1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/sched.h> 28 #include <linux/delay.h> 29 #include <linux/bio.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/crc7.h> 32 #include <linux/crc-itu-t.h> 33 #include <linux/scatterlist.h> 34 35 #include <linux/mmc/host.h> 36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 37 38 #include <linux/spi/spi.h> 39 #include <linux/spi/mmc_spi.h> 40 41 #include <asm/unaligned.h> 42 43 44 /* NOTES: 45 * 46 * - For now, we won't try to interoperate with a real mmc/sd/sdio 47 * controller, although some of them do have hardware support for 48 * SPI protocol. The main reason for such configs would be mmc-ish 49 * cards like DataFlash, which don't support that "native" protocol. 50 * 51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 52 * switch between driver stacks, and in any case if "native" mode 53 * is available, it will be faster and hence preferable. 54 * 55 * - MMC depends on a different chipselect management policy than the 56 * SPI interface currently supports for shared bus segments: it needs 57 * to issue multiple spi_message requests with the chipselect active, 58 * using the results of one message to decide the next one to issue. 59 * 60 * Pending updates to the programming interface, this driver expects 61 * that it not share the bus with other drivers (precluding conflicts). 62 * 63 * - We tell the controller to keep the chipselect active from the 64 * beginning of an mmc_host_ops.request until the end. So beware 65 * of SPI controller drivers that mis-handle the cs_change flag! 66 * 67 * However, many cards seem OK with chipselect flapping up/down 68 * during that time ... at least on unshared bus segments. 69 */ 70 71 72 /* 73 * Local protocol constants, internal to data block protocols. 74 */ 75 76 /* Response tokens used to ack each block written: */ 77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 81 82 /* Read and write blocks start with these tokens and end with crc; 83 * on error, read tokens act like a subset of R2_SPI_* values. 84 */ 85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 88 89 #define MMC_SPI_BLOCKSIZE 512 90 91 92 /* These fixed timeouts come from the latest SD specs, which say to ignore 93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 95 * reads which takes nowhere near that long. Older cards may be able to use 96 * shorter timeouts ... but why bother? 97 */ 98 #define r1b_timeout (HZ * 3) 99 100 /* One of the critical speed parameters is the amount of data which may 101 * be transfered in one command. If this value is too low, the SD card 102 * controller has to do multiple partial block writes (argggh!). With 103 * today (2008) SD cards there is little speed gain if we transfer more 104 * than 64 KBytes at a time. So use this value until there is any indication 105 * that we should do more here. 106 */ 107 #define MMC_SPI_BLOCKSATONCE 128 108 109 /****************************************************************************/ 110 111 /* 112 * Local Data Structures 113 */ 114 115 /* "scratch" is per-{command,block} data exchanged with the card */ 116 struct scratch { 117 u8 status[29]; 118 u8 data_token; 119 __be16 crc_val; 120 }; 121 122 struct mmc_spi_host { 123 struct mmc_host *mmc; 124 struct spi_device *spi; 125 126 unsigned char power_mode; 127 u16 powerup_msecs; 128 129 struct mmc_spi_platform_data *pdata; 130 131 /* for bulk data transfers */ 132 struct spi_transfer token, t, crc, early_status; 133 struct spi_message m; 134 135 /* for status readback */ 136 struct spi_transfer status; 137 struct spi_message readback; 138 139 /* underlying DMA-aware controller, or null */ 140 struct device *dma_dev; 141 142 /* buffer used for commands and for message "overhead" */ 143 struct scratch *data; 144 dma_addr_t data_dma; 145 146 /* Specs say to write ones most of the time, even when the card 147 * has no need to read its input data; and many cards won't care. 148 * This is our source of those ones. 149 */ 150 void *ones; 151 dma_addr_t ones_dma; 152 }; 153 154 155 /****************************************************************************/ 156 157 /* 158 * MMC-over-SPI protocol glue, used by the MMC stack interface 159 */ 160 161 static inline int mmc_cs_off(struct mmc_spi_host *host) 162 { 163 /* chipselect will always be inactive after setup() */ 164 return spi_setup(host->spi); 165 } 166 167 static int 168 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 169 { 170 int status; 171 172 if (len > sizeof(*host->data)) { 173 WARN_ON(1); 174 return -EIO; 175 } 176 177 host->status.len = len; 178 179 if (host->dma_dev) 180 dma_sync_single_for_device(host->dma_dev, 181 host->data_dma, sizeof(*host->data), 182 DMA_FROM_DEVICE); 183 184 status = spi_sync(host->spi, &host->readback); 185 186 if (host->dma_dev) 187 dma_sync_single_for_cpu(host->dma_dev, 188 host->data_dma, sizeof(*host->data), 189 DMA_FROM_DEVICE); 190 191 return status; 192 } 193 194 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 195 unsigned n, u8 byte) 196 { 197 u8 *cp = host->data->status; 198 unsigned long start = jiffies; 199 200 while (1) { 201 int status; 202 unsigned i; 203 204 status = mmc_spi_readbytes(host, n); 205 if (status < 0) 206 return status; 207 208 for (i = 0; i < n; i++) { 209 if (cp[i] != byte) 210 return cp[i]; 211 } 212 213 if (time_is_before_jiffies(start + timeout)) 214 break; 215 216 /* If we need long timeouts, we may release the CPU. 217 * We use jiffies here because we want to have a relation 218 * between elapsed time and the blocking of the scheduler. 219 */ 220 if (time_is_before_jiffies(start+1)) 221 schedule(); 222 } 223 return -ETIMEDOUT; 224 } 225 226 static inline int 227 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 228 { 229 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 230 } 231 232 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 233 { 234 return mmc_spi_skip(host, timeout, 1, 0xff); 235 } 236 237 238 /* 239 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 240 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 241 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 242 * 243 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 244 * newer cards R7 (IF_COND). 245 */ 246 247 static char *maptype(struct mmc_command *cmd) 248 { 249 switch (mmc_spi_resp_type(cmd)) { 250 case MMC_RSP_SPI_R1: return "R1"; 251 case MMC_RSP_SPI_R1B: return "R1B"; 252 case MMC_RSP_SPI_R2: return "R2/R5"; 253 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 254 default: return "?"; 255 } 256 } 257 258 /* return zero, else negative errno after setting cmd->error */ 259 static int mmc_spi_response_get(struct mmc_spi_host *host, 260 struct mmc_command *cmd, int cs_on) 261 { 262 u8 *cp = host->data->status; 263 u8 *end = cp + host->t.len; 264 int value = 0; 265 int bitshift; 266 u8 leftover = 0; 267 unsigned short rotator; 268 int i; 269 char tag[32]; 270 271 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 272 cmd->opcode, maptype(cmd)); 273 274 /* Except for data block reads, the whole response will already 275 * be stored in the scratch buffer. It's somewhere after the 276 * command and the first byte we read after it. We ignore that 277 * first byte. After STOP_TRANSMISSION command it may include 278 * two data bits, but otherwise it's all ones. 279 */ 280 cp += 8; 281 while (cp < end && *cp == 0xff) 282 cp++; 283 284 /* Data block reads (R1 response types) may need more data... */ 285 if (cp == end) { 286 cp = host->data->status; 287 end = cp+1; 288 289 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 290 * status byte ... and we already scanned 2 bytes. 291 * 292 * REVISIT block read paths use nasty byte-at-a-time I/O 293 * so it can always DMA directly into the target buffer. 294 * It'd probably be better to memcpy() the first chunk and 295 * avoid extra i/o calls... 296 * 297 * Note we check for more than 8 bytes, because in practice, 298 * some SD cards are slow... 299 */ 300 for (i = 2; i < 16; i++) { 301 value = mmc_spi_readbytes(host, 1); 302 if (value < 0) 303 goto done; 304 if (*cp != 0xff) 305 goto checkstatus; 306 } 307 value = -ETIMEDOUT; 308 goto done; 309 } 310 311 checkstatus: 312 bitshift = 0; 313 if (*cp & 0x80) { 314 /* Houston, we have an ugly card with a bit-shifted response */ 315 rotator = *cp++ << 8; 316 /* read the next byte */ 317 if (cp == end) { 318 value = mmc_spi_readbytes(host, 1); 319 if (value < 0) 320 goto done; 321 cp = host->data->status; 322 end = cp+1; 323 } 324 rotator |= *cp++; 325 while (rotator & 0x8000) { 326 bitshift++; 327 rotator <<= 1; 328 } 329 cmd->resp[0] = rotator >> 8; 330 leftover = rotator; 331 } else { 332 cmd->resp[0] = *cp++; 333 } 334 cmd->error = 0; 335 336 /* Status byte: the entire seven-bit R1 response. */ 337 if (cmd->resp[0] != 0) { 338 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 339 & cmd->resp[0]) 340 value = -EFAULT; /* Bad address */ 341 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 342 value = -ENOSYS; /* Function not implemented */ 343 else if (R1_SPI_COM_CRC & cmd->resp[0]) 344 value = -EILSEQ; /* Illegal byte sequence */ 345 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 346 & cmd->resp[0]) 347 value = -EIO; /* I/O error */ 348 /* else R1_SPI_IDLE, "it's resetting" */ 349 } 350 351 switch (mmc_spi_resp_type(cmd)) { 352 353 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 354 * and less-common stuff like various erase operations. 355 */ 356 case MMC_RSP_SPI_R1B: 357 /* maybe we read all the busy tokens already */ 358 while (cp < end && *cp == 0) 359 cp++; 360 if (cp == end) 361 mmc_spi_wait_unbusy(host, r1b_timeout); 362 break; 363 364 /* SPI R2 == R1 + second status byte; SEND_STATUS 365 * SPI R5 == R1 + data byte; IO_RW_DIRECT 366 */ 367 case MMC_RSP_SPI_R2: 368 /* read the next byte */ 369 if (cp == end) { 370 value = mmc_spi_readbytes(host, 1); 371 if (value < 0) 372 goto done; 373 cp = host->data->status; 374 end = cp+1; 375 } 376 if (bitshift) { 377 rotator = leftover << 8; 378 rotator |= *cp << bitshift; 379 cmd->resp[0] |= (rotator & 0xFF00); 380 } else { 381 cmd->resp[0] |= *cp << 8; 382 } 383 break; 384 385 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 386 case MMC_RSP_SPI_R3: 387 rotator = leftover << 8; 388 cmd->resp[1] = 0; 389 for (i = 0; i < 4; i++) { 390 cmd->resp[1] <<= 8; 391 /* read the next byte */ 392 if (cp == end) { 393 value = mmc_spi_readbytes(host, 1); 394 if (value < 0) 395 goto done; 396 cp = host->data->status; 397 end = cp+1; 398 } 399 if (bitshift) { 400 rotator |= *cp++ << bitshift; 401 cmd->resp[1] |= (rotator >> 8); 402 rotator <<= 8; 403 } else { 404 cmd->resp[1] |= *cp++; 405 } 406 } 407 break; 408 409 /* SPI R1 == just one status byte */ 410 case MMC_RSP_SPI_R1: 411 break; 412 413 default: 414 dev_dbg(&host->spi->dev, "bad response type %04x\n", 415 mmc_spi_resp_type(cmd)); 416 if (value >= 0) 417 value = -EINVAL; 418 goto done; 419 } 420 421 if (value < 0) 422 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 423 tag, cmd->resp[0], cmd->resp[1]); 424 425 /* disable chipselect on errors and some success cases */ 426 if (value >= 0 && cs_on) 427 return value; 428 done: 429 if (value < 0) 430 cmd->error = value; 431 mmc_cs_off(host); 432 return value; 433 } 434 435 /* Issue command and read its response. 436 * Returns zero on success, negative for error. 437 * 438 * On error, caller must cope with mmc core retry mechanism. That 439 * means immediate low-level resubmit, which affects the bus lock... 440 */ 441 static int 442 mmc_spi_command_send(struct mmc_spi_host *host, 443 struct mmc_request *mrq, 444 struct mmc_command *cmd, int cs_on) 445 { 446 struct scratch *data = host->data; 447 u8 *cp = data->status; 448 u32 arg = cmd->arg; 449 int status; 450 struct spi_transfer *t; 451 452 /* We can handle most commands (except block reads) in one full 453 * duplex I/O operation before either starting the next transfer 454 * (data block or command) or else deselecting the card. 455 * 456 * First, write 7 bytes: 457 * - an all-ones byte to ensure the card is ready 458 * - opcode byte (plus start and transmission bits) 459 * - four bytes of big-endian argument 460 * - crc7 (plus end bit) ... always computed, it's cheap 461 * 462 * We init the whole buffer to all-ones, which is what we need 463 * to write while we're reading (later) response data. 464 */ 465 memset(cp++, 0xff, sizeof(data->status)); 466 467 *cp++ = 0x40 | cmd->opcode; 468 *cp++ = (u8)(arg >> 24); 469 *cp++ = (u8)(arg >> 16); 470 *cp++ = (u8)(arg >> 8); 471 *cp++ = (u8)arg; 472 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 473 474 /* Then, read up to 13 bytes (while writing all-ones): 475 * - N(CR) (== 1..8) bytes of all-ones 476 * - status byte (for all response types) 477 * - the rest of the response, either: 478 * + nothing, for R1 or R1B responses 479 * + second status byte, for R2 responses 480 * + four data bytes, for R3 and R7 responses 481 * 482 * Finally, read some more bytes ... in the nice cases we know in 483 * advance how many, and reading 1 more is always OK: 484 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 485 * - N(RC) (== 1..N) bytes of all-ones, before next command 486 * - N(WR) (== 1..N) bytes of all-ones, before data write 487 * 488 * So in those cases one full duplex I/O of at most 21 bytes will 489 * handle the whole command, leaving the card ready to receive a 490 * data block or new command. We do that whenever we can, shaving 491 * CPU and IRQ costs (especially when using DMA or FIFOs). 492 * 493 * There are two other cases, where it's not generally practical 494 * to rely on a single I/O: 495 * 496 * - R1B responses need at least N(EC) bytes of all-zeroes. 497 * 498 * In this case we can *try* to fit it into one I/O, then 499 * maybe read more data later. 500 * 501 * - Data block reads are more troublesome, since a variable 502 * number of padding bytes precede the token and data. 503 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 504 * + N(AC) (== 1..many) bytes of all-ones 505 * 506 * In this case we currently only have minimal speedups here: 507 * when N(CR) == 1 we can avoid I/O in response_get(). 508 */ 509 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 510 cp += 2; /* min(N(CR)) + status */ 511 /* R1 */ 512 } else { 513 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 514 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 515 cp++; 516 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 517 cp += 4; 518 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 519 cp = data->status + sizeof(data->status); 520 /* else: R1 (most commands) */ 521 } 522 523 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 524 cmd->opcode, maptype(cmd)); 525 526 /* send command, leaving chipselect active */ 527 spi_message_init(&host->m); 528 529 t = &host->t; 530 memset(t, 0, sizeof(*t)); 531 t->tx_buf = t->rx_buf = data->status; 532 t->tx_dma = t->rx_dma = host->data_dma; 533 t->len = cp - data->status; 534 t->cs_change = 1; 535 spi_message_add_tail(t, &host->m); 536 537 if (host->dma_dev) { 538 host->m.is_dma_mapped = 1; 539 dma_sync_single_for_device(host->dma_dev, 540 host->data_dma, sizeof(*host->data), 541 DMA_BIDIRECTIONAL); 542 } 543 status = spi_sync(host->spi, &host->m); 544 545 if (host->dma_dev) 546 dma_sync_single_for_cpu(host->dma_dev, 547 host->data_dma, sizeof(*host->data), 548 DMA_BIDIRECTIONAL); 549 if (status < 0) { 550 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 551 cmd->error = status; 552 return status; 553 } 554 555 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 556 return mmc_spi_response_get(host, cmd, cs_on); 557 } 558 559 /* Build data message with up to four separate transfers. For TX, we 560 * start by writing the data token. And in most cases, we finish with 561 * a status transfer. 562 * 563 * We always provide TX data for data and CRC. The MMC/SD protocol 564 * requires us to write ones; but Linux defaults to writing zeroes; 565 * so we explicitly initialize it to all ones on RX paths. 566 * 567 * We also handle DMA mapping, so the underlying SPI controller does 568 * not need to (re)do it for each message. 569 */ 570 static void 571 mmc_spi_setup_data_message( 572 struct mmc_spi_host *host, 573 int multiple, 574 enum dma_data_direction direction) 575 { 576 struct spi_transfer *t; 577 struct scratch *scratch = host->data; 578 dma_addr_t dma = host->data_dma; 579 580 spi_message_init(&host->m); 581 if (dma) 582 host->m.is_dma_mapped = 1; 583 584 /* for reads, readblock() skips 0xff bytes before finding 585 * the token; for writes, this transfer issues that token. 586 */ 587 if (direction == DMA_TO_DEVICE) { 588 t = &host->token; 589 memset(t, 0, sizeof(*t)); 590 t->len = 1; 591 if (multiple) 592 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 593 else 594 scratch->data_token = SPI_TOKEN_SINGLE; 595 t->tx_buf = &scratch->data_token; 596 if (dma) 597 t->tx_dma = dma + offsetof(struct scratch, data_token); 598 spi_message_add_tail(t, &host->m); 599 } 600 601 /* Body of transfer is buffer, then CRC ... 602 * either TX-only, or RX with TX-ones. 603 */ 604 t = &host->t; 605 memset(t, 0, sizeof(*t)); 606 t->tx_buf = host->ones; 607 t->tx_dma = host->ones_dma; 608 /* length and actual buffer info are written later */ 609 spi_message_add_tail(t, &host->m); 610 611 t = &host->crc; 612 memset(t, 0, sizeof(*t)); 613 t->len = 2; 614 if (direction == DMA_TO_DEVICE) { 615 /* the actual CRC may get written later */ 616 t->tx_buf = &scratch->crc_val; 617 if (dma) 618 t->tx_dma = dma + offsetof(struct scratch, crc_val); 619 } else { 620 t->tx_buf = host->ones; 621 t->tx_dma = host->ones_dma; 622 t->rx_buf = &scratch->crc_val; 623 if (dma) 624 t->rx_dma = dma + offsetof(struct scratch, crc_val); 625 } 626 spi_message_add_tail(t, &host->m); 627 628 /* 629 * A single block read is followed by N(EC) [0+] all-ones bytes 630 * before deselect ... don't bother. 631 * 632 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 633 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 634 * collect that single byte, so readblock() doesn't need to. 635 * 636 * For a write, the one-byte data response follows immediately, then 637 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 638 * Then single block reads may deselect, and multiblock ones issue 639 * the next token (next data block, or STOP_TRAN). We can try to 640 * minimize I/O ops by using a single read to collect end-of-busy. 641 */ 642 if (multiple || direction == DMA_TO_DEVICE) { 643 t = &host->early_status; 644 memset(t, 0, sizeof(*t)); 645 t->len = (direction == DMA_TO_DEVICE) 646 ? sizeof(scratch->status) 647 : 1; 648 t->tx_buf = host->ones; 649 t->tx_dma = host->ones_dma; 650 t->rx_buf = scratch->status; 651 if (dma) 652 t->rx_dma = dma + offsetof(struct scratch, status); 653 t->cs_change = 1; 654 spi_message_add_tail(t, &host->m); 655 } 656 } 657 658 /* 659 * Write one block: 660 * - caller handled preceding N(WR) [1+] all-ones bytes 661 * - data block 662 * + token 663 * + data bytes 664 * + crc16 665 * - an all-ones byte ... card writes a data-response byte 666 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 667 * 668 * Return negative errno, else success. 669 */ 670 static int 671 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 672 unsigned long timeout) 673 { 674 struct spi_device *spi = host->spi; 675 int status, i; 676 struct scratch *scratch = host->data; 677 u32 pattern; 678 679 if (host->mmc->use_spi_crc) 680 scratch->crc_val = cpu_to_be16( 681 crc_itu_t(0, t->tx_buf, t->len)); 682 if (host->dma_dev) 683 dma_sync_single_for_device(host->dma_dev, 684 host->data_dma, sizeof(*scratch), 685 DMA_BIDIRECTIONAL); 686 687 status = spi_sync(spi, &host->m); 688 689 if (status != 0) { 690 dev_dbg(&spi->dev, "write error (%d)\n", status); 691 return status; 692 } 693 694 if (host->dma_dev) 695 dma_sync_single_for_cpu(host->dma_dev, 696 host->data_dma, sizeof(*scratch), 697 DMA_BIDIRECTIONAL); 698 699 /* 700 * Get the transmission data-response reply. It must follow 701 * immediately after the data block we transferred. This reply 702 * doesn't necessarily tell whether the write operation succeeded; 703 * it just says if the transmission was ok and whether *earlier* 704 * writes succeeded; see the standard. 705 * 706 * In practice, there are (even modern SDHC-)cards which are late 707 * in sending the response, and miss the time frame by a few bits, 708 * so we have to cope with this situation and check the response 709 * bit-by-bit. Arggh!!! 710 */ 711 pattern = scratch->status[0] << 24; 712 pattern |= scratch->status[1] << 16; 713 pattern |= scratch->status[2] << 8; 714 pattern |= scratch->status[3]; 715 716 /* First 3 bit of pattern are undefined */ 717 pattern |= 0xE0000000; 718 719 /* left-adjust to leading 0 bit */ 720 while (pattern & 0x80000000) 721 pattern <<= 1; 722 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 723 pattern >>= 27; 724 725 switch (pattern) { 726 case SPI_RESPONSE_ACCEPTED: 727 status = 0; 728 break; 729 case SPI_RESPONSE_CRC_ERR: 730 /* host shall then issue MMC_STOP_TRANSMISSION */ 731 status = -EILSEQ; 732 break; 733 case SPI_RESPONSE_WRITE_ERR: 734 /* host shall then issue MMC_STOP_TRANSMISSION, 735 * and should MMC_SEND_STATUS to sort it out 736 */ 737 status = -EIO; 738 break; 739 default: 740 status = -EPROTO; 741 break; 742 } 743 if (status != 0) { 744 dev_dbg(&spi->dev, "write error %02x (%d)\n", 745 scratch->status[0], status); 746 return status; 747 } 748 749 t->tx_buf += t->len; 750 if (host->dma_dev) 751 t->tx_dma += t->len; 752 753 /* Return when not busy. If we didn't collect that status yet, 754 * we'll need some more I/O. 755 */ 756 for (i = 4; i < sizeof(scratch->status); i++) { 757 /* card is non-busy if the most recent bit is 1 */ 758 if (scratch->status[i] & 0x01) 759 return 0; 760 } 761 return mmc_spi_wait_unbusy(host, timeout); 762 } 763 764 /* 765 * Read one block: 766 * - skip leading all-ones bytes ... either 767 * + N(AC) [1..f(clock,CSD)] usually, else 768 * + N(CX) [0..8] when reading CSD or CID 769 * - data block 770 * + token ... if error token, no data or crc 771 * + data bytes 772 * + crc16 773 * 774 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 775 * before dropping chipselect. 776 * 777 * For multiblock reads, caller either reads the next block or issues a 778 * STOP_TRANSMISSION command. 779 */ 780 static int 781 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 782 unsigned long timeout) 783 { 784 struct spi_device *spi = host->spi; 785 int status; 786 struct scratch *scratch = host->data; 787 unsigned int bitshift; 788 u8 leftover; 789 790 /* At least one SD card sends an all-zeroes byte when N(CX) 791 * applies, before the all-ones bytes ... just cope with that. 792 */ 793 status = mmc_spi_readbytes(host, 1); 794 if (status < 0) 795 return status; 796 status = scratch->status[0]; 797 if (status == 0xff || status == 0) 798 status = mmc_spi_readtoken(host, timeout); 799 800 if (status < 0) { 801 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 802 return status; 803 } 804 805 /* The token may be bit-shifted... 806 * the first 0-bit precedes the data stream. 807 */ 808 bitshift = 7; 809 while (status & 0x80) { 810 status <<= 1; 811 bitshift--; 812 } 813 leftover = status << 1; 814 815 if (host->dma_dev) { 816 dma_sync_single_for_device(host->dma_dev, 817 host->data_dma, sizeof(*scratch), 818 DMA_BIDIRECTIONAL); 819 dma_sync_single_for_device(host->dma_dev, 820 t->rx_dma, t->len, 821 DMA_FROM_DEVICE); 822 } 823 824 status = spi_sync(spi, &host->m); 825 826 if (host->dma_dev) { 827 dma_sync_single_for_cpu(host->dma_dev, 828 host->data_dma, sizeof(*scratch), 829 DMA_BIDIRECTIONAL); 830 dma_sync_single_for_cpu(host->dma_dev, 831 t->rx_dma, t->len, 832 DMA_FROM_DEVICE); 833 } 834 835 if (bitshift) { 836 /* Walk through the data and the crc and do 837 * all the magic to get byte-aligned data. 838 */ 839 u8 *cp = t->rx_buf; 840 unsigned int len; 841 unsigned int bitright = 8 - bitshift; 842 u8 temp; 843 for (len = t->len; len; len--) { 844 temp = *cp; 845 *cp++ = leftover | (temp >> bitshift); 846 leftover = temp << bitright; 847 } 848 cp = (u8 *) &scratch->crc_val; 849 temp = *cp; 850 *cp++ = leftover | (temp >> bitshift); 851 leftover = temp << bitright; 852 temp = *cp; 853 *cp = leftover | (temp >> bitshift); 854 } 855 856 if (host->mmc->use_spi_crc) { 857 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 858 859 be16_to_cpus(&scratch->crc_val); 860 if (scratch->crc_val != crc) { 861 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 862 "computed=0x%04x len=%d\n", 863 scratch->crc_val, crc, t->len); 864 return -EILSEQ; 865 } 866 } 867 868 t->rx_buf += t->len; 869 if (host->dma_dev) 870 t->rx_dma += t->len; 871 872 return 0; 873 } 874 875 /* 876 * An MMC/SD data stage includes one or more blocks, optional CRCs, 877 * and inline handshaking. That handhaking makes it unlike most 878 * other SPI protocol stacks. 879 */ 880 static void 881 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 882 struct mmc_data *data, u32 blk_size) 883 { 884 struct spi_device *spi = host->spi; 885 struct device *dma_dev = host->dma_dev; 886 struct spi_transfer *t; 887 enum dma_data_direction direction; 888 struct scatterlist *sg; 889 unsigned n_sg; 890 int multiple = (data->blocks > 1); 891 u32 clock_rate; 892 unsigned long timeout; 893 894 if (data->flags & MMC_DATA_READ) 895 direction = DMA_FROM_DEVICE; 896 else 897 direction = DMA_TO_DEVICE; 898 mmc_spi_setup_data_message(host, multiple, direction); 899 t = &host->t; 900 901 if (t->speed_hz) 902 clock_rate = t->speed_hz; 903 else 904 clock_rate = spi->max_speed_hz; 905 906 timeout = data->timeout_ns + 907 data->timeout_clks * 1000000 / clock_rate; 908 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1; 909 910 /* Handle scatterlist segments one at a time, with synch for 911 * each 512-byte block 912 */ 913 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 914 int status = 0; 915 dma_addr_t dma_addr = 0; 916 void *kmap_addr; 917 unsigned length = sg->length; 918 enum dma_data_direction dir = direction; 919 920 /* set up dma mapping for controller drivers that might 921 * use DMA ... though they may fall back to PIO 922 */ 923 if (dma_dev) { 924 /* never invalidate whole *shared* pages ... */ 925 if ((sg->offset != 0 || length != PAGE_SIZE) 926 && dir == DMA_FROM_DEVICE) 927 dir = DMA_BIDIRECTIONAL; 928 929 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 930 PAGE_SIZE, dir); 931 if (direction == DMA_TO_DEVICE) 932 t->tx_dma = dma_addr + sg->offset; 933 else 934 t->rx_dma = dma_addr + sg->offset; 935 } 936 937 /* allow pio too; we don't allow highmem */ 938 kmap_addr = kmap(sg_page(sg)); 939 if (direction == DMA_TO_DEVICE) 940 t->tx_buf = kmap_addr + sg->offset; 941 else 942 t->rx_buf = kmap_addr + sg->offset; 943 944 /* transfer each block, and update request status */ 945 while (length) { 946 t->len = min(length, blk_size); 947 948 dev_dbg(&host->spi->dev, 949 " mmc_spi: %s block, %d bytes\n", 950 (direction == DMA_TO_DEVICE) 951 ? "write" 952 : "read", 953 t->len); 954 955 if (direction == DMA_TO_DEVICE) 956 status = mmc_spi_writeblock(host, t, timeout); 957 else 958 status = mmc_spi_readblock(host, t, timeout); 959 if (status < 0) 960 break; 961 962 data->bytes_xfered += t->len; 963 length -= t->len; 964 965 if (!multiple) 966 break; 967 } 968 969 /* discard mappings */ 970 if (direction == DMA_FROM_DEVICE) 971 flush_kernel_dcache_page(sg_page(sg)); 972 kunmap(sg_page(sg)); 973 if (dma_dev) 974 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 975 976 if (status < 0) { 977 data->error = status; 978 dev_dbg(&spi->dev, "%s status %d\n", 979 (direction == DMA_TO_DEVICE) 980 ? "write" : "read", 981 status); 982 break; 983 } 984 } 985 986 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 987 * can be issued before multiblock writes. Unlike its more widely 988 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 989 * that can affect the STOP_TRAN logic. Complete (and current) 990 * MMC specs should sort that out before Linux starts using CMD23. 991 */ 992 if (direction == DMA_TO_DEVICE && multiple) { 993 struct scratch *scratch = host->data; 994 int tmp; 995 const unsigned statlen = sizeof(scratch->status); 996 997 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 998 999 /* Tweak the per-block message we set up earlier by morphing 1000 * it to hold single buffer with the token followed by some 1001 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 1002 * "not busy any longer" status, and leave chip selected. 1003 */ 1004 INIT_LIST_HEAD(&host->m.transfers); 1005 list_add(&host->early_status.transfer_list, 1006 &host->m.transfers); 1007 1008 memset(scratch->status, 0xff, statlen); 1009 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 1010 1011 host->early_status.tx_buf = host->early_status.rx_buf; 1012 host->early_status.tx_dma = host->early_status.rx_dma; 1013 host->early_status.len = statlen; 1014 1015 if (host->dma_dev) 1016 dma_sync_single_for_device(host->dma_dev, 1017 host->data_dma, sizeof(*scratch), 1018 DMA_BIDIRECTIONAL); 1019 1020 tmp = spi_sync(spi, &host->m); 1021 1022 if (host->dma_dev) 1023 dma_sync_single_for_cpu(host->dma_dev, 1024 host->data_dma, sizeof(*scratch), 1025 DMA_BIDIRECTIONAL); 1026 1027 if (tmp < 0) { 1028 if (!data->error) 1029 data->error = tmp; 1030 return; 1031 } 1032 1033 /* Ideally we collected "not busy" status with one I/O, 1034 * avoiding wasteful byte-at-a-time scanning... but more 1035 * I/O is often needed. 1036 */ 1037 for (tmp = 2; tmp < statlen; tmp++) { 1038 if (scratch->status[tmp] != 0) 1039 return; 1040 } 1041 tmp = mmc_spi_wait_unbusy(host, timeout); 1042 if (tmp < 0 && !data->error) 1043 data->error = tmp; 1044 } 1045 } 1046 1047 /****************************************************************************/ 1048 1049 /* 1050 * MMC driver implementation -- the interface to the MMC stack 1051 */ 1052 1053 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 1054 { 1055 struct mmc_spi_host *host = mmc_priv(mmc); 1056 int status = -EINVAL; 1057 1058 #ifdef DEBUG 1059 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 1060 { 1061 struct mmc_command *cmd; 1062 int invalid = 0; 1063 1064 cmd = mrq->cmd; 1065 if (!mmc_spi_resp_type(cmd)) { 1066 dev_dbg(&host->spi->dev, "bogus command\n"); 1067 cmd->error = -EINVAL; 1068 invalid = 1; 1069 } 1070 1071 cmd = mrq->stop; 1072 if (cmd && !mmc_spi_resp_type(cmd)) { 1073 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 1074 cmd->error = -EINVAL; 1075 invalid = 1; 1076 } 1077 1078 if (invalid) { 1079 dump_stack(); 1080 mmc_request_done(host->mmc, mrq); 1081 return; 1082 } 1083 } 1084 #endif 1085 1086 /* issue command; then optionally data and stop */ 1087 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 1088 if (status == 0 && mrq->data) { 1089 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 1090 if (mrq->stop) 1091 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 1092 else 1093 mmc_cs_off(host); 1094 } 1095 1096 mmc_request_done(host->mmc, mrq); 1097 } 1098 1099 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 1100 * 1101 * NOTE that here we can't know that the card has just been powered up; 1102 * not all MMC/SD sockets support power switching. 1103 * 1104 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 1105 * this doesn't seem to do the right thing at all... 1106 */ 1107 static void mmc_spi_initsequence(struct mmc_spi_host *host) 1108 { 1109 /* Try to be very sure any previous command has completed; 1110 * wait till not-busy, skip debris from any old commands. 1111 */ 1112 mmc_spi_wait_unbusy(host, r1b_timeout); 1113 mmc_spi_readbytes(host, 10); 1114 1115 /* 1116 * Do a burst with chipselect active-high. We need to do this to 1117 * meet the requirement of 74 clock cycles with both chipselect 1118 * and CMD (MOSI) high before CMD0 ... after the card has been 1119 * powered up to Vdd(min), and so is ready to take commands. 1120 * 1121 * Some cards are particularly needy of this (e.g. Viking "SD256") 1122 * while most others don't seem to care. 1123 * 1124 * Note that this is one of the places MMC/SD plays games with the 1125 * SPI protocol. Another is that when chipselect is released while 1126 * the card returns BUSY status, the clock must issue several cycles 1127 * with chipselect high before the card will stop driving its output. 1128 */ 1129 host->spi->mode |= SPI_CS_HIGH; 1130 if (spi_setup(host->spi) != 0) { 1131 /* Just warn; most cards work without it. */ 1132 dev_warn(&host->spi->dev, 1133 "can't change chip-select polarity\n"); 1134 host->spi->mode &= ~SPI_CS_HIGH; 1135 } else { 1136 mmc_spi_readbytes(host, 18); 1137 1138 host->spi->mode &= ~SPI_CS_HIGH; 1139 if (spi_setup(host->spi) != 0) { 1140 /* Wot, we can't get the same setup we had before? */ 1141 dev_err(&host->spi->dev, 1142 "can't restore chip-select polarity\n"); 1143 } 1144 } 1145 } 1146 1147 static char *mmc_powerstring(u8 power_mode) 1148 { 1149 switch (power_mode) { 1150 case MMC_POWER_OFF: return "off"; 1151 case MMC_POWER_UP: return "up"; 1152 case MMC_POWER_ON: return "on"; 1153 } 1154 return "?"; 1155 } 1156 1157 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1158 { 1159 struct mmc_spi_host *host = mmc_priv(mmc); 1160 1161 if (host->power_mode != ios->power_mode) { 1162 int canpower; 1163 1164 canpower = host->pdata && host->pdata->setpower; 1165 1166 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1167 mmc_powerstring(ios->power_mode), 1168 ios->vdd, 1169 canpower ? ", can switch" : ""); 1170 1171 /* switch power on/off if possible, accounting for 1172 * max 250msec powerup time if needed. 1173 */ 1174 if (canpower) { 1175 switch (ios->power_mode) { 1176 case MMC_POWER_OFF: 1177 case MMC_POWER_UP: 1178 host->pdata->setpower(&host->spi->dev, 1179 ios->vdd); 1180 if (ios->power_mode == MMC_POWER_UP) 1181 msleep(host->powerup_msecs); 1182 } 1183 } 1184 1185 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1186 if (ios->power_mode == MMC_POWER_ON) 1187 mmc_spi_initsequence(host); 1188 1189 /* If powering down, ground all card inputs to avoid power 1190 * delivery from data lines! On a shared SPI bus, this 1191 * will probably be temporary; 6.4.2 of the simplified SD 1192 * spec says this must last at least 1msec. 1193 * 1194 * - Clock low means CPOL 0, e.g. mode 0 1195 * - MOSI low comes from writing zero 1196 * - Chipselect is usually active low... 1197 */ 1198 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1199 int mres; 1200 u8 nullbyte = 0; 1201 1202 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1203 mres = spi_setup(host->spi); 1204 if (mres < 0) 1205 dev_dbg(&host->spi->dev, 1206 "switch to SPI mode 0 failed\n"); 1207 1208 if (spi_write(host->spi, &nullbyte, 1) < 0) 1209 dev_dbg(&host->spi->dev, 1210 "put spi signals to low failed\n"); 1211 1212 /* 1213 * Now clock should be low due to spi mode 0; 1214 * MOSI should be low because of written 0x00; 1215 * chipselect should be low (it is active low) 1216 * power supply is off, so now MMC is off too! 1217 * 1218 * FIXME no, chipselect can be high since the 1219 * device is inactive and SPI_CS_HIGH is clear... 1220 */ 1221 msleep(10); 1222 if (mres == 0) { 1223 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1224 mres = spi_setup(host->spi); 1225 if (mres < 0) 1226 dev_dbg(&host->spi->dev, 1227 "switch back to SPI mode 3" 1228 " failed\n"); 1229 } 1230 } 1231 1232 host->power_mode = ios->power_mode; 1233 } 1234 1235 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1236 int status; 1237 1238 host->spi->max_speed_hz = ios->clock; 1239 status = spi_setup(host->spi); 1240 dev_dbg(&host->spi->dev, 1241 "mmc_spi: clock to %d Hz, %d\n", 1242 host->spi->max_speed_hz, status); 1243 } 1244 } 1245 1246 static int mmc_spi_get_ro(struct mmc_host *mmc) 1247 { 1248 struct mmc_spi_host *host = mmc_priv(mmc); 1249 1250 if (host->pdata && host->pdata->get_ro) 1251 return !!host->pdata->get_ro(mmc->parent); 1252 /* 1253 * Board doesn't support read only detection; let the mmc core 1254 * decide what to do. 1255 */ 1256 return -ENOSYS; 1257 } 1258 1259 static int mmc_spi_get_cd(struct mmc_host *mmc) 1260 { 1261 struct mmc_spi_host *host = mmc_priv(mmc); 1262 1263 if (host->pdata && host->pdata->get_cd) 1264 return !!host->pdata->get_cd(mmc->parent); 1265 return -ENOSYS; 1266 } 1267 1268 static const struct mmc_host_ops mmc_spi_ops = { 1269 .request = mmc_spi_request, 1270 .set_ios = mmc_spi_set_ios, 1271 .get_ro = mmc_spi_get_ro, 1272 .get_cd = mmc_spi_get_cd, 1273 }; 1274 1275 1276 /****************************************************************************/ 1277 1278 /* 1279 * SPI driver implementation 1280 */ 1281 1282 static irqreturn_t 1283 mmc_spi_detect_irq(int irq, void *mmc) 1284 { 1285 struct mmc_spi_host *host = mmc_priv(mmc); 1286 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1287 1288 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1289 return IRQ_HANDLED; 1290 } 1291 1292 struct count_children { 1293 unsigned n; 1294 struct bus_type *bus; 1295 }; 1296 1297 static int maybe_count_child(struct device *dev, void *c) 1298 { 1299 struct count_children *ccp = c; 1300 1301 if (dev->bus == ccp->bus) { 1302 if (ccp->n) 1303 return -EBUSY; 1304 ccp->n++; 1305 } 1306 return 0; 1307 } 1308 1309 static int mmc_spi_probe(struct spi_device *spi) 1310 { 1311 void *ones; 1312 struct mmc_host *mmc; 1313 struct mmc_spi_host *host; 1314 int status; 1315 1316 /* We rely on full duplex transfers, mostly to reduce 1317 * per-transfer overheads (by making fewer transfers). 1318 */ 1319 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) 1320 return -EINVAL; 1321 1322 /* MMC and SD specs only seem to care that sampling is on the 1323 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1324 * should be legit. We'll use mode 0 since the steady state is 0, 1325 * which is appropriate for hotplugging, unless the platform data 1326 * specify mode 3 (if hardware is not compatible to mode 0). 1327 */ 1328 if (spi->mode != SPI_MODE_3) 1329 spi->mode = SPI_MODE_0; 1330 spi->bits_per_word = 8; 1331 1332 status = spi_setup(spi); 1333 if (status < 0) { 1334 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1335 spi->mode, spi->max_speed_hz / 1000, 1336 status); 1337 return status; 1338 } 1339 1340 /* We can use the bus safely iff nobody else will interfere with us. 1341 * Most commands consist of one SPI message to issue a command, then 1342 * several more to collect its response, then possibly more for data 1343 * transfer. Clocking access to other devices during that period will 1344 * corrupt the command execution. 1345 * 1346 * Until we have software primitives which guarantee non-interference, 1347 * we'll aim for a hardware-level guarantee. 1348 * 1349 * REVISIT we can't guarantee another device won't be added later... 1350 */ 1351 if (spi->master->num_chipselect > 1) { 1352 struct count_children cc; 1353 1354 cc.n = 0; 1355 cc.bus = spi->dev.bus; 1356 status = device_for_each_child(spi->dev.parent, &cc, 1357 maybe_count_child); 1358 if (status < 0) { 1359 dev_err(&spi->dev, "can't share SPI bus\n"); 1360 return status; 1361 } 1362 1363 dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n"); 1364 } 1365 1366 /* We need a supply of ones to transmit. This is the only time 1367 * the CPU touches these, so cache coherency isn't a concern. 1368 * 1369 * NOTE if many systems use more than one MMC-over-SPI connector 1370 * it'd save some memory to share this. That's evidently rare. 1371 */ 1372 status = -ENOMEM; 1373 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1374 if (!ones) 1375 goto nomem; 1376 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1377 1378 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1379 if (!mmc) 1380 goto nomem; 1381 1382 mmc->ops = &mmc_spi_ops; 1383 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1384 mmc->max_hw_segs = MMC_SPI_BLOCKSATONCE; 1385 mmc->max_phys_segs = MMC_SPI_BLOCKSATONCE; 1386 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1387 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1388 1389 mmc->caps = MMC_CAP_SPI; 1390 1391 /* SPI doesn't need the lowspeed device identification thing for 1392 * MMC or SD cards, since it never comes up in open drain mode. 1393 * That's good; some SPI masters can't handle very low speeds! 1394 * 1395 * However, low speed SDIO cards need not handle over 400 KHz; 1396 * that's the only reason not to use a few MHz for f_min (until 1397 * the upper layer reads the target frequency from the CSD). 1398 */ 1399 mmc->f_min = 400000; 1400 mmc->f_max = spi->max_speed_hz; 1401 1402 host = mmc_priv(mmc); 1403 host->mmc = mmc; 1404 host->spi = spi; 1405 1406 host->ones = ones; 1407 1408 /* Platform data is used to hook up things like card sensing 1409 * and power switching gpios. 1410 */ 1411 host->pdata = mmc_spi_get_pdata(spi); 1412 if (host->pdata) 1413 mmc->ocr_avail = host->pdata->ocr_mask; 1414 if (!mmc->ocr_avail) { 1415 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1416 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1417 } 1418 if (host->pdata && host->pdata->setpower) { 1419 host->powerup_msecs = host->pdata->powerup_msecs; 1420 if (!host->powerup_msecs || host->powerup_msecs > 250) 1421 host->powerup_msecs = 250; 1422 } 1423 1424 dev_set_drvdata(&spi->dev, mmc); 1425 1426 /* preallocate dma buffers */ 1427 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1428 if (!host->data) 1429 goto fail_nobuf1; 1430 1431 if (spi->master->dev.parent->dma_mask) { 1432 struct device *dev = spi->master->dev.parent; 1433 1434 host->dma_dev = dev; 1435 host->ones_dma = dma_map_single(dev, ones, 1436 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1437 host->data_dma = dma_map_single(dev, host->data, 1438 sizeof(*host->data), DMA_BIDIRECTIONAL); 1439 1440 /* REVISIT in theory those map operations can fail... */ 1441 1442 dma_sync_single_for_cpu(host->dma_dev, 1443 host->data_dma, sizeof(*host->data), 1444 DMA_BIDIRECTIONAL); 1445 } 1446 1447 /* setup message for status/busy readback */ 1448 spi_message_init(&host->readback); 1449 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1450 1451 spi_message_add_tail(&host->status, &host->readback); 1452 host->status.tx_buf = host->ones; 1453 host->status.tx_dma = host->ones_dma; 1454 host->status.rx_buf = &host->data->status; 1455 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1456 host->status.cs_change = 1; 1457 1458 /* register card detect irq */ 1459 if (host->pdata && host->pdata->init) { 1460 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1461 if (status != 0) 1462 goto fail_glue_init; 1463 } 1464 1465 /* pass platform capabilities, if any */ 1466 if (host->pdata) 1467 mmc->caps |= host->pdata->caps; 1468 1469 status = mmc_add_host(mmc); 1470 if (status != 0) 1471 goto fail_add_host; 1472 1473 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1474 dev_name(&mmc->class_dev), 1475 host->dma_dev ? "" : ", no DMA", 1476 (host->pdata && host->pdata->get_ro) 1477 ? "" : ", no WP", 1478 (host->pdata && host->pdata->setpower) 1479 ? "" : ", no poweroff", 1480 (mmc->caps & MMC_CAP_NEEDS_POLL) 1481 ? ", cd polling" : ""); 1482 return 0; 1483 1484 fail_add_host: 1485 mmc_remove_host (mmc); 1486 fail_glue_init: 1487 if (host->dma_dev) 1488 dma_unmap_single(host->dma_dev, host->data_dma, 1489 sizeof(*host->data), DMA_BIDIRECTIONAL); 1490 kfree(host->data); 1491 1492 fail_nobuf1: 1493 mmc_free_host(mmc); 1494 mmc_spi_put_pdata(spi); 1495 dev_set_drvdata(&spi->dev, NULL); 1496 1497 nomem: 1498 kfree(ones); 1499 return status; 1500 } 1501 1502 1503 static int __devexit mmc_spi_remove(struct spi_device *spi) 1504 { 1505 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1506 struct mmc_spi_host *host; 1507 1508 if (mmc) { 1509 host = mmc_priv(mmc); 1510 1511 /* prevent new mmc_detect_change() calls */ 1512 if (host->pdata && host->pdata->exit) 1513 host->pdata->exit(&spi->dev, mmc); 1514 1515 mmc_remove_host(mmc); 1516 1517 if (host->dma_dev) { 1518 dma_unmap_single(host->dma_dev, host->ones_dma, 1519 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1520 dma_unmap_single(host->dma_dev, host->data_dma, 1521 sizeof(*host->data), DMA_BIDIRECTIONAL); 1522 } 1523 1524 kfree(host->data); 1525 kfree(host->ones); 1526 1527 spi->max_speed_hz = mmc->f_max; 1528 mmc_free_host(mmc); 1529 mmc_spi_put_pdata(spi); 1530 dev_set_drvdata(&spi->dev, NULL); 1531 } 1532 return 0; 1533 } 1534 1535 1536 static struct spi_driver mmc_spi_driver = { 1537 .driver = { 1538 .name = "mmc_spi", 1539 .bus = &spi_bus_type, 1540 .owner = THIS_MODULE, 1541 }, 1542 .probe = mmc_spi_probe, 1543 .remove = __devexit_p(mmc_spi_remove), 1544 }; 1545 1546 1547 static int __init mmc_spi_init(void) 1548 { 1549 return spi_register_driver(&mmc_spi_driver); 1550 } 1551 module_init(mmc_spi_init); 1552 1553 1554 static void __exit mmc_spi_exit(void) 1555 { 1556 spi_unregister_driver(&mmc_spi_driver); 1557 } 1558 module_exit(mmc_spi_exit); 1559 1560 1561 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1562 "Hans-Peter Nilsson, Jan Nikitenko"); 1563 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1564 MODULE_LICENSE("GPL"); 1565 MODULE_ALIAS("spi:mmc_spi"); 1566