1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Access SD/MMC cards through SPI master controllers 4 * 5 * (C) Copyright 2005, Intec Automation, 6 * Mike Lavender (mike@steroidmicros) 7 * (C) Copyright 2006-2007, David Brownell 8 * (C) Copyright 2007, Axis Communications, 9 * Hans-Peter Nilsson (hp@axis.com) 10 * (C) Copyright 2007, ATRON electronic GmbH, 11 * Jan Nikitenko <jan.nikitenko@gmail.com> 12 */ 13 #include <linux/sched.h> 14 #include <linux/delay.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/crc7.h> 20 #include <linux/crc-itu-t.h> 21 #include <linux/scatterlist.h> 22 23 #include <linux/mmc/host.h> 24 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 25 #include <linux/mmc/slot-gpio.h> 26 27 #include <linux/spi/spi.h> 28 #include <linux/spi/mmc_spi.h> 29 30 #include <asm/unaligned.h> 31 32 33 /* NOTES: 34 * 35 * - For now, we won't try to interoperate with a real mmc/sd/sdio 36 * controller, although some of them do have hardware support for 37 * SPI protocol. The main reason for such configs would be mmc-ish 38 * cards like DataFlash, which don't support that "native" protocol. 39 * 40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 41 * switch between driver stacks, and in any case if "native" mode 42 * is available, it will be faster and hence preferable. 43 * 44 * - MMC depends on a different chipselect management policy than the 45 * SPI interface currently supports for shared bus segments: it needs 46 * to issue multiple spi_message requests with the chipselect active, 47 * using the results of one message to decide the next one to issue. 48 * 49 * Pending updates to the programming interface, this driver expects 50 * that it not share the bus with other drivers (precluding conflicts). 51 * 52 * - We tell the controller to keep the chipselect active from the 53 * beginning of an mmc_host_ops.request until the end. So beware 54 * of SPI controller drivers that mis-handle the cs_change flag! 55 * 56 * However, many cards seem OK with chipselect flapping up/down 57 * during that time ... at least on unshared bus segments. 58 */ 59 60 61 /* 62 * Local protocol constants, internal to data block protocols. 63 */ 64 65 /* Response tokens used to ack each block written: */ 66 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 67 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 68 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 69 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 70 71 /* Read and write blocks start with these tokens and end with crc; 72 * on error, read tokens act like a subset of R2_SPI_* values. 73 */ 74 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 75 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 76 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 77 78 #define MMC_SPI_BLOCKSIZE 512 79 80 #define MMC_SPI_R1B_TIMEOUT_MS 3000 81 #define MMC_SPI_INIT_TIMEOUT_MS 3000 82 83 /* One of the critical speed parameters is the amount of data which may 84 * be transferred in one command. If this value is too low, the SD card 85 * controller has to do multiple partial block writes (argggh!). With 86 * today (2008) SD cards there is little speed gain if we transfer more 87 * than 64 KBytes at a time. So use this value until there is any indication 88 * that we should do more here. 89 */ 90 #define MMC_SPI_BLOCKSATONCE 128 91 92 /****************************************************************************/ 93 94 /* 95 * Local Data Structures 96 */ 97 98 /* "scratch" is per-{command,block} data exchanged with the card */ 99 struct scratch { 100 u8 status[29]; 101 u8 data_token; 102 __be16 crc_val; 103 }; 104 105 struct mmc_spi_host { 106 struct mmc_host *mmc; 107 struct spi_device *spi; 108 109 unsigned char power_mode; 110 u16 powerup_msecs; 111 112 struct mmc_spi_platform_data *pdata; 113 114 /* for bulk data transfers */ 115 struct spi_transfer token, t, crc, early_status; 116 struct spi_message m; 117 118 /* for status readback */ 119 struct spi_transfer status; 120 struct spi_message readback; 121 122 /* underlying DMA-aware controller, or null */ 123 struct device *dma_dev; 124 125 /* buffer used for commands and for message "overhead" */ 126 struct scratch *data; 127 dma_addr_t data_dma; 128 129 /* Specs say to write ones most of the time, even when the card 130 * has no need to read its input data; and many cards won't care. 131 * This is our source of those ones. 132 */ 133 void *ones; 134 dma_addr_t ones_dma; 135 }; 136 137 138 /****************************************************************************/ 139 140 /* 141 * MMC-over-SPI protocol glue, used by the MMC stack interface 142 */ 143 144 static inline int mmc_cs_off(struct mmc_spi_host *host) 145 { 146 /* chipselect will always be inactive after setup() */ 147 return spi_setup(host->spi); 148 } 149 150 static int 151 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 152 { 153 int status; 154 155 if (len > sizeof(*host->data)) { 156 WARN_ON(1); 157 return -EIO; 158 } 159 160 host->status.len = len; 161 162 if (host->dma_dev) 163 dma_sync_single_for_device(host->dma_dev, 164 host->data_dma, sizeof(*host->data), 165 DMA_FROM_DEVICE); 166 167 status = spi_sync_locked(host->spi, &host->readback); 168 169 if (host->dma_dev) 170 dma_sync_single_for_cpu(host->dma_dev, 171 host->data_dma, sizeof(*host->data), 172 DMA_FROM_DEVICE); 173 174 return status; 175 } 176 177 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 178 unsigned n, u8 byte) 179 { 180 u8 *cp = host->data->status; 181 unsigned long start = jiffies; 182 183 do { 184 int status; 185 unsigned i; 186 187 status = mmc_spi_readbytes(host, n); 188 if (status < 0) 189 return status; 190 191 for (i = 0; i < n; i++) { 192 if (cp[i] != byte) 193 return cp[i]; 194 } 195 196 /* If we need long timeouts, we may release the CPU */ 197 cond_resched(); 198 } while (time_is_after_jiffies(start + timeout)); 199 return -ETIMEDOUT; 200 } 201 202 static inline int 203 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 204 { 205 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 206 } 207 208 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 209 { 210 return mmc_spi_skip(host, timeout, 1, 0xff); 211 } 212 213 214 /* 215 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 216 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 217 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 218 * 219 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 220 * newer cards R7 (IF_COND). 221 */ 222 223 static char *maptype(struct mmc_command *cmd) 224 { 225 switch (mmc_spi_resp_type(cmd)) { 226 case MMC_RSP_SPI_R1: return "R1"; 227 case MMC_RSP_SPI_R1B: return "R1B"; 228 case MMC_RSP_SPI_R2: return "R2/R5"; 229 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 230 default: return "?"; 231 } 232 } 233 234 /* return zero, else negative errno after setting cmd->error */ 235 static int mmc_spi_response_get(struct mmc_spi_host *host, 236 struct mmc_command *cmd, int cs_on) 237 { 238 unsigned long timeout_ms; 239 u8 *cp = host->data->status; 240 u8 *end = cp + host->t.len; 241 int value = 0; 242 int bitshift; 243 u8 leftover = 0; 244 unsigned short rotator; 245 int i; 246 char tag[32]; 247 248 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 249 cmd->opcode, maptype(cmd)); 250 251 /* Except for data block reads, the whole response will already 252 * be stored in the scratch buffer. It's somewhere after the 253 * command and the first byte we read after it. We ignore that 254 * first byte. After STOP_TRANSMISSION command it may include 255 * two data bits, but otherwise it's all ones. 256 */ 257 cp += 8; 258 while (cp < end && *cp == 0xff) 259 cp++; 260 261 /* Data block reads (R1 response types) may need more data... */ 262 if (cp == end) { 263 cp = host->data->status; 264 end = cp+1; 265 266 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 267 * status byte ... and we already scanned 2 bytes. 268 * 269 * REVISIT block read paths use nasty byte-at-a-time I/O 270 * so it can always DMA directly into the target buffer. 271 * It'd probably be better to memcpy() the first chunk and 272 * avoid extra i/o calls... 273 * 274 * Note we check for more than 8 bytes, because in practice, 275 * some SD cards are slow... 276 */ 277 for (i = 2; i < 16; i++) { 278 value = mmc_spi_readbytes(host, 1); 279 if (value < 0) 280 goto done; 281 if (*cp != 0xff) 282 goto checkstatus; 283 } 284 value = -ETIMEDOUT; 285 goto done; 286 } 287 288 checkstatus: 289 bitshift = 0; 290 if (*cp & 0x80) { 291 /* Houston, we have an ugly card with a bit-shifted response */ 292 rotator = *cp++ << 8; 293 /* read the next byte */ 294 if (cp == end) { 295 value = mmc_spi_readbytes(host, 1); 296 if (value < 0) 297 goto done; 298 cp = host->data->status; 299 end = cp+1; 300 } 301 rotator |= *cp++; 302 while (rotator & 0x8000) { 303 bitshift++; 304 rotator <<= 1; 305 } 306 cmd->resp[0] = rotator >> 8; 307 leftover = rotator; 308 } else { 309 cmd->resp[0] = *cp++; 310 } 311 cmd->error = 0; 312 313 /* Status byte: the entire seven-bit R1 response. */ 314 if (cmd->resp[0] != 0) { 315 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 316 & cmd->resp[0]) 317 value = -EFAULT; /* Bad address */ 318 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 319 value = -ENOSYS; /* Function not implemented */ 320 else if (R1_SPI_COM_CRC & cmd->resp[0]) 321 value = -EILSEQ; /* Illegal byte sequence */ 322 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 323 & cmd->resp[0]) 324 value = -EIO; /* I/O error */ 325 /* else R1_SPI_IDLE, "it's resetting" */ 326 } 327 328 switch (mmc_spi_resp_type(cmd)) { 329 330 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 331 * and less-common stuff like various erase operations. 332 */ 333 case MMC_RSP_SPI_R1B: 334 /* maybe we read all the busy tokens already */ 335 while (cp < end && *cp == 0) 336 cp++; 337 if (cp == end) { 338 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout : 339 MMC_SPI_R1B_TIMEOUT_MS; 340 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms)); 341 } 342 break; 343 344 /* SPI R2 == R1 + second status byte; SEND_STATUS 345 * SPI R5 == R1 + data byte; IO_RW_DIRECT 346 */ 347 case MMC_RSP_SPI_R2: 348 /* read the next byte */ 349 if (cp == end) { 350 value = mmc_spi_readbytes(host, 1); 351 if (value < 0) 352 goto done; 353 cp = host->data->status; 354 end = cp+1; 355 } 356 if (bitshift) { 357 rotator = leftover << 8; 358 rotator |= *cp << bitshift; 359 cmd->resp[0] |= (rotator & 0xFF00); 360 } else { 361 cmd->resp[0] |= *cp << 8; 362 } 363 break; 364 365 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 366 case MMC_RSP_SPI_R3: 367 rotator = leftover << 8; 368 cmd->resp[1] = 0; 369 for (i = 0; i < 4; i++) { 370 cmd->resp[1] <<= 8; 371 /* read the next byte */ 372 if (cp == end) { 373 value = mmc_spi_readbytes(host, 1); 374 if (value < 0) 375 goto done; 376 cp = host->data->status; 377 end = cp+1; 378 } 379 if (bitshift) { 380 rotator |= *cp++ << bitshift; 381 cmd->resp[1] |= (rotator >> 8); 382 rotator <<= 8; 383 } else { 384 cmd->resp[1] |= *cp++; 385 } 386 } 387 break; 388 389 /* SPI R1 == just one status byte */ 390 case MMC_RSP_SPI_R1: 391 break; 392 393 default: 394 dev_dbg(&host->spi->dev, "bad response type %04x\n", 395 mmc_spi_resp_type(cmd)); 396 if (value >= 0) 397 value = -EINVAL; 398 goto done; 399 } 400 401 if (value < 0) 402 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 403 tag, cmd->resp[0], cmd->resp[1]); 404 405 /* disable chipselect on errors and some success cases */ 406 if (value >= 0 && cs_on) 407 return value; 408 done: 409 if (value < 0) 410 cmd->error = value; 411 mmc_cs_off(host); 412 return value; 413 } 414 415 /* Issue command and read its response. 416 * Returns zero on success, negative for error. 417 * 418 * On error, caller must cope with mmc core retry mechanism. That 419 * means immediate low-level resubmit, which affects the bus lock... 420 */ 421 static int 422 mmc_spi_command_send(struct mmc_spi_host *host, 423 struct mmc_request *mrq, 424 struct mmc_command *cmd, int cs_on) 425 { 426 struct scratch *data = host->data; 427 u8 *cp = data->status; 428 int status; 429 struct spi_transfer *t; 430 431 /* We can handle most commands (except block reads) in one full 432 * duplex I/O operation before either starting the next transfer 433 * (data block or command) or else deselecting the card. 434 * 435 * First, write 7 bytes: 436 * - an all-ones byte to ensure the card is ready 437 * - opcode byte (plus start and transmission bits) 438 * - four bytes of big-endian argument 439 * - crc7 (plus end bit) ... always computed, it's cheap 440 * 441 * We init the whole buffer to all-ones, which is what we need 442 * to write while we're reading (later) response data. 443 */ 444 memset(cp, 0xff, sizeof(data->status)); 445 446 cp[1] = 0x40 | cmd->opcode; 447 put_unaligned_be32(cmd->arg, cp + 2); 448 cp[6] = crc7_be(0, cp + 1, 5) | 0x01; 449 cp += 7; 450 451 /* Then, read up to 13 bytes (while writing all-ones): 452 * - N(CR) (== 1..8) bytes of all-ones 453 * - status byte (for all response types) 454 * - the rest of the response, either: 455 * + nothing, for R1 or R1B responses 456 * + second status byte, for R2 responses 457 * + four data bytes, for R3 and R7 responses 458 * 459 * Finally, read some more bytes ... in the nice cases we know in 460 * advance how many, and reading 1 more is always OK: 461 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 462 * - N(RC) (== 1..N) bytes of all-ones, before next command 463 * - N(WR) (== 1..N) bytes of all-ones, before data write 464 * 465 * So in those cases one full duplex I/O of at most 21 bytes will 466 * handle the whole command, leaving the card ready to receive a 467 * data block or new command. We do that whenever we can, shaving 468 * CPU and IRQ costs (especially when using DMA or FIFOs). 469 * 470 * There are two other cases, where it's not generally practical 471 * to rely on a single I/O: 472 * 473 * - R1B responses need at least N(EC) bytes of all-zeroes. 474 * 475 * In this case we can *try* to fit it into one I/O, then 476 * maybe read more data later. 477 * 478 * - Data block reads are more troublesome, since a variable 479 * number of padding bytes precede the token and data. 480 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 481 * + N(AC) (== 1..many) bytes of all-ones 482 * 483 * In this case we currently only have minimal speedups here: 484 * when N(CR) == 1 we can avoid I/O in response_get(). 485 */ 486 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 487 cp += 2; /* min(N(CR)) + status */ 488 /* R1 */ 489 } else { 490 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 491 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 492 cp++; 493 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 494 cp += 4; 495 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 496 cp = data->status + sizeof(data->status); 497 /* else: R1 (most commands) */ 498 } 499 500 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n", 501 cmd->opcode, maptype(cmd)); 502 503 /* send command, leaving chipselect active */ 504 spi_message_init(&host->m); 505 506 t = &host->t; 507 memset(t, 0, sizeof(*t)); 508 t->tx_buf = t->rx_buf = data->status; 509 t->tx_dma = t->rx_dma = host->data_dma; 510 t->len = cp - data->status; 511 t->cs_change = 1; 512 spi_message_add_tail(t, &host->m); 513 514 if (host->dma_dev) { 515 host->m.is_dma_mapped = 1; 516 dma_sync_single_for_device(host->dma_dev, 517 host->data_dma, sizeof(*host->data), 518 DMA_BIDIRECTIONAL); 519 } 520 status = spi_sync_locked(host->spi, &host->m); 521 522 if (host->dma_dev) 523 dma_sync_single_for_cpu(host->dma_dev, 524 host->data_dma, sizeof(*host->data), 525 DMA_BIDIRECTIONAL); 526 if (status < 0) { 527 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 528 cmd->error = status; 529 return status; 530 } 531 532 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 533 return mmc_spi_response_get(host, cmd, cs_on); 534 } 535 536 /* Build data message with up to four separate transfers. For TX, we 537 * start by writing the data token. And in most cases, we finish with 538 * a status transfer. 539 * 540 * We always provide TX data for data and CRC. The MMC/SD protocol 541 * requires us to write ones; but Linux defaults to writing zeroes; 542 * so we explicitly initialize it to all ones on RX paths. 543 * 544 * We also handle DMA mapping, so the underlying SPI controller does 545 * not need to (re)do it for each message. 546 */ 547 static void 548 mmc_spi_setup_data_message( 549 struct mmc_spi_host *host, 550 bool multiple, 551 enum dma_data_direction direction) 552 { 553 struct spi_transfer *t; 554 struct scratch *scratch = host->data; 555 dma_addr_t dma = host->data_dma; 556 557 spi_message_init(&host->m); 558 if (dma) 559 host->m.is_dma_mapped = 1; 560 561 /* for reads, readblock() skips 0xff bytes before finding 562 * the token; for writes, this transfer issues that token. 563 */ 564 if (direction == DMA_TO_DEVICE) { 565 t = &host->token; 566 memset(t, 0, sizeof(*t)); 567 t->len = 1; 568 if (multiple) 569 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 570 else 571 scratch->data_token = SPI_TOKEN_SINGLE; 572 t->tx_buf = &scratch->data_token; 573 if (dma) 574 t->tx_dma = dma + offsetof(struct scratch, data_token); 575 spi_message_add_tail(t, &host->m); 576 } 577 578 /* Body of transfer is buffer, then CRC ... 579 * either TX-only, or RX with TX-ones. 580 */ 581 t = &host->t; 582 memset(t, 0, sizeof(*t)); 583 t->tx_buf = host->ones; 584 t->tx_dma = host->ones_dma; 585 /* length and actual buffer info are written later */ 586 spi_message_add_tail(t, &host->m); 587 588 t = &host->crc; 589 memset(t, 0, sizeof(*t)); 590 t->len = 2; 591 if (direction == DMA_TO_DEVICE) { 592 /* the actual CRC may get written later */ 593 t->tx_buf = &scratch->crc_val; 594 if (dma) 595 t->tx_dma = dma + offsetof(struct scratch, crc_val); 596 } else { 597 t->tx_buf = host->ones; 598 t->tx_dma = host->ones_dma; 599 t->rx_buf = &scratch->crc_val; 600 if (dma) 601 t->rx_dma = dma + offsetof(struct scratch, crc_val); 602 } 603 spi_message_add_tail(t, &host->m); 604 605 /* 606 * A single block read is followed by N(EC) [0+] all-ones bytes 607 * before deselect ... don't bother. 608 * 609 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 610 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 611 * collect that single byte, so readblock() doesn't need to. 612 * 613 * For a write, the one-byte data response follows immediately, then 614 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 615 * Then single block reads may deselect, and multiblock ones issue 616 * the next token (next data block, or STOP_TRAN). We can try to 617 * minimize I/O ops by using a single read to collect end-of-busy. 618 */ 619 if (multiple || direction == DMA_TO_DEVICE) { 620 t = &host->early_status; 621 memset(t, 0, sizeof(*t)); 622 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1; 623 t->tx_buf = host->ones; 624 t->tx_dma = host->ones_dma; 625 t->rx_buf = scratch->status; 626 if (dma) 627 t->rx_dma = dma + offsetof(struct scratch, status); 628 t->cs_change = 1; 629 spi_message_add_tail(t, &host->m); 630 } 631 } 632 633 /* 634 * Write one block: 635 * - caller handled preceding N(WR) [1+] all-ones bytes 636 * - data block 637 * + token 638 * + data bytes 639 * + crc16 640 * - an all-ones byte ... card writes a data-response byte 641 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 642 * 643 * Return negative errno, else success. 644 */ 645 static int 646 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 647 unsigned long timeout) 648 { 649 struct spi_device *spi = host->spi; 650 int status, i; 651 struct scratch *scratch = host->data; 652 u32 pattern; 653 654 if (host->mmc->use_spi_crc) 655 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len)); 656 if (host->dma_dev) 657 dma_sync_single_for_device(host->dma_dev, 658 host->data_dma, sizeof(*scratch), 659 DMA_BIDIRECTIONAL); 660 661 status = spi_sync_locked(spi, &host->m); 662 663 if (status != 0) { 664 dev_dbg(&spi->dev, "write error (%d)\n", status); 665 return status; 666 } 667 668 if (host->dma_dev) 669 dma_sync_single_for_cpu(host->dma_dev, 670 host->data_dma, sizeof(*scratch), 671 DMA_BIDIRECTIONAL); 672 673 /* 674 * Get the transmission data-response reply. It must follow 675 * immediately after the data block we transferred. This reply 676 * doesn't necessarily tell whether the write operation succeeded; 677 * it just says if the transmission was ok and whether *earlier* 678 * writes succeeded; see the standard. 679 * 680 * In practice, there are (even modern SDHC-)cards which are late 681 * in sending the response, and miss the time frame by a few bits, 682 * so we have to cope with this situation and check the response 683 * bit-by-bit. Arggh!!! 684 */ 685 pattern = get_unaligned_be32(scratch->status); 686 687 /* First 3 bit of pattern are undefined */ 688 pattern |= 0xE0000000; 689 690 /* left-adjust to leading 0 bit */ 691 while (pattern & 0x80000000) 692 pattern <<= 1; 693 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 694 pattern >>= 27; 695 696 switch (pattern) { 697 case SPI_RESPONSE_ACCEPTED: 698 status = 0; 699 break; 700 case SPI_RESPONSE_CRC_ERR: 701 /* host shall then issue MMC_STOP_TRANSMISSION */ 702 status = -EILSEQ; 703 break; 704 case SPI_RESPONSE_WRITE_ERR: 705 /* host shall then issue MMC_STOP_TRANSMISSION, 706 * and should MMC_SEND_STATUS to sort it out 707 */ 708 status = -EIO; 709 break; 710 default: 711 status = -EPROTO; 712 break; 713 } 714 if (status != 0) { 715 dev_dbg(&spi->dev, "write error %02x (%d)\n", 716 scratch->status[0], status); 717 return status; 718 } 719 720 t->tx_buf += t->len; 721 if (host->dma_dev) 722 t->tx_dma += t->len; 723 724 /* Return when not busy. If we didn't collect that status yet, 725 * we'll need some more I/O. 726 */ 727 for (i = 4; i < sizeof(scratch->status); i++) { 728 /* card is non-busy if the most recent bit is 1 */ 729 if (scratch->status[i] & 0x01) 730 return 0; 731 } 732 return mmc_spi_wait_unbusy(host, timeout); 733 } 734 735 /* 736 * Read one block: 737 * - skip leading all-ones bytes ... either 738 * + N(AC) [1..f(clock,CSD)] usually, else 739 * + N(CX) [0..8] when reading CSD or CID 740 * - data block 741 * + token ... if error token, no data or crc 742 * + data bytes 743 * + crc16 744 * 745 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 746 * before dropping chipselect. 747 * 748 * For multiblock reads, caller either reads the next block or issues a 749 * STOP_TRANSMISSION command. 750 */ 751 static int 752 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 753 unsigned long timeout) 754 { 755 struct spi_device *spi = host->spi; 756 int status; 757 struct scratch *scratch = host->data; 758 unsigned int bitshift; 759 u8 leftover; 760 761 /* At least one SD card sends an all-zeroes byte when N(CX) 762 * applies, before the all-ones bytes ... just cope with that. 763 */ 764 status = mmc_spi_readbytes(host, 1); 765 if (status < 0) 766 return status; 767 status = scratch->status[0]; 768 if (status == 0xff || status == 0) 769 status = mmc_spi_readtoken(host, timeout); 770 771 if (status < 0) { 772 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 773 return status; 774 } 775 776 /* The token may be bit-shifted... 777 * the first 0-bit precedes the data stream. 778 */ 779 bitshift = 7; 780 while (status & 0x80) { 781 status <<= 1; 782 bitshift--; 783 } 784 leftover = status << 1; 785 786 if (host->dma_dev) { 787 dma_sync_single_for_device(host->dma_dev, 788 host->data_dma, sizeof(*scratch), 789 DMA_BIDIRECTIONAL); 790 dma_sync_single_for_device(host->dma_dev, 791 t->rx_dma, t->len, 792 DMA_FROM_DEVICE); 793 } 794 795 status = spi_sync_locked(spi, &host->m); 796 if (status < 0) { 797 dev_dbg(&spi->dev, "read error %d\n", status); 798 return status; 799 } 800 801 if (host->dma_dev) { 802 dma_sync_single_for_cpu(host->dma_dev, 803 host->data_dma, sizeof(*scratch), 804 DMA_BIDIRECTIONAL); 805 dma_sync_single_for_cpu(host->dma_dev, 806 t->rx_dma, t->len, 807 DMA_FROM_DEVICE); 808 } 809 810 if (bitshift) { 811 /* Walk through the data and the crc and do 812 * all the magic to get byte-aligned data. 813 */ 814 u8 *cp = t->rx_buf; 815 unsigned int len; 816 unsigned int bitright = 8 - bitshift; 817 u8 temp; 818 for (len = t->len; len; len--) { 819 temp = *cp; 820 *cp++ = leftover | (temp >> bitshift); 821 leftover = temp << bitright; 822 } 823 cp = (u8 *) &scratch->crc_val; 824 temp = *cp; 825 *cp++ = leftover | (temp >> bitshift); 826 leftover = temp << bitright; 827 temp = *cp; 828 *cp = leftover | (temp >> bitshift); 829 } 830 831 if (host->mmc->use_spi_crc) { 832 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 833 834 be16_to_cpus(&scratch->crc_val); 835 if (scratch->crc_val != crc) { 836 dev_dbg(&spi->dev, 837 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n", 838 scratch->crc_val, crc, t->len); 839 return -EILSEQ; 840 } 841 } 842 843 t->rx_buf += t->len; 844 if (host->dma_dev) 845 t->rx_dma += t->len; 846 847 return 0; 848 } 849 850 /* 851 * An MMC/SD data stage includes one or more blocks, optional CRCs, 852 * and inline handshaking. That handhaking makes it unlike most 853 * other SPI protocol stacks. 854 */ 855 static void 856 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 857 struct mmc_data *data, u32 blk_size) 858 { 859 struct spi_device *spi = host->spi; 860 struct device *dma_dev = host->dma_dev; 861 struct spi_transfer *t; 862 enum dma_data_direction direction = mmc_get_dma_dir(data); 863 struct scatterlist *sg; 864 unsigned n_sg; 865 bool multiple = (data->blocks > 1); 866 const char *write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read"; 867 u32 clock_rate; 868 unsigned long timeout; 869 870 mmc_spi_setup_data_message(host, multiple, direction); 871 t = &host->t; 872 873 if (t->speed_hz) 874 clock_rate = t->speed_hz; 875 else 876 clock_rate = spi->max_speed_hz; 877 878 timeout = data->timeout_ns / 1000 + 879 data->timeout_clks * 1000000 / clock_rate; 880 timeout = usecs_to_jiffies((unsigned int)timeout) + 1; 881 882 /* Handle scatterlist segments one at a time, with synch for 883 * each 512-byte block 884 */ 885 for_each_sg(data->sg, sg, data->sg_len, n_sg) { 886 int status = 0; 887 dma_addr_t dma_addr = 0; 888 void *kmap_addr; 889 unsigned length = sg->length; 890 enum dma_data_direction dir = direction; 891 892 /* set up dma mapping for controller drivers that might 893 * use DMA ... though they may fall back to PIO 894 */ 895 if (dma_dev) { 896 /* never invalidate whole *shared* pages ... */ 897 if ((sg->offset != 0 || length != PAGE_SIZE) 898 && dir == DMA_FROM_DEVICE) 899 dir = DMA_BIDIRECTIONAL; 900 901 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 902 PAGE_SIZE, dir); 903 if (dma_mapping_error(dma_dev, dma_addr)) { 904 data->error = -EFAULT; 905 break; 906 } 907 if (direction == DMA_TO_DEVICE) 908 t->tx_dma = dma_addr + sg->offset; 909 else 910 t->rx_dma = dma_addr + sg->offset; 911 } 912 913 /* allow pio too; we don't allow highmem */ 914 kmap_addr = kmap(sg_page(sg)); 915 if (direction == DMA_TO_DEVICE) 916 t->tx_buf = kmap_addr + sg->offset; 917 else 918 t->rx_buf = kmap_addr + sg->offset; 919 920 /* transfer each block, and update request status */ 921 while (length) { 922 t->len = min(length, blk_size); 923 924 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len); 925 926 if (direction == DMA_TO_DEVICE) 927 status = mmc_spi_writeblock(host, t, timeout); 928 else 929 status = mmc_spi_readblock(host, t, timeout); 930 if (status < 0) 931 break; 932 933 data->bytes_xfered += t->len; 934 length -= t->len; 935 936 if (!multiple) 937 break; 938 } 939 940 /* discard mappings */ 941 if (direction == DMA_FROM_DEVICE) 942 flush_dcache_page(sg_page(sg)); 943 kunmap(sg_page(sg)); 944 if (dma_dev) 945 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 946 947 if (status < 0) { 948 data->error = status; 949 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status); 950 break; 951 } 952 } 953 954 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 955 * can be issued before multiblock writes. Unlike its more widely 956 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 957 * that can affect the STOP_TRAN logic. Complete (and current) 958 * MMC specs should sort that out before Linux starts using CMD23. 959 */ 960 if (direction == DMA_TO_DEVICE && multiple) { 961 struct scratch *scratch = host->data; 962 int tmp; 963 const unsigned statlen = sizeof(scratch->status); 964 965 dev_dbg(&spi->dev, " STOP_TRAN\n"); 966 967 /* Tweak the per-block message we set up earlier by morphing 968 * it to hold single buffer with the token followed by some 969 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 970 * "not busy any longer" status, and leave chip selected. 971 */ 972 INIT_LIST_HEAD(&host->m.transfers); 973 list_add(&host->early_status.transfer_list, 974 &host->m.transfers); 975 976 memset(scratch->status, 0xff, statlen); 977 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 978 979 host->early_status.tx_buf = host->early_status.rx_buf; 980 host->early_status.tx_dma = host->early_status.rx_dma; 981 host->early_status.len = statlen; 982 983 if (host->dma_dev) 984 dma_sync_single_for_device(host->dma_dev, 985 host->data_dma, sizeof(*scratch), 986 DMA_BIDIRECTIONAL); 987 988 tmp = spi_sync_locked(spi, &host->m); 989 990 if (host->dma_dev) 991 dma_sync_single_for_cpu(host->dma_dev, 992 host->data_dma, sizeof(*scratch), 993 DMA_BIDIRECTIONAL); 994 995 if (tmp < 0) { 996 if (!data->error) 997 data->error = tmp; 998 return; 999 } 1000 1001 /* Ideally we collected "not busy" status with one I/O, 1002 * avoiding wasteful byte-at-a-time scanning... but more 1003 * I/O is often needed. 1004 */ 1005 for (tmp = 2; tmp < statlen; tmp++) { 1006 if (scratch->status[tmp] != 0) 1007 return; 1008 } 1009 tmp = mmc_spi_wait_unbusy(host, timeout); 1010 if (tmp < 0 && !data->error) 1011 data->error = tmp; 1012 } 1013 } 1014 1015 /****************************************************************************/ 1016 1017 /* 1018 * MMC driver implementation -- the interface to the MMC stack 1019 */ 1020 1021 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 1022 { 1023 struct mmc_spi_host *host = mmc_priv(mmc); 1024 int status = -EINVAL; 1025 int crc_retry = 5; 1026 struct mmc_command stop; 1027 1028 #ifdef DEBUG 1029 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 1030 { 1031 struct mmc_command *cmd; 1032 int invalid = 0; 1033 1034 cmd = mrq->cmd; 1035 if (!mmc_spi_resp_type(cmd)) { 1036 dev_dbg(&host->spi->dev, "bogus command\n"); 1037 cmd->error = -EINVAL; 1038 invalid = 1; 1039 } 1040 1041 cmd = mrq->stop; 1042 if (cmd && !mmc_spi_resp_type(cmd)) { 1043 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 1044 cmd->error = -EINVAL; 1045 invalid = 1; 1046 } 1047 1048 if (invalid) { 1049 dump_stack(); 1050 mmc_request_done(host->mmc, mrq); 1051 return; 1052 } 1053 } 1054 #endif 1055 1056 /* request exclusive bus access */ 1057 spi_bus_lock(host->spi->master); 1058 1059 crc_recover: 1060 /* issue command; then optionally data and stop */ 1061 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 1062 if (status == 0 && mrq->data) { 1063 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 1064 1065 /* 1066 * The SPI bus is not always reliable for large data transfers. 1067 * If an occasional crc error is reported by the SD device with 1068 * data read/write over SPI, it may be recovered by repeating 1069 * the last SD command again. The retry count is set to 5 to 1070 * ensure the driver passes stress tests. 1071 */ 1072 if (mrq->data->error == -EILSEQ && crc_retry) { 1073 stop.opcode = MMC_STOP_TRANSMISSION; 1074 stop.arg = 0; 1075 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1076 status = mmc_spi_command_send(host, mrq, &stop, 0); 1077 crc_retry--; 1078 mrq->data->error = 0; 1079 goto crc_recover; 1080 } 1081 1082 if (mrq->stop) 1083 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 1084 else 1085 mmc_cs_off(host); 1086 } 1087 1088 /* release the bus */ 1089 spi_bus_unlock(host->spi->master); 1090 1091 mmc_request_done(host->mmc, mrq); 1092 } 1093 1094 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 1095 * 1096 * NOTE that here we can't know that the card has just been powered up; 1097 * not all MMC/SD sockets support power switching. 1098 * 1099 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 1100 * this doesn't seem to do the right thing at all... 1101 */ 1102 static void mmc_spi_initsequence(struct mmc_spi_host *host) 1103 { 1104 /* Try to be very sure any previous command has completed; 1105 * wait till not-busy, skip debris from any old commands. 1106 */ 1107 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS)); 1108 mmc_spi_readbytes(host, 10); 1109 1110 /* 1111 * Do a burst with chipselect active-high. We need to do this to 1112 * meet the requirement of 74 clock cycles with both chipselect 1113 * and CMD (MOSI) high before CMD0 ... after the card has been 1114 * powered up to Vdd(min), and so is ready to take commands. 1115 * 1116 * Some cards are particularly needy of this (e.g. Viking "SD256") 1117 * while most others don't seem to care. 1118 * 1119 * Note that this is one of the places MMC/SD plays games with the 1120 * SPI protocol. Another is that when chipselect is released while 1121 * the card returns BUSY status, the clock must issue several cycles 1122 * with chipselect high before the card will stop driving its output. 1123 * 1124 * SPI_CS_HIGH means "asserted" here. In some cases like when using 1125 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically 1126 * inverted by gpiolib, so if we want to ascertain to drive it high 1127 * we should toggle the default with an XOR as we do here. 1128 */ 1129 host->spi->mode ^= SPI_CS_HIGH; 1130 if (spi_setup(host->spi) != 0) { 1131 /* Just warn; most cards work without it. */ 1132 dev_warn(&host->spi->dev, 1133 "can't change chip-select polarity\n"); 1134 host->spi->mode ^= SPI_CS_HIGH; 1135 } else { 1136 mmc_spi_readbytes(host, 18); 1137 1138 host->spi->mode ^= SPI_CS_HIGH; 1139 if (spi_setup(host->spi) != 0) { 1140 /* Wot, we can't get the same setup we had before? */ 1141 dev_err(&host->spi->dev, 1142 "can't restore chip-select polarity\n"); 1143 } 1144 } 1145 } 1146 1147 static char *mmc_powerstring(u8 power_mode) 1148 { 1149 switch (power_mode) { 1150 case MMC_POWER_OFF: return "off"; 1151 case MMC_POWER_UP: return "up"; 1152 case MMC_POWER_ON: return "on"; 1153 } 1154 return "?"; 1155 } 1156 1157 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1158 { 1159 struct mmc_spi_host *host = mmc_priv(mmc); 1160 1161 if (host->power_mode != ios->power_mode) { 1162 int canpower; 1163 1164 canpower = host->pdata && host->pdata->setpower; 1165 1166 dev_dbg(&host->spi->dev, "power %s (%d)%s\n", 1167 mmc_powerstring(ios->power_mode), 1168 ios->vdd, 1169 canpower ? ", can switch" : ""); 1170 1171 /* switch power on/off if possible, accounting for 1172 * max 250msec powerup time if needed. 1173 */ 1174 if (canpower) { 1175 switch (ios->power_mode) { 1176 case MMC_POWER_OFF: 1177 case MMC_POWER_UP: 1178 host->pdata->setpower(&host->spi->dev, 1179 ios->vdd); 1180 if (ios->power_mode == MMC_POWER_UP) 1181 msleep(host->powerup_msecs); 1182 } 1183 } 1184 1185 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1186 if (ios->power_mode == MMC_POWER_ON) 1187 mmc_spi_initsequence(host); 1188 1189 /* If powering down, ground all card inputs to avoid power 1190 * delivery from data lines! On a shared SPI bus, this 1191 * will probably be temporary; 6.4.2 of the simplified SD 1192 * spec says this must last at least 1msec. 1193 * 1194 * - Clock low means CPOL 0, e.g. mode 0 1195 * - MOSI low comes from writing zero 1196 * - Chipselect is usually active low... 1197 */ 1198 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1199 int mres; 1200 u8 nullbyte = 0; 1201 1202 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1203 mres = spi_setup(host->spi); 1204 if (mres < 0) 1205 dev_dbg(&host->spi->dev, 1206 "switch to SPI mode 0 failed\n"); 1207 1208 if (spi_write(host->spi, &nullbyte, 1) < 0) 1209 dev_dbg(&host->spi->dev, 1210 "put spi signals to low failed\n"); 1211 1212 /* 1213 * Now clock should be low due to spi mode 0; 1214 * MOSI should be low because of written 0x00; 1215 * chipselect should be low (it is active low) 1216 * power supply is off, so now MMC is off too! 1217 * 1218 * FIXME no, chipselect can be high since the 1219 * device is inactive and SPI_CS_HIGH is clear... 1220 */ 1221 msleep(10); 1222 if (mres == 0) { 1223 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1224 mres = spi_setup(host->spi); 1225 if (mres < 0) 1226 dev_dbg(&host->spi->dev, 1227 "switch back to SPI mode 3 failed\n"); 1228 } 1229 } 1230 1231 host->power_mode = ios->power_mode; 1232 } 1233 1234 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1235 int status; 1236 1237 host->spi->max_speed_hz = ios->clock; 1238 status = spi_setup(host->spi); 1239 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n", 1240 host->spi->max_speed_hz, status); 1241 } 1242 } 1243 1244 static const struct mmc_host_ops mmc_spi_ops = { 1245 .request = mmc_spi_request, 1246 .set_ios = mmc_spi_set_ios, 1247 .get_ro = mmc_gpio_get_ro, 1248 .get_cd = mmc_gpio_get_cd, 1249 }; 1250 1251 1252 /****************************************************************************/ 1253 1254 /* 1255 * SPI driver implementation 1256 */ 1257 1258 static irqreturn_t 1259 mmc_spi_detect_irq(int irq, void *mmc) 1260 { 1261 struct mmc_spi_host *host = mmc_priv(mmc); 1262 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1263 1264 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1265 return IRQ_HANDLED; 1266 } 1267 1268 #ifdef CONFIG_HAS_DMA 1269 static int mmc_spi_dma_alloc(struct mmc_spi_host *host) 1270 { 1271 struct spi_device *spi = host->spi; 1272 struct device *dev; 1273 1274 if (!spi->master->dev.parent->dma_mask) 1275 return 0; 1276 1277 dev = spi->master->dev.parent; 1278 1279 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE, 1280 DMA_TO_DEVICE); 1281 if (dma_mapping_error(dev, host->ones_dma)) 1282 return -ENOMEM; 1283 1284 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data), 1285 DMA_BIDIRECTIONAL); 1286 if (dma_mapping_error(dev, host->data_dma)) { 1287 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE, 1288 DMA_TO_DEVICE); 1289 return -ENOMEM; 1290 } 1291 1292 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data), 1293 DMA_BIDIRECTIONAL); 1294 1295 host->dma_dev = dev; 1296 return 0; 1297 } 1298 1299 static void mmc_spi_dma_free(struct mmc_spi_host *host) 1300 { 1301 if (!host->dma_dev) 1302 return; 1303 1304 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE, 1305 DMA_TO_DEVICE); 1306 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data), 1307 DMA_BIDIRECTIONAL); 1308 } 1309 #else 1310 static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; } 1311 static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {} 1312 #endif 1313 1314 static int mmc_spi_probe(struct spi_device *spi) 1315 { 1316 void *ones; 1317 struct mmc_host *mmc; 1318 struct mmc_spi_host *host; 1319 int status; 1320 bool has_ro = false; 1321 1322 /* We rely on full duplex transfers, mostly to reduce 1323 * per-transfer overheads (by making fewer transfers). 1324 */ 1325 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) 1326 return -EINVAL; 1327 1328 /* MMC and SD specs only seem to care that sampling is on the 1329 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1330 * should be legit. We'll use mode 0 since the steady state is 0, 1331 * which is appropriate for hotplugging, unless the platform data 1332 * specify mode 3 (if hardware is not compatible to mode 0). 1333 */ 1334 if (spi->mode != SPI_MODE_3) 1335 spi->mode = SPI_MODE_0; 1336 spi->bits_per_word = 8; 1337 1338 status = spi_setup(spi); 1339 if (status < 0) { 1340 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1341 spi->mode, spi->max_speed_hz / 1000, 1342 status); 1343 return status; 1344 } 1345 1346 /* We need a supply of ones to transmit. This is the only time 1347 * the CPU touches these, so cache coherency isn't a concern. 1348 * 1349 * NOTE if many systems use more than one MMC-over-SPI connector 1350 * it'd save some memory to share this. That's evidently rare. 1351 */ 1352 status = -ENOMEM; 1353 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1354 if (!ones) 1355 goto nomem; 1356 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1357 1358 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1359 if (!mmc) 1360 goto nomem; 1361 1362 mmc->ops = &mmc_spi_ops; 1363 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1364 mmc->max_segs = MMC_SPI_BLOCKSATONCE; 1365 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1366 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1367 1368 mmc->caps = MMC_CAP_SPI; 1369 1370 /* SPI doesn't need the lowspeed device identification thing for 1371 * MMC or SD cards, since it never comes up in open drain mode. 1372 * That's good; some SPI masters can't handle very low speeds! 1373 * 1374 * However, low speed SDIO cards need not handle over 400 KHz; 1375 * that's the only reason not to use a few MHz for f_min (until 1376 * the upper layer reads the target frequency from the CSD). 1377 */ 1378 mmc->f_min = 400000; 1379 mmc->f_max = spi->max_speed_hz; 1380 1381 host = mmc_priv(mmc); 1382 host->mmc = mmc; 1383 host->spi = spi; 1384 1385 host->ones = ones; 1386 1387 dev_set_drvdata(&spi->dev, mmc); 1388 1389 /* Platform data is used to hook up things like card sensing 1390 * and power switching gpios. 1391 */ 1392 host->pdata = mmc_spi_get_pdata(spi); 1393 if (host->pdata) 1394 mmc->ocr_avail = host->pdata->ocr_mask; 1395 if (!mmc->ocr_avail) { 1396 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1397 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1398 } 1399 if (host->pdata && host->pdata->setpower) { 1400 host->powerup_msecs = host->pdata->powerup_msecs; 1401 if (!host->powerup_msecs || host->powerup_msecs > 250) 1402 host->powerup_msecs = 250; 1403 } 1404 1405 /* preallocate dma buffers */ 1406 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1407 if (!host->data) 1408 goto fail_nobuf1; 1409 1410 status = mmc_spi_dma_alloc(host); 1411 if (status) 1412 goto fail_dma; 1413 1414 /* setup message for status/busy readback */ 1415 spi_message_init(&host->readback); 1416 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1417 1418 spi_message_add_tail(&host->status, &host->readback); 1419 host->status.tx_buf = host->ones; 1420 host->status.tx_dma = host->ones_dma; 1421 host->status.rx_buf = &host->data->status; 1422 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1423 host->status.cs_change = 1; 1424 1425 /* register card detect irq */ 1426 if (host->pdata && host->pdata->init) { 1427 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1428 if (status != 0) 1429 goto fail_glue_init; 1430 } 1431 1432 /* pass platform capabilities, if any */ 1433 if (host->pdata) { 1434 mmc->caps |= host->pdata->caps; 1435 mmc->caps2 |= host->pdata->caps2; 1436 } 1437 1438 status = mmc_add_host(mmc); 1439 if (status != 0) 1440 goto fail_add_host; 1441 1442 /* 1443 * Index 0 is card detect 1444 * Old boardfiles were specifying 1 ms as debounce 1445 */ 1446 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000); 1447 if (status == -EPROBE_DEFER) 1448 goto fail_add_host; 1449 if (!status) { 1450 /* 1451 * The platform has a CD GPIO signal that may support 1452 * interrupts, so let mmc_gpiod_request_cd_irq() decide 1453 * if polling is needed or not. 1454 */ 1455 mmc->caps &= ~MMC_CAP_NEEDS_POLL; 1456 mmc_gpiod_request_cd_irq(mmc); 1457 } 1458 mmc_detect_change(mmc, 0); 1459 1460 /* Index 1 is write protect/read only */ 1461 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0); 1462 if (status == -EPROBE_DEFER) 1463 goto fail_add_host; 1464 if (!status) 1465 has_ro = true; 1466 1467 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1468 dev_name(&mmc->class_dev), 1469 host->dma_dev ? "" : ", no DMA", 1470 has_ro ? "" : ", no WP", 1471 (host->pdata && host->pdata->setpower) 1472 ? "" : ", no poweroff", 1473 (mmc->caps & MMC_CAP_NEEDS_POLL) 1474 ? ", cd polling" : ""); 1475 return 0; 1476 1477 fail_add_host: 1478 mmc_remove_host(mmc); 1479 fail_glue_init: 1480 mmc_spi_dma_free(host); 1481 fail_dma: 1482 kfree(host->data); 1483 fail_nobuf1: 1484 mmc_spi_put_pdata(spi); 1485 mmc_free_host(mmc); 1486 nomem: 1487 kfree(ones); 1488 return status; 1489 } 1490 1491 1492 static int mmc_spi_remove(struct spi_device *spi) 1493 { 1494 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1495 struct mmc_spi_host *host = mmc_priv(mmc); 1496 1497 /* prevent new mmc_detect_change() calls */ 1498 if (host->pdata && host->pdata->exit) 1499 host->pdata->exit(&spi->dev, mmc); 1500 1501 mmc_remove_host(mmc); 1502 1503 mmc_spi_dma_free(host); 1504 kfree(host->data); 1505 kfree(host->ones); 1506 1507 spi->max_speed_hz = mmc->f_max; 1508 mmc_spi_put_pdata(spi); 1509 mmc_free_host(mmc); 1510 return 0; 1511 } 1512 1513 static const struct spi_device_id mmc_spi_dev_ids[] = { 1514 { "mmc-spi-slot"}, 1515 { }, 1516 }; 1517 MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids); 1518 1519 static const struct of_device_id mmc_spi_of_match_table[] = { 1520 { .compatible = "mmc-spi-slot", }, 1521 {}, 1522 }; 1523 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table); 1524 1525 static struct spi_driver mmc_spi_driver = { 1526 .driver = { 1527 .name = "mmc_spi", 1528 .of_match_table = mmc_spi_of_match_table, 1529 }, 1530 .id_table = mmc_spi_dev_ids, 1531 .probe = mmc_spi_probe, 1532 .remove = mmc_spi_remove, 1533 }; 1534 1535 module_spi_driver(mmc_spi_driver); 1536 1537 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko"); 1538 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1539 MODULE_LICENSE("GPL"); 1540 MODULE_ALIAS("spi:mmc_spi"); 1541