * between elapsed time and the blocking of the scheduler.
222 		 */
223 		if (time_is_before_jiffies(start+1))
224 			schedule();
225 	}
226 	return -ETIMEDOUT;
227 }
228 
229 static inline int
230 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
231 {
232 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
233 }
234 
235 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
236 {
237 	return mmc_spi_skip(host, timeout, 1, 0xff);
238 }
239 
240 
241 /*
242  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
243  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
244  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
245  *
246  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
247  * newer cards R7 (IF_COND).
248  */
249 
250 static char *maptype(struct mmc_command *cmd)
251 {
252 	switch (mmc_spi_resp_type(cmd)) {
253 	case MMC_RSP_SPI_R1:	return "R1";
254 	case MMC_RSP_SPI_R1B:	return "R1B";
255 	case MMC_RSP_SPI_R2:	return "R2/R5";
256 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
257 	default:		return "?";
258 	}
259 }
260 
261 /* return zero, else negative errno after setting cmd->error */
262 static int mmc_spi_response_get(struct mmc_spi_host *host,
263 		struct mmc_command *cmd, int cs_on)
264 {
265 	u8	*cp = host->data->status;
266 	u8	*end = cp + host->t.len;
267 	int	value = 0;
268 	int	bitshift;
269 	u8 	leftover = 0;
270 	unsigned short rotator;
271 	int 	i;
272 	char	tag[32];
273 
274 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
275 		cmd->opcode, maptype(cmd));
276 
277 	/* Except for data block reads, the whole response will already
278 	 * be stored in the scratch buffer.  It's somewhere after the
279 	 * command and the first byte we read after it.  We ignore that
280 	 * first byte.  After STOP_TRANSMISSION command it may include
281 	 * two data bits, but otherwise it's all ones.
282 	 */
283 	cp += 8;
284 	while (cp < end && *cp == 0xff)
285 		cp++;
286 
287 	/* Data block reads (R1 response types) may need more data... */
288 	if (cp == end) {
289 		cp = host->data->status;
290 		end = cp+1;
291 
292 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
293 		 * status byte ... and we already scanned 2 bytes.
294 		 *
295 		 * REVISIT block read paths use nasty byte-at-a-time I/O
296 		 * so it can always DMA directly into the target buffer.
297 		 * It'd probably be better to memcpy() the first chunk and
298 		 * avoid extra i/o calls...
299 		 *
300 		 * Note we check for more than 8 bytes, because in practice,
301 		 * some SD cards are slow...
302 		 */
303 		for (i = 2; i < 16; i++) {
304 			value = mmc_spi_readbytes(host, 1);
305 			if (value < 0)
306 				goto done;
307 			if (*cp != 0xff)
308 				goto checkstatus;
309 		}
310 		value = -ETIMEDOUT;
311 		goto done;
312 	}
313 
314 checkstatus:
315 	bitshift = 0;
316 	if (*cp & 0x80)	{
317 		/* Houston, we have an ugly card with a bit-shifted response */
318 		rotator = *cp++ << 8;
319 		/* read the next byte */
320 		if (cp == end) {
321 			value = mmc_spi_readbytes(host, 1);
322 			if (value < 0)
323 				goto done;
324 			cp = host->data->status;
325 			end = cp+1;
326 		}
327 		rotator |= *cp++;
328 		while (rotator & 0x8000) {
329 			bitshift++;
330 			rotator <<= 1;
331 		}
332 		cmd->resp[0] = rotator >> 8;
333 		leftover = rotator;
334 	} else {
335 		cmd->resp[0] = *cp++;
336 	}
337 	cmd->error = 0;
338 
339 	/* Status byte: the entire seven-bit R1 response.  */
340 	if (cmd->resp[0] != 0) {
341 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
342 				& cmd->resp[0])
343 			value = -EFAULT; /* Bad address */
344 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
345 			value = -ENOSYS; /* Function not implemented */
346 		else if (R1_SPI_COM_CRC & cmd->resp[0])
347 			value = -EILSEQ; /* Illegal byte sequence */
348 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
349 				& cmd->resp[0])
350 			value = -EIO;    /* I/O error */
351 		/* else R1_SPI_IDLE, "it's resetting" */
352 	}
353 
354 	switch (mmc_spi_resp_type(cmd)) {
355 
356 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
357 	 * and less-common stuff like various erase operations.
358 	 */
359 	case MMC_RSP_SPI_R1B:
360 		/* maybe we read all the busy tokens already */
361 		while (cp < end && *cp == 0)
362 			cp++;
363 		if (cp == end)
364 			mmc_spi_wait_unbusy(host, r1b_timeout);
365 		break;
366 
367 	/* SPI R2 == R1 + second status byte; SEND_STATUS
368 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
369 	 */
370 	case MMC_RSP_SPI_R2:
371 		/* read the next byte */
372 		if (cp == end) {
373 			value = mmc_spi_readbytes(host, 1);
374 			if (value < 0)
375 				goto done;
376 			cp = host->data->status;
377 			end = cp+1;
378 		}
379 		if (bitshift) {
380 			rotator = leftover << 8;
381 			rotator |= *cp << bitshift;
382 			cmd->resp[0] |= (rotator & 0xFF00);
383 		} else {
384 			cmd->resp[0] |= *cp << 8;
385 		}
386 		break;
387 
388 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
389 	case MMC_RSP_SPI_R3:
390 		rotator = leftover << 8;
391 		cmd->resp[1] = 0;
392 		for (i = 0; i < 4; i++) {
393 			cmd->resp[1] <<= 8;
394 			/* read the next byte */
395 			if (cp == end) {
396 				value = mmc_spi_readbytes(host, 1);
397 				if (value < 0)
398 					goto done;
399 				cp = host->data->status;
400 				end = cp+1;
401 			}
402 			if (bitshift) {
403 				rotator |= *cp++ << bitshift;
404 				cmd->resp[1] |= (rotator >> 8);
405 				rotator <<= 8;
406 			} else {
407 				cmd->resp[1] |= *cp++;
408 			}
409 		}
410 		break;
411 
412 	/* SPI R1 == just one status byte */
413 	case MMC_RSP_SPI_R1:
414 		break;
415 
416 	default:
417 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
418 				mmc_spi_resp_type(cmd));
419 		if (value >= 0)
420 			value = -EINVAL;
421 		goto done;
422 	}
423 
424 	if (value < 0)
425 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
426 			tag, cmd->resp[0], cmd->resp[1]);
427 
428 	/* disable chipselect on errors and some success cases */
429 	if (value >= 0 && cs_on)
430 		return value;
431 done:
432 	if (value < 0)
433 		cmd->error = value;
434 	mmc_cs_off(host);
435 	return value;
436 }
437 
438 /* Issue command and read its response.
439  * Returns zero on success, negative for error.
440  *
441  * On error, caller must cope with mmc core retry mechanism.  That
442  * means immediate low-level resubmit, which affects the bus lock...
443  */
444 static int
445 mmc_spi_command_send(struct mmc_spi_host *host,
446 		struct mmc_request *mrq,
447 		struct mmc_command *cmd, int cs_on)
448 {
449 	struct scratch		*data = host->data;
450 	u8			*cp = data->status;
451 	u32			arg = cmd->arg;
452 	int			status;
453 	struct spi_transfer	*t;
454 
455 	/* We can handle most commands (except block reads) in one full
456 	 * duplex I/O operation before either starting the next transfer
457 	 * (data block or command) or else deselecting the card.
458 	 *
459 	 * First, write 7 bytes:
460 	 *  - an all-ones byte to ensure the card is ready
461 	 *  - opcode byte (plus start and transmission bits)
462 	 *  - four bytes of big-endian argument
463 	 *  - crc7 (plus end bit) ... always computed, it's cheap
464 	 *
465 	 * We init the whole buffer to all-ones, which is what we need
466 	 * to write while we're reading (later) response data.
467 	 */
468 	memset(cp++, 0xff, sizeof(data->status));
469 
470 	*cp++ = 0x40 | cmd->opcode;
471 	*cp++ = (u8)(arg >> 24);
472 	*cp++ = (u8)(arg >> 16);
473 	*cp++ = (u8)(arg >> 8);
474 	*cp++ = (u8)arg;
475 	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
476 
477 	/* Then, read up to 13 bytes (while writing all-ones):
478 	 *  - N(CR) (== 1..8) bytes of all-ones
479 	 *  - status byte (for all response types)
480 	 *  - the rest of the response, either:
481 	 *      + nothing, for R1 or R1B responses
482 	 *	+ second status byte, for R2 responses
483 	 *	+ four data bytes, for R3 and R7 responses
484 	 *
485 	 * Finally, read some more bytes ... in the nice cases we know in
486 	 * advance how many, and reading 1 more is always OK:
487 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
488 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
489 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
490 	 *
491 	 * So in those cases one full duplex I/O of at most 21 bytes will
492 	 * handle the whole command, leaving the card ready to receive a
493 	 * data block or new command.  We do that whenever we can, shaving
494 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
495 	 *
496 	 * There are two other cases, where it's not generally practical
497 	 * to rely on a single I/O:
498 	 *
499 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
500 	 *
501 	 *    In this case we can *try* to fit it into one I/O, then
502 	 *    maybe read more data later.
503 	 *
504 	 *  - Data block reads are more troublesome, since a variable
505 	 *    number of padding bytes precede the token and data.
506 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
507 	 *      + N(AC) (== 1..many) bytes of all-ones
508 	 *
509 	 *    In this case we currently only have minimal speedups here:
510 	 *    when N(CR) == 1 we can avoid I/O in response_get().
511 	 */
512 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
513 		cp += 2;	/* min(N(CR)) + status */
514 		/* R1 */
515 	} else {
516 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
517 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
518 			cp++;
519 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
520 			cp += 4;
521 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
522 			cp = data->status + sizeof(data->status);
523 		/* else:  R1 (most commands) */
524 	}
525 
526 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
527 		cmd->opcode, maptype(cmd));
528 
529 	/* send command, leaving chipselect active */
530 	spi_message_init(&host->m);
531 
532 	t = &host->t;
533 	memset(t, 0, sizeof(*t));
534 	t->tx_buf = t->rx_buf = data->status;
535 	t->tx_dma = t->rx_dma = host->data_dma;
536 	t->len = cp - data->status;
537 	t->cs_change = 1;
538 	spi_message_add_tail(t, &host->m);
539 
540 	if (host->dma_dev) {
541 		host->m.is_dma_mapped = 1;
542 		dma_sync_single_for_device(host->dma_dev,
543 				host->data_dma, sizeof(*host->data),
544 				DMA_BIDIRECTIONAL);
545 	}
546 	status = spi_sync_locked(host->spi, &host->m);
547 
548 	if (host->dma_dev)
549 		dma_sync_single_for_cpu(host->dma_dev,
550 				host->data_dma, sizeof(*host->data),
551 				DMA_BIDIRECTIONAL);
552 	if (status < 0) {
553 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
554 		cmd->error = status;
555 		return status;
556 	}
557 
558 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
559 	return mmc_spi_response_get(host, cmd, cs_on);
560 }
561 
562 /* Build data message with up to four separate transfers.  For TX, we
563  * start by writing the data token.  And in most cases, we finish with
564  * a status transfer.
565  *
566  * We always provide TX data for data and CRC.  The MMC/SD protocol
567  * requires us to write ones; but Linux defaults to writing zeroes;
568  * so we explicitly initialize it to all ones on RX paths.
569  *
570  * We also handle DMA mapping, so the underlying SPI controller does
571  * not need to (re)do it for each message.
572  */
573 static void
574 mmc_spi_setup_data_message(
575 	struct mmc_spi_host	*host,
576 	int			multiple,
577 	enum dma_data_direction	direction)
578 {
579 	struct spi_transfer	*t;
580 	struct scratch		*scratch = host->data;
581 	dma_addr_t		dma = host->data_dma;
582 
583 	spi_message_init(&host->m);
584 	if (dma)
585 		host->m.is_dma_mapped = 1;
586 
587 	/* for reads, readblock() skips 0xff bytes before finding
588 	 * the token; for writes, this transfer issues that token.
589 	 */
590 	if (direction == DMA_TO_DEVICE) {
591 		t = &host->token;
592 		memset(t, 0, sizeof(*t));
593 		t->len = 1;
594 		if (multiple)
595 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
596 		else
597 			scratch->data_token = SPI_TOKEN_SINGLE;
598 		t->tx_buf = &scratch->data_token;
599 		if (dma)
600 			t->tx_dma = dma + offsetof(struct scratch, data_token);
601 		spi_message_add_tail(t, &host->m);
602 	}
603 
604 	/* Body of transfer is buffer, then CRC ...
605 	 * either TX-only, or RX with TX-ones.
606 	 */
607 	t = &host->t;
608 	memset(t, 0, sizeof(*t));
609 	t->tx_buf = host->ones;
610 	t->tx_dma = host->ones_dma;
611 	/* length and actual buffer info are written later */
612 	spi_message_add_tail(t, &host->m);
613 
614 	t = &host->crc;
615 	memset(t, 0, sizeof(*t));
616 	t->len = 2;
617 	if (direction == DMA_TO_DEVICE) {
618 		/* the actual CRC may get written later */
619 		t->tx_buf = &scratch->crc_val;
620 		if (dma)
621 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
622 	} else {
623 		t->tx_buf = host->ones;
624 		t->tx_dma = host->ones_dma;
625 		t->rx_buf = &scratch->crc_val;
626 		if (dma)
627 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
628 	}
629 	spi_message_add_tail(t, &host->m);
630 
631 	/*
632 	 * A single block read is followed by N(EC) [0+] all-ones bytes
633 	 * before deselect ... don't bother.
634 	 *
635 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
636 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
637 	 * collect that single byte, so readblock() doesn't need to.
638 	 *
639 	 * For a write, the one-byte data response follows immediately, then
640 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
641 	 * Then single block reads may deselect, and multiblock ones issue
642 	 * the next token (next data block, or STOP_TRAN).  We can try to
643 	 * minimize I/O ops by using a single read to collect end-of-busy.
644 	 */
645 	if (multiple || direction == DMA_TO_DEVICE) {
646 		t = &host->early_status;
647 		memset(t, 0, sizeof(*t));
648 		t->len = (direction == DMA_TO_DEVICE)
649 				? sizeof(scratch->status)
650 				: 1;
651 		t->tx_buf = host->ones;
652 		t->tx_dma = host->ones_dma;
653 		t->rx_buf = scratch->status;
654 		if (dma)
655 			t->rx_dma = dma + offsetof(struct scratch, status);
656 		t->cs_change = 1;
657 		spi_message_add_tail(t, &host->m);
658 	}
659 }
660 
661 /*
662  * Write one block:
663  *  - caller handled preceding N(WR) [1+] all-ones bytes
664  *  - data block
665  *	+ token
666  *	+ data bytes
667  *	+ crc16
668  *  - an all-ones byte ... card writes a data-response byte
669  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
670  *
671  * Return negative errno, else success.
672  */
673 static int
674 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
675 	unsigned long timeout)
676 {
677 	struct spi_device	*spi = host->spi;
678 	int			status, i;
679 	struct scratch		*scratch = host->data;
680 	u32			pattern;
681 
682 	if (host->mmc->use_spi_crc)
683 		scratch->crc_val = cpu_to_be16(
684 				crc_itu_t(0, t->tx_buf, t->len));
685 	if (host->dma_dev)
686 		dma_sync_single_for_device(host->dma_dev,
687 				host->data_dma, sizeof(*scratch),
688 				DMA_BIDIRECTIONAL);
689 
690 	status = spi_sync_locked(spi, &host->m);
691 
692 	if (status != 0) {
693 		dev_dbg(&spi->dev, "write error (%d)\n", status);
694 		return status;
695 	}
696 
697 	if (host->dma_dev)
698 		dma_sync_single_for_cpu(host->dma_dev,
699 				host->data_dma, sizeof(*scratch),
700 				DMA_BIDIRECTIONAL);
701 
702 	/*
703 	 * Get the transmission data-response reply.  It must follow
704 	 * immediately after the data block we transferred.  This reply
705 	 * doesn't necessarily tell whether the write operation succeeded;
706 	 * it just says if the transmission was ok and whether *earlier*
707 	 * writes succeeded; see the standard.
708 	 *
709 	 * In practice, there are (even modern SDHC-)cards which are late
710 	 * in sending the response, and miss the time frame by a few bits,
711 	 * so we have to cope with this situation and check the response
712 	 * bit-by-bit. Arggh!!!
713 	 */
714 	pattern  = scratch->status[0] << 24;
715 	pattern |= scratch->status[1] << 16;
716 	pattern |= scratch->status[2] << 8;
717 	pattern |= scratch->status[3];
718 
719 	/* First 3 bit of pattern are undefined */
720 	pattern |= 0xE0000000;
721 
722 	/* left-adjust to leading 0 bit */
723 	while (pattern & 0x80000000)
724 		pattern <<= 1;
725 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
726 	pattern >>= 27;
727 
728 	switch (pattern) {
729 	case SPI_RESPONSE_ACCEPTED:
730 		status = 0;
731 		break;
732 	case SPI_RESPONSE_CRC_ERR:
733 		/* host shall then issue MMC_STOP_TRANSMISSION */
734 		status = -EILSEQ;
735 		break;
736 	case SPI_RESPONSE_WRITE_ERR:
737 		/* host shall then issue MMC_STOP_TRANSMISSION,
738 		 * and should MMC_SEND_STATUS to sort it out
739 		 */
740 		status = -EIO;
741 		break;
742 	default:
743 		status = -EPROTO;
744 		break;
745 	}
746 	if (status != 0) {
747 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
748 			scratch->status[0], status);
749 		return status;
750 	}
751 
752 	t->tx_buf += t->len;
753 	if (host->dma_dev)
754 		t->tx_dma += t->len;
755 
756 	/* Return when not busy.  If we didn't collect that status yet,
757 	 * we'll need some more I/O.
758 	 */
759 	for (i = 4; i < sizeof(scratch->status); i++) {
760 		/* card is non-busy if the most recent bit is 1 */
761 		if (scratch->status[i] & 0x01)
762 			return 0;
763 	}
764 	return mmc_spi_wait_unbusy(host, timeout);
765 }
766 
767 /*
768  * Read one block:
769  *  - skip leading all-ones bytes ... either
770  *      + N(AC) [1..f(clock,CSD)] usually, else
771  *      + N(CX) [0..8] when reading CSD or CID
772  *  - data block
773  *	+ token ... if error token, no data or crc
774  *	+ data bytes
775  *	+ crc16
776  *
777  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
778  * before dropping chipselect.
779  *
780  * For multiblock reads, caller either reads the next block or issues a
781  * STOP_TRANSMISSION command.
782  */
783 static int
784 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
785 	unsigned long timeout)
786 {
787 	struct spi_device	*spi = host->spi;
788 	int			status;
789 	struct scratch		*scratch = host->data;
790 	unsigned int 		bitshift;
791 	u8			leftover;
792 
793 	/* At least one SD card sends an all-zeroes byte when N(CX)
794 	 * applies, before the all-ones bytes ... just cope with that.
795 	 */
796 	status = mmc_spi_readbytes(host, 1);
797 	if (status < 0)
798 		return status;
799 	status = scratch->status[0];
800 	if (status == 0xff || status == 0)
801 		status = mmc_spi_readtoken(host, timeout);
802 
803 	if (status < 0) {
804 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
805 		return status;
806 	}
807 
808 	/* The token may be bit-shifted...
809 	 * the first 0-bit precedes the data stream.
810 	 */
811 	bitshift = 7;
812 	while (status & 0x80) {
813 		status <<= 1;
814 		bitshift--;
815 	}
816 	leftover = status << 1;
817 
818 	if (host->dma_dev) {
819 		dma_sync_single_for_device(host->dma_dev,
820 				host->data_dma, sizeof(*scratch),
821 				DMA_BIDIRECTIONAL);
822 		dma_sync_single_for_device(host->dma_dev,
823 				t->rx_dma, t->len,
824 				DMA_FROM_DEVICE);
825 	}
826 
827 	status = spi_sync_locked(spi, &host->m);
828 
829 	if (host->dma_dev) {
830 		dma_sync_single_for_cpu(host->dma_dev,
831 				host->data_dma, sizeof(*scratch),
832 				DMA_BIDIRECTIONAL);
833 		dma_sync_single_for_cpu(host->dma_dev,
834 				t->rx_dma, t->len,
835 				DMA_FROM_DEVICE);
836 	}
837 
838 	if (bitshift) {
839 		/* Walk through the data and the crc and do
840 		 * all the magic to get byte-aligned data.
841 		 */
842 		u8 *cp = t->rx_buf;
843 		unsigned int len;
844 		unsigned int bitright = 8 - bitshift;
845 		u8 temp;
846 		for (len = t->len; len; len--) {
847 			temp = *cp;
848 			*cp++ = leftover | (temp >> bitshift);
849 			leftover = temp << bitright;
850 		}
851 		cp = (u8 *) &scratch->crc_val;
852 		temp = *cp;
853 		*cp++ = leftover | (temp >> bitshift);
854 		leftover = temp << bitright;
855 		temp = *cp;
856 		*cp = leftover | (temp >> bitshift);
857 	}
858 
859 	if (host->mmc->use_spi_crc) {
860 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
861 
862 		be16_to_cpus(&scratch->crc_val);
863 		if (scratch->crc_val != crc) {
864 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
865 					"computed=0x%04x len=%d\n",
866 					scratch->crc_val, crc, t->len);
867 			return -EILSEQ;
868 		}
869 	}
870 
871 	t->rx_buf += t->len;
872 	if (host->dma_dev)
873 		t->rx_dma += t->len;
874 
875 	return 0;
876 }
877 
878 /*
879  * An MMC/SD data stage includes one or more blocks, optional CRCs,
880  * and inline handshaking.  That handhaking makes it unlike most
881  * other SPI protocol stacks.
882  */
883 static void
884 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
885 		struct mmc_data *data, u32 blk_size)
886 {
887 	struct spi_device	*spi = host->spi;
888 	struct device		*dma_dev = host->dma_dev;
889 	struct spi_transfer	*t;
890 	enum dma_data_direction	direction;
891 	struct scatterlist	*sg;
892 	unsigned		n_sg;
893 	int			multiple = (data->blocks > 1);
894 	u32			clock_rate;
895 	unsigned long		timeout;
896 
897 	if (data->flags & MMC_DATA_READ)
898 		direction = DMA_FROM_DEVICE;
899 	else
900 		direction = DMA_TO_DEVICE;
901 	mmc_spi_setup_data_message(host, multiple, direction);
902 	t = &host->t;
903 
904 	if (t->speed_hz)
905 		clock_rate = t->speed_hz;
906 	else
907 		clock_rate = spi->max_speed_hz;
908 
909 	timeout = data->timeout_ns +
910 		  data->timeout_clks * 1000000 / clock_rate;
911 	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
912 
913 	/* Handle scatterlist segments one at a time, with synch for
914 	 * each 512-byte block
915 	 */
916 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
917 		int			status = 0;
918 		dma_addr_t		dma_addr = 0;
919 		void			*kmap_addr;
920 		unsigned		length = sg->length;
921 		enum dma_data_direction	dir = direction;
922 
923 		/* set up dma mapping for controller drivers that might
924 		 * use DMA ... though they may fall back to PIO
925 		 */
926 		if (dma_dev) {
927 			/* never invalidate whole *shared* pages ... */
928 			if ((sg->offset != 0 || length != PAGE_SIZE)
929 					&& dir == DMA_FROM_DEVICE)
930 				dir = DMA_BIDIRECTIONAL;
931 
932 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
933 						PAGE_SIZE, dir);
934 			if (direction == DMA_TO_DEVICE)
935 				t->tx_dma = dma_addr + sg->offset;
936 			else
937 				t->rx_dma = dma_addr + sg->offset;
938 		}
939 
940 		/* allow pio too; we don't allow highmem */
941 		kmap_addr = kmap(sg_page(sg));
942 		if (direction == DMA_TO_DEVICE)
943 			t->tx_buf = kmap_addr + sg->offset;
944 		else
945 			t->rx_buf = kmap_addr + sg->offset;
946 
947 		/* transfer each block, and update request status */
948 		while (length) {
949 			t->len = min(length, blk_size);
950 
951 			dev_dbg(&host->spi->dev,
952 				"    mmc_spi: %s block, %d bytes\n",
953 				(direction == DMA_TO_DEVICE)
954 				? "write"
955 				: "read",
956 				t->len);
957 
958 			if (direction == DMA_TO_DEVICE)
959 				status = mmc_spi_writeblock(host, t, timeout);
960 			else
961 				status = mmc_spi_readblock(host, t, timeout);
962 			if (status < 0)
963 				break;
964 
965 			data->bytes_xfered += t->len;
966 			length -= t->len;
967 
968 			if (!multiple)
969 				break;
970 		}
971 
972 		/* discard mappings */
973 		if (direction == DMA_FROM_DEVICE)
974 			flush_kernel_dcache_page(sg_page(sg));
975 		kunmap(sg_page(sg));
976 		if (dma_dev)
977 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
978 
979 		if (status < 0) {
980 			data->error = status;
981 			dev_dbg(&spi->dev, "%s status %d\n",
982 				(direction == DMA_TO_DEVICE)
983 					? "write" : "read",
984 				status);
985 			break;
986 		}
987 	}
988 
989 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
990 	 * can be issued before multiblock writes.  Unlike its more widely
991 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
992 	 * that can affect the STOP_TRAN logic.   Complete (and current)
993 	 * MMC specs should sort that out before Linux starts using CMD23.
994 	 */
995 	if (direction == DMA_TO_DEVICE && multiple) {
996 		struct scratch	*scratch = host->data;
997 		int		tmp;
998 		const unsigned	statlen = sizeof(scratch->status);
999 
1000 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
1001 
1002 		/* Tweak the per-block message we set up earlier by morphing
1003 		 * it to hold single buffer with the token followed by some
1004 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1005 		 * "not busy any longer" status, and leave chip selected.
1006 		 */
1007 		INIT_LIST_HEAD(&host->m.transfers);
1008 		list_add(&host->early_status.transfer_list,
1009 				&host->m.transfers);
1010 
1011 		memset(scratch->status, 0xff, statlen);
1012 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1013 
1014 		host->early_status.tx_buf = host->early_status.rx_buf;
1015 		host->early_status.tx_dma = host->early_status.rx_dma;
1016 		host->early_status.len = statlen;
1017 
1018 		if (host->dma_dev)
1019 			dma_sync_single_for_device(host->dma_dev,
1020 					host->data_dma, sizeof(*scratch),
1021 					DMA_BIDIRECTIONAL);
1022 
1023 		tmp = spi_sync_locked(spi, &host->m);
1024 
1025 		if (host->dma_dev)
1026 			dma_sync_single_for_cpu(host->dma_dev,
1027 					host->data_dma, sizeof(*scratch),
1028 					DMA_BIDIRECTIONAL);
1029 
1030 		if (tmp < 0) {
1031 			if (!data->error)
1032 				data->error = tmp;
1033 			return;
1034 		}
1035 
1036 		/* Ideally we collected "not busy" status with one I/O,
1037 		 * avoiding wasteful byte-at-a-time scanning... but more
1038 		 * I/O is often needed.
1039 		 */
1040 		for (tmp = 2; tmp < statlen; tmp++) {
1041 			if (scratch->status[tmp] != 0)
1042 				return;
1043 		}
1044 		tmp = mmc_spi_wait_unbusy(host, timeout);
1045 		if (tmp < 0 && !data->error)
1046 			data->error = tmp;
1047 	}
1048 }
1049 
1050 /****************************************************************************/
1051 
1052 /*
1053  * MMC driver implementation -- the interface to the MMC stack
1054  */
1055 
1056 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1057 {
1058 	struct mmc_spi_host	*host = mmc_priv(mmc);
1059 	int			status = -EINVAL;
1060 	int			crc_retry = 5;
1061 	struct mmc_command	stop;
1062 
1063 #ifdef DEBUG
1064 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1065 	{
1066 		struct mmc_command	*cmd;
1067 		int			invalid = 0;
1068 
1069 		cmd = mrq->cmd;
1070 		if (!mmc_spi_resp_type(cmd)) {
1071 			dev_dbg(&host->spi->dev, "bogus command\n");
1072 			cmd->error = -EINVAL;
1073 			invalid = 1;
1074 		}
1075 
1076 		cmd = mrq->stop;
1077 		if (cmd && !mmc_spi_resp_type(cmd)) {
1078 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1079 			cmd->error = -EINVAL;
1080 			invalid = 1;
1081 		}
1082 
1083 		if (invalid) {
1084 			dump_stack();
1085 			mmc_request_done(host->mmc, mrq);
1086 			return;
1087 		}
1088 	}
1089 #endif
1090 
1091 	/* request exclusive bus access */
1092 	spi_bus_lock(host->spi->master);
1093 
1094 crc_recover:
1095 	/* issue command; then optionally data and stop */
1096 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1097 	if (status == 0 && mrq->data) {
1098 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1099 
1100 		/*
1101 		 * The SPI bus is not always reliable for large data transfers.
1102 		 * If an occasional crc error is reported by the SD device with
1103 		 * data read/write over SPI, it may be recovered by repeating
1104 		 * the last SD command again. The retry count is set to 5 to
1105 		 * ensure the driver passes stress tests.
1106 		 */
1107 		if (mrq->data->error == -EILSEQ && crc_retry) {
1108 			stop.opcode = MMC_STOP_TRANSMISSION;
1109 			stop.arg = 0;
1110 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1111 			status = mmc_spi_command_send(host, mrq, &stop, 0);
1112 			crc_retry--;
1113 			mrq->data->error = 0;
1114 			goto crc_recover;
1115 		}
1116 
1117 		if (mrq->stop)
1118 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1119 		else
1120 			mmc_cs_off(host);
1121 	}
1122 
1123 	/* release the bus */
1124 	spi_bus_unlock(host->spi->master);
1125 
1126 	mmc_request_done(host->mmc, mrq);
1127 }
1128 
1129 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1130  *
1131  * NOTE that here we can't know that the card has just been powered up;
1132  * not all MMC/SD sockets support power switching.
1133  *
1134  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1135  * this doesn't seem to do the right thing at all...
1136  */
1137 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1138 {
1139 	/* Try to be very sure any previous command has completed;
1140 	 * wait till not-busy, skip debris from any old commands.
1141 	 */
1142 	mmc_spi_wait_unbusy(host, r1b_timeout);
1143 	mmc_spi_readbytes(host, 10);
1144 
1145 	/*
1146 	 * Do a burst with chipselect active-high.  We need to do this to
1147 	 * meet the requirement of 74 clock cycles with both chipselect
1148 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1149 	 * powered up to Vdd(min), and so is ready to take commands.
1150 	 *
1151 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1152 	 * while most others don't seem to care.
1153 	 *
1154 	 * Note that this is one of the places MMC/SD plays games with the
1155 	 * SPI protocol.  Another is that when chipselect is released while
1156 	 * the card returns BUSY status, the clock must issue several cycles
1157 	 * with chipselect high before the card will stop driving its output.
1158 	 */
1159 	host->spi->mode |= SPI_CS_HIGH;
1160 	if (spi_setup(host->spi) != 0) {
1161 		/* Just warn; most cards work without it. */
1162 		dev_warn(&host->spi->dev,
1163 				"can't change chip-select polarity\n");
1164 		host->spi->mode &= ~SPI_CS_HIGH;
1165 	} else {
1166 		mmc_spi_readbytes(host, 18);
1167 
1168 		host->spi->mode &= ~SPI_CS_HIGH;
1169 		if (spi_setup(host->spi) != 0) {
1170 			/* Wot, we can't get the same setup we had before? */
1171 			dev_err(&host->spi->dev,
1172 					"can't restore chip-select polarity\n");
1173 		}
1174 	}
1175 }
1176 
1177 static char *mmc_powerstring(u8 power_mode)
1178 {
1179 	switch (power_mode) {
1180 	case MMC_POWER_OFF: return "off";
1181 	case MMC_POWER_UP:  return "up";
1182 	case MMC_POWER_ON:  return "on";
1183 	}
1184 	return "?";
1185 }
1186 
1187 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1188 {
1189 	struct mmc_spi_host *host = mmc_priv(mmc);
1190 
1191 	if (host->power_mode != ios->power_mode) {
1192 		int		canpower;
1193 
1194 		canpower = host->pdata && host->pdata->setpower;
1195 
1196 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1197 				mmc_powerstring(ios->power_mode),
1198 				ios->vdd,
1199 				canpower ? ", can switch" : "");
1200 
1201 		/* switch power on/off if possible, accounting for
1202 		 * max 250msec powerup time if needed.
1203 		 */
1204 		if (canpower) {
1205 			switch (ios->power_mode) {
1206 			case MMC_POWER_OFF:
1207 			case MMC_POWER_UP:
1208 				host->pdata->setpower(&host->spi->dev,
1209 						ios->vdd);
1210 				if (ios->power_mode == MMC_POWER_UP)
1211 					msleep(host->powerup_msecs);
1212 			}
1213 		}
1214 
1215 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1216 		if (ios->power_mode == MMC_POWER_ON)
1217 			mmc_spi_initsequence(host);
1218 
1219 		/* If powering down, ground all card inputs to avoid power
1220 		 * delivery from data lines!  On a shared SPI bus, this
1221 		 * will probably be temporary; 6.4.2 of the simplified SD
1222 		 * spec says this must last at least 1msec.
1223 		 *
1224 		 *   - Clock low means CPOL 0, e.g. mode 0
1225 		 *   - MOSI low comes from writing zero
1226 		 *   - Chipselect is usually active low...
1227 		 */
1228 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1229 			int mres;
1230 			u8 nullbyte = 0;
1231 
1232 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1233 			mres = spi_setup(host->spi);
1234 			if (mres < 0)
1235 				dev_dbg(&host->spi->dev,
1236 					"switch to SPI mode 0 failed\n");
1237 
1238 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1239 				dev_dbg(&host->spi->dev,
1240 					"put spi signals to low failed\n");
1241 
1242 			/*
1243 			 * Now clock should be low due to spi mode 0;
1244 			 * MOSI should be low because of written 0x00;
1245 			 * chipselect should be low (it is active low)
1246 			 * power supply is off, so now MMC is off too!
1247 			 *
1248 			 * FIXME no, chipselect can be high since the
1249 			 * device is inactive and SPI_CS_HIGH is clear...
1250 			 */
1251 			msleep(10);
1252 			if (mres == 0) {
1253 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1254 				mres = spi_setup(host->spi);
1255 				if (mres < 0)
1256 					dev_dbg(&host->spi->dev,
1257 						"switch back to SPI mode 3"
1258 						" failed\n");
1259 			}
1260 		}
1261 
1262 		host->power_mode = ios->power_mode;
1263 	}
1264 
1265 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1266 		int		status;
1267 
1268 		host->spi->max_speed_hz = ios->clock;
1269 		status = spi_setup(host->spi);
1270 		dev_dbg(&host->spi->dev,
1271 			"mmc_spi:  clock to %d Hz, %d\n",
1272 			host->spi->max_speed_hz, status);
1273 	}
1274 }
1275 
1276 static const struct mmc_host_ops mmc_spi_ops = {
1277 	.request	= mmc_spi_request,
1278 	.set_ios	= mmc_spi_set_ios,
1279 	.get_ro		= mmc_gpio_get_ro,
1280 	.get_cd		= mmc_gpio_get_cd,
1281 };
1282 
1283 
1284 /****************************************************************************/
1285 
1286 /*
1287  * SPI driver implementation
1288  */
1289 
1290 static irqreturn_t
1291 mmc_spi_detect_irq(int irq, void *mmc)
1292 {
1293 	struct mmc_spi_host *host = mmc_priv(mmc);
1294 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1295 
1296 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1297 	return IRQ_HANDLED;
1298 }
1299 
1300 static int mmc_spi_probe(struct spi_device *spi)
1301 {
1302 	void			*ones;
1303 	struct mmc_host		*mmc;
1304 	struct mmc_spi_host	*host;
1305 	int			status;
1306 	bool			has_ro = false;
1307 
1308 	/* We rely on full duplex transfers, mostly to reduce
1309 	 * per-transfer overheads (by making fewer transfers).
1310 	 */
1311 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1312 		return -EINVAL;
1313 
1314 	/* MMC and SD specs only seem to care that sampling is on the
1315 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1316 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1317 	 * which is appropriate for hotplugging, unless the platform data
1318 	 * specify mode 3 (if hardware is not compatible to mode 0).
1319 	 */
1320 	if (spi->mode != SPI_MODE_3)
1321 		spi->mode = SPI_MODE_0;
1322 	spi->bits_per_word = 8;
1323 
1324 	status = spi_setup(spi);
1325 	if (status < 0) {
1326 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1327 				spi->mode, spi->max_speed_hz / 1000,
1328 				status);
1329 		return status;
1330 	}
1331 
1332 	/* We need a supply of ones to transmit.  This is the only time
1333 	 * the CPU touches these, so cache coherency isn't a concern.
1334 	 *
1335 	 * NOTE if many systems use more than one MMC-over-SPI connector
1336 	 * it'd save some memory to share this.  That's evidently rare.
1337 	 */
1338 	status = -ENOMEM;
1339 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1340 	if (!ones)
1341 		goto nomem;
1342 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1343 
1344 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1345 	if (!mmc)
1346 		goto nomem;
1347 
1348 	mmc->ops = &mmc_spi_ops;
1349 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1350 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1351 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1352 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1353 
1354 	mmc->caps = MMC_CAP_SPI;
1355 
1356 	/* SPI doesn't need the lowspeed device identification thing for
1357 	 * MMC or SD cards, since it never comes up in open drain mode.
1358 	 * That's good; some SPI masters can't handle very low speeds!
1359 	 *
1360 	 * However, low speed SDIO cards need not handle over 400 KHz;
1361 	 * that's the only reason not to use a few MHz for f_min (until
1362 	 * the upper layer reads the target frequency from the CSD).
1363 	 */
1364 	mmc->f_min = 400000;
1365 	mmc->f_max = spi->max_speed_hz;
1366 
1367 	host = mmc_priv(mmc);
1368 	host->mmc = mmc;
1369 	host->spi = spi;
1370 
1371 	host->ones = ones;
1372 
1373 	/* Platform data is used to hook up things like card sensing
1374 	 * and power switching gpios.
1375 	 */
1376 	host->pdata = mmc_spi_get_pdata(spi);
1377 	if (host->pdata)
1378 		mmc->ocr_avail = host->pdata->ocr_mask;
1379 	if (!mmc->ocr_avail) {
1380 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1381 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1382 	}
1383 	if (host->pdata && host->pdata->setpower) {
1384 		host->powerup_msecs = host->pdata->powerup_msecs;
1385 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1386 			host->powerup_msecs = 250;
1387 	}
1388 
1389 	dev_set_drvdata(&spi->dev, mmc);
1390 
1391 	/* preallocate dma buffers */
1392 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1393 	if (!host->data)
1394 		goto fail_nobuf1;
1395 
1396 	if (spi->master->dev.parent->dma_mask) {
1397 		struct device	*dev = spi->master->dev.parent;
1398 
1399 		host->dma_dev = dev;
1400 		host->ones_dma = dma_map_single(dev, ones,
1401 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1402 		host->data_dma = dma_map_single(dev, host->data,
1403 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1404 
1405 		/* REVISIT in theory those map operations can fail... */
1406 
1407 		dma_sync_single_for_cpu(host->dma_dev,
1408 				host->data_dma, sizeof(*host->data),
1409 				DMA_BIDIRECTIONAL);
1410 	}
1411 
1412 	/* setup message for status/busy readback */
1413 	spi_message_init(&host->readback);
1414 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1415 
1416 	spi_message_add_tail(&host->status, &host->readback);
1417 	host->status.tx_buf = host->ones;
1418 	host->status.tx_dma = host->ones_dma;
1419 	host->status.rx_buf = &host->data->status;
1420 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1421 	host->status.cs_change = 1;
1422 
1423 	/* register card detect irq */
1424 	if (host->pdata && host->pdata->init) {
1425 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1426 		if (status != 0)
1427 			goto fail_glue_init;
1428 	}
1429 
1430 	/* pass platform capabilities, if any */
1431 	if (host->pdata) {
1432 		mmc->caps |= host->pdata->caps;
1433 		mmc->caps2 |= host->pdata->caps2;
1434 	}
1435 
1436 	status = mmc_add_host(mmc);
1437 	if (status != 0)
1438 		goto fail_add_host;
1439 
1440 	if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) {
1441 		status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio,
1442 					     host->pdata->cd_debounce);
1443 		if (status != 0)
1444 			goto fail_add_host;
1445 	}
1446 
1447 	if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) {
1448 		has_ro = true;
1449 		status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio);
1450 		if (status != 0)
1451 			goto fail_add_host;
1452 	}
1453 
1454 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1455 			dev_name(&mmc->class_dev),
1456 			host->dma_dev ? "" : ", no DMA",
1457 			has_ro ? "" : ", no WP",
1458 			(host->pdata && host->pdata->setpower)
1459 				? "" : ", no poweroff",
1460 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1461 				? ", cd polling" : "");
1462 	return 0;
1463 
1464 fail_add_host:
1465 	mmc_remove_host (mmc);
1466 fail_glue_init:
1467 	if (host->dma_dev)
1468 		dma_unmap_single(host->dma_dev, host->data_dma,
1469 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1470 	kfree(host->data);
1471 
1472 fail_nobuf1:
1473 	mmc_free_host(mmc);
1474 	mmc_spi_put_pdata(spi);
1475 	dev_set_drvdata(&spi->dev, NULL);
1476 
1477 nomem:
1478 	kfree(ones);
1479 	return status;
1480 }
1481 
1482 
1483 static int mmc_spi_remove(struct spi_device *spi)
1484 {
1485 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1486 	struct mmc_spi_host	*host;
1487 
1488 	if (mmc) {
1489 		host = mmc_priv(mmc);
1490 
1491 		/* prevent new mmc_detect_change() calls */
1492 		if (host->pdata && host->pdata->exit)
1493 			host->pdata->exit(&spi->dev, mmc);
1494 
1495 		mmc_remove_host(mmc);
1496 
1497 		if (host->dma_dev) {
1498 			dma_unmap_single(host->dma_dev, host->ones_dma,
1499 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1500 			dma_unmap_single(host->dma_dev, host->data_dma,
1501 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1502 		}
1503 
1504 		kfree(host->data);
1505 		kfree(host->ones);
1506 
1507 		spi->max_speed_hz = mmc->f_max;
1508 		mmc_free_host(mmc);
1509 		mmc_spi_put_pdata(spi);
1510 		dev_set_drvdata(&spi->dev, NULL);
1511 	}
1512 	return 0;
1513 }
1514 
1515 static struct of_device_id mmc_spi_of_match_table[] = {
1516 	{ .compatible = "mmc-spi-slot", },
1517 	{},
1518 };
1519 
1520 static struct spi_driver mmc_spi_driver = {
1521 	.driver = {
1522 		.name =		"mmc_spi",
1523 		.owner =	THIS_MODULE,
1524 		.of_match_table = mmc_spi_of_match_table,
1525 	},
1526 	.probe =	mmc_spi_probe,
1527 	.remove =	mmc_spi_remove,
1528 };
1529 
1530 module_spi_driver(mmc_spi_driver);
1531 
1532 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1533 		"Hans-Peter Nilsson, Jan Nikitenko");
1534 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1535 MODULE_LICENSE("GPL");
1536 MODULE_ALIAS("spi:mmc_spi");
1537