xref: /openbmc/linux/drivers/mmc/host/mmc_spi.c (revision 7dd65feb)
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
34 
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
37 
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
40 
41 #include <asm/unaligned.h>
42 
43 
44 /* NOTES:
45  *
46  * - For now, we won't try to interoperate with a real mmc/sd/sdio
47  *   controller, although some of them do have hardware support for
48  *   SPI protocol.  The main reason for such configs would be mmc-ish
49  *   cards like DataFlash, which don't support that "native" protocol.
50  *
51  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52  *   switch between driver stacks, and in any case if "native" mode
53  *   is available, it will be faster and hence preferable.
54  *
55  * - MMC depends on a different chipselect management policy than the
56  *   SPI interface currently supports for shared bus segments:  it needs
57  *   to issue multiple spi_message requests with the chipselect active,
58  *   using the results of one message to decide the next one to issue.
59  *
60  *   Pending updates to the programming interface, this driver expects
61  *   that it not share the bus with other drivers (precluding conflicts).
62  *
63  * - We tell the controller to keep the chipselect active from the
64  *   beginning of an mmc_host_ops.request until the end.  So beware
65  *   of SPI controller drivers that mis-handle the cs_change flag!
66  *
67  *   However, many cards seem OK with chipselect flapping up/down
68  *   during that time ... at least on unshared bus segments.
69  */
70 
71 
72 /*
73  * Local protocol constants, internal to data block protocols.
74  */
75 
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
81 
82 /* Read and write blocks start with these tokens and end with crc;
83  * on error, read tokens act like a subset of R2_SPI_* values.
84  */
85 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
88 
89 #define MMC_SPI_BLOCKSIZE	512
90 
91 
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
94  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95  * reads which takes nowhere near that long.  Older cards may be able to use
96  * shorter timeouts ... but why bother?
97  */
98 #define r1b_timeout		(HZ * 3)
99 
100 /* One of the critical speed parameters is the amount of data which may
101  * be transfered in one command. If this value is too low, the SD card
102  * controller has to do multiple partial block writes (argggh!). With
103  * today (2008) SD cards there is little speed gain if we transfer more
104  * than 64 KBytes at a time. So use this value until there is any indication
105  * that we should do more here.
106  */
107 #define MMC_SPI_BLOCKSATONCE	128
108 
109 /****************************************************************************/
110 
111 /*
112  * Local Data Structures
113  */
114 
115 /* "scratch" is per-{command,block} data exchanged with the card */
116 struct scratch {
117 	u8			status[29];
118 	u8			data_token;
119 	__be16			crc_val;
120 };
121 
122 struct mmc_spi_host {
123 	struct mmc_host		*mmc;
124 	struct spi_device	*spi;
125 
126 	unsigned char		power_mode;
127 	u16			powerup_msecs;
128 
129 	struct mmc_spi_platform_data	*pdata;
130 
131 	/* for bulk data transfers */
132 	struct spi_transfer	token, t, crc, early_status;
133 	struct spi_message	m;
134 
135 	/* for status readback */
136 	struct spi_transfer	status;
137 	struct spi_message	readback;
138 
139 	/* underlying DMA-aware controller, or null */
140 	struct device		*dma_dev;
141 
142 	/* buffer used for commands and for message "overhead" */
143 	struct scratch		*data;
144 	dma_addr_t		data_dma;
145 
146 	/* Specs say to write ones most of the time, even when the card
147 	 * has no need to read its input data; and many cards won't care.
148 	 * This is our source of those ones.
149 	 */
150 	void			*ones;
151 	dma_addr_t		ones_dma;
152 };
153 
154 
155 /****************************************************************************/
156 
157 /*
158  * MMC-over-SPI protocol glue, used by the MMC stack interface
159  */
160 
161 static inline int mmc_cs_off(struct mmc_spi_host *host)
162 {
163 	/* chipselect will always be inactive after setup() */
164 	return spi_setup(host->spi);
165 }
166 
167 static int
168 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
169 {
170 	int status;
171 
172 	if (len > sizeof(*host->data)) {
173 		WARN_ON(1);
174 		return -EIO;
175 	}
176 
177 	host->status.len = len;
178 
179 	if (host->dma_dev)
180 		dma_sync_single_for_device(host->dma_dev,
181 				host->data_dma, sizeof(*host->data),
182 				DMA_FROM_DEVICE);
183 
184 	status = spi_sync(host->spi, &host->readback);
185 
186 	if (host->dma_dev)
187 		dma_sync_single_for_cpu(host->dma_dev,
188 				host->data_dma, sizeof(*host->data),
189 				DMA_FROM_DEVICE);
190 
191 	return status;
192 }
193 
194 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
195 			unsigned n, u8 byte)
196 {
197 	u8		*cp = host->data->status;
198 	unsigned long start = jiffies;
199 
200 	while (1) {
201 		int		status;
202 		unsigned	i;
203 
204 		status = mmc_spi_readbytes(host, n);
205 		if (status < 0)
206 			return status;
207 
208 		for (i = 0; i < n; i++) {
209 			if (cp[i] != byte)
210 				return cp[i];
211 		}
212 
213 		if (time_is_before_jiffies(start + timeout))
214 			break;
215 
216 		/* If we need long timeouts, we may release the CPU.
217 		 * We use jiffies here because we want to have a relation
218 		 * between elapsed time and the blocking of the scheduler.
219 		 */
220 		if (time_is_before_jiffies(start+1))
221 			schedule();
222 	}
223 	return -ETIMEDOUT;
224 }
225 
226 static inline int
227 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
228 {
229 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
230 }
231 
232 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
233 {
234 	return mmc_spi_skip(host, timeout, 1, 0xff);
235 }
236 
237 
238 /*
239  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
240  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
241  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
242  *
243  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
244  * newer cards R7 (IF_COND).
245  */
246 
247 static char *maptype(struct mmc_command *cmd)
248 {
249 	switch (mmc_spi_resp_type(cmd)) {
250 	case MMC_RSP_SPI_R1:	return "R1";
251 	case MMC_RSP_SPI_R1B:	return "R1B";
252 	case MMC_RSP_SPI_R2:	return "R2/R5";
253 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
254 	default:		return "?";
255 	}
256 }
257 
258 /* return zero, else negative errno after setting cmd->error */
259 static int mmc_spi_response_get(struct mmc_spi_host *host,
260 		struct mmc_command *cmd, int cs_on)
261 {
262 	u8	*cp = host->data->status;
263 	u8	*end = cp + host->t.len;
264 	int	value = 0;
265 	int	bitshift;
266 	u8 	leftover = 0;
267 	unsigned short rotator;
268 	int 	i;
269 	char	tag[32];
270 
271 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
272 		cmd->opcode, maptype(cmd));
273 
274 	/* Except for data block reads, the whole response will already
275 	 * be stored in the scratch buffer.  It's somewhere after the
276 	 * command and the first byte we read after it.  We ignore that
277 	 * first byte.  After STOP_TRANSMISSION command it may include
278 	 * two data bits, but otherwise it's all ones.
279 	 */
280 	cp += 8;
281 	while (cp < end && *cp == 0xff)
282 		cp++;
283 
284 	/* Data block reads (R1 response types) may need more data... */
285 	if (cp == end) {
286 		cp = host->data->status;
287 		end = cp+1;
288 
289 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
290 		 * status byte ... and we already scanned 2 bytes.
291 		 *
292 		 * REVISIT block read paths use nasty byte-at-a-time I/O
293 		 * so it can always DMA directly into the target buffer.
294 		 * It'd probably be better to memcpy() the first chunk and
295 		 * avoid extra i/o calls...
296 		 *
297 		 * Note we check for more than 8 bytes, because in practice,
298 		 * some SD cards are slow...
299 		 */
300 		for (i = 2; i < 16; i++) {
301 			value = mmc_spi_readbytes(host, 1);
302 			if (value < 0)
303 				goto done;
304 			if (*cp != 0xff)
305 				goto checkstatus;
306 		}
307 		value = -ETIMEDOUT;
308 		goto done;
309 	}
310 
311 checkstatus:
312 	bitshift = 0;
313 	if (*cp & 0x80)	{
314 		/* Houston, we have an ugly card with a bit-shifted response */
315 		rotator = *cp++ << 8;
316 		/* read the next byte */
317 		if (cp == end) {
318 			value = mmc_spi_readbytes(host, 1);
319 			if (value < 0)
320 				goto done;
321 			cp = host->data->status;
322 			end = cp+1;
323 		}
324 		rotator |= *cp++;
325 		while (rotator & 0x8000) {
326 			bitshift++;
327 			rotator <<= 1;
328 		}
329 		cmd->resp[0] = rotator >> 8;
330 		leftover = rotator;
331 	} else {
332 		cmd->resp[0] = *cp++;
333 	}
334 	cmd->error = 0;
335 
336 	/* Status byte: the entire seven-bit R1 response.  */
337 	if (cmd->resp[0] != 0) {
338 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
339 				& cmd->resp[0])
340 			value = -EFAULT; /* Bad address */
341 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
342 			value = -ENOSYS; /* Function not implemented */
343 		else if (R1_SPI_COM_CRC & cmd->resp[0])
344 			value = -EILSEQ; /* Illegal byte sequence */
345 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
346 				& cmd->resp[0])
347 			value = -EIO;    /* I/O error */
348 		/* else R1_SPI_IDLE, "it's resetting" */
349 	}
350 
351 	switch (mmc_spi_resp_type(cmd)) {
352 
353 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
354 	 * and less-common stuff like various erase operations.
355 	 */
356 	case MMC_RSP_SPI_R1B:
357 		/* maybe we read all the busy tokens already */
358 		while (cp < end && *cp == 0)
359 			cp++;
360 		if (cp == end)
361 			mmc_spi_wait_unbusy(host, r1b_timeout);
362 		break;
363 
364 	/* SPI R2 == R1 + second status byte; SEND_STATUS
365 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
366 	 */
367 	case MMC_RSP_SPI_R2:
368 		/* read the next byte */
369 		if (cp == end) {
370 			value = mmc_spi_readbytes(host, 1);
371 			if (value < 0)
372 				goto done;
373 			cp = host->data->status;
374 			end = cp+1;
375 		}
376 		if (bitshift) {
377 			rotator = leftover << 8;
378 			rotator |= *cp << bitshift;
379 			cmd->resp[0] |= (rotator & 0xFF00);
380 		} else {
381 			cmd->resp[0] |= *cp << 8;
382 		}
383 		break;
384 
385 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
386 	case MMC_RSP_SPI_R3:
387 		rotator = leftover << 8;
388 		cmd->resp[1] = 0;
389 		for (i = 0; i < 4; i++) {
390 			cmd->resp[1] <<= 8;
391 			/* read the next byte */
392 			if (cp == end) {
393 				value = mmc_spi_readbytes(host, 1);
394 				if (value < 0)
395 					goto done;
396 				cp = host->data->status;
397 				end = cp+1;
398 			}
399 			if (bitshift) {
400 				rotator |= *cp++ << bitshift;
401 				cmd->resp[1] |= (rotator >> 8);
402 				rotator <<= 8;
403 			} else {
404 				cmd->resp[1] |= *cp++;
405 			}
406 		}
407 		break;
408 
409 	/* SPI R1 == just one status byte */
410 	case MMC_RSP_SPI_R1:
411 		break;
412 
413 	default:
414 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
415 				mmc_spi_resp_type(cmd));
416 		if (value >= 0)
417 			value = -EINVAL;
418 		goto done;
419 	}
420 
421 	if (value < 0)
422 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
423 			tag, cmd->resp[0], cmd->resp[1]);
424 
425 	/* disable chipselect on errors and some success cases */
426 	if (value >= 0 && cs_on)
427 		return value;
428 done:
429 	if (value < 0)
430 		cmd->error = value;
431 	mmc_cs_off(host);
432 	return value;
433 }
434 
435 /* Issue command and read its response.
436  * Returns zero on success, negative for error.
437  *
438  * On error, caller must cope with mmc core retry mechanism.  That
439  * means immediate low-level resubmit, which affects the bus lock...
440  */
441 static int
442 mmc_spi_command_send(struct mmc_spi_host *host,
443 		struct mmc_request *mrq,
444 		struct mmc_command *cmd, int cs_on)
445 {
446 	struct scratch		*data = host->data;
447 	u8			*cp = data->status;
448 	u32			arg = cmd->arg;
449 	int			status;
450 	struct spi_transfer	*t;
451 
452 	/* We can handle most commands (except block reads) in one full
453 	 * duplex I/O operation before either starting the next transfer
454 	 * (data block or command) or else deselecting the card.
455 	 *
456 	 * First, write 7 bytes:
457 	 *  - an all-ones byte to ensure the card is ready
458 	 *  - opcode byte (plus start and transmission bits)
459 	 *  - four bytes of big-endian argument
460 	 *  - crc7 (plus end bit) ... always computed, it's cheap
461 	 *
462 	 * We init the whole buffer to all-ones, which is what we need
463 	 * to write while we're reading (later) response data.
464 	 */
465 	memset(cp++, 0xff, sizeof(data->status));
466 
467 	*cp++ = 0x40 | cmd->opcode;
468 	*cp++ = (u8)(arg >> 24);
469 	*cp++ = (u8)(arg >> 16);
470 	*cp++ = (u8)(arg >> 8);
471 	*cp++ = (u8)arg;
472 	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
473 
474 	/* Then, read up to 13 bytes (while writing all-ones):
475 	 *  - N(CR) (== 1..8) bytes of all-ones
476 	 *  - status byte (for all response types)
477 	 *  - the rest of the response, either:
478 	 *      + nothing, for R1 or R1B responses
479 	 *	+ second status byte, for R2 responses
480 	 *	+ four data bytes, for R3 and R7 responses
481 	 *
482 	 * Finally, read some more bytes ... in the nice cases we know in
483 	 * advance how many, and reading 1 more is always OK:
484 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
485 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
486 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
487 	 *
488 	 * So in those cases one full duplex I/O of at most 21 bytes will
489 	 * handle the whole command, leaving the card ready to receive a
490 	 * data block or new command.  We do that whenever we can, shaving
491 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
492 	 *
493 	 * There are two other cases, where it's not generally practical
494 	 * to rely on a single I/O:
495 	 *
496 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
497 	 *
498 	 *    In this case we can *try* to fit it into one I/O, then
499 	 *    maybe read more data later.
500 	 *
501 	 *  - Data block reads are more troublesome, since a variable
502 	 *    number of padding bytes precede the token and data.
503 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
504 	 *      + N(AC) (== 1..many) bytes of all-ones
505 	 *
506 	 *    In this case we currently only have minimal speedups here:
507 	 *    when N(CR) == 1 we can avoid I/O in response_get().
508 	 */
509 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
510 		cp += 2;	/* min(N(CR)) + status */
511 		/* R1 */
512 	} else {
513 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
514 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
515 			cp++;
516 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
517 			cp += 4;
518 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
519 			cp = data->status + sizeof(data->status);
520 		/* else:  R1 (most commands) */
521 	}
522 
523 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
524 		cmd->opcode, maptype(cmd));
525 
526 	/* send command, leaving chipselect active */
527 	spi_message_init(&host->m);
528 
529 	t = &host->t;
530 	memset(t, 0, sizeof(*t));
531 	t->tx_buf = t->rx_buf = data->status;
532 	t->tx_dma = t->rx_dma = host->data_dma;
533 	t->len = cp - data->status;
534 	t->cs_change = 1;
535 	spi_message_add_tail(t, &host->m);
536 
537 	if (host->dma_dev) {
538 		host->m.is_dma_mapped = 1;
539 		dma_sync_single_for_device(host->dma_dev,
540 				host->data_dma, sizeof(*host->data),
541 				DMA_BIDIRECTIONAL);
542 	}
543 	status = spi_sync(host->spi, &host->m);
544 
545 	if (host->dma_dev)
546 		dma_sync_single_for_cpu(host->dma_dev,
547 				host->data_dma, sizeof(*host->data),
548 				DMA_BIDIRECTIONAL);
549 	if (status < 0) {
550 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
551 		cmd->error = status;
552 		return status;
553 	}
554 
555 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
556 	return mmc_spi_response_get(host, cmd, cs_on);
557 }
558 
559 /* Build data message with up to four separate transfers.  For TX, we
560  * start by writing the data token.  And in most cases, we finish with
561  * a status transfer.
562  *
563  * We always provide TX data for data and CRC.  The MMC/SD protocol
564  * requires us to write ones; but Linux defaults to writing zeroes;
565  * so we explicitly initialize it to all ones on RX paths.
566  *
567  * We also handle DMA mapping, so the underlying SPI controller does
568  * not need to (re)do it for each message.
569  */
570 static void
571 mmc_spi_setup_data_message(
572 	struct mmc_spi_host	*host,
573 	int			multiple,
574 	enum dma_data_direction	direction)
575 {
576 	struct spi_transfer	*t;
577 	struct scratch		*scratch = host->data;
578 	dma_addr_t		dma = host->data_dma;
579 
580 	spi_message_init(&host->m);
581 	if (dma)
582 		host->m.is_dma_mapped = 1;
583 
584 	/* for reads, readblock() skips 0xff bytes before finding
585 	 * the token; for writes, this transfer issues that token.
586 	 */
587 	if (direction == DMA_TO_DEVICE) {
588 		t = &host->token;
589 		memset(t, 0, sizeof(*t));
590 		t->len = 1;
591 		if (multiple)
592 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
593 		else
594 			scratch->data_token = SPI_TOKEN_SINGLE;
595 		t->tx_buf = &scratch->data_token;
596 		if (dma)
597 			t->tx_dma = dma + offsetof(struct scratch, data_token);
598 		spi_message_add_tail(t, &host->m);
599 	}
600 
601 	/* Body of transfer is buffer, then CRC ...
602 	 * either TX-only, or RX with TX-ones.
603 	 */
604 	t = &host->t;
605 	memset(t, 0, sizeof(*t));
606 	t->tx_buf = host->ones;
607 	t->tx_dma = host->ones_dma;
608 	/* length and actual buffer info are written later */
609 	spi_message_add_tail(t, &host->m);
610 
611 	t = &host->crc;
612 	memset(t, 0, sizeof(*t));
613 	t->len = 2;
614 	if (direction == DMA_TO_DEVICE) {
615 		/* the actual CRC may get written later */
616 		t->tx_buf = &scratch->crc_val;
617 		if (dma)
618 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
619 	} else {
620 		t->tx_buf = host->ones;
621 		t->tx_dma = host->ones_dma;
622 		t->rx_buf = &scratch->crc_val;
623 		if (dma)
624 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
625 	}
626 	spi_message_add_tail(t, &host->m);
627 
628 	/*
629 	 * A single block read is followed by N(EC) [0+] all-ones bytes
630 	 * before deselect ... don't bother.
631 	 *
632 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
633 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
634 	 * collect that single byte, so readblock() doesn't need to.
635 	 *
636 	 * For a write, the one-byte data response follows immediately, then
637 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
638 	 * Then single block reads may deselect, and multiblock ones issue
639 	 * the next token (next data block, or STOP_TRAN).  We can try to
640 	 * minimize I/O ops by using a single read to collect end-of-busy.
641 	 */
642 	if (multiple || direction == DMA_TO_DEVICE) {
643 		t = &host->early_status;
644 		memset(t, 0, sizeof(*t));
645 		t->len = (direction == DMA_TO_DEVICE)
646 				? sizeof(scratch->status)
647 				: 1;
648 		t->tx_buf = host->ones;
649 		t->tx_dma = host->ones_dma;
650 		t->rx_buf = scratch->status;
651 		if (dma)
652 			t->rx_dma = dma + offsetof(struct scratch, status);
653 		t->cs_change = 1;
654 		spi_message_add_tail(t, &host->m);
655 	}
656 }
657 
658 /*
659  * Write one block:
660  *  - caller handled preceding N(WR) [1+] all-ones bytes
661  *  - data block
662  *	+ token
663  *	+ data bytes
664  *	+ crc16
665  *  - an all-ones byte ... card writes a data-response byte
666  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
667  *
668  * Return negative errno, else success.
669  */
670 static int
671 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
672 	unsigned long timeout)
673 {
674 	struct spi_device	*spi = host->spi;
675 	int			status, i;
676 	struct scratch		*scratch = host->data;
677 	u32			pattern;
678 
679 	if (host->mmc->use_spi_crc)
680 		scratch->crc_val = cpu_to_be16(
681 				crc_itu_t(0, t->tx_buf, t->len));
682 	if (host->dma_dev)
683 		dma_sync_single_for_device(host->dma_dev,
684 				host->data_dma, sizeof(*scratch),
685 				DMA_BIDIRECTIONAL);
686 
687 	status = spi_sync(spi, &host->m);
688 
689 	if (status != 0) {
690 		dev_dbg(&spi->dev, "write error (%d)\n", status);
691 		return status;
692 	}
693 
694 	if (host->dma_dev)
695 		dma_sync_single_for_cpu(host->dma_dev,
696 				host->data_dma, sizeof(*scratch),
697 				DMA_BIDIRECTIONAL);
698 
699 	/*
700 	 * Get the transmission data-response reply.  It must follow
701 	 * immediately after the data block we transferred.  This reply
702 	 * doesn't necessarily tell whether the write operation succeeded;
703 	 * it just says if the transmission was ok and whether *earlier*
704 	 * writes succeeded; see the standard.
705 	 *
706 	 * In practice, there are (even modern SDHC-)cards which are late
707 	 * in sending the response, and miss the time frame by a few bits,
708 	 * so we have to cope with this situation and check the response
709 	 * bit-by-bit. Arggh!!!
710 	 */
711 	pattern  = scratch->status[0] << 24;
712 	pattern |= scratch->status[1] << 16;
713 	pattern |= scratch->status[2] << 8;
714 	pattern |= scratch->status[3];
715 
716 	/* First 3 bit of pattern are undefined */
717 	pattern |= 0xE0000000;
718 
719 	/* left-adjust to leading 0 bit */
720 	while (pattern & 0x80000000)
721 		pattern <<= 1;
722 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
723 	pattern >>= 27;
724 
725 	switch (pattern) {
726 	case SPI_RESPONSE_ACCEPTED:
727 		status = 0;
728 		break;
729 	case SPI_RESPONSE_CRC_ERR:
730 		/* host shall then issue MMC_STOP_TRANSMISSION */
731 		status = -EILSEQ;
732 		break;
733 	case SPI_RESPONSE_WRITE_ERR:
734 		/* host shall then issue MMC_STOP_TRANSMISSION,
735 		 * and should MMC_SEND_STATUS to sort it out
736 		 */
737 		status = -EIO;
738 		break;
739 	default:
740 		status = -EPROTO;
741 		break;
742 	}
743 	if (status != 0) {
744 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
745 			scratch->status[0], status);
746 		return status;
747 	}
748 
749 	t->tx_buf += t->len;
750 	if (host->dma_dev)
751 		t->tx_dma += t->len;
752 
753 	/* Return when not busy.  If we didn't collect that status yet,
754 	 * we'll need some more I/O.
755 	 */
756 	for (i = 4; i < sizeof(scratch->status); i++) {
757 		/* card is non-busy if the most recent bit is 1 */
758 		if (scratch->status[i] & 0x01)
759 			return 0;
760 	}
761 	return mmc_spi_wait_unbusy(host, timeout);
762 }
763 
764 /*
765  * Read one block:
766  *  - skip leading all-ones bytes ... either
767  *      + N(AC) [1..f(clock,CSD)] usually, else
768  *      + N(CX) [0..8] when reading CSD or CID
769  *  - data block
770  *	+ token ... if error token, no data or crc
771  *	+ data bytes
772  *	+ crc16
773  *
774  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
775  * before dropping chipselect.
776  *
777  * For multiblock reads, caller either reads the next block or issues a
778  * STOP_TRANSMISSION command.
779  */
780 static int
781 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
782 	unsigned long timeout)
783 {
784 	struct spi_device	*spi = host->spi;
785 	int			status;
786 	struct scratch		*scratch = host->data;
787 	unsigned int 		bitshift;
788 	u8			leftover;
789 
790 	/* At least one SD card sends an all-zeroes byte when N(CX)
791 	 * applies, before the all-ones bytes ... just cope with that.
792 	 */
793 	status = mmc_spi_readbytes(host, 1);
794 	if (status < 0)
795 		return status;
796 	status = scratch->status[0];
797 	if (status == 0xff || status == 0)
798 		status = mmc_spi_readtoken(host, timeout);
799 
800 	if (status < 0) {
801 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
802 		return status;
803 	}
804 
805 	/* The token may be bit-shifted...
806 	 * the first 0-bit precedes the data stream.
807 	 */
808 	bitshift = 7;
809 	while (status & 0x80) {
810 		status <<= 1;
811 		bitshift--;
812 	}
813 	leftover = status << 1;
814 
815 	if (host->dma_dev) {
816 		dma_sync_single_for_device(host->dma_dev,
817 				host->data_dma, sizeof(*scratch),
818 				DMA_BIDIRECTIONAL);
819 		dma_sync_single_for_device(host->dma_dev,
820 				t->rx_dma, t->len,
821 				DMA_FROM_DEVICE);
822 	}
823 
824 	status = spi_sync(spi, &host->m);
825 
826 	if (host->dma_dev) {
827 		dma_sync_single_for_cpu(host->dma_dev,
828 				host->data_dma, sizeof(*scratch),
829 				DMA_BIDIRECTIONAL);
830 		dma_sync_single_for_cpu(host->dma_dev,
831 				t->rx_dma, t->len,
832 				DMA_FROM_DEVICE);
833 	}
834 
835 	if (bitshift) {
836 		/* Walk through the data and the crc and do
837 		 * all the magic to get byte-aligned data.
838 		 */
839 		u8 *cp = t->rx_buf;
840 		unsigned int len;
841 		unsigned int bitright = 8 - bitshift;
842 		u8 temp;
843 		for (len = t->len; len; len--) {
844 			temp = *cp;
845 			*cp++ = leftover | (temp >> bitshift);
846 			leftover = temp << bitright;
847 		}
848 		cp = (u8 *) &scratch->crc_val;
849 		temp = *cp;
850 		*cp++ = leftover | (temp >> bitshift);
851 		leftover = temp << bitright;
852 		temp = *cp;
853 		*cp = leftover | (temp >> bitshift);
854 	}
855 
856 	if (host->mmc->use_spi_crc) {
857 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
858 
859 		be16_to_cpus(&scratch->crc_val);
860 		if (scratch->crc_val != crc) {
861 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
862 					"computed=0x%04x len=%d\n",
863 					scratch->crc_val, crc, t->len);
864 			return -EILSEQ;
865 		}
866 	}
867 
868 	t->rx_buf += t->len;
869 	if (host->dma_dev)
870 		t->rx_dma += t->len;
871 
872 	return 0;
873 }
874 
875 /*
876  * An MMC/SD data stage includes one or more blocks, optional CRCs,
877  * and inline handshaking.  That handhaking makes it unlike most
878  * other SPI protocol stacks.
879  */
880 static void
881 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
882 		struct mmc_data *data, u32 blk_size)
883 {
884 	struct spi_device	*spi = host->spi;
885 	struct device		*dma_dev = host->dma_dev;
886 	struct spi_transfer	*t;
887 	enum dma_data_direction	direction;
888 	struct scatterlist	*sg;
889 	unsigned		n_sg;
890 	int			multiple = (data->blocks > 1);
891 	u32			clock_rate;
892 	unsigned long		timeout;
893 
894 	if (data->flags & MMC_DATA_READ)
895 		direction = DMA_FROM_DEVICE;
896 	else
897 		direction = DMA_TO_DEVICE;
898 	mmc_spi_setup_data_message(host, multiple, direction);
899 	t = &host->t;
900 
901 	if (t->speed_hz)
902 		clock_rate = t->speed_hz;
903 	else
904 		clock_rate = spi->max_speed_hz;
905 
906 	timeout = data->timeout_ns +
907 		  data->timeout_clks * 1000000 / clock_rate;
908 	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
909 
910 	/* Handle scatterlist segments one at a time, with synch for
911 	 * each 512-byte block
912 	 */
913 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
914 		int			status = 0;
915 		dma_addr_t		dma_addr = 0;
916 		void			*kmap_addr;
917 		unsigned		length = sg->length;
918 		enum dma_data_direction	dir = direction;
919 
920 		/* set up dma mapping for controller drivers that might
921 		 * use DMA ... though they may fall back to PIO
922 		 */
923 		if (dma_dev) {
924 			/* never invalidate whole *shared* pages ... */
925 			if ((sg->offset != 0 || length != PAGE_SIZE)
926 					&& dir == DMA_FROM_DEVICE)
927 				dir = DMA_BIDIRECTIONAL;
928 
929 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
930 						PAGE_SIZE, dir);
931 			if (direction == DMA_TO_DEVICE)
932 				t->tx_dma = dma_addr + sg->offset;
933 			else
934 				t->rx_dma = dma_addr + sg->offset;
935 		}
936 
937 		/* allow pio too; we don't allow highmem */
938 		kmap_addr = kmap(sg_page(sg));
939 		if (direction == DMA_TO_DEVICE)
940 			t->tx_buf = kmap_addr + sg->offset;
941 		else
942 			t->rx_buf = kmap_addr + sg->offset;
943 
944 		/* transfer each block, and update request status */
945 		while (length) {
946 			t->len = min(length, blk_size);
947 
948 			dev_dbg(&host->spi->dev,
949 				"    mmc_spi: %s block, %d bytes\n",
950 				(direction == DMA_TO_DEVICE)
951 				? "write"
952 				: "read",
953 				t->len);
954 
955 			if (direction == DMA_TO_DEVICE)
956 				status = mmc_spi_writeblock(host, t, timeout);
957 			else
958 				status = mmc_spi_readblock(host, t, timeout);
959 			if (status < 0)
960 				break;
961 
962 			data->bytes_xfered += t->len;
963 			length -= t->len;
964 
965 			if (!multiple)
966 				break;
967 		}
968 
969 		/* discard mappings */
970 		if (direction == DMA_FROM_DEVICE)
971 			flush_kernel_dcache_page(sg_page(sg));
972 		kunmap(sg_page(sg));
973 		if (dma_dev)
974 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
975 
976 		if (status < 0) {
977 			data->error = status;
978 			dev_dbg(&spi->dev, "%s status %d\n",
979 				(direction == DMA_TO_DEVICE)
980 					? "write" : "read",
981 				status);
982 			break;
983 		}
984 	}
985 
986 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
987 	 * can be issued before multiblock writes.  Unlike its more widely
988 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
989 	 * that can affect the STOP_TRAN logic.   Complete (and current)
990 	 * MMC specs should sort that out before Linux starts using CMD23.
991 	 */
992 	if (direction == DMA_TO_DEVICE && multiple) {
993 		struct scratch	*scratch = host->data;
994 		int		tmp;
995 		const unsigned	statlen = sizeof(scratch->status);
996 
997 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
998 
999 		/* Tweak the per-block message we set up earlier by morphing
1000 		 * it to hold single buffer with the token followed by some
1001 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1002 		 * "not busy any longer" status, and leave chip selected.
1003 		 */
1004 		INIT_LIST_HEAD(&host->m.transfers);
1005 		list_add(&host->early_status.transfer_list,
1006 				&host->m.transfers);
1007 
1008 		memset(scratch->status, 0xff, statlen);
1009 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1010 
1011 		host->early_status.tx_buf = host->early_status.rx_buf;
1012 		host->early_status.tx_dma = host->early_status.rx_dma;
1013 		host->early_status.len = statlen;
1014 
1015 		if (host->dma_dev)
1016 			dma_sync_single_for_device(host->dma_dev,
1017 					host->data_dma, sizeof(*scratch),
1018 					DMA_BIDIRECTIONAL);
1019 
1020 		tmp = spi_sync(spi, &host->m);
1021 
1022 		if (host->dma_dev)
1023 			dma_sync_single_for_cpu(host->dma_dev,
1024 					host->data_dma, sizeof(*scratch),
1025 					DMA_BIDIRECTIONAL);
1026 
1027 		if (tmp < 0) {
1028 			if (!data->error)
1029 				data->error = tmp;
1030 			return;
1031 		}
1032 
1033 		/* Ideally we collected "not busy" status with one I/O,
1034 		 * avoiding wasteful byte-at-a-time scanning... but more
1035 		 * I/O is often needed.
1036 		 */
1037 		for (tmp = 2; tmp < statlen; tmp++) {
1038 			if (scratch->status[tmp] != 0)
1039 				return;
1040 		}
1041 		tmp = mmc_spi_wait_unbusy(host, timeout);
1042 		if (tmp < 0 && !data->error)
1043 			data->error = tmp;
1044 	}
1045 }
1046 
1047 /****************************************************************************/
1048 
1049 /*
1050  * MMC driver implementation -- the interface to the MMC stack
1051  */
1052 
1053 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1054 {
1055 	struct mmc_spi_host	*host = mmc_priv(mmc);
1056 	int			status = -EINVAL;
1057 
1058 #ifdef DEBUG
1059 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1060 	{
1061 		struct mmc_command	*cmd;
1062 		int			invalid = 0;
1063 
1064 		cmd = mrq->cmd;
1065 		if (!mmc_spi_resp_type(cmd)) {
1066 			dev_dbg(&host->spi->dev, "bogus command\n");
1067 			cmd->error = -EINVAL;
1068 			invalid = 1;
1069 		}
1070 
1071 		cmd = mrq->stop;
1072 		if (cmd && !mmc_spi_resp_type(cmd)) {
1073 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1074 			cmd->error = -EINVAL;
1075 			invalid = 1;
1076 		}
1077 
1078 		if (invalid) {
1079 			dump_stack();
1080 			mmc_request_done(host->mmc, mrq);
1081 			return;
1082 		}
1083 	}
1084 #endif
1085 
1086 	/* issue command; then optionally data and stop */
1087 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1088 	if (status == 0 && mrq->data) {
1089 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1090 		if (mrq->stop)
1091 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1092 		else
1093 			mmc_cs_off(host);
1094 	}
1095 
1096 	mmc_request_done(host->mmc, mrq);
1097 }
1098 
1099 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1100  *
1101  * NOTE that here we can't know that the card has just been powered up;
1102  * not all MMC/SD sockets support power switching.
1103  *
1104  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1105  * this doesn't seem to do the right thing at all...
1106  */
1107 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1108 {
1109 	/* Try to be very sure any previous command has completed;
1110 	 * wait till not-busy, skip debris from any old commands.
1111 	 */
1112 	mmc_spi_wait_unbusy(host, r1b_timeout);
1113 	mmc_spi_readbytes(host, 10);
1114 
1115 	/*
1116 	 * Do a burst with chipselect active-high.  We need to do this to
1117 	 * meet the requirement of 74 clock cycles with both chipselect
1118 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1119 	 * powered up to Vdd(min), and so is ready to take commands.
1120 	 *
1121 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1122 	 * while most others don't seem to care.
1123 	 *
1124 	 * Note that this is one of the places MMC/SD plays games with the
1125 	 * SPI protocol.  Another is that when chipselect is released while
1126 	 * the card returns BUSY status, the clock must issue several cycles
1127 	 * with chipselect high before the card will stop driving its output.
1128 	 */
1129 	host->spi->mode |= SPI_CS_HIGH;
1130 	if (spi_setup(host->spi) != 0) {
1131 		/* Just warn; most cards work without it. */
1132 		dev_warn(&host->spi->dev,
1133 				"can't change chip-select polarity\n");
1134 		host->spi->mode &= ~SPI_CS_HIGH;
1135 	} else {
1136 		mmc_spi_readbytes(host, 18);
1137 
1138 		host->spi->mode &= ~SPI_CS_HIGH;
1139 		if (spi_setup(host->spi) != 0) {
1140 			/* Wot, we can't get the same setup we had before? */
1141 			dev_err(&host->spi->dev,
1142 					"can't restore chip-select polarity\n");
1143 		}
1144 	}
1145 }
1146 
1147 static char *mmc_powerstring(u8 power_mode)
1148 {
1149 	switch (power_mode) {
1150 	case MMC_POWER_OFF: return "off";
1151 	case MMC_POWER_UP:  return "up";
1152 	case MMC_POWER_ON:  return "on";
1153 	}
1154 	return "?";
1155 }
1156 
1157 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1158 {
1159 	struct mmc_spi_host *host = mmc_priv(mmc);
1160 
1161 	if (host->power_mode != ios->power_mode) {
1162 		int		canpower;
1163 
1164 		canpower = host->pdata && host->pdata->setpower;
1165 
1166 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1167 				mmc_powerstring(ios->power_mode),
1168 				ios->vdd,
1169 				canpower ? ", can switch" : "");
1170 
1171 		/* switch power on/off if possible, accounting for
1172 		 * max 250msec powerup time if needed.
1173 		 */
1174 		if (canpower) {
1175 			switch (ios->power_mode) {
1176 			case MMC_POWER_OFF:
1177 			case MMC_POWER_UP:
1178 				host->pdata->setpower(&host->spi->dev,
1179 						ios->vdd);
1180 				if (ios->power_mode == MMC_POWER_UP)
1181 					msleep(host->powerup_msecs);
1182 			}
1183 		}
1184 
1185 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186 		if (ios->power_mode == MMC_POWER_ON)
1187 			mmc_spi_initsequence(host);
1188 
1189 		/* If powering down, ground all card inputs to avoid power
1190 		 * delivery from data lines!  On a shared SPI bus, this
1191 		 * will probably be temporary; 6.4.2 of the simplified SD
1192 		 * spec says this must last at least 1msec.
1193 		 *
1194 		 *   - Clock low means CPOL 0, e.g. mode 0
1195 		 *   - MOSI low comes from writing zero
1196 		 *   - Chipselect is usually active low...
1197 		 */
1198 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1199 			int mres;
1200 			u8 nullbyte = 0;
1201 
1202 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1203 			mres = spi_setup(host->spi);
1204 			if (mres < 0)
1205 				dev_dbg(&host->spi->dev,
1206 					"switch to SPI mode 0 failed\n");
1207 
1208 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1209 				dev_dbg(&host->spi->dev,
1210 					"put spi signals to low failed\n");
1211 
1212 			/*
1213 			 * Now clock should be low due to spi mode 0;
1214 			 * MOSI should be low because of written 0x00;
1215 			 * chipselect should be low (it is active low)
1216 			 * power supply is off, so now MMC is off too!
1217 			 *
1218 			 * FIXME no, chipselect can be high since the
1219 			 * device is inactive and SPI_CS_HIGH is clear...
1220 			 */
1221 			msleep(10);
1222 			if (mres == 0) {
1223 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1224 				mres = spi_setup(host->spi);
1225 				if (mres < 0)
1226 					dev_dbg(&host->spi->dev,
1227 						"switch back to SPI mode 3"
1228 						" failed\n");
1229 			}
1230 		}
1231 
1232 		host->power_mode = ios->power_mode;
1233 	}
1234 
1235 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1236 		int		status;
1237 
1238 		host->spi->max_speed_hz = ios->clock;
1239 		status = spi_setup(host->spi);
1240 		dev_dbg(&host->spi->dev,
1241 			"mmc_spi:  clock to %d Hz, %d\n",
1242 			host->spi->max_speed_hz, status);
1243 	}
1244 }
1245 
1246 static int mmc_spi_get_ro(struct mmc_host *mmc)
1247 {
1248 	struct mmc_spi_host *host = mmc_priv(mmc);
1249 
1250 	if (host->pdata && host->pdata->get_ro)
1251 		return !!host->pdata->get_ro(mmc->parent);
1252 	/*
1253 	 * Board doesn't support read only detection; let the mmc core
1254 	 * decide what to do.
1255 	 */
1256 	return -ENOSYS;
1257 }
1258 
1259 static int mmc_spi_get_cd(struct mmc_host *mmc)
1260 {
1261 	struct mmc_spi_host *host = mmc_priv(mmc);
1262 
1263 	if (host->pdata && host->pdata->get_cd)
1264 		return !!host->pdata->get_cd(mmc->parent);
1265 	return -ENOSYS;
1266 }
1267 
1268 static const struct mmc_host_ops mmc_spi_ops = {
1269 	.request	= mmc_spi_request,
1270 	.set_ios	= mmc_spi_set_ios,
1271 	.get_ro		= mmc_spi_get_ro,
1272 	.get_cd		= mmc_spi_get_cd,
1273 };
1274 
1275 
1276 /****************************************************************************/
1277 
1278 /*
1279  * SPI driver implementation
1280  */
1281 
1282 static irqreturn_t
1283 mmc_spi_detect_irq(int irq, void *mmc)
1284 {
1285 	struct mmc_spi_host *host = mmc_priv(mmc);
1286 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1287 
1288 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1289 	return IRQ_HANDLED;
1290 }
1291 
1292 struct count_children {
1293 	unsigned	n;
1294 	struct bus_type	*bus;
1295 };
1296 
1297 static int maybe_count_child(struct device *dev, void *c)
1298 {
1299 	struct count_children *ccp = c;
1300 
1301 	if (dev->bus == ccp->bus) {
1302 		if (ccp->n)
1303 			return -EBUSY;
1304 		ccp->n++;
1305 	}
1306 	return 0;
1307 }
1308 
1309 static int mmc_spi_probe(struct spi_device *spi)
1310 {
1311 	void			*ones;
1312 	struct mmc_host		*mmc;
1313 	struct mmc_spi_host	*host;
1314 	int			status;
1315 
1316 	/* We rely on full duplex transfers, mostly to reduce
1317 	 * per-transfer overheads (by making fewer transfers).
1318 	 */
1319 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1320 		return -EINVAL;
1321 
1322 	/* MMC and SD specs only seem to care that sampling is on the
1323 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1324 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1325 	 * which is appropriate for hotplugging, unless the platform data
1326 	 * specify mode 3 (if hardware is not compatible to mode 0).
1327 	 */
1328 	if (spi->mode != SPI_MODE_3)
1329 		spi->mode = SPI_MODE_0;
1330 	spi->bits_per_word = 8;
1331 
1332 	status = spi_setup(spi);
1333 	if (status < 0) {
1334 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1335 				spi->mode, spi->max_speed_hz / 1000,
1336 				status);
1337 		return status;
1338 	}
1339 
1340 	/* We can use the bus safely iff nobody else will interfere with us.
1341 	 * Most commands consist of one SPI message to issue a command, then
1342 	 * several more to collect its response, then possibly more for data
1343 	 * transfer.  Clocking access to other devices during that period will
1344 	 * corrupt the command execution.
1345 	 *
1346 	 * Until we have software primitives which guarantee non-interference,
1347 	 * we'll aim for a hardware-level guarantee.
1348 	 *
1349 	 * REVISIT we can't guarantee another device won't be added later...
1350 	 */
1351 	if (spi->master->num_chipselect > 1) {
1352 		struct count_children cc;
1353 
1354 		cc.n = 0;
1355 		cc.bus = spi->dev.bus;
1356 		status = device_for_each_child(spi->dev.parent, &cc,
1357 				maybe_count_child);
1358 		if (status < 0) {
1359 			dev_err(&spi->dev, "can't share SPI bus\n");
1360 			return status;
1361 		}
1362 
1363 		dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1364 	}
1365 
1366 	/* We need a supply of ones to transmit.  This is the only time
1367 	 * the CPU touches these, so cache coherency isn't a concern.
1368 	 *
1369 	 * NOTE if many systems use more than one MMC-over-SPI connector
1370 	 * it'd save some memory to share this.  That's evidently rare.
1371 	 */
1372 	status = -ENOMEM;
1373 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1374 	if (!ones)
1375 		goto nomem;
1376 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1377 
1378 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1379 	if (!mmc)
1380 		goto nomem;
1381 
1382 	mmc->ops = &mmc_spi_ops;
1383 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1384 	mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE;
1385 	mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE;
1386 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1387 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1388 
1389 	mmc->caps = MMC_CAP_SPI;
1390 
1391 	/* SPI doesn't need the lowspeed device identification thing for
1392 	 * MMC or SD cards, since it never comes up in open drain mode.
1393 	 * That's good; some SPI masters can't handle very low speeds!
1394 	 *
1395 	 * However, low speed SDIO cards need not handle over 400 KHz;
1396 	 * that's the only reason not to use a few MHz for f_min (until
1397 	 * the upper layer reads the target frequency from the CSD).
1398 	 */
1399 	mmc->f_min = 400000;
1400 	mmc->f_max = spi->max_speed_hz;
1401 
1402 	host = mmc_priv(mmc);
1403 	host->mmc = mmc;
1404 	host->spi = spi;
1405 
1406 	host->ones = ones;
1407 
1408 	/* Platform data is used to hook up things like card sensing
1409 	 * and power switching gpios.
1410 	 */
1411 	host->pdata = mmc_spi_get_pdata(spi);
1412 	if (host->pdata)
1413 		mmc->ocr_avail = host->pdata->ocr_mask;
1414 	if (!mmc->ocr_avail) {
1415 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1416 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1417 	}
1418 	if (host->pdata && host->pdata->setpower) {
1419 		host->powerup_msecs = host->pdata->powerup_msecs;
1420 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1421 			host->powerup_msecs = 250;
1422 	}
1423 
1424 	dev_set_drvdata(&spi->dev, mmc);
1425 
1426 	/* preallocate dma buffers */
1427 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1428 	if (!host->data)
1429 		goto fail_nobuf1;
1430 
1431 	if (spi->master->dev.parent->dma_mask) {
1432 		struct device	*dev = spi->master->dev.parent;
1433 
1434 		host->dma_dev = dev;
1435 		host->ones_dma = dma_map_single(dev, ones,
1436 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1437 		host->data_dma = dma_map_single(dev, host->data,
1438 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1439 
1440 		/* REVISIT in theory those map operations can fail... */
1441 
1442 		dma_sync_single_for_cpu(host->dma_dev,
1443 				host->data_dma, sizeof(*host->data),
1444 				DMA_BIDIRECTIONAL);
1445 	}
1446 
1447 	/* setup message for status/busy readback */
1448 	spi_message_init(&host->readback);
1449 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1450 
1451 	spi_message_add_tail(&host->status, &host->readback);
1452 	host->status.tx_buf = host->ones;
1453 	host->status.tx_dma = host->ones_dma;
1454 	host->status.rx_buf = &host->data->status;
1455 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1456 	host->status.cs_change = 1;
1457 
1458 	/* register card detect irq */
1459 	if (host->pdata && host->pdata->init) {
1460 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1461 		if (status != 0)
1462 			goto fail_glue_init;
1463 	}
1464 
1465 	/* pass platform capabilities, if any */
1466 	if (host->pdata)
1467 		mmc->caps |= host->pdata->caps;
1468 
1469 	status = mmc_add_host(mmc);
1470 	if (status != 0)
1471 		goto fail_add_host;
1472 
1473 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1474 			dev_name(&mmc->class_dev),
1475 			host->dma_dev ? "" : ", no DMA",
1476 			(host->pdata && host->pdata->get_ro)
1477 				? "" : ", no WP",
1478 			(host->pdata && host->pdata->setpower)
1479 				? "" : ", no poweroff",
1480 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1481 				? ", cd polling" : "");
1482 	return 0;
1483 
1484 fail_add_host:
1485 	mmc_remove_host (mmc);
1486 fail_glue_init:
1487 	if (host->dma_dev)
1488 		dma_unmap_single(host->dma_dev, host->data_dma,
1489 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1490 	kfree(host->data);
1491 
1492 fail_nobuf1:
1493 	mmc_free_host(mmc);
1494 	mmc_spi_put_pdata(spi);
1495 	dev_set_drvdata(&spi->dev, NULL);
1496 
1497 nomem:
1498 	kfree(ones);
1499 	return status;
1500 }
1501 
1502 
1503 static int __devexit mmc_spi_remove(struct spi_device *spi)
1504 {
1505 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1506 	struct mmc_spi_host	*host;
1507 
1508 	if (mmc) {
1509 		host = mmc_priv(mmc);
1510 
1511 		/* prevent new mmc_detect_change() calls */
1512 		if (host->pdata && host->pdata->exit)
1513 			host->pdata->exit(&spi->dev, mmc);
1514 
1515 		mmc_remove_host(mmc);
1516 
1517 		if (host->dma_dev) {
1518 			dma_unmap_single(host->dma_dev, host->ones_dma,
1519 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1520 			dma_unmap_single(host->dma_dev, host->data_dma,
1521 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1522 		}
1523 
1524 		kfree(host->data);
1525 		kfree(host->ones);
1526 
1527 		spi->max_speed_hz = mmc->f_max;
1528 		mmc_free_host(mmc);
1529 		mmc_spi_put_pdata(spi);
1530 		dev_set_drvdata(&spi->dev, NULL);
1531 	}
1532 	return 0;
1533 }
1534 
1535 
1536 static struct spi_driver mmc_spi_driver = {
1537 	.driver = {
1538 		.name =		"mmc_spi",
1539 		.bus =		&spi_bus_type,
1540 		.owner =	THIS_MODULE,
1541 	},
1542 	.probe =	mmc_spi_probe,
1543 	.remove =	__devexit_p(mmc_spi_remove),
1544 };
1545 
1546 
1547 static int __init mmc_spi_init(void)
1548 {
1549 	return spi_register_driver(&mmc_spi_driver);
1550 }
1551 module_init(mmc_spi_init);
1552 
1553 
1554 static void __exit mmc_spi_exit(void)
1555 {
1556 	spi_unregister_driver(&mmc_spi_driver);
1557 }
1558 module_exit(mmc_spi_exit);
1559 
1560 
1561 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1562 		"Hans-Peter Nilsson, Jan Nikitenko");
1563 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1564 MODULE_LICENSE("GPL");
1565 MODULE_ALIAS("spi:mmc_spi");
1566