xref: /openbmc/linux/drivers/mmc/host/mmc_spi.c (revision 74be2d3b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Access SD/MMC cards through SPI master controllers
4  *
5  * (C) Copyright 2005, Intec Automation,
6  *		Mike Lavender (mike@steroidmicros)
7  * (C) Copyright 2006-2007, David Brownell
8  * (C) Copyright 2007, Axis Communications,
9  *		Hans-Peter Nilsson (hp@axis.com)
10  * (C) Copyright 2007, ATRON electronic GmbH,
11  *		Jan Nikitenko <jan.nikitenko@gmail.com>
12  */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
22 
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
26 
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
29 
30 #include <asm/unaligned.h>
31 
32 
33 /* NOTES:
34  *
35  * - For now, we won't try to interoperate with a real mmc/sd/sdio
36  *   controller, although some of them do have hardware support for
37  *   SPI protocol.  The main reason for such configs would be mmc-ish
38  *   cards like DataFlash, which don't support that "native" protocol.
39  *
40  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41  *   switch between driver stacks, and in any case if "native" mode
42  *   is available, it will be faster and hence preferable.
43  *
44  * - MMC depends on a different chipselect management policy than the
45  *   SPI interface currently supports for shared bus segments:  it needs
46  *   to issue multiple spi_message requests with the chipselect active,
47  *   using the results of one message to decide the next one to issue.
48  *
49  *   Pending updates to the programming interface, this driver expects
50  *   that it not share the bus with other drivers (precluding conflicts).
51  *
52  * - We tell the controller to keep the chipselect active from the
53  *   beginning of an mmc_host_ops.request until the end.  So beware
54  *   of SPI controller drivers that mis-handle the cs_change flag!
55  *
56  *   However, many cards seem OK with chipselect flapping up/down
57  *   during that time ... at least on unshared bus segments.
58  */
59 
60 
61 /*
62  * Local protocol constants, internal to data block protocols.
63  */
64 
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
70 
71 /* Read and write blocks start with these tokens and end with crc;
72  * on error, read tokens act like a subset of R2_SPI_* values.
73  */
74 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
77 
78 #define MMC_SPI_BLOCKSIZE	512
79 
80 #define MMC_SPI_R1B_TIMEOUT_MS	3000
81 #define MMC_SPI_INIT_TIMEOUT_MS	3000
82 
83 /* One of the critical speed parameters is the amount of data which may
84  * be transferred in one command. If this value is too low, the SD card
85  * controller has to do multiple partial block writes (argggh!). With
86  * today (2008) SD cards there is little speed gain if we transfer more
87  * than 64 KBytes at a time. So use this value until there is any indication
88  * that we should do more here.
89  */
90 #define MMC_SPI_BLOCKSATONCE	128
91 
92 /****************************************************************************/
93 
94 /*
95  * Local Data Structures
96  */
97 
98 /* "scratch" is per-{command,block} data exchanged with the card */
99 struct scratch {
100 	u8			status[29];
101 	u8			data_token;
102 	__be16			crc_val;
103 };
104 
105 struct mmc_spi_host {
106 	struct mmc_host		*mmc;
107 	struct spi_device	*spi;
108 
109 	unsigned char		power_mode;
110 	u16			powerup_msecs;
111 
112 	struct mmc_spi_platform_data	*pdata;
113 
114 	/* for bulk data transfers */
115 	struct spi_transfer	token, t, crc, early_status;
116 	struct spi_message	m;
117 
118 	/* for status readback */
119 	struct spi_transfer	status;
120 	struct spi_message	readback;
121 
122 	/* underlying DMA-aware controller, or null */
123 	struct device		*dma_dev;
124 
125 	/* buffer used for commands and for message "overhead" */
126 	struct scratch		*data;
127 	dma_addr_t		data_dma;
128 
129 	/* Specs say to write ones most of the time, even when the card
130 	 * has no need to read its input data; and many cards won't care.
131 	 * This is our source of those ones.
132 	 */
133 	void			*ones;
134 	dma_addr_t		ones_dma;
135 };
136 
137 
138 /****************************************************************************/
139 
140 /*
141  * MMC-over-SPI protocol glue, used by the MMC stack interface
142  */
143 
144 static inline int mmc_cs_off(struct mmc_spi_host *host)
145 {
146 	/* chipselect will always be inactive after setup() */
147 	return spi_setup(host->spi);
148 }
149 
150 static int
151 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
152 {
153 	int status;
154 
155 	if (len > sizeof(*host->data)) {
156 		WARN_ON(1);
157 		return -EIO;
158 	}
159 
160 	host->status.len = len;
161 
162 	if (host->dma_dev)
163 		dma_sync_single_for_device(host->dma_dev,
164 				host->data_dma, sizeof(*host->data),
165 				DMA_FROM_DEVICE);
166 
167 	status = spi_sync_locked(host->spi, &host->readback);
168 
169 	if (host->dma_dev)
170 		dma_sync_single_for_cpu(host->dma_dev,
171 				host->data_dma, sizeof(*host->data),
172 				DMA_FROM_DEVICE);
173 
174 	return status;
175 }
176 
177 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
178 			unsigned n, u8 byte)
179 {
180 	u8 *cp = host->data->status;
181 	unsigned long start = jiffies;
182 
183 	while (1) {
184 		int		status;
185 		unsigned	i;
186 
187 		status = mmc_spi_readbytes(host, n);
188 		if (status < 0)
189 			return status;
190 
191 		for (i = 0; i < n; i++) {
192 			if (cp[i] != byte)
193 				return cp[i];
194 		}
195 
196 		if (time_is_before_jiffies(start + timeout))
197 			break;
198 
199 		/* If we need long timeouts, we may release the CPU.
200 		 * We use jiffies here because we want to have a relation
201 		 * between elapsed time and the blocking of the scheduler.
202 		 */
203 		if (time_is_before_jiffies(start + 1))
204 			schedule();
205 	}
206 	return -ETIMEDOUT;
207 }
208 
209 static inline int
210 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
211 {
212 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
213 }
214 
215 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
216 {
217 	return mmc_spi_skip(host, timeout, 1, 0xff);
218 }
219 
220 
221 /*
222  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
223  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
224  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
225  *
226  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
227  * newer cards R7 (IF_COND).
228  */
229 
230 static char *maptype(struct mmc_command *cmd)
231 {
232 	switch (mmc_spi_resp_type(cmd)) {
233 	case MMC_RSP_SPI_R1:	return "R1";
234 	case MMC_RSP_SPI_R1B:	return "R1B";
235 	case MMC_RSP_SPI_R2:	return "R2/R5";
236 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
237 	default:		return "?";
238 	}
239 }
240 
241 /* return zero, else negative errno after setting cmd->error */
242 static int mmc_spi_response_get(struct mmc_spi_host *host,
243 		struct mmc_command *cmd, int cs_on)
244 {
245 	unsigned long timeout_ms;
246 	u8	*cp = host->data->status;
247 	u8	*end = cp + host->t.len;
248 	int	value = 0;
249 	int	bitshift;
250 	u8 	leftover = 0;
251 	unsigned short rotator;
252 	int 	i;
253 	char	tag[32];
254 
255 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
256 		cmd->opcode, maptype(cmd));
257 
258 	/* Except for data block reads, the whole response will already
259 	 * be stored in the scratch buffer.  It's somewhere after the
260 	 * command and the first byte we read after it.  We ignore that
261 	 * first byte.  After STOP_TRANSMISSION command it may include
262 	 * two data bits, but otherwise it's all ones.
263 	 */
264 	cp += 8;
265 	while (cp < end && *cp == 0xff)
266 		cp++;
267 
268 	/* Data block reads (R1 response types) may need more data... */
269 	if (cp == end) {
270 		cp = host->data->status;
271 		end = cp+1;
272 
273 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
274 		 * status byte ... and we already scanned 2 bytes.
275 		 *
276 		 * REVISIT block read paths use nasty byte-at-a-time I/O
277 		 * so it can always DMA directly into the target buffer.
278 		 * It'd probably be better to memcpy() the first chunk and
279 		 * avoid extra i/o calls...
280 		 *
281 		 * Note we check for more than 8 bytes, because in practice,
282 		 * some SD cards are slow...
283 		 */
284 		for (i = 2; i < 16; i++) {
285 			value = mmc_spi_readbytes(host, 1);
286 			if (value < 0)
287 				goto done;
288 			if (*cp != 0xff)
289 				goto checkstatus;
290 		}
291 		value = -ETIMEDOUT;
292 		goto done;
293 	}
294 
295 checkstatus:
296 	bitshift = 0;
297 	if (*cp & 0x80)	{
298 		/* Houston, we have an ugly card with a bit-shifted response */
299 		rotator = *cp++ << 8;
300 		/* read the next byte */
301 		if (cp == end) {
302 			value = mmc_spi_readbytes(host, 1);
303 			if (value < 0)
304 				goto done;
305 			cp = host->data->status;
306 			end = cp+1;
307 		}
308 		rotator |= *cp++;
309 		while (rotator & 0x8000) {
310 			bitshift++;
311 			rotator <<= 1;
312 		}
313 		cmd->resp[0] = rotator >> 8;
314 		leftover = rotator;
315 	} else {
316 		cmd->resp[0] = *cp++;
317 	}
318 	cmd->error = 0;
319 
320 	/* Status byte: the entire seven-bit R1 response.  */
321 	if (cmd->resp[0] != 0) {
322 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
323 				& cmd->resp[0])
324 			value = -EFAULT; /* Bad address */
325 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
326 			value = -ENOSYS; /* Function not implemented */
327 		else if (R1_SPI_COM_CRC & cmd->resp[0])
328 			value = -EILSEQ; /* Illegal byte sequence */
329 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
330 				& cmd->resp[0])
331 			value = -EIO;    /* I/O error */
332 		/* else R1_SPI_IDLE, "it's resetting" */
333 	}
334 
335 	switch (mmc_spi_resp_type(cmd)) {
336 
337 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
338 	 * and less-common stuff like various erase operations.
339 	 */
340 	case MMC_RSP_SPI_R1B:
341 		/* maybe we read all the busy tokens already */
342 		while (cp < end && *cp == 0)
343 			cp++;
344 		if (cp == end) {
345 			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
346 				MMC_SPI_R1B_TIMEOUT_MS;
347 			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
348 		}
349 		break;
350 
351 	/* SPI R2 == R1 + second status byte; SEND_STATUS
352 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
353 	 */
354 	case MMC_RSP_SPI_R2:
355 		/* read the next byte */
356 		if (cp == end) {
357 			value = mmc_spi_readbytes(host, 1);
358 			if (value < 0)
359 				goto done;
360 			cp = host->data->status;
361 			end = cp+1;
362 		}
363 		if (bitshift) {
364 			rotator = leftover << 8;
365 			rotator |= *cp << bitshift;
366 			cmd->resp[0] |= (rotator & 0xFF00);
367 		} else {
368 			cmd->resp[0] |= *cp << 8;
369 		}
370 		break;
371 
372 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
373 	case MMC_RSP_SPI_R3:
374 		rotator = leftover << 8;
375 		cmd->resp[1] = 0;
376 		for (i = 0; i < 4; i++) {
377 			cmd->resp[1] <<= 8;
378 			/* read the next byte */
379 			if (cp == end) {
380 				value = mmc_spi_readbytes(host, 1);
381 				if (value < 0)
382 					goto done;
383 				cp = host->data->status;
384 				end = cp+1;
385 			}
386 			if (bitshift) {
387 				rotator |= *cp++ << bitshift;
388 				cmd->resp[1] |= (rotator >> 8);
389 				rotator <<= 8;
390 			} else {
391 				cmd->resp[1] |= *cp++;
392 			}
393 		}
394 		break;
395 
396 	/* SPI R1 == just one status byte */
397 	case MMC_RSP_SPI_R1:
398 		break;
399 
400 	default:
401 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
402 			mmc_spi_resp_type(cmd));
403 		if (value >= 0)
404 			value = -EINVAL;
405 		goto done;
406 	}
407 
408 	if (value < 0)
409 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
410 			tag, cmd->resp[0], cmd->resp[1]);
411 
412 	/* disable chipselect on errors and some success cases */
413 	if (value >= 0 && cs_on)
414 		return value;
415 done:
416 	if (value < 0)
417 		cmd->error = value;
418 	mmc_cs_off(host);
419 	return value;
420 }
421 
422 /* Issue command and read its response.
423  * Returns zero on success, negative for error.
424  *
425  * On error, caller must cope with mmc core retry mechanism.  That
426  * means immediate low-level resubmit, which affects the bus lock...
427  */
428 static int
429 mmc_spi_command_send(struct mmc_spi_host *host,
430 		struct mmc_request *mrq,
431 		struct mmc_command *cmd, int cs_on)
432 {
433 	struct scratch		*data = host->data;
434 	u8			*cp = data->status;
435 	int			status;
436 	struct spi_transfer	*t;
437 
438 	/* We can handle most commands (except block reads) in one full
439 	 * duplex I/O operation before either starting the next transfer
440 	 * (data block or command) or else deselecting the card.
441 	 *
442 	 * First, write 7 bytes:
443 	 *  - an all-ones byte to ensure the card is ready
444 	 *  - opcode byte (plus start and transmission bits)
445 	 *  - four bytes of big-endian argument
446 	 *  - crc7 (plus end bit) ... always computed, it's cheap
447 	 *
448 	 * We init the whole buffer to all-ones, which is what we need
449 	 * to write while we're reading (later) response data.
450 	 */
451 	memset(cp, 0xff, sizeof(data->status));
452 
453 	cp[1] = 0x40 | cmd->opcode;
454 	put_unaligned_be32(cmd->arg, cp + 2);
455 	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
456 	cp += 7;
457 
458 	/* Then, read up to 13 bytes (while writing all-ones):
459 	 *  - N(CR) (== 1..8) bytes of all-ones
460 	 *  - status byte (for all response types)
461 	 *  - the rest of the response, either:
462 	 *      + nothing, for R1 or R1B responses
463 	 *	+ second status byte, for R2 responses
464 	 *	+ four data bytes, for R3 and R7 responses
465 	 *
466 	 * Finally, read some more bytes ... in the nice cases we know in
467 	 * advance how many, and reading 1 more is always OK:
468 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
469 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
470 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
471 	 *
472 	 * So in those cases one full duplex I/O of at most 21 bytes will
473 	 * handle the whole command, leaving the card ready to receive a
474 	 * data block or new command.  We do that whenever we can, shaving
475 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
476 	 *
477 	 * There are two other cases, where it's not generally practical
478 	 * to rely on a single I/O:
479 	 *
480 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
481 	 *
482 	 *    In this case we can *try* to fit it into one I/O, then
483 	 *    maybe read more data later.
484 	 *
485 	 *  - Data block reads are more troublesome, since a variable
486 	 *    number of padding bytes precede the token and data.
487 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
488 	 *      + N(AC) (== 1..many) bytes of all-ones
489 	 *
490 	 *    In this case we currently only have minimal speedups here:
491 	 *    when N(CR) == 1 we can avoid I/O in response_get().
492 	 */
493 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
494 		cp += 2;	/* min(N(CR)) + status */
495 		/* R1 */
496 	} else {
497 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
498 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
499 			cp++;
500 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
501 			cp += 4;
502 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
503 			cp = data->status + sizeof(data->status);
504 		/* else:  R1 (most commands) */
505 	}
506 
507 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
508 		cmd->opcode, maptype(cmd));
509 
510 	/* send command, leaving chipselect active */
511 	spi_message_init(&host->m);
512 
513 	t = &host->t;
514 	memset(t, 0, sizeof(*t));
515 	t->tx_buf = t->rx_buf = data->status;
516 	t->tx_dma = t->rx_dma = host->data_dma;
517 	t->len = cp - data->status;
518 	t->cs_change = 1;
519 	spi_message_add_tail(t, &host->m);
520 
521 	if (host->dma_dev) {
522 		host->m.is_dma_mapped = 1;
523 		dma_sync_single_for_device(host->dma_dev,
524 				host->data_dma, sizeof(*host->data),
525 				DMA_BIDIRECTIONAL);
526 	}
527 	status = spi_sync_locked(host->spi, &host->m);
528 
529 	if (host->dma_dev)
530 		dma_sync_single_for_cpu(host->dma_dev,
531 				host->data_dma, sizeof(*host->data),
532 				DMA_BIDIRECTIONAL);
533 	if (status < 0) {
534 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
535 		cmd->error = status;
536 		return status;
537 	}
538 
539 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
540 	return mmc_spi_response_get(host, cmd, cs_on);
541 }
542 
543 /* Build data message with up to four separate transfers.  For TX, we
544  * start by writing the data token.  And in most cases, we finish with
545  * a status transfer.
546  *
547  * We always provide TX data for data and CRC.  The MMC/SD protocol
548  * requires us to write ones; but Linux defaults to writing zeroes;
549  * so we explicitly initialize it to all ones on RX paths.
550  *
551  * We also handle DMA mapping, so the underlying SPI controller does
552  * not need to (re)do it for each message.
553  */
554 static void
555 mmc_spi_setup_data_message(
556 	struct mmc_spi_host	*host,
557 	int			multiple,
558 	enum dma_data_direction	direction)
559 {
560 	struct spi_transfer	*t;
561 	struct scratch		*scratch = host->data;
562 	dma_addr_t		dma = host->data_dma;
563 
564 	spi_message_init(&host->m);
565 	if (dma)
566 		host->m.is_dma_mapped = 1;
567 
568 	/* for reads, readblock() skips 0xff bytes before finding
569 	 * the token; for writes, this transfer issues that token.
570 	 */
571 	if (direction == DMA_TO_DEVICE) {
572 		t = &host->token;
573 		memset(t, 0, sizeof(*t));
574 		t->len = 1;
575 		if (multiple)
576 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
577 		else
578 			scratch->data_token = SPI_TOKEN_SINGLE;
579 		t->tx_buf = &scratch->data_token;
580 		if (dma)
581 			t->tx_dma = dma + offsetof(struct scratch, data_token);
582 		spi_message_add_tail(t, &host->m);
583 	}
584 
585 	/* Body of transfer is buffer, then CRC ...
586 	 * either TX-only, or RX with TX-ones.
587 	 */
588 	t = &host->t;
589 	memset(t, 0, sizeof(*t));
590 	t->tx_buf = host->ones;
591 	t->tx_dma = host->ones_dma;
592 	/* length and actual buffer info are written later */
593 	spi_message_add_tail(t, &host->m);
594 
595 	t = &host->crc;
596 	memset(t, 0, sizeof(*t));
597 	t->len = 2;
598 	if (direction == DMA_TO_DEVICE) {
599 		/* the actual CRC may get written later */
600 		t->tx_buf = &scratch->crc_val;
601 		if (dma)
602 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
603 	} else {
604 		t->tx_buf = host->ones;
605 		t->tx_dma = host->ones_dma;
606 		t->rx_buf = &scratch->crc_val;
607 		if (dma)
608 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
609 	}
610 	spi_message_add_tail(t, &host->m);
611 
612 	/*
613 	 * A single block read is followed by N(EC) [0+] all-ones bytes
614 	 * before deselect ... don't bother.
615 	 *
616 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
617 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
618 	 * collect that single byte, so readblock() doesn't need to.
619 	 *
620 	 * For a write, the one-byte data response follows immediately, then
621 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
622 	 * Then single block reads may deselect, and multiblock ones issue
623 	 * the next token (next data block, or STOP_TRAN).  We can try to
624 	 * minimize I/O ops by using a single read to collect end-of-busy.
625 	 */
626 	if (multiple || direction == DMA_TO_DEVICE) {
627 		t = &host->early_status;
628 		memset(t, 0, sizeof(*t));
629 		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
630 		t->tx_buf = host->ones;
631 		t->tx_dma = host->ones_dma;
632 		t->rx_buf = scratch->status;
633 		if (dma)
634 			t->rx_dma = dma + offsetof(struct scratch, status);
635 		t->cs_change = 1;
636 		spi_message_add_tail(t, &host->m);
637 	}
638 }
639 
640 /*
641  * Write one block:
642  *  - caller handled preceding N(WR) [1+] all-ones bytes
643  *  - data block
644  *	+ token
645  *	+ data bytes
646  *	+ crc16
647  *  - an all-ones byte ... card writes a data-response byte
648  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
649  *
650  * Return negative errno, else success.
651  */
652 static int
653 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
654 	unsigned long timeout)
655 {
656 	struct spi_device	*spi = host->spi;
657 	int			status, i;
658 	struct scratch		*scratch = host->data;
659 	u32			pattern;
660 
661 	if (host->mmc->use_spi_crc)
662 		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
663 	if (host->dma_dev)
664 		dma_sync_single_for_device(host->dma_dev,
665 				host->data_dma, sizeof(*scratch),
666 				DMA_BIDIRECTIONAL);
667 
668 	status = spi_sync_locked(spi, &host->m);
669 
670 	if (status != 0) {
671 		dev_dbg(&spi->dev, "write error (%d)\n", status);
672 		return status;
673 	}
674 
675 	if (host->dma_dev)
676 		dma_sync_single_for_cpu(host->dma_dev,
677 				host->data_dma, sizeof(*scratch),
678 				DMA_BIDIRECTIONAL);
679 
680 	/*
681 	 * Get the transmission data-response reply.  It must follow
682 	 * immediately after the data block we transferred.  This reply
683 	 * doesn't necessarily tell whether the write operation succeeded;
684 	 * it just says if the transmission was ok and whether *earlier*
685 	 * writes succeeded; see the standard.
686 	 *
687 	 * In practice, there are (even modern SDHC-)cards which are late
688 	 * in sending the response, and miss the time frame by a few bits,
689 	 * so we have to cope with this situation and check the response
690 	 * bit-by-bit. Arggh!!!
691 	 */
692 	pattern = get_unaligned_be32(scratch->status);
693 
694 	/* First 3 bit of pattern are undefined */
695 	pattern |= 0xE0000000;
696 
697 	/* left-adjust to leading 0 bit */
698 	while (pattern & 0x80000000)
699 		pattern <<= 1;
700 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
701 	pattern >>= 27;
702 
703 	switch (pattern) {
704 	case SPI_RESPONSE_ACCEPTED:
705 		status = 0;
706 		break;
707 	case SPI_RESPONSE_CRC_ERR:
708 		/* host shall then issue MMC_STOP_TRANSMISSION */
709 		status = -EILSEQ;
710 		break;
711 	case SPI_RESPONSE_WRITE_ERR:
712 		/* host shall then issue MMC_STOP_TRANSMISSION,
713 		 * and should MMC_SEND_STATUS to sort it out
714 		 */
715 		status = -EIO;
716 		break;
717 	default:
718 		status = -EPROTO;
719 		break;
720 	}
721 	if (status != 0) {
722 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
723 			scratch->status[0], status);
724 		return status;
725 	}
726 
727 	t->tx_buf += t->len;
728 	if (host->dma_dev)
729 		t->tx_dma += t->len;
730 
731 	/* Return when not busy.  If we didn't collect that status yet,
732 	 * we'll need some more I/O.
733 	 */
734 	for (i = 4; i < sizeof(scratch->status); i++) {
735 		/* card is non-busy if the most recent bit is 1 */
736 		if (scratch->status[i] & 0x01)
737 			return 0;
738 	}
739 	return mmc_spi_wait_unbusy(host, timeout);
740 }
741 
742 /*
743  * Read one block:
744  *  - skip leading all-ones bytes ... either
745  *      + N(AC) [1..f(clock,CSD)] usually, else
746  *      + N(CX) [0..8] when reading CSD or CID
747  *  - data block
748  *	+ token ... if error token, no data or crc
749  *	+ data bytes
750  *	+ crc16
751  *
752  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
753  * before dropping chipselect.
754  *
755  * For multiblock reads, caller either reads the next block or issues a
756  * STOP_TRANSMISSION command.
757  */
758 static int
759 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
760 	unsigned long timeout)
761 {
762 	struct spi_device	*spi = host->spi;
763 	int			status;
764 	struct scratch		*scratch = host->data;
765 	unsigned int 		bitshift;
766 	u8			leftover;
767 
768 	/* At least one SD card sends an all-zeroes byte when N(CX)
769 	 * applies, before the all-ones bytes ... just cope with that.
770 	 */
771 	status = mmc_spi_readbytes(host, 1);
772 	if (status < 0)
773 		return status;
774 	status = scratch->status[0];
775 	if (status == 0xff || status == 0)
776 		status = mmc_spi_readtoken(host, timeout);
777 
778 	if (status < 0) {
779 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
780 		return status;
781 	}
782 
783 	/* The token may be bit-shifted...
784 	 * the first 0-bit precedes the data stream.
785 	 */
786 	bitshift = 7;
787 	while (status & 0x80) {
788 		status <<= 1;
789 		bitshift--;
790 	}
791 	leftover = status << 1;
792 
793 	if (host->dma_dev) {
794 		dma_sync_single_for_device(host->dma_dev,
795 				host->data_dma, sizeof(*scratch),
796 				DMA_BIDIRECTIONAL);
797 		dma_sync_single_for_device(host->dma_dev,
798 				t->rx_dma, t->len,
799 				DMA_FROM_DEVICE);
800 	}
801 
802 	status = spi_sync_locked(spi, &host->m);
803 	if (status < 0) {
804 		dev_dbg(&spi->dev, "read error %d\n", status);
805 		return status;
806 	}
807 
808 	if (host->dma_dev) {
809 		dma_sync_single_for_cpu(host->dma_dev,
810 				host->data_dma, sizeof(*scratch),
811 				DMA_BIDIRECTIONAL);
812 		dma_sync_single_for_cpu(host->dma_dev,
813 				t->rx_dma, t->len,
814 				DMA_FROM_DEVICE);
815 	}
816 
817 	if (bitshift) {
818 		/* Walk through the data and the crc and do
819 		 * all the magic to get byte-aligned data.
820 		 */
821 		u8 *cp = t->rx_buf;
822 		unsigned int len;
823 		unsigned int bitright = 8 - bitshift;
824 		u8 temp;
825 		for (len = t->len; len; len--) {
826 			temp = *cp;
827 			*cp++ = leftover | (temp >> bitshift);
828 			leftover = temp << bitright;
829 		}
830 		cp = (u8 *) &scratch->crc_val;
831 		temp = *cp;
832 		*cp++ = leftover | (temp >> bitshift);
833 		leftover = temp << bitright;
834 		temp = *cp;
835 		*cp = leftover | (temp >> bitshift);
836 	}
837 
838 	if (host->mmc->use_spi_crc) {
839 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
840 
841 		be16_to_cpus(&scratch->crc_val);
842 		if (scratch->crc_val != crc) {
843 			dev_dbg(&spi->dev,
844 				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
845 				scratch->crc_val, crc, t->len);
846 			return -EILSEQ;
847 		}
848 	}
849 
850 	t->rx_buf += t->len;
851 	if (host->dma_dev)
852 		t->rx_dma += t->len;
853 
854 	return 0;
855 }
856 
857 /*
858  * An MMC/SD data stage includes one or more blocks, optional CRCs,
859  * and inline handshaking.  That handhaking makes it unlike most
860  * other SPI protocol stacks.
861  */
862 static void
863 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
864 		struct mmc_data *data, u32 blk_size)
865 {
866 	struct spi_device	*spi = host->spi;
867 	struct device		*dma_dev = host->dma_dev;
868 	struct spi_transfer	*t;
869 	enum dma_data_direction	direction;
870 	struct scatterlist	*sg;
871 	unsigned		n_sg;
872 	int			multiple = (data->blocks > 1);
873 	u32			clock_rate;
874 	unsigned long		timeout;
875 
876 	direction = mmc_get_dma_dir(data);
877 	mmc_spi_setup_data_message(host, multiple, direction);
878 	t = &host->t;
879 
880 	if (t->speed_hz)
881 		clock_rate = t->speed_hz;
882 	else
883 		clock_rate = spi->max_speed_hz;
884 
885 	timeout = data->timeout_ns +
886 		  data->timeout_clks * 1000000 / clock_rate;
887 	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
888 
889 	/* Handle scatterlist segments one at a time, with synch for
890 	 * each 512-byte block
891 	 */
892 	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
893 		int			status = 0;
894 		dma_addr_t		dma_addr = 0;
895 		void			*kmap_addr;
896 		unsigned		length = sg->length;
897 		enum dma_data_direction	dir = direction;
898 
899 		/* set up dma mapping for controller drivers that might
900 		 * use DMA ... though they may fall back to PIO
901 		 */
902 		if (dma_dev) {
903 			/* never invalidate whole *shared* pages ... */
904 			if ((sg->offset != 0 || length != PAGE_SIZE)
905 					&& dir == DMA_FROM_DEVICE)
906 				dir = DMA_BIDIRECTIONAL;
907 
908 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
909 						PAGE_SIZE, dir);
910 			if (dma_mapping_error(dma_dev, dma_addr)) {
911 				data->error = -EFAULT;
912 				break;
913 			}
914 			if (direction == DMA_TO_DEVICE)
915 				t->tx_dma = dma_addr + sg->offset;
916 			else
917 				t->rx_dma = dma_addr + sg->offset;
918 		}
919 
920 		/* allow pio too; we don't allow highmem */
921 		kmap_addr = kmap(sg_page(sg));
922 		if (direction == DMA_TO_DEVICE)
923 			t->tx_buf = kmap_addr + sg->offset;
924 		else
925 			t->rx_buf = kmap_addr + sg->offset;
926 
927 		/* transfer each block, and update request status */
928 		while (length) {
929 			t->len = min(length, blk_size);
930 
931 			dev_dbg(&host->spi->dev,
932 				"    mmc_spi: %s block, %d bytes\n",
933 				(direction == DMA_TO_DEVICE) ? "write" : "read",
934 				t->len);
935 
936 			if (direction == DMA_TO_DEVICE)
937 				status = mmc_spi_writeblock(host, t, timeout);
938 			else
939 				status = mmc_spi_readblock(host, t, timeout);
940 			if (status < 0)
941 				break;
942 
943 			data->bytes_xfered += t->len;
944 			length -= t->len;
945 
946 			if (!multiple)
947 				break;
948 		}
949 
950 		/* discard mappings */
951 		if (direction == DMA_FROM_DEVICE)
952 			flush_kernel_dcache_page(sg_page(sg));
953 		kunmap(sg_page(sg));
954 		if (dma_dev)
955 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
956 
957 		if (status < 0) {
958 			data->error = status;
959 			dev_dbg(&spi->dev, "%s status %d\n",
960 				(direction == DMA_TO_DEVICE) ? "write" : "read",
961 				status);
962 			break;
963 		}
964 	}
965 
966 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
967 	 * can be issued before multiblock writes.  Unlike its more widely
968 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
969 	 * that can affect the STOP_TRAN logic.   Complete (and current)
970 	 * MMC specs should sort that out before Linux starts using CMD23.
971 	 */
972 	if (direction == DMA_TO_DEVICE && multiple) {
973 		struct scratch	*scratch = host->data;
974 		int		tmp;
975 		const unsigned	statlen = sizeof(scratch->status);
976 
977 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
978 
979 		/* Tweak the per-block message we set up earlier by morphing
980 		 * it to hold single buffer with the token followed by some
981 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
982 		 * "not busy any longer" status, and leave chip selected.
983 		 */
984 		INIT_LIST_HEAD(&host->m.transfers);
985 		list_add(&host->early_status.transfer_list,
986 				&host->m.transfers);
987 
988 		memset(scratch->status, 0xff, statlen);
989 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
990 
991 		host->early_status.tx_buf = host->early_status.rx_buf;
992 		host->early_status.tx_dma = host->early_status.rx_dma;
993 		host->early_status.len = statlen;
994 
995 		if (host->dma_dev)
996 			dma_sync_single_for_device(host->dma_dev,
997 					host->data_dma, sizeof(*scratch),
998 					DMA_BIDIRECTIONAL);
999 
1000 		tmp = spi_sync_locked(spi, &host->m);
1001 
1002 		if (host->dma_dev)
1003 			dma_sync_single_for_cpu(host->dma_dev,
1004 					host->data_dma, sizeof(*scratch),
1005 					DMA_BIDIRECTIONAL);
1006 
1007 		if (tmp < 0) {
1008 			if (!data->error)
1009 				data->error = tmp;
1010 			return;
1011 		}
1012 
1013 		/* Ideally we collected "not busy" status with one I/O,
1014 		 * avoiding wasteful byte-at-a-time scanning... but more
1015 		 * I/O is often needed.
1016 		 */
1017 		for (tmp = 2; tmp < statlen; tmp++) {
1018 			if (scratch->status[tmp] != 0)
1019 				return;
1020 		}
1021 		tmp = mmc_spi_wait_unbusy(host, timeout);
1022 		if (tmp < 0 && !data->error)
1023 			data->error = tmp;
1024 	}
1025 }
1026 
1027 /****************************************************************************/
1028 
1029 /*
1030  * MMC driver implementation -- the interface to the MMC stack
1031  */
1032 
1033 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1034 {
1035 	struct mmc_spi_host	*host = mmc_priv(mmc);
1036 	int			status = -EINVAL;
1037 	int			crc_retry = 5;
1038 	struct mmc_command	stop;
1039 
1040 #ifdef DEBUG
1041 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1042 	{
1043 		struct mmc_command	*cmd;
1044 		int			invalid = 0;
1045 
1046 		cmd = mrq->cmd;
1047 		if (!mmc_spi_resp_type(cmd)) {
1048 			dev_dbg(&host->spi->dev, "bogus command\n");
1049 			cmd->error = -EINVAL;
1050 			invalid = 1;
1051 		}
1052 
1053 		cmd = mrq->stop;
1054 		if (cmd && !mmc_spi_resp_type(cmd)) {
1055 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1056 			cmd->error = -EINVAL;
1057 			invalid = 1;
1058 		}
1059 
1060 		if (invalid) {
1061 			dump_stack();
1062 			mmc_request_done(host->mmc, mrq);
1063 			return;
1064 		}
1065 	}
1066 #endif
1067 
1068 	/* request exclusive bus access */
1069 	spi_bus_lock(host->spi->master);
1070 
1071 crc_recover:
1072 	/* issue command; then optionally data and stop */
1073 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1074 	if (status == 0 && mrq->data) {
1075 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1076 
1077 		/*
1078 		 * The SPI bus is not always reliable for large data transfers.
1079 		 * If an occasional crc error is reported by the SD device with
1080 		 * data read/write over SPI, it may be recovered by repeating
1081 		 * the last SD command again. The retry count is set to 5 to
1082 		 * ensure the driver passes stress tests.
1083 		 */
1084 		if (mrq->data->error == -EILSEQ && crc_retry) {
1085 			stop.opcode = MMC_STOP_TRANSMISSION;
1086 			stop.arg = 0;
1087 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1088 			status = mmc_spi_command_send(host, mrq, &stop, 0);
1089 			crc_retry--;
1090 			mrq->data->error = 0;
1091 			goto crc_recover;
1092 		}
1093 
1094 		if (mrq->stop)
1095 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1096 		else
1097 			mmc_cs_off(host);
1098 	}
1099 
1100 	/* release the bus */
1101 	spi_bus_unlock(host->spi->master);
1102 
1103 	mmc_request_done(host->mmc, mrq);
1104 }
1105 
1106 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1107  *
1108  * NOTE that here we can't know that the card has just been powered up;
1109  * not all MMC/SD sockets support power switching.
1110  *
1111  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1112  * this doesn't seem to do the right thing at all...
1113  */
1114 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1115 {
1116 	/* Try to be very sure any previous command has completed;
1117 	 * wait till not-busy, skip debris from any old commands.
1118 	 */
1119 	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1120 	mmc_spi_readbytes(host, 10);
1121 
1122 	/*
1123 	 * Do a burst with chipselect active-high.  We need to do this to
1124 	 * meet the requirement of 74 clock cycles with both chipselect
1125 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1126 	 * powered up to Vdd(min), and so is ready to take commands.
1127 	 *
1128 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1129 	 * while most others don't seem to care.
1130 	 *
1131 	 * Note that this is one of the places MMC/SD plays games with the
1132 	 * SPI protocol.  Another is that when chipselect is released while
1133 	 * the card returns BUSY status, the clock must issue several cycles
1134 	 * with chipselect high before the card will stop driving its output.
1135 	 *
1136 	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1137 	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1138 	 * inverted by gpiolib, so if we want to ascertain to drive it high
1139 	 * we should toggle the default with an XOR as we do here.
1140 	 */
1141 	host->spi->mode ^= SPI_CS_HIGH;
1142 	if (spi_setup(host->spi) != 0) {
1143 		/* Just warn; most cards work without it. */
1144 		dev_warn(&host->spi->dev,
1145 				"can't change chip-select polarity\n");
1146 		host->spi->mode ^= SPI_CS_HIGH;
1147 	} else {
1148 		mmc_spi_readbytes(host, 18);
1149 
1150 		host->spi->mode ^= SPI_CS_HIGH;
1151 		if (spi_setup(host->spi) != 0) {
1152 			/* Wot, we can't get the same setup we had before? */
1153 			dev_err(&host->spi->dev,
1154 					"can't restore chip-select polarity\n");
1155 		}
1156 	}
1157 }
1158 
1159 static char *mmc_powerstring(u8 power_mode)
1160 {
1161 	switch (power_mode) {
1162 	case MMC_POWER_OFF: return "off";
1163 	case MMC_POWER_UP:  return "up";
1164 	case MMC_POWER_ON:  return "on";
1165 	}
1166 	return "?";
1167 }
1168 
1169 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1170 {
1171 	struct mmc_spi_host *host = mmc_priv(mmc);
1172 
1173 	if (host->power_mode != ios->power_mode) {
1174 		int		canpower;
1175 
1176 		canpower = host->pdata && host->pdata->setpower;
1177 
1178 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1179 				mmc_powerstring(ios->power_mode),
1180 				ios->vdd,
1181 				canpower ? ", can switch" : "");
1182 
1183 		/* switch power on/off if possible, accounting for
1184 		 * max 250msec powerup time if needed.
1185 		 */
1186 		if (canpower) {
1187 			switch (ios->power_mode) {
1188 			case MMC_POWER_OFF:
1189 			case MMC_POWER_UP:
1190 				host->pdata->setpower(&host->spi->dev,
1191 						ios->vdd);
1192 				if (ios->power_mode == MMC_POWER_UP)
1193 					msleep(host->powerup_msecs);
1194 			}
1195 		}
1196 
1197 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1198 		if (ios->power_mode == MMC_POWER_ON)
1199 			mmc_spi_initsequence(host);
1200 
1201 		/* If powering down, ground all card inputs to avoid power
1202 		 * delivery from data lines!  On a shared SPI bus, this
1203 		 * will probably be temporary; 6.4.2 of the simplified SD
1204 		 * spec says this must last at least 1msec.
1205 		 *
1206 		 *   - Clock low means CPOL 0, e.g. mode 0
1207 		 *   - MOSI low comes from writing zero
1208 		 *   - Chipselect is usually active low...
1209 		 */
1210 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1211 			int mres;
1212 			u8 nullbyte = 0;
1213 
1214 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1215 			mres = spi_setup(host->spi);
1216 			if (mres < 0)
1217 				dev_dbg(&host->spi->dev,
1218 					"switch to SPI mode 0 failed\n");
1219 
1220 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1221 				dev_dbg(&host->spi->dev,
1222 					"put spi signals to low failed\n");
1223 
1224 			/*
1225 			 * Now clock should be low due to spi mode 0;
1226 			 * MOSI should be low because of written 0x00;
1227 			 * chipselect should be low (it is active low)
1228 			 * power supply is off, so now MMC is off too!
1229 			 *
1230 			 * FIXME no, chipselect can be high since the
1231 			 * device is inactive and SPI_CS_HIGH is clear...
1232 			 */
1233 			msleep(10);
1234 			if (mres == 0) {
1235 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1236 				mres = spi_setup(host->spi);
1237 				if (mres < 0)
1238 					dev_dbg(&host->spi->dev,
1239 						"switch back to SPI mode 3 failed\n");
1240 			}
1241 		}
1242 
1243 		host->power_mode = ios->power_mode;
1244 	}
1245 
1246 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1247 		int		status;
1248 
1249 		host->spi->max_speed_hz = ios->clock;
1250 		status = spi_setup(host->spi);
1251 		dev_dbg(&host->spi->dev,
1252 			"mmc_spi:  clock to %d Hz, %d\n",
1253 			host->spi->max_speed_hz, status);
1254 	}
1255 }
1256 
1257 static const struct mmc_host_ops mmc_spi_ops = {
1258 	.request	= mmc_spi_request,
1259 	.set_ios	= mmc_spi_set_ios,
1260 	.get_ro		= mmc_gpio_get_ro,
1261 	.get_cd		= mmc_gpio_get_cd,
1262 };
1263 
1264 
1265 /****************************************************************************/
1266 
1267 /*
1268  * SPI driver implementation
1269  */
1270 
1271 static irqreturn_t
1272 mmc_spi_detect_irq(int irq, void *mmc)
1273 {
1274 	struct mmc_spi_host *host = mmc_priv(mmc);
1275 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1276 
1277 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1278 	return IRQ_HANDLED;
1279 }
1280 
1281 static int mmc_spi_probe(struct spi_device *spi)
1282 {
1283 	void			*ones;
1284 	struct mmc_host		*mmc;
1285 	struct mmc_spi_host	*host;
1286 	int			status;
1287 	bool			has_ro = false;
1288 
1289 	/* We rely on full duplex transfers, mostly to reduce
1290 	 * per-transfer overheads (by making fewer transfers).
1291 	 */
1292 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1293 		return -EINVAL;
1294 
1295 	/* MMC and SD specs only seem to care that sampling is on the
1296 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1297 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1298 	 * which is appropriate for hotplugging, unless the platform data
1299 	 * specify mode 3 (if hardware is not compatible to mode 0).
1300 	 */
1301 	if (spi->mode != SPI_MODE_3)
1302 		spi->mode = SPI_MODE_0;
1303 	spi->bits_per_word = 8;
1304 
1305 	status = spi_setup(spi);
1306 	if (status < 0) {
1307 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1308 				spi->mode, spi->max_speed_hz / 1000,
1309 				status);
1310 		return status;
1311 	}
1312 
1313 	/* We need a supply of ones to transmit.  This is the only time
1314 	 * the CPU touches these, so cache coherency isn't a concern.
1315 	 *
1316 	 * NOTE if many systems use more than one MMC-over-SPI connector
1317 	 * it'd save some memory to share this.  That's evidently rare.
1318 	 */
1319 	status = -ENOMEM;
1320 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1321 	if (!ones)
1322 		goto nomem;
1323 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1324 
1325 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1326 	if (!mmc)
1327 		goto nomem;
1328 
1329 	mmc->ops = &mmc_spi_ops;
1330 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1331 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1332 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1333 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1334 
1335 	mmc->caps = MMC_CAP_SPI;
1336 
1337 	/* SPI doesn't need the lowspeed device identification thing for
1338 	 * MMC or SD cards, since it never comes up in open drain mode.
1339 	 * That's good; some SPI masters can't handle very low speeds!
1340 	 *
1341 	 * However, low speed SDIO cards need not handle over 400 KHz;
1342 	 * that's the only reason not to use a few MHz for f_min (until
1343 	 * the upper layer reads the target frequency from the CSD).
1344 	 */
1345 	mmc->f_min = 400000;
1346 	mmc->f_max = spi->max_speed_hz;
1347 
1348 	host = mmc_priv(mmc);
1349 	host->mmc = mmc;
1350 	host->spi = spi;
1351 
1352 	host->ones = ones;
1353 
1354 	/* Platform data is used to hook up things like card sensing
1355 	 * and power switching gpios.
1356 	 */
1357 	host->pdata = mmc_spi_get_pdata(spi);
1358 	if (host->pdata)
1359 		mmc->ocr_avail = host->pdata->ocr_mask;
1360 	if (!mmc->ocr_avail) {
1361 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1362 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1363 	}
1364 	if (host->pdata && host->pdata->setpower) {
1365 		host->powerup_msecs = host->pdata->powerup_msecs;
1366 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1367 			host->powerup_msecs = 250;
1368 	}
1369 
1370 	dev_set_drvdata(&spi->dev, mmc);
1371 
1372 	/* preallocate dma buffers */
1373 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1374 	if (!host->data)
1375 		goto fail_nobuf1;
1376 
1377 	if (spi->master->dev.parent->dma_mask) {
1378 		struct device	*dev = spi->master->dev.parent;
1379 
1380 		host->dma_dev = dev;
1381 		host->ones_dma = dma_map_single(dev, ones,
1382 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1383 		if (dma_mapping_error(dev, host->ones_dma))
1384 			goto fail_ones_dma;
1385 		host->data_dma = dma_map_single(dev, host->data,
1386 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1387 		if (dma_mapping_error(dev, host->data_dma))
1388 			goto fail_data_dma;
1389 
1390 		dma_sync_single_for_cpu(host->dma_dev,
1391 				host->data_dma, sizeof(*host->data),
1392 				DMA_BIDIRECTIONAL);
1393 	}
1394 
1395 	/* setup message for status/busy readback */
1396 	spi_message_init(&host->readback);
1397 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1398 
1399 	spi_message_add_tail(&host->status, &host->readback);
1400 	host->status.tx_buf = host->ones;
1401 	host->status.tx_dma = host->ones_dma;
1402 	host->status.rx_buf = &host->data->status;
1403 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1404 	host->status.cs_change = 1;
1405 
1406 	/* register card detect irq */
1407 	if (host->pdata && host->pdata->init) {
1408 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1409 		if (status != 0)
1410 			goto fail_glue_init;
1411 	}
1412 
1413 	/* pass platform capabilities, if any */
1414 	if (host->pdata) {
1415 		mmc->caps |= host->pdata->caps;
1416 		mmc->caps2 |= host->pdata->caps2;
1417 	}
1418 
1419 	status = mmc_add_host(mmc);
1420 	if (status != 0)
1421 		goto fail_add_host;
1422 
1423 	/*
1424 	 * Index 0 is card detect
1425 	 * Old boardfiles were specifying 1 ms as debounce
1426 	 */
1427 	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1428 	if (status == -EPROBE_DEFER)
1429 		goto fail_add_host;
1430 	if (!status) {
1431 		/*
1432 		 * The platform has a CD GPIO signal that may support
1433 		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1434 		 * if polling is needed or not.
1435 		 */
1436 		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1437 		mmc_gpiod_request_cd_irq(mmc);
1438 	}
1439 	mmc_detect_change(mmc, 0);
1440 
1441 	/* Index 1 is write protect/read only */
1442 	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1443 	if (status == -EPROBE_DEFER)
1444 		goto fail_add_host;
1445 	if (!status)
1446 		has_ro = true;
1447 
1448 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1449 			dev_name(&mmc->class_dev),
1450 			host->dma_dev ? "" : ", no DMA",
1451 			has_ro ? "" : ", no WP",
1452 			(host->pdata && host->pdata->setpower)
1453 				? "" : ", no poweroff",
1454 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1455 				? ", cd polling" : "");
1456 	return 0;
1457 
1458 fail_add_host:
1459 	mmc_remove_host(mmc);
1460 fail_glue_init:
1461 	if (host->dma_dev)
1462 		dma_unmap_single(host->dma_dev, host->data_dma,
1463 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1464 fail_data_dma:
1465 	if (host->dma_dev)
1466 		dma_unmap_single(host->dma_dev, host->ones_dma,
1467 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1468 fail_ones_dma:
1469 	kfree(host->data);
1470 
1471 fail_nobuf1:
1472 	mmc_free_host(mmc);
1473 	mmc_spi_put_pdata(spi);
1474 
1475 nomem:
1476 	kfree(ones);
1477 	return status;
1478 }
1479 
1480 
1481 static int mmc_spi_remove(struct spi_device *spi)
1482 {
1483 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1484 	struct mmc_spi_host	*host = mmc_priv(mmc);
1485 
1486 	/* prevent new mmc_detect_change() calls */
1487 	if (host->pdata && host->pdata->exit)
1488 		host->pdata->exit(&spi->dev, mmc);
1489 
1490 	mmc_remove_host(mmc);
1491 
1492 	if (host->dma_dev) {
1493 		dma_unmap_single(host->dma_dev, host->ones_dma,
1494 			MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1495 		dma_unmap_single(host->dma_dev, host->data_dma,
1496 			sizeof(*host->data), DMA_BIDIRECTIONAL);
1497 	}
1498 
1499 	kfree(host->data);
1500 	kfree(host->ones);
1501 
1502 	spi->max_speed_hz = mmc->f_max;
1503 	mmc_free_host(mmc);
1504 	mmc_spi_put_pdata(spi);
1505 	return 0;
1506 }
1507 
1508 static const struct of_device_id mmc_spi_of_match_table[] = {
1509 	{ .compatible = "mmc-spi-slot", },
1510 	{},
1511 };
1512 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1513 
1514 static struct spi_driver mmc_spi_driver = {
1515 	.driver = {
1516 		.name =		"mmc_spi",
1517 		.of_match_table = mmc_spi_of_match_table,
1518 	},
1519 	.probe =	mmc_spi_probe,
1520 	.remove =	mmc_spi_remove,
1521 };
1522 
1523 module_spi_driver(mmc_spi_driver);
1524 
1525 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1526 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1527 MODULE_LICENSE("GPL");
1528 MODULE_ALIAS("spi:mmc_spi");
1529