1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/sched.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/module.h> 31 #include <linux/bio.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/crc7.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/scatterlist.h> 36 37 #include <linux/mmc/host.h> 38 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 39 #include <linux/mmc/slot-gpio.h> 40 41 #include <linux/spi/spi.h> 42 #include <linux/spi/mmc_spi.h> 43 44 #include <asm/unaligned.h> 45 46 47 /* NOTES: 48 * 49 * - For now, we won't try to interoperate with a real mmc/sd/sdio 50 * controller, although some of them do have hardware support for 51 * SPI protocol. The main reason for such configs would be mmc-ish 52 * cards like DataFlash, which don't support that "native" protocol. 53 * 54 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 55 * switch between driver stacks, and in any case if "native" mode 56 * is available, it will be faster and hence preferable. 57 * 58 * - MMC depends on a different chipselect management policy than the 59 * SPI interface currently supports for shared bus segments: it needs 60 * to issue multiple spi_message requests with the chipselect active, 61 * using the results of one message to decide the next one to issue. 62 * 63 * Pending updates to the programming interface, this driver expects 64 * that it not share the bus with other drivers (precluding conflicts). 65 * 66 * - We tell the controller to keep the chipselect active from the 67 * beginning of an mmc_host_ops.request until the end. So beware 68 * of SPI controller drivers that mis-handle the cs_change flag! 69 * 70 * However, many cards seem OK with chipselect flapping up/down 71 * during that time ... at least on unshared bus segments. 72 */ 73 74 75 /* 76 * Local protocol constants, internal to data block protocols. 77 */ 78 79 /* Response tokens used to ack each block written: */ 80 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 81 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 82 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 83 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 84 85 /* Read and write blocks start with these tokens and end with crc; 86 * on error, read tokens act like a subset of R2_SPI_* values. 87 */ 88 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 89 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 90 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 91 92 #define MMC_SPI_BLOCKSIZE 512 93 94 95 /* These fixed timeouts come from the latest SD specs, which say to ignore 96 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 97 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 98 * reads which takes nowhere near that long. Older cards may be able to use 99 * shorter timeouts ... but why bother? 100 */ 101 #define r1b_timeout (HZ * 3) 102 103 /* One of the critical speed parameters is the amount of data which may 104 * be transferred in one command. If this value is too low, the SD card 105 * controller has to do multiple partial block writes (argggh!). With 106 * today (2008) SD cards there is little speed gain if we transfer more 107 * than 64 KBytes at a time. So use this value until there is any indication 108 * that we should do more here. 109 */ 110 #define MMC_SPI_BLOCKSATONCE 128 111 112 /****************************************************************************/ 113 114 /* 115 * Local Data Structures 116 */ 117 118 /* "scratch" is per-{command,block} data exchanged with the card */ 119 struct scratch { 120 u8 status[29]; 121 u8 data_token; 122 __be16 crc_val; 123 }; 124 125 struct mmc_spi_host { 126 struct mmc_host *mmc; 127 struct spi_device *spi; 128 129 unsigned char power_mode; 130 u16 powerup_msecs; 131 132 struct mmc_spi_platform_data *pdata; 133 134 /* for bulk data transfers */ 135 struct spi_transfer token, t, crc, early_status; 136 struct spi_message m; 137 138 /* for status readback */ 139 struct spi_transfer status; 140 struct spi_message readback; 141 142 /* underlying DMA-aware controller, or null */ 143 struct device *dma_dev; 144 145 /* buffer used for commands and for message "overhead" */ 146 struct scratch *data; 147 dma_addr_t data_dma; 148 149 /* Specs say to write ones most of the time, even when the card 150 * has no need to read its input data; and many cards won't care. 151 * This is our source of those ones. 152 */ 153 void *ones; 154 dma_addr_t ones_dma; 155 }; 156 157 158 /****************************************************************************/ 159 160 /* 161 * MMC-over-SPI protocol glue, used by the MMC stack interface 162 */ 163 164 static inline int mmc_cs_off(struct mmc_spi_host *host) 165 { 166 /* chipselect will always be inactive after setup() */ 167 return spi_setup(host->spi); 168 } 169 170 static int 171 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 172 { 173 int status; 174 175 if (len > sizeof(*host->data)) { 176 WARN_ON(1); 177 return -EIO; 178 } 179 180 host->status.len = len; 181 182 if (host->dma_dev) 183 dma_sync_single_for_device(host->dma_dev, 184 host->data_dma, sizeof(*host->data), 185 DMA_FROM_DEVICE); 186 187 status = spi_sync_locked(host->spi, &host->readback); 188 189 if (host->dma_dev) 190 dma_sync_single_for_cpu(host->dma_dev, 191 host->data_dma, sizeof(*host->data), 192 DMA_FROM_DEVICE); 193 194 return status; 195 } 196 197 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 198 unsigned n, u8 byte) 199 { 200 u8 *cp = host->data->status; 201 unsigned long start = jiffies; 202 203 while (1) { 204 int status; 205 unsigned i; 206 207 status = mmc_spi_readbytes(host, n); 208 if (status < 0) 209 return status; 210 211 for (i = 0; i < n; i++) { 212 if (cp[i] != byte) 213 return cp[i]; 214 } 215 216 if (time_is_before_jiffies(start + timeout)) 217 break; 218 219 /* If we need long timeouts, we may release the CPU. 220 * We use jiffies here because we want to have a relation 221 * between elapsed time and the blocking of the scheduler. 222 */ 223 if (time_is_before_jiffies(start+1)) 224 schedule(); 225 } 226 return -ETIMEDOUT; 227 } 228 229 static inline int 230 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 231 { 232 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 233 } 234 235 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 236 { 237 return mmc_spi_skip(host, timeout, 1, 0xff); 238 } 239 240 241 /* 242 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 243 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 244 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 245 * 246 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 247 * newer cards R7 (IF_COND). 248 */ 249 250 static char *maptype(struct mmc_command *cmd) 251 { 252 switch (mmc_spi_resp_type(cmd)) { 253 case MMC_RSP_SPI_R1: return "R1"; 254 case MMC_RSP_SPI_R1B: return "R1B"; 255 case MMC_RSP_SPI_R2: return "R2/R5"; 256 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 257 default: return "?"; 258 } 259 } 260 261 /* return zero, else negative errno after setting cmd->error */ 262 static int mmc_spi_response_get(struct mmc_spi_host *host, 263 struct mmc_command *cmd, int cs_on) 264 { 265 u8 *cp = host->data->status; 266 u8 *end = cp + host->t.len; 267 int value = 0; 268 int bitshift; 269 u8 leftover = 0; 270 unsigned short rotator; 271 int i; 272 char tag[32]; 273 274 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 275 cmd->opcode, maptype(cmd)); 276 277 /* Except for data block reads, the whole response will already 278 * be stored in the scratch buffer. It's somewhere after the 279 * command and the first byte we read after it. We ignore that 280 * first byte. After STOP_TRANSMISSION command it may include 281 * two data bits, but otherwise it's all ones. 282 */ 283 cp += 8; 284 while (cp < end && *cp == 0xff) 285 cp++; 286 287 /* Data block reads (R1 response types) may need more data... */ 288 if (cp == end) { 289 cp = host->data->status; 290 end = cp+1; 291 292 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 293 * status byte ... and we already scanned 2 bytes. 294 * 295 * REVISIT block read paths use nasty byte-at-a-time I/O 296 * so it can always DMA directly into the target buffer. 297 * It'd probably be better to memcpy() the first chunk and 298 * avoid extra i/o calls... 299 * 300 * Note we check for more than 8 bytes, because in practice, 301 * some SD cards are slow... 302 */ 303 for (i = 2; i < 16; i++) { 304 value = mmc_spi_readbytes(host, 1); 305 if (value < 0) 306 goto done; 307 if (*cp != 0xff) 308 goto checkstatus; 309 } 310 value = -ETIMEDOUT; 311 goto done; 312 } 313 314 checkstatus: 315 bitshift = 0; 316 if (*cp & 0x80) { 317 /* Houston, we have an ugly card with a bit-shifted response */ 318 rotator = *cp++ << 8; 319 /* read the next byte */ 320 if (cp == end) { 321 value = mmc_spi_readbytes(host, 1); 322 if (value < 0) 323 goto done; 324 cp = host->data->status; 325 end = cp+1; 326 } 327 rotator |= *cp++; 328 while (rotator & 0x8000) { 329 bitshift++; 330 rotator <<= 1; 331 } 332 cmd->resp[0] = rotator >> 8; 333 leftover = rotator; 334 } else { 335 cmd->resp[0] = *cp++; 336 } 337 cmd->error = 0; 338 339 /* Status byte: the entire seven-bit R1 response. */ 340 if (cmd->resp[0] != 0) { 341 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 342 & cmd->resp[0]) 343 value = -EFAULT; /* Bad address */ 344 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 345 value = -ENOSYS; /* Function not implemented */ 346 else if (R1_SPI_COM_CRC & cmd->resp[0]) 347 value = -EILSEQ; /* Illegal byte sequence */ 348 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 349 & cmd->resp[0]) 350 value = -EIO; /* I/O error */ 351 /* else R1_SPI_IDLE, "it's resetting" */ 352 } 353 354 switch (mmc_spi_resp_type(cmd)) { 355 356 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 357 * and less-common stuff like various erase operations. 358 */ 359 case MMC_RSP_SPI_R1B: 360 /* maybe we read all the busy tokens already */ 361 while (cp < end && *cp == 0) 362 cp++; 363 if (cp == end) 364 mmc_spi_wait_unbusy(host, r1b_timeout); 365 break; 366 367 /* SPI R2 == R1 + second status byte; SEND_STATUS 368 * SPI R5 == R1 + data byte; IO_RW_DIRECT 369 */ 370 case MMC_RSP_SPI_R2: 371 /* read the next byte */ 372 if (cp == end) { 373 value = mmc_spi_readbytes(host, 1); 374 if (value < 0) 375 goto done; 376 cp = host->data->status; 377 end = cp+1; 378 } 379 if (bitshift) { 380 rotator = leftover << 8; 381 rotator |= *cp << bitshift; 382 cmd->resp[0] |= (rotator & 0xFF00); 383 } else { 384 cmd->resp[0] |= *cp << 8; 385 } 386 break; 387 388 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 389 case MMC_RSP_SPI_R3: 390 rotator = leftover << 8; 391 cmd->resp[1] = 0; 392 for (i = 0; i < 4; i++) { 393 cmd->resp[1] <<= 8; 394 /* read the next byte */ 395 if (cp == end) { 396 value = mmc_spi_readbytes(host, 1); 397 if (value < 0) 398 goto done; 399 cp = host->data->status; 400 end = cp+1; 401 } 402 if (bitshift) { 403 rotator |= *cp++ << bitshift; 404 cmd->resp[1] |= (rotator >> 8); 405 rotator <<= 8; 406 } else { 407 cmd->resp[1] |= *cp++; 408 } 409 } 410 break; 411 412 /* SPI R1 == just one status byte */ 413 case MMC_RSP_SPI_R1: 414 break; 415 416 default: 417 dev_dbg(&host->spi->dev, "bad response type %04x\n", 418 mmc_spi_resp_type(cmd)); 419 if (value >= 0) 420 value = -EINVAL; 421 goto done; 422 } 423 424 if (value < 0) 425 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 426 tag, cmd->resp[0], cmd->resp[1]); 427 428 /* disable chipselect on errors and some success cases */ 429 if (value >= 0 && cs_on) 430 return value; 431 done: 432 if (value < 0) 433 cmd->error = value; 434 mmc_cs_off(host); 435 return value; 436 } 437 438 /* Issue command and read its response. 439 * Returns zero on success, negative for error. 440 * 441 * On error, caller must cope with mmc core retry mechanism. That 442 * means immediate low-level resubmit, which affects the bus lock... 443 */ 444 static int 445 mmc_spi_command_send(struct mmc_spi_host *host, 446 struct mmc_request *mrq, 447 struct mmc_command *cmd, int cs_on) 448 { 449 struct scratch *data = host->data; 450 u8 *cp = data->status; 451 u32 arg = cmd->arg; 452 int status; 453 struct spi_transfer *t; 454 455 /* We can handle most commands (except block reads) in one full 456 * duplex I/O operation before either starting the next transfer 457 * (data block or command) or else deselecting the card. 458 * 459 * First, write 7 bytes: 460 * - an all-ones byte to ensure the card is ready 461 * - opcode byte (plus start and transmission bits) 462 * - four bytes of big-endian argument 463 * - crc7 (plus end bit) ... always computed, it's cheap 464 * 465 * We init the whole buffer to all-ones, which is what we need 466 * to write while we're reading (later) response data. 467 */ 468 memset(cp++, 0xff, sizeof(data->status)); 469 470 *cp++ = 0x40 | cmd->opcode; 471 *cp++ = (u8)(arg >> 24); 472 *cp++ = (u8)(arg >> 16); 473 *cp++ = (u8)(arg >> 8); 474 *cp++ = (u8)arg; 475 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 476 477 /* Then, read up to 13 bytes (while writing all-ones): 478 * - N(CR) (== 1..8) bytes of all-ones 479 * - status byte (for all response types) 480 * - the rest of the response, either: 481 * + nothing, for R1 or R1B responses 482 * + second status byte, for R2 responses 483 * + four data bytes, for R3 and R7 responses 484 * 485 * Finally, read some more bytes ... in the nice cases we know in 486 * advance how many, and reading 1 more is always OK: 487 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 488 * - N(RC) (== 1..N) bytes of all-ones, before next command 489 * - N(WR) (== 1..N) bytes of all-ones, before data write 490 * 491 * So in those cases one full duplex I/O of at most 21 bytes will 492 * handle the whole command, leaving the card ready to receive a 493 * data block or new command. We do that whenever we can, shaving 494 * CPU and IRQ costs (especially when using DMA or FIFOs). 495 * 496 * There are two other cases, where it's not generally practical 497 * to rely on a single I/O: 498 * 499 * - R1B responses need at least N(EC) bytes of all-zeroes. 500 * 501 * In this case we can *try* to fit it into one I/O, then 502 * maybe read more data later. 503 * 504 * - Data block reads are more troublesome, since a variable 505 * number of padding bytes precede the token and data. 506 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 507 * + N(AC) (== 1..many) bytes of all-ones 508 * 509 * In this case we currently only have minimal speedups here: 510 * when N(CR) == 1 we can avoid I/O in response_get(). 511 */ 512 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 513 cp += 2; /* min(N(CR)) + status */ 514 /* R1 */ 515 } else { 516 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 517 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 518 cp++; 519 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 520 cp += 4; 521 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 522 cp = data->status + sizeof(data->status); 523 /* else: R1 (most commands) */ 524 } 525 526 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 527 cmd->opcode, maptype(cmd)); 528 529 /* send command, leaving chipselect active */ 530 spi_message_init(&host->m); 531 532 t = &host->t; 533 memset(t, 0, sizeof(*t)); 534 t->tx_buf = t->rx_buf = data->status; 535 t->tx_dma = t->rx_dma = host->data_dma; 536 t->len = cp - data->status; 537 t->cs_change = 1; 538 spi_message_add_tail(t, &host->m); 539 540 if (host->dma_dev) { 541 host->m.is_dma_mapped = 1; 542 dma_sync_single_for_device(host->dma_dev, 543 host->data_dma, sizeof(*host->data), 544 DMA_BIDIRECTIONAL); 545 } 546 status = spi_sync_locked(host->spi, &host->m); 547 548 if (host->dma_dev) 549 dma_sync_single_for_cpu(host->dma_dev, 550 host->data_dma, sizeof(*host->data), 551 DMA_BIDIRECTIONAL); 552 if (status < 0) { 553 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 554 cmd->error = status; 555 return status; 556 } 557 558 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 559 return mmc_spi_response_get(host, cmd, cs_on); 560 } 561 562 /* Build data message with up to four separate transfers. For TX, we 563 * start by writing the data token. And in most cases, we finish with 564 * a status transfer. 565 * 566 * We always provide TX data for data and CRC. The MMC/SD protocol 567 * requires us to write ones; but Linux defaults to writing zeroes; 568 * so we explicitly initialize it to all ones on RX paths. 569 * 570 * We also handle DMA mapping, so the underlying SPI controller does 571 * not need to (re)do it for each message. 572 */ 573 static void 574 mmc_spi_setup_data_message( 575 struct mmc_spi_host *host, 576 int multiple, 577 enum dma_data_direction direction) 578 { 579 struct spi_transfer *t; 580 struct scratch *scratch = host->data; 581 dma_addr_t dma = host->data_dma; 582 583 spi_message_init(&host->m); 584 if (dma) 585 host->m.is_dma_mapped = 1; 586 587 /* for reads, readblock() skips 0xff bytes before finding 588 * the token; for writes, this transfer issues that token. 589 */ 590 if (direction == DMA_TO_DEVICE) { 591 t = &host->token; 592 memset(t, 0, sizeof(*t)); 593 t->len = 1; 594 if (multiple) 595 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 596 else 597 scratch->data_token = SPI_TOKEN_SINGLE; 598 t->tx_buf = &scratch->data_token; 599 if (dma) 600 t->tx_dma = dma + offsetof(struct scratch, data_token); 601 spi_message_add_tail(t, &host->m); 602 } 603 604 /* Body of transfer is buffer, then CRC ... 605 * either TX-only, or RX with TX-ones. 606 */ 607 t = &host->t; 608 memset(t, 0, sizeof(*t)); 609 t->tx_buf = host->ones; 610 t->tx_dma = host->ones_dma; 611 /* length and actual buffer info are written later */ 612 spi_message_add_tail(t, &host->m); 613 614 t = &host->crc; 615 memset(t, 0, sizeof(*t)); 616 t->len = 2; 617 if (direction == DMA_TO_DEVICE) { 618 /* the actual CRC may get written later */ 619 t->tx_buf = &scratch->crc_val; 620 if (dma) 621 t->tx_dma = dma + offsetof(struct scratch, crc_val); 622 } else { 623 t->tx_buf = host->ones; 624 t->tx_dma = host->ones_dma; 625 t->rx_buf = &scratch->crc_val; 626 if (dma) 627 t->rx_dma = dma + offsetof(struct scratch, crc_val); 628 } 629 spi_message_add_tail(t, &host->m); 630 631 /* 632 * A single block read is followed by N(EC) [0+] all-ones bytes 633 * before deselect ... don't bother. 634 * 635 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 636 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 637 * collect that single byte, so readblock() doesn't need to. 638 * 639 * For a write, the one-byte data response follows immediately, then 640 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 641 * Then single block reads may deselect, and multiblock ones issue 642 * the next token (next data block, or STOP_TRAN). We can try to 643 * minimize I/O ops by using a single read to collect end-of-busy. 644 */ 645 if (multiple || direction == DMA_TO_DEVICE) { 646 t = &host->early_status; 647 memset(t, 0, sizeof(*t)); 648 t->len = (direction == DMA_TO_DEVICE) 649 ? sizeof(scratch->status) 650 : 1; 651 t->tx_buf = host->ones; 652 t->tx_dma = host->ones_dma; 653 t->rx_buf = scratch->status; 654 if (dma) 655 t->rx_dma = dma + offsetof(struct scratch, status); 656 t->cs_change = 1; 657 spi_message_add_tail(t, &host->m); 658 } 659 } 660 661 /* 662 * Write one block: 663 * - caller handled preceding N(WR) [1+] all-ones bytes 664 * - data block 665 * + token 666 * + data bytes 667 * + crc16 668 * - an all-ones byte ... card writes a data-response byte 669 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 670 * 671 * Return negative errno, else success. 672 */ 673 static int 674 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 675 unsigned long timeout) 676 { 677 struct spi_device *spi = host->spi; 678 int status, i; 679 struct scratch *scratch = host->data; 680 u32 pattern; 681 682 if (host->mmc->use_spi_crc) 683 scratch->crc_val = cpu_to_be16( 684 crc_itu_t(0, t->tx_buf, t->len)); 685 if (host->dma_dev) 686 dma_sync_single_for_device(host->dma_dev, 687 host->data_dma, sizeof(*scratch), 688 DMA_BIDIRECTIONAL); 689 690 status = spi_sync_locked(spi, &host->m); 691 692 if (status != 0) { 693 dev_dbg(&spi->dev, "write error (%d)\n", status); 694 return status; 695 } 696 697 if (host->dma_dev) 698 dma_sync_single_for_cpu(host->dma_dev, 699 host->data_dma, sizeof(*scratch), 700 DMA_BIDIRECTIONAL); 701 702 /* 703 * Get the transmission data-response reply. It must follow 704 * immediately after the data block we transferred. This reply 705 * doesn't necessarily tell whether the write operation succeeded; 706 * it just says if the transmission was ok and whether *earlier* 707 * writes succeeded; see the standard. 708 * 709 * In practice, there are (even modern SDHC-)cards which are late 710 * in sending the response, and miss the time frame by a few bits, 711 * so we have to cope with this situation and check the response 712 * bit-by-bit. Arggh!!! 713 */ 714 pattern = scratch->status[0] << 24; 715 pattern |= scratch->status[1] << 16; 716 pattern |= scratch->status[2] << 8; 717 pattern |= scratch->status[3]; 718 719 /* First 3 bit of pattern are undefined */ 720 pattern |= 0xE0000000; 721 722 /* left-adjust to leading 0 bit */ 723 while (pattern & 0x80000000) 724 pattern <<= 1; 725 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 726 pattern >>= 27; 727 728 switch (pattern) { 729 case SPI_RESPONSE_ACCEPTED: 730 status = 0; 731 break; 732 case SPI_RESPONSE_CRC_ERR: 733 /* host shall then issue MMC_STOP_TRANSMISSION */ 734 status = -EILSEQ; 735 break; 736 case SPI_RESPONSE_WRITE_ERR: 737 /* host shall then issue MMC_STOP_TRANSMISSION, 738 * and should MMC_SEND_STATUS to sort it out 739 */ 740 status = -EIO; 741 break; 742 default: 743 status = -EPROTO; 744 break; 745 } 746 if (status != 0) { 747 dev_dbg(&spi->dev, "write error %02x (%d)\n", 748 scratch->status[0], status); 749 return status; 750 } 751 752 t->tx_buf += t->len; 753 if (host->dma_dev) 754 t->tx_dma += t->len; 755 756 /* Return when not busy. If we didn't collect that status yet, 757 * we'll need some more I/O. 758 */ 759 for (i = 4; i < sizeof(scratch->status); i++) { 760 /* card is non-busy if the most recent bit is 1 */ 761 if (scratch->status[i] & 0x01) 762 return 0; 763 } 764 return mmc_spi_wait_unbusy(host, timeout); 765 } 766 767 /* 768 * Read one block: 769 * - skip leading all-ones bytes ... either 770 * + N(AC) [1..f(clock,CSD)] usually, else 771 * + N(CX) [0..8] when reading CSD or CID 772 * - data block 773 * + token ... if error token, no data or crc 774 * + data bytes 775 * + crc16 776 * 777 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 778 * before dropping chipselect. 779 * 780 * For multiblock reads, caller either reads the next block or issues a 781 * STOP_TRANSMISSION command. 782 */ 783 static int 784 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 785 unsigned long timeout) 786 { 787 struct spi_device *spi = host->spi; 788 int status; 789 struct scratch *scratch = host->data; 790 unsigned int bitshift; 791 u8 leftover; 792 793 /* At least one SD card sends an all-zeroes byte when N(CX) 794 * applies, before the all-ones bytes ... just cope with that. 795 */ 796 status = mmc_spi_readbytes(host, 1); 797 if (status < 0) 798 return status; 799 status = scratch->status[0]; 800 if (status == 0xff || status == 0) 801 status = mmc_spi_readtoken(host, timeout); 802 803 if (status < 0) { 804 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 805 return status; 806 } 807 808 /* The token may be bit-shifted... 809 * the first 0-bit precedes the data stream. 810 */ 811 bitshift = 7; 812 while (status & 0x80) { 813 status <<= 1; 814 bitshift--; 815 } 816 leftover = status << 1; 817 818 if (host->dma_dev) { 819 dma_sync_single_for_device(host->dma_dev, 820 host->data_dma, sizeof(*scratch), 821 DMA_BIDIRECTIONAL); 822 dma_sync_single_for_device(host->dma_dev, 823 t->rx_dma, t->len, 824 DMA_FROM_DEVICE); 825 } 826 827 status = spi_sync_locked(spi, &host->m); 828 829 if (host->dma_dev) { 830 dma_sync_single_for_cpu(host->dma_dev, 831 host->data_dma, sizeof(*scratch), 832 DMA_BIDIRECTIONAL); 833 dma_sync_single_for_cpu(host->dma_dev, 834 t->rx_dma, t->len, 835 DMA_FROM_DEVICE); 836 } 837 838 if (bitshift) { 839 /* Walk through the data and the crc and do 840 * all the magic to get byte-aligned data. 841 */ 842 u8 *cp = t->rx_buf; 843 unsigned int len; 844 unsigned int bitright = 8 - bitshift; 845 u8 temp; 846 for (len = t->len; len; len--) { 847 temp = *cp; 848 *cp++ = leftover | (temp >> bitshift); 849 leftover = temp << bitright; 850 } 851 cp = (u8 *) &scratch->crc_val; 852 temp = *cp; 853 *cp++ = leftover | (temp >> bitshift); 854 leftover = temp << bitright; 855 temp = *cp; 856 *cp = leftover | (temp >> bitshift); 857 } 858 859 if (host->mmc->use_spi_crc) { 860 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 861 862 be16_to_cpus(&scratch->crc_val); 863 if (scratch->crc_val != crc) { 864 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 865 "computed=0x%04x len=%d\n", 866 scratch->crc_val, crc, t->len); 867 return -EILSEQ; 868 } 869 } 870 871 t->rx_buf += t->len; 872 if (host->dma_dev) 873 t->rx_dma += t->len; 874 875 return 0; 876 } 877 878 /* 879 * An MMC/SD data stage includes one or more blocks, optional CRCs, 880 * and inline handshaking. That handhaking makes it unlike most 881 * other SPI protocol stacks. 882 */ 883 static void 884 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 885 struct mmc_data *data, u32 blk_size) 886 { 887 struct spi_device *spi = host->spi; 888 struct device *dma_dev = host->dma_dev; 889 struct spi_transfer *t; 890 enum dma_data_direction direction; 891 struct scatterlist *sg; 892 unsigned n_sg; 893 int multiple = (data->blocks > 1); 894 u32 clock_rate; 895 unsigned long timeout; 896 897 if (data->flags & MMC_DATA_READ) 898 direction = DMA_FROM_DEVICE; 899 else 900 direction = DMA_TO_DEVICE; 901 mmc_spi_setup_data_message(host, multiple, direction); 902 t = &host->t; 903 904 if (t->speed_hz) 905 clock_rate = t->speed_hz; 906 else 907 clock_rate = spi->max_speed_hz; 908 909 timeout = data->timeout_ns + 910 data->timeout_clks * 1000000 / clock_rate; 911 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1; 912 913 /* Handle scatterlist segments one at a time, with synch for 914 * each 512-byte block 915 */ 916 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 917 int status = 0; 918 dma_addr_t dma_addr = 0; 919 void *kmap_addr; 920 unsigned length = sg->length; 921 enum dma_data_direction dir = direction; 922 923 /* set up dma mapping for controller drivers that might 924 * use DMA ... though they may fall back to PIO 925 */ 926 if (dma_dev) { 927 /* never invalidate whole *shared* pages ... */ 928 if ((sg->offset != 0 || length != PAGE_SIZE) 929 && dir == DMA_FROM_DEVICE) 930 dir = DMA_BIDIRECTIONAL; 931 932 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 933 PAGE_SIZE, dir); 934 if (direction == DMA_TO_DEVICE) 935 t->tx_dma = dma_addr + sg->offset; 936 else 937 t->rx_dma = dma_addr + sg->offset; 938 } 939 940 /* allow pio too; we don't allow highmem */ 941 kmap_addr = kmap(sg_page(sg)); 942 if (direction == DMA_TO_DEVICE) 943 t->tx_buf = kmap_addr + sg->offset; 944 else 945 t->rx_buf = kmap_addr + sg->offset; 946 947 /* transfer each block, and update request status */ 948 while (length) { 949 t->len = min(length, blk_size); 950 951 dev_dbg(&host->spi->dev, 952 " mmc_spi: %s block, %d bytes\n", 953 (direction == DMA_TO_DEVICE) 954 ? "write" 955 : "read", 956 t->len); 957 958 if (direction == DMA_TO_DEVICE) 959 status = mmc_spi_writeblock(host, t, timeout); 960 else 961 status = mmc_spi_readblock(host, t, timeout); 962 if (status < 0) 963 break; 964 965 data->bytes_xfered += t->len; 966 length -= t->len; 967 968 if (!multiple) 969 break; 970 } 971 972 /* discard mappings */ 973 if (direction == DMA_FROM_DEVICE) 974 flush_kernel_dcache_page(sg_page(sg)); 975 kunmap(sg_page(sg)); 976 if (dma_dev) 977 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 978 979 if (status < 0) { 980 data->error = status; 981 dev_dbg(&spi->dev, "%s status %d\n", 982 (direction == DMA_TO_DEVICE) 983 ? "write" : "read", 984 status); 985 break; 986 } 987 } 988 989 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 990 * can be issued before multiblock writes. Unlike its more widely 991 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 992 * that can affect the STOP_TRAN logic. Complete (and current) 993 * MMC specs should sort that out before Linux starts using CMD23. 994 */ 995 if (direction == DMA_TO_DEVICE && multiple) { 996 struct scratch *scratch = host->data; 997 int tmp; 998 const unsigned statlen = sizeof(scratch->status); 999 1000 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 1001 1002 /* Tweak the per-block message we set up earlier by morphing 1003 * it to hold single buffer with the token followed by some 1004 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 1005 * "not busy any longer" status, and leave chip selected. 1006 */ 1007 INIT_LIST_HEAD(&host->m.transfers); 1008 list_add(&host->early_status.transfer_list, 1009 &host->m.transfers); 1010 1011 memset(scratch->status, 0xff, statlen); 1012 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 1013 1014 host->early_status.tx_buf = host->early_status.rx_buf; 1015 host->early_status.tx_dma = host->early_status.rx_dma; 1016 host->early_status.len = statlen; 1017 1018 if (host->dma_dev) 1019 dma_sync_single_for_device(host->dma_dev, 1020 host->data_dma, sizeof(*scratch), 1021 DMA_BIDIRECTIONAL); 1022 1023 tmp = spi_sync_locked(spi, &host->m); 1024 1025 if (host->dma_dev) 1026 dma_sync_single_for_cpu(host->dma_dev, 1027 host->data_dma, sizeof(*scratch), 1028 DMA_BIDIRECTIONAL); 1029 1030 if (tmp < 0) { 1031 if (!data->error) 1032 data->error = tmp; 1033 return; 1034 } 1035 1036 /* Ideally we collected "not busy" status with one I/O, 1037 * avoiding wasteful byte-at-a-time scanning... but more 1038 * I/O is often needed. 1039 */ 1040 for (tmp = 2; tmp < statlen; tmp++) { 1041 if (scratch->status[tmp] != 0) 1042 return; 1043 } 1044 tmp = mmc_spi_wait_unbusy(host, timeout); 1045 if (tmp < 0 && !data->error) 1046 data->error = tmp; 1047 } 1048 } 1049 1050 /****************************************************************************/ 1051 1052 /* 1053 * MMC driver implementation -- the interface to the MMC stack 1054 */ 1055 1056 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 1057 { 1058 struct mmc_spi_host *host = mmc_priv(mmc); 1059 int status = -EINVAL; 1060 int crc_retry = 5; 1061 struct mmc_command stop; 1062 1063 #ifdef DEBUG 1064 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 1065 { 1066 struct mmc_command *cmd; 1067 int invalid = 0; 1068 1069 cmd = mrq->cmd; 1070 if (!mmc_spi_resp_type(cmd)) { 1071 dev_dbg(&host->spi->dev, "bogus command\n"); 1072 cmd->error = -EINVAL; 1073 invalid = 1; 1074 } 1075 1076 cmd = mrq->stop; 1077 if (cmd && !mmc_spi_resp_type(cmd)) { 1078 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 1079 cmd->error = -EINVAL; 1080 invalid = 1; 1081 } 1082 1083 if (invalid) { 1084 dump_stack(); 1085 mmc_request_done(host->mmc, mrq); 1086 return; 1087 } 1088 } 1089 #endif 1090 1091 /* request exclusive bus access */ 1092 spi_bus_lock(host->spi->master); 1093 1094 crc_recover: 1095 /* issue command; then optionally data and stop */ 1096 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 1097 if (status == 0 && mrq->data) { 1098 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 1099 1100 /* 1101 * The SPI bus is not always reliable for large data transfers. 1102 * If an occasional crc error is reported by the SD device with 1103 * data read/write over SPI, it may be recovered by repeating 1104 * the last SD command again. The retry count is set to 5 to 1105 * ensure the driver passes stress tests. 1106 */ 1107 if (mrq->data->error == -EILSEQ && crc_retry) { 1108 stop.opcode = MMC_STOP_TRANSMISSION; 1109 stop.arg = 0; 1110 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1111 status = mmc_spi_command_send(host, mrq, &stop, 0); 1112 crc_retry--; 1113 mrq->data->error = 0; 1114 goto crc_recover; 1115 } 1116 1117 if (mrq->stop) 1118 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 1119 else 1120 mmc_cs_off(host); 1121 } 1122 1123 /* release the bus */ 1124 spi_bus_unlock(host->spi->master); 1125 1126 mmc_request_done(host->mmc, mrq); 1127 } 1128 1129 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 1130 * 1131 * NOTE that here we can't know that the card has just been powered up; 1132 * not all MMC/SD sockets support power switching. 1133 * 1134 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 1135 * this doesn't seem to do the right thing at all... 1136 */ 1137 static void mmc_spi_initsequence(struct mmc_spi_host *host) 1138 { 1139 /* Try to be very sure any previous command has completed; 1140 * wait till not-busy, skip debris from any old commands. 1141 */ 1142 mmc_spi_wait_unbusy(host, r1b_timeout); 1143 mmc_spi_readbytes(host, 10); 1144 1145 /* 1146 * Do a burst with chipselect active-high. We need to do this to 1147 * meet the requirement of 74 clock cycles with both chipselect 1148 * and CMD (MOSI) high before CMD0 ... after the card has been 1149 * powered up to Vdd(min), and so is ready to take commands. 1150 * 1151 * Some cards are particularly needy of this (e.g. Viking "SD256") 1152 * while most others don't seem to care. 1153 * 1154 * Note that this is one of the places MMC/SD plays games with the 1155 * SPI protocol. Another is that when chipselect is released while 1156 * the card returns BUSY status, the clock must issue several cycles 1157 * with chipselect high before the card will stop driving its output. 1158 */ 1159 host->spi->mode |= SPI_CS_HIGH; 1160 if (spi_setup(host->spi) != 0) { 1161 /* Just warn; most cards work without it. */ 1162 dev_warn(&host->spi->dev, 1163 "can't change chip-select polarity\n"); 1164 host->spi->mode &= ~SPI_CS_HIGH; 1165 } else { 1166 mmc_spi_readbytes(host, 18); 1167 1168 host->spi->mode &= ~SPI_CS_HIGH; 1169 if (spi_setup(host->spi) != 0) { 1170 /* Wot, we can't get the same setup we had before? */ 1171 dev_err(&host->spi->dev, 1172 "can't restore chip-select polarity\n"); 1173 } 1174 } 1175 } 1176 1177 static char *mmc_powerstring(u8 power_mode) 1178 { 1179 switch (power_mode) { 1180 case MMC_POWER_OFF: return "off"; 1181 case MMC_POWER_UP: return "up"; 1182 case MMC_POWER_ON: return "on"; 1183 } 1184 return "?"; 1185 } 1186 1187 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1188 { 1189 struct mmc_spi_host *host = mmc_priv(mmc); 1190 1191 if (host->power_mode != ios->power_mode) { 1192 int canpower; 1193 1194 canpower = host->pdata && host->pdata->setpower; 1195 1196 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1197 mmc_powerstring(ios->power_mode), 1198 ios->vdd, 1199 canpower ? ", can switch" : ""); 1200 1201 /* switch power on/off if possible, accounting for 1202 * max 250msec powerup time if needed. 1203 */ 1204 if (canpower) { 1205 switch (ios->power_mode) { 1206 case MMC_POWER_OFF: 1207 case MMC_POWER_UP: 1208 host->pdata->setpower(&host->spi->dev, 1209 ios->vdd); 1210 if (ios->power_mode == MMC_POWER_UP) 1211 msleep(host->powerup_msecs); 1212 } 1213 } 1214 1215 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1216 if (ios->power_mode == MMC_POWER_ON) 1217 mmc_spi_initsequence(host); 1218 1219 /* If powering down, ground all card inputs to avoid power 1220 * delivery from data lines! On a shared SPI bus, this 1221 * will probably be temporary; 6.4.2 of the simplified SD 1222 * spec says this must last at least 1msec. 1223 * 1224 * - Clock low means CPOL 0, e.g. mode 0 1225 * - MOSI low comes from writing zero 1226 * - Chipselect is usually active low... 1227 */ 1228 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1229 int mres; 1230 u8 nullbyte = 0; 1231 1232 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1233 mres = spi_setup(host->spi); 1234 if (mres < 0) 1235 dev_dbg(&host->spi->dev, 1236 "switch to SPI mode 0 failed\n"); 1237 1238 if (spi_write(host->spi, &nullbyte, 1) < 0) 1239 dev_dbg(&host->spi->dev, 1240 "put spi signals to low failed\n"); 1241 1242 /* 1243 * Now clock should be low due to spi mode 0; 1244 * MOSI should be low because of written 0x00; 1245 * chipselect should be low (it is active low) 1246 * power supply is off, so now MMC is off too! 1247 * 1248 * FIXME no, chipselect can be high since the 1249 * device is inactive and SPI_CS_HIGH is clear... 1250 */ 1251 msleep(10); 1252 if (mres == 0) { 1253 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1254 mres = spi_setup(host->spi); 1255 if (mres < 0) 1256 dev_dbg(&host->spi->dev, 1257 "switch back to SPI mode 3" 1258 " failed\n"); 1259 } 1260 } 1261 1262 host->power_mode = ios->power_mode; 1263 } 1264 1265 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1266 int status; 1267 1268 host->spi->max_speed_hz = ios->clock; 1269 status = spi_setup(host->spi); 1270 dev_dbg(&host->spi->dev, 1271 "mmc_spi: clock to %d Hz, %d\n", 1272 host->spi->max_speed_hz, status); 1273 } 1274 } 1275 1276 static const struct mmc_host_ops mmc_spi_ops = { 1277 .request = mmc_spi_request, 1278 .set_ios = mmc_spi_set_ios, 1279 .get_ro = mmc_gpio_get_ro, 1280 .get_cd = mmc_gpio_get_cd, 1281 }; 1282 1283 1284 /****************************************************************************/ 1285 1286 /* 1287 * SPI driver implementation 1288 */ 1289 1290 static irqreturn_t 1291 mmc_spi_detect_irq(int irq, void *mmc) 1292 { 1293 struct mmc_spi_host *host = mmc_priv(mmc); 1294 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1295 1296 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1297 return IRQ_HANDLED; 1298 } 1299 1300 static int mmc_spi_probe(struct spi_device *spi) 1301 { 1302 void *ones; 1303 struct mmc_host *mmc; 1304 struct mmc_spi_host *host; 1305 int status; 1306 bool has_ro = false; 1307 1308 /* We rely on full duplex transfers, mostly to reduce 1309 * per-transfer overheads (by making fewer transfers). 1310 */ 1311 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) 1312 return -EINVAL; 1313 1314 /* MMC and SD specs only seem to care that sampling is on the 1315 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1316 * should be legit. We'll use mode 0 since the steady state is 0, 1317 * which is appropriate for hotplugging, unless the platform data 1318 * specify mode 3 (if hardware is not compatible to mode 0). 1319 */ 1320 if (spi->mode != SPI_MODE_3) 1321 spi->mode = SPI_MODE_0; 1322 spi->bits_per_word = 8; 1323 1324 status = spi_setup(spi); 1325 if (status < 0) { 1326 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1327 spi->mode, spi->max_speed_hz / 1000, 1328 status); 1329 return status; 1330 } 1331 1332 /* We need a supply of ones to transmit. This is the only time 1333 * the CPU touches these, so cache coherency isn't a concern. 1334 * 1335 * NOTE if many systems use more than one MMC-over-SPI connector 1336 * it'd save some memory to share this. That's evidently rare. 1337 */ 1338 status = -ENOMEM; 1339 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1340 if (!ones) 1341 goto nomem; 1342 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1343 1344 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1345 if (!mmc) 1346 goto nomem; 1347 1348 mmc->ops = &mmc_spi_ops; 1349 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1350 mmc->max_segs = MMC_SPI_BLOCKSATONCE; 1351 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1352 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1353 1354 mmc->caps = MMC_CAP_SPI; 1355 1356 /* SPI doesn't need the lowspeed device identification thing for 1357 * MMC or SD cards, since it never comes up in open drain mode. 1358 * That's good; some SPI masters can't handle very low speeds! 1359 * 1360 * However, low speed SDIO cards need not handle over 400 KHz; 1361 * that's the only reason not to use a few MHz for f_min (until 1362 * the upper layer reads the target frequency from the CSD). 1363 */ 1364 mmc->f_min = 400000; 1365 mmc->f_max = spi->max_speed_hz; 1366 1367 host = mmc_priv(mmc); 1368 host->mmc = mmc; 1369 host->spi = spi; 1370 1371 host->ones = ones; 1372 1373 /* Platform data is used to hook up things like card sensing 1374 * and power switching gpios. 1375 */ 1376 host->pdata = mmc_spi_get_pdata(spi); 1377 if (host->pdata) 1378 mmc->ocr_avail = host->pdata->ocr_mask; 1379 if (!mmc->ocr_avail) { 1380 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1381 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1382 } 1383 if (host->pdata && host->pdata->setpower) { 1384 host->powerup_msecs = host->pdata->powerup_msecs; 1385 if (!host->powerup_msecs || host->powerup_msecs > 250) 1386 host->powerup_msecs = 250; 1387 } 1388 1389 dev_set_drvdata(&spi->dev, mmc); 1390 1391 /* preallocate dma buffers */ 1392 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1393 if (!host->data) 1394 goto fail_nobuf1; 1395 1396 if (spi->master->dev.parent->dma_mask) { 1397 struct device *dev = spi->master->dev.parent; 1398 1399 host->dma_dev = dev; 1400 host->ones_dma = dma_map_single(dev, ones, 1401 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1402 host->data_dma = dma_map_single(dev, host->data, 1403 sizeof(*host->data), DMA_BIDIRECTIONAL); 1404 1405 /* REVISIT in theory those map operations can fail... */ 1406 1407 dma_sync_single_for_cpu(host->dma_dev, 1408 host->data_dma, sizeof(*host->data), 1409 DMA_BIDIRECTIONAL); 1410 } 1411 1412 /* setup message for status/busy readback */ 1413 spi_message_init(&host->readback); 1414 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1415 1416 spi_message_add_tail(&host->status, &host->readback); 1417 host->status.tx_buf = host->ones; 1418 host->status.tx_dma = host->ones_dma; 1419 host->status.rx_buf = &host->data->status; 1420 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1421 host->status.cs_change = 1; 1422 1423 /* register card detect irq */ 1424 if (host->pdata && host->pdata->init) { 1425 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1426 if (status != 0) 1427 goto fail_glue_init; 1428 } 1429 1430 /* pass platform capabilities, if any */ 1431 if (host->pdata) { 1432 mmc->caps |= host->pdata->caps; 1433 mmc->caps2 |= host->pdata->caps2; 1434 } 1435 1436 status = mmc_add_host(mmc); 1437 if (status != 0) 1438 goto fail_add_host; 1439 1440 if (host->pdata && host->pdata->flags & MMC_SPI_USE_CD_GPIO) { 1441 status = mmc_gpio_request_cd(mmc, host->pdata->cd_gpio, 1442 host->pdata->cd_debounce); 1443 if (status != 0) 1444 goto fail_add_host; 1445 } 1446 1447 if (host->pdata && host->pdata->flags & MMC_SPI_USE_RO_GPIO) { 1448 has_ro = true; 1449 status = mmc_gpio_request_ro(mmc, host->pdata->ro_gpio); 1450 if (status != 0) 1451 goto fail_add_host; 1452 } 1453 1454 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1455 dev_name(&mmc->class_dev), 1456 host->dma_dev ? "" : ", no DMA", 1457 has_ro ? "" : ", no WP", 1458 (host->pdata && host->pdata->setpower) 1459 ? "" : ", no poweroff", 1460 (mmc->caps & MMC_CAP_NEEDS_POLL) 1461 ? ", cd polling" : ""); 1462 return 0; 1463 1464 fail_add_host: 1465 mmc_remove_host (mmc); 1466 fail_glue_init: 1467 if (host->dma_dev) 1468 dma_unmap_single(host->dma_dev, host->data_dma, 1469 sizeof(*host->data), DMA_BIDIRECTIONAL); 1470 kfree(host->data); 1471 1472 fail_nobuf1: 1473 mmc_free_host(mmc); 1474 mmc_spi_put_pdata(spi); 1475 dev_set_drvdata(&spi->dev, NULL); 1476 1477 nomem: 1478 kfree(ones); 1479 return status; 1480 } 1481 1482 1483 static int mmc_spi_remove(struct spi_device *spi) 1484 { 1485 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1486 struct mmc_spi_host *host; 1487 1488 if (mmc) { 1489 host = mmc_priv(mmc); 1490 1491 /* prevent new mmc_detect_change() calls */ 1492 if (host->pdata && host->pdata->exit) 1493 host->pdata->exit(&spi->dev, mmc); 1494 1495 mmc_remove_host(mmc); 1496 1497 if (host->dma_dev) { 1498 dma_unmap_single(host->dma_dev, host->ones_dma, 1499 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1500 dma_unmap_single(host->dma_dev, host->data_dma, 1501 sizeof(*host->data), DMA_BIDIRECTIONAL); 1502 } 1503 1504 kfree(host->data); 1505 kfree(host->ones); 1506 1507 spi->max_speed_hz = mmc->f_max; 1508 mmc_free_host(mmc); 1509 mmc_spi_put_pdata(spi); 1510 dev_set_drvdata(&spi->dev, NULL); 1511 } 1512 return 0; 1513 } 1514 1515 static struct of_device_id mmc_spi_of_match_table[] = { 1516 { .compatible = "mmc-spi-slot", }, 1517 {}, 1518 }; 1519 1520 static struct spi_driver mmc_spi_driver = { 1521 .driver = { 1522 .name = "mmc_spi", 1523 .owner = THIS_MODULE, 1524 .of_match_table = mmc_spi_of_match_table, 1525 }, 1526 .probe = mmc_spi_probe, 1527 .remove = mmc_spi_remove, 1528 }; 1529 1530 module_spi_driver(mmc_spi_driver); 1531 1532 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1533 "Hans-Peter Nilsson, Jan Nikitenko"); 1534 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1535 MODULE_LICENSE("GPL"); 1536 MODULE_ALIAS("spi:mmc_spi"); 1537