xref: /openbmc/linux/drivers/mmc/host/mmc_spi.c (revision 54525552)
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/bio.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/crc7.h>
33 #include <linux/crc-itu-t.h>
34 #include <linux/scatterlist.h>
35 
36 #include <linux/mmc/host.h>
37 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
38 
39 #include <linux/spi/spi.h>
40 #include <linux/spi/mmc_spi.h>
41 
42 #include <asm/unaligned.h>
43 
44 
45 /* NOTES:
46  *
47  * - For now, we won't try to interoperate with a real mmc/sd/sdio
48  *   controller, although some of them do have hardware support for
49  *   SPI protocol.  The main reason for such configs would be mmc-ish
50  *   cards like DataFlash, which don't support that "native" protocol.
51  *
52  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
53  *   switch between driver stacks, and in any case if "native" mode
54  *   is available, it will be faster and hence preferable.
55  *
56  * - MMC depends on a different chipselect management policy than the
57  *   SPI interface currently supports for shared bus segments:  it needs
58  *   to issue multiple spi_message requests with the chipselect active,
59  *   using the results of one message to decide the next one to issue.
60  *
61  *   Pending updates to the programming interface, this driver expects
62  *   that it not share the bus with other drivers (precluding conflicts).
63  *
64  * - We tell the controller to keep the chipselect active from the
65  *   beginning of an mmc_host_ops.request until the end.  So beware
66  *   of SPI controller drivers that mis-handle the cs_change flag!
67  *
68  *   However, many cards seem OK with chipselect flapping up/down
69  *   during that time ... at least on unshared bus segments.
70  */
71 
72 
73 /*
74  * Local protocol constants, internal to data block protocols.
75  */
76 
77 /* Response tokens used to ack each block written: */
78 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
79 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
80 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
81 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
82 
83 /* Read and write blocks start with these tokens and end with crc;
84  * on error, read tokens act like a subset of R2_SPI_* values.
85  */
86 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
87 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
88 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
89 
90 #define MMC_SPI_BLOCKSIZE	512
91 
92 
93 /* These fixed timeouts come from the latest SD specs, which say to ignore
94  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
95  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
96  * reads which takes nowhere near that long.  Older cards may be able to use
97  * shorter timeouts ... but why bother?
98  */
99 #define r1b_timeout		(HZ * 3)
100 
101 /* One of the critical speed parameters is the amount of data which may
102  * be transferred in one command. If this value is too low, the SD card
103  * controller has to do multiple partial block writes (argggh!). With
104  * today (2008) SD cards there is little speed gain if we transfer more
105  * than 64 KBytes at a time. So use this value until there is any indication
106  * that we should do more here.
107  */
108 #define MMC_SPI_BLOCKSATONCE	128
109 
110 /****************************************************************************/
111 
112 /*
113  * Local Data Structures
114  */
115 
116 /* "scratch" is per-{command,block} data exchanged with the card */
117 struct scratch {
118 	u8			status[29];
119 	u8			data_token;
120 	__be16			crc_val;
121 };
122 
123 struct mmc_spi_host {
124 	struct mmc_host		*mmc;
125 	struct spi_device	*spi;
126 
127 	unsigned char		power_mode;
128 	u16			powerup_msecs;
129 
130 	struct mmc_spi_platform_data	*pdata;
131 
132 	/* for bulk data transfers */
133 	struct spi_transfer	token, t, crc, early_status;
134 	struct spi_message	m;
135 
136 	/* for status readback */
137 	struct spi_transfer	status;
138 	struct spi_message	readback;
139 
140 	/* underlying DMA-aware controller, or null */
141 	struct device		*dma_dev;
142 
143 	/* buffer used for commands and for message "overhead" */
144 	struct scratch		*data;
145 	dma_addr_t		data_dma;
146 
147 	/* Specs say to write ones most of the time, even when the card
148 	 * has no need to read its input data; and many cards won't care.
149 	 * This is our source of those ones.
150 	 */
151 	void			*ones;
152 	dma_addr_t		ones_dma;
153 };
154 
155 
156 /****************************************************************************/
157 
158 /*
159  * MMC-over-SPI protocol glue, used by the MMC stack interface
160  */
161 
162 static inline int mmc_cs_off(struct mmc_spi_host *host)
163 {
164 	/* chipselect will always be inactive after setup() */
165 	return spi_setup(host->spi);
166 }
167 
168 static int
169 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
170 {
171 	int status;
172 
173 	if (len > sizeof(*host->data)) {
174 		WARN_ON(1);
175 		return -EIO;
176 	}
177 
178 	host->status.len = len;
179 
180 	if (host->dma_dev)
181 		dma_sync_single_for_device(host->dma_dev,
182 				host->data_dma, sizeof(*host->data),
183 				DMA_FROM_DEVICE);
184 
185 	status = spi_sync_locked(host->spi, &host->readback);
186 
187 	if (host->dma_dev)
188 		dma_sync_single_for_cpu(host->dma_dev,
189 				host->data_dma, sizeof(*host->data),
190 				DMA_FROM_DEVICE);
191 
192 	return status;
193 }
194 
195 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
196 			unsigned n, u8 byte)
197 {
198 	u8		*cp = host->data->status;
199 	unsigned long start = jiffies;
200 
201 	while (1) {
202 		int		status;
203 		unsigned	i;
204 
205 		status = mmc_spi_readbytes(host, n);
206 		if (status < 0)
207 			return status;
208 
209 		for (i = 0; i < n; i++) {
210 			if (cp[i] != byte)
211 				return cp[i];
212 		}
213 
214 		if (time_is_before_jiffies(start + timeout))
215 			break;
216 
217 		/* If we need long timeouts, we may release the CPU.
218 		 * We use jiffies here because we want to have a relation
219 		 * between elapsed time and the blocking of the scheduler.
220 		 */
221 		if (time_is_before_jiffies(start+1))
222 			schedule();
223 	}
224 	return -ETIMEDOUT;
225 }
226 
227 static inline int
228 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
229 {
230 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
231 }
232 
233 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
234 {
235 	return mmc_spi_skip(host, timeout, 1, 0xff);
236 }
237 
238 
239 /*
240  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
241  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
242  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
243  *
244  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
245  * newer cards R7 (IF_COND).
246  */
247 
248 static char *maptype(struct mmc_command *cmd)
249 {
250 	switch (mmc_spi_resp_type(cmd)) {
251 	case MMC_RSP_SPI_R1:	return "R1";
252 	case MMC_RSP_SPI_R1B:	return "R1B";
253 	case MMC_RSP_SPI_R2:	return "R2/R5";
254 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
255 	default:		return "?";
256 	}
257 }
258 
259 /* return zero, else negative errno after setting cmd->error */
260 static int mmc_spi_response_get(struct mmc_spi_host *host,
261 		struct mmc_command *cmd, int cs_on)
262 {
263 	u8	*cp = host->data->status;
264 	u8	*end = cp + host->t.len;
265 	int	value = 0;
266 	int	bitshift;
267 	u8 	leftover = 0;
268 	unsigned short rotator;
269 	int 	i;
270 	char	tag[32];
271 
272 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
273 		cmd->opcode, maptype(cmd));
274 
275 	/* Except for data block reads, the whole response will already
276 	 * be stored in the scratch buffer.  It's somewhere after the
277 	 * command and the first byte we read after it.  We ignore that
278 	 * first byte.  After STOP_TRANSMISSION command it may include
279 	 * two data bits, but otherwise it's all ones.
280 	 */
281 	cp += 8;
282 	while (cp < end && *cp == 0xff)
283 		cp++;
284 
285 	/* Data block reads (R1 response types) may need more data... */
286 	if (cp == end) {
287 		cp = host->data->status;
288 		end = cp+1;
289 
290 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
291 		 * status byte ... and we already scanned 2 bytes.
292 		 *
293 		 * REVISIT block read paths use nasty byte-at-a-time I/O
294 		 * so it can always DMA directly into the target buffer.
295 		 * It'd probably be better to memcpy() the first chunk and
296 		 * avoid extra i/o calls...
297 		 *
298 		 * Note we check for more than 8 bytes, because in practice,
299 		 * some SD cards are slow...
300 		 */
301 		for (i = 2; i < 16; i++) {
302 			value = mmc_spi_readbytes(host, 1);
303 			if (value < 0)
304 				goto done;
305 			if (*cp != 0xff)
306 				goto checkstatus;
307 		}
308 		value = -ETIMEDOUT;
309 		goto done;
310 	}
311 
312 checkstatus:
313 	bitshift = 0;
314 	if (*cp & 0x80)	{
315 		/* Houston, we have an ugly card with a bit-shifted response */
316 		rotator = *cp++ << 8;
317 		/* read the next byte */
318 		if (cp == end) {
319 			value = mmc_spi_readbytes(host, 1);
320 			if (value < 0)
321 				goto done;
322 			cp = host->data->status;
323 			end = cp+1;
324 		}
325 		rotator |= *cp++;
326 		while (rotator & 0x8000) {
327 			bitshift++;
328 			rotator <<= 1;
329 		}
330 		cmd->resp[0] = rotator >> 8;
331 		leftover = rotator;
332 	} else {
333 		cmd->resp[0] = *cp++;
334 	}
335 	cmd->error = 0;
336 
337 	/* Status byte: the entire seven-bit R1 response.  */
338 	if (cmd->resp[0] != 0) {
339 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
340 				& cmd->resp[0])
341 			value = -EFAULT; /* Bad address */
342 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
343 			value = -ENOSYS; /* Function not implemented */
344 		else if (R1_SPI_COM_CRC & cmd->resp[0])
345 			value = -EILSEQ; /* Illegal byte sequence */
346 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
347 				& cmd->resp[0])
348 			value = -EIO;    /* I/O error */
349 		/* else R1_SPI_IDLE, "it's resetting" */
350 	}
351 
352 	switch (mmc_spi_resp_type(cmd)) {
353 
354 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
355 	 * and less-common stuff like various erase operations.
356 	 */
357 	case MMC_RSP_SPI_R1B:
358 		/* maybe we read all the busy tokens already */
359 		while (cp < end && *cp == 0)
360 			cp++;
361 		if (cp == end)
362 			mmc_spi_wait_unbusy(host, r1b_timeout);
363 		break;
364 
365 	/* SPI R2 == R1 + second status byte; SEND_STATUS
366 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
367 	 */
368 	case MMC_RSP_SPI_R2:
369 		/* read the next byte */
370 		if (cp == end) {
371 			value = mmc_spi_readbytes(host, 1);
372 			if (value < 0)
373 				goto done;
374 			cp = host->data->status;
375 			end = cp+1;
376 		}
377 		if (bitshift) {
378 			rotator = leftover << 8;
379 			rotator |= *cp << bitshift;
380 			cmd->resp[0] |= (rotator & 0xFF00);
381 		} else {
382 			cmd->resp[0] |= *cp << 8;
383 		}
384 		break;
385 
386 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
387 	case MMC_RSP_SPI_R3:
388 		rotator = leftover << 8;
389 		cmd->resp[1] = 0;
390 		for (i = 0; i < 4; i++) {
391 			cmd->resp[1] <<= 8;
392 			/* read the next byte */
393 			if (cp == end) {
394 				value = mmc_spi_readbytes(host, 1);
395 				if (value < 0)
396 					goto done;
397 				cp = host->data->status;
398 				end = cp+1;
399 			}
400 			if (bitshift) {
401 				rotator |= *cp++ << bitshift;
402 				cmd->resp[1] |= (rotator >> 8);
403 				rotator <<= 8;
404 			} else {
405 				cmd->resp[1] |= *cp++;
406 			}
407 		}
408 		break;
409 
410 	/* SPI R1 == just one status byte */
411 	case MMC_RSP_SPI_R1:
412 		break;
413 
414 	default:
415 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
416 				mmc_spi_resp_type(cmd));
417 		if (value >= 0)
418 			value = -EINVAL;
419 		goto done;
420 	}
421 
422 	if (value < 0)
423 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
424 			tag, cmd->resp[0], cmd->resp[1]);
425 
426 	/* disable chipselect on errors and some success cases */
427 	if (value >= 0 && cs_on)
428 		return value;
429 done:
430 	if (value < 0)
431 		cmd->error = value;
432 	mmc_cs_off(host);
433 	return value;
434 }
435 
436 /* Issue command and read its response.
437  * Returns zero on success, negative for error.
438  *
439  * On error, caller must cope with mmc core retry mechanism.  That
440  * means immediate low-level resubmit, which affects the bus lock...
441  */
442 static int
443 mmc_spi_command_send(struct mmc_spi_host *host,
444 		struct mmc_request *mrq,
445 		struct mmc_command *cmd, int cs_on)
446 {
447 	struct scratch		*data = host->data;
448 	u8			*cp = data->status;
449 	u32			arg = cmd->arg;
450 	int			status;
451 	struct spi_transfer	*t;
452 
453 	/* We can handle most commands (except block reads) in one full
454 	 * duplex I/O operation before either starting the next transfer
455 	 * (data block or command) or else deselecting the card.
456 	 *
457 	 * First, write 7 bytes:
458 	 *  - an all-ones byte to ensure the card is ready
459 	 *  - opcode byte (plus start and transmission bits)
460 	 *  - four bytes of big-endian argument
461 	 *  - crc7 (plus end bit) ... always computed, it's cheap
462 	 *
463 	 * We init the whole buffer to all-ones, which is what we need
464 	 * to write while we're reading (later) response data.
465 	 */
466 	memset(cp++, 0xff, sizeof(data->status));
467 
468 	*cp++ = 0x40 | cmd->opcode;
469 	*cp++ = (u8)(arg >> 24);
470 	*cp++ = (u8)(arg >> 16);
471 	*cp++ = (u8)(arg >> 8);
472 	*cp++ = (u8)arg;
473 	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
474 
475 	/* Then, read up to 13 bytes (while writing all-ones):
476 	 *  - N(CR) (== 1..8) bytes of all-ones
477 	 *  - status byte (for all response types)
478 	 *  - the rest of the response, either:
479 	 *      + nothing, for R1 or R1B responses
480 	 *	+ second status byte, for R2 responses
481 	 *	+ four data bytes, for R3 and R7 responses
482 	 *
483 	 * Finally, read some more bytes ... in the nice cases we know in
484 	 * advance how many, and reading 1 more is always OK:
485 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
486 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
487 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
488 	 *
489 	 * So in those cases one full duplex I/O of at most 21 bytes will
490 	 * handle the whole command, leaving the card ready to receive a
491 	 * data block or new command.  We do that whenever we can, shaving
492 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
493 	 *
494 	 * There are two other cases, where it's not generally practical
495 	 * to rely on a single I/O:
496 	 *
497 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
498 	 *
499 	 *    In this case we can *try* to fit it into one I/O, then
500 	 *    maybe read more data later.
501 	 *
502 	 *  - Data block reads are more troublesome, since a variable
503 	 *    number of padding bytes precede the token and data.
504 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
505 	 *      + N(AC) (== 1..many) bytes of all-ones
506 	 *
507 	 *    In this case we currently only have minimal speedups here:
508 	 *    when N(CR) == 1 we can avoid I/O in response_get().
509 	 */
510 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
511 		cp += 2;	/* min(N(CR)) + status */
512 		/* R1 */
513 	} else {
514 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
515 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
516 			cp++;
517 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
518 			cp += 4;
519 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
520 			cp = data->status + sizeof(data->status);
521 		/* else:  R1 (most commands) */
522 	}
523 
524 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
525 		cmd->opcode, maptype(cmd));
526 
527 	/* send command, leaving chipselect active */
528 	spi_message_init(&host->m);
529 
530 	t = &host->t;
531 	memset(t, 0, sizeof(*t));
532 	t->tx_buf = t->rx_buf = data->status;
533 	t->tx_dma = t->rx_dma = host->data_dma;
534 	t->len = cp - data->status;
535 	t->cs_change = 1;
536 	spi_message_add_tail(t, &host->m);
537 
538 	if (host->dma_dev) {
539 		host->m.is_dma_mapped = 1;
540 		dma_sync_single_for_device(host->dma_dev,
541 				host->data_dma, sizeof(*host->data),
542 				DMA_BIDIRECTIONAL);
543 	}
544 	status = spi_sync_locked(host->spi, &host->m);
545 
546 	if (host->dma_dev)
547 		dma_sync_single_for_cpu(host->dma_dev,
548 				host->data_dma, sizeof(*host->data),
549 				DMA_BIDIRECTIONAL);
550 	if (status < 0) {
551 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
552 		cmd->error = status;
553 		return status;
554 	}
555 
556 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
557 	return mmc_spi_response_get(host, cmd, cs_on);
558 }
559 
560 /* Build data message with up to four separate transfers.  For TX, we
561  * start by writing the data token.  And in most cases, we finish with
562  * a status transfer.
563  *
564  * We always provide TX data for data and CRC.  The MMC/SD protocol
565  * requires us to write ones; but Linux defaults to writing zeroes;
566  * so we explicitly initialize it to all ones on RX paths.
567  *
568  * We also handle DMA mapping, so the underlying SPI controller does
569  * not need to (re)do it for each message.
570  */
571 static void
572 mmc_spi_setup_data_message(
573 	struct mmc_spi_host	*host,
574 	int			multiple,
575 	enum dma_data_direction	direction)
576 {
577 	struct spi_transfer	*t;
578 	struct scratch		*scratch = host->data;
579 	dma_addr_t		dma = host->data_dma;
580 
581 	spi_message_init(&host->m);
582 	if (dma)
583 		host->m.is_dma_mapped = 1;
584 
585 	/* for reads, readblock() skips 0xff bytes before finding
586 	 * the token; for writes, this transfer issues that token.
587 	 */
588 	if (direction == DMA_TO_DEVICE) {
589 		t = &host->token;
590 		memset(t, 0, sizeof(*t));
591 		t->len = 1;
592 		if (multiple)
593 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
594 		else
595 			scratch->data_token = SPI_TOKEN_SINGLE;
596 		t->tx_buf = &scratch->data_token;
597 		if (dma)
598 			t->tx_dma = dma + offsetof(struct scratch, data_token);
599 		spi_message_add_tail(t, &host->m);
600 	}
601 
602 	/* Body of transfer is buffer, then CRC ...
603 	 * either TX-only, or RX with TX-ones.
604 	 */
605 	t = &host->t;
606 	memset(t, 0, sizeof(*t));
607 	t->tx_buf = host->ones;
608 	t->tx_dma = host->ones_dma;
609 	/* length and actual buffer info are written later */
610 	spi_message_add_tail(t, &host->m);
611 
612 	t = &host->crc;
613 	memset(t, 0, sizeof(*t));
614 	t->len = 2;
615 	if (direction == DMA_TO_DEVICE) {
616 		/* the actual CRC may get written later */
617 		t->tx_buf = &scratch->crc_val;
618 		if (dma)
619 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
620 	} else {
621 		t->tx_buf = host->ones;
622 		t->tx_dma = host->ones_dma;
623 		t->rx_buf = &scratch->crc_val;
624 		if (dma)
625 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
626 	}
627 	spi_message_add_tail(t, &host->m);
628 
629 	/*
630 	 * A single block read is followed by N(EC) [0+] all-ones bytes
631 	 * before deselect ... don't bother.
632 	 *
633 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
634 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
635 	 * collect that single byte, so readblock() doesn't need to.
636 	 *
637 	 * For a write, the one-byte data response follows immediately, then
638 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
639 	 * Then single block reads may deselect, and multiblock ones issue
640 	 * the next token (next data block, or STOP_TRAN).  We can try to
641 	 * minimize I/O ops by using a single read to collect end-of-busy.
642 	 */
643 	if (multiple || direction == DMA_TO_DEVICE) {
644 		t = &host->early_status;
645 		memset(t, 0, sizeof(*t));
646 		t->len = (direction == DMA_TO_DEVICE)
647 				? sizeof(scratch->status)
648 				: 1;
649 		t->tx_buf = host->ones;
650 		t->tx_dma = host->ones_dma;
651 		t->rx_buf = scratch->status;
652 		if (dma)
653 			t->rx_dma = dma + offsetof(struct scratch, status);
654 		t->cs_change = 1;
655 		spi_message_add_tail(t, &host->m);
656 	}
657 }
658 
659 /*
660  * Write one block:
661  *  - caller handled preceding N(WR) [1+] all-ones bytes
662  *  - data block
663  *	+ token
664  *	+ data bytes
665  *	+ crc16
666  *  - an all-ones byte ... card writes a data-response byte
667  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
668  *
669  * Return negative errno, else success.
670  */
671 static int
672 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
673 	unsigned long timeout)
674 {
675 	struct spi_device	*spi = host->spi;
676 	int			status, i;
677 	struct scratch		*scratch = host->data;
678 	u32			pattern;
679 
680 	if (host->mmc->use_spi_crc)
681 		scratch->crc_val = cpu_to_be16(
682 				crc_itu_t(0, t->tx_buf, t->len));
683 	if (host->dma_dev)
684 		dma_sync_single_for_device(host->dma_dev,
685 				host->data_dma, sizeof(*scratch),
686 				DMA_BIDIRECTIONAL);
687 
688 	status = spi_sync_locked(spi, &host->m);
689 
690 	if (status != 0) {
691 		dev_dbg(&spi->dev, "write error (%d)\n", status);
692 		return status;
693 	}
694 
695 	if (host->dma_dev)
696 		dma_sync_single_for_cpu(host->dma_dev,
697 				host->data_dma, sizeof(*scratch),
698 				DMA_BIDIRECTIONAL);
699 
700 	/*
701 	 * Get the transmission data-response reply.  It must follow
702 	 * immediately after the data block we transferred.  This reply
703 	 * doesn't necessarily tell whether the write operation succeeded;
704 	 * it just says if the transmission was ok and whether *earlier*
705 	 * writes succeeded; see the standard.
706 	 *
707 	 * In practice, there are (even modern SDHC-)cards which are late
708 	 * in sending the response, and miss the time frame by a few bits,
709 	 * so we have to cope with this situation and check the response
710 	 * bit-by-bit. Arggh!!!
711 	 */
712 	pattern  = scratch->status[0] << 24;
713 	pattern |= scratch->status[1] << 16;
714 	pattern |= scratch->status[2] << 8;
715 	pattern |= scratch->status[3];
716 
717 	/* First 3 bit of pattern are undefined */
718 	pattern |= 0xE0000000;
719 
720 	/* left-adjust to leading 0 bit */
721 	while (pattern & 0x80000000)
722 		pattern <<= 1;
723 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
724 	pattern >>= 27;
725 
726 	switch (pattern) {
727 	case SPI_RESPONSE_ACCEPTED:
728 		status = 0;
729 		break;
730 	case SPI_RESPONSE_CRC_ERR:
731 		/* host shall then issue MMC_STOP_TRANSMISSION */
732 		status = -EILSEQ;
733 		break;
734 	case SPI_RESPONSE_WRITE_ERR:
735 		/* host shall then issue MMC_STOP_TRANSMISSION,
736 		 * and should MMC_SEND_STATUS to sort it out
737 		 */
738 		status = -EIO;
739 		break;
740 	default:
741 		status = -EPROTO;
742 		break;
743 	}
744 	if (status != 0) {
745 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
746 			scratch->status[0], status);
747 		return status;
748 	}
749 
750 	t->tx_buf += t->len;
751 	if (host->dma_dev)
752 		t->tx_dma += t->len;
753 
754 	/* Return when not busy.  If we didn't collect that status yet,
755 	 * we'll need some more I/O.
756 	 */
757 	for (i = 4; i < sizeof(scratch->status); i++) {
758 		/* card is non-busy if the most recent bit is 1 */
759 		if (scratch->status[i] & 0x01)
760 			return 0;
761 	}
762 	return mmc_spi_wait_unbusy(host, timeout);
763 }
764 
765 /*
766  * Read one block:
767  *  - skip leading all-ones bytes ... either
768  *      + N(AC) [1..f(clock,CSD)] usually, else
769  *      + N(CX) [0..8] when reading CSD or CID
770  *  - data block
771  *	+ token ... if error token, no data or crc
772  *	+ data bytes
773  *	+ crc16
774  *
775  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
776  * before dropping chipselect.
777  *
778  * For multiblock reads, caller either reads the next block or issues a
779  * STOP_TRANSMISSION command.
780  */
781 static int
782 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
783 	unsigned long timeout)
784 {
785 	struct spi_device	*spi = host->spi;
786 	int			status;
787 	struct scratch		*scratch = host->data;
788 	unsigned int 		bitshift;
789 	u8			leftover;
790 
791 	/* At least one SD card sends an all-zeroes byte when N(CX)
792 	 * applies, before the all-ones bytes ... just cope with that.
793 	 */
794 	status = mmc_spi_readbytes(host, 1);
795 	if (status < 0)
796 		return status;
797 	status = scratch->status[0];
798 	if (status == 0xff || status == 0)
799 		status = mmc_spi_readtoken(host, timeout);
800 
801 	if (status < 0) {
802 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
803 		return status;
804 	}
805 
806 	/* The token may be bit-shifted...
807 	 * the first 0-bit precedes the data stream.
808 	 */
809 	bitshift = 7;
810 	while (status & 0x80) {
811 		status <<= 1;
812 		bitshift--;
813 	}
814 	leftover = status << 1;
815 
816 	if (host->dma_dev) {
817 		dma_sync_single_for_device(host->dma_dev,
818 				host->data_dma, sizeof(*scratch),
819 				DMA_BIDIRECTIONAL);
820 		dma_sync_single_for_device(host->dma_dev,
821 				t->rx_dma, t->len,
822 				DMA_FROM_DEVICE);
823 	}
824 
825 	status = spi_sync_locked(spi, &host->m);
826 
827 	if (host->dma_dev) {
828 		dma_sync_single_for_cpu(host->dma_dev,
829 				host->data_dma, sizeof(*scratch),
830 				DMA_BIDIRECTIONAL);
831 		dma_sync_single_for_cpu(host->dma_dev,
832 				t->rx_dma, t->len,
833 				DMA_FROM_DEVICE);
834 	}
835 
836 	if (bitshift) {
837 		/* Walk through the data and the crc and do
838 		 * all the magic to get byte-aligned data.
839 		 */
840 		u8 *cp = t->rx_buf;
841 		unsigned int len;
842 		unsigned int bitright = 8 - bitshift;
843 		u8 temp;
844 		for (len = t->len; len; len--) {
845 			temp = *cp;
846 			*cp++ = leftover | (temp >> bitshift);
847 			leftover = temp << bitright;
848 		}
849 		cp = (u8 *) &scratch->crc_val;
850 		temp = *cp;
851 		*cp++ = leftover | (temp >> bitshift);
852 		leftover = temp << bitright;
853 		temp = *cp;
854 		*cp = leftover | (temp >> bitshift);
855 	}
856 
857 	if (host->mmc->use_spi_crc) {
858 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
859 
860 		be16_to_cpus(&scratch->crc_val);
861 		if (scratch->crc_val != crc) {
862 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
863 					"computed=0x%04x len=%d\n",
864 					scratch->crc_val, crc, t->len);
865 			return -EILSEQ;
866 		}
867 	}
868 
869 	t->rx_buf += t->len;
870 	if (host->dma_dev)
871 		t->rx_dma += t->len;
872 
873 	return 0;
874 }
875 
876 /*
877  * An MMC/SD data stage includes one or more blocks, optional CRCs,
878  * and inline handshaking.  That handhaking makes it unlike most
879  * other SPI protocol stacks.
880  */
881 static void
882 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
883 		struct mmc_data *data, u32 blk_size)
884 {
885 	struct spi_device	*spi = host->spi;
886 	struct device		*dma_dev = host->dma_dev;
887 	struct spi_transfer	*t;
888 	enum dma_data_direction	direction;
889 	struct scatterlist	*sg;
890 	unsigned		n_sg;
891 	int			multiple = (data->blocks > 1);
892 	u32			clock_rate;
893 	unsigned long		timeout;
894 
895 	if (data->flags & MMC_DATA_READ)
896 		direction = DMA_FROM_DEVICE;
897 	else
898 		direction = DMA_TO_DEVICE;
899 	mmc_spi_setup_data_message(host, multiple, direction);
900 	t = &host->t;
901 
902 	if (t->speed_hz)
903 		clock_rate = t->speed_hz;
904 	else
905 		clock_rate = spi->max_speed_hz;
906 
907 	timeout = data->timeout_ns +
908 		  data->timeout_clks * 1000000 / clock_rate;
909 	timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1;
910 
911 	/* Handle scatterlist segments one at a time, with synch for
912 	 * each 512-byte block
913 	 */
914 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
915 		int			status = 0;
916 		dma_addr_t		dma_addr = 0;
917 		void			*kmap_addr;
918 		unsigned		length = sg->length;
919 		enum dma_data_direction	dir = direction;
920 
921 		/* set up dma mapping for controller drivers that might
922 		 * use DMA ... though they may fall back to PIO
923 		 */
924 		if (dma_dev) {
925 			/* never invalidate whole *shared* pages ... */
926 			if ((sg->offset != 0 || length != PAGE_SIZE)
927 					&& dir == DMA_FROM_DEVICE)
928 				dir = DMA_BIDIRECTIONAL;
929 
930 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
931 						PAGE_SIZE, dir);
932 			if (direction == DMA_TO_DEVICE)
933 				t->tx_dma = dma_addr + sg->offset;
934 			else
935 				t->rx_dma = dma_addr + sg->offset;
936 		}
937 
938 		/* allow pio too; we don't allow highmem */
939 		kmap_addr = kmap(sg_page(sg));
940 		if (direction == DMA_TO_DEVICE)
941 			t->tx_buf = kmap_addr + sg->offset;
942 		else
943 			t->rx_buf = kmap_addr + sg->offset;
944 
945 		/* transfer each block, and update request status */
946 		while (length) {
947 			t->len = min(length, blk_size);
948 
949 			dev_dbg(&host->spi->dev,
950 				"    mmc_spi: %s block, %d bytes\n",
951 				(direction == DMA_TO_DEVICE)
952 				? "write"
953 				: "read",
954 				t->len);
955 
956 			if (direction == DMA_TO_DEVICE)
957 				status = mmc_spi_writeblock(host, t, timeout);
958 			else
959 				status = mmc_spi_readblock(host, t, timeout);
960 			if (status < 0)
961 				break;
962 
963 			data->bytes_xfered += t->len;
964 			length -= t->len;
965 
966 			if (!multiple)
967 				break;
968 		}
969 
970 		/* discard mappings */
971 		if (direction == DMA_FROM_DEVICE)
972 			flush_kernel_dcache_page(sg_page(sg));
973 		kunmap(sg_page(sg));
974 		if (dma_dev)
975 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
976 
977 		if (status < 0) {
978 			data->error = status;
979 			dev_dbg(&spi->dev, "%s status %d\n",
980 				(direction == DMA_TO_DEVICE)
981 					? "write" : "read",
982 				status);
983 			break;
984 		}
985 	}
986 
987 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
988 	 * can be issued before multiblock writes.  Unlike its more widely
989 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
990 	 * that can affect the STOP_TRAN logic.   Complete (and current)
991 	 * MMC specs should sort that out before Linux starts using CMD23.
992 	 */
993 	if (direction == DMA_TO_DEVICE && multiple) {
994 		struct scratch	*scratch = host->data;
995 		int		tmp;
996 		const unsigned	statlen = sizeof(scratch->status);
997 
998 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
999 
1000 		/* Tweak the per-block message we set up earlier by morphing
1001 		 * it to hold single buffer with the token followed by some
1002 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
1003 		 * "not busy any longer" status, and leave chip selected.
1004 		 */
1005 		INIT_LIST_HEAD(&host->m.transfers);
1006 		list_add(&host->early_status.transfer_list,
1007 				&host->m.transfers);
1008 
1009 		memset(scratch->status, 0xff, statlen);
1010 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
1011 
1012 		host->early_status.tx_buf = host->early_status.rx_buf;
1013 		host->early_status.tx_dma = host->early_status.rx_dma;
1014 		host->early_status.len = statlen;
1015 
1016 		if (host->dma_dev)
1017 			dma_sync_single_for_device(host->dma_dev,
1018 					host->data_dma, sizeof(*scratch),
1019 					DMA_BIDIRECTIONAL);
1020 
1021 		tmp = spi_sync_locked(spi, &host->m);
1022 
1023 		if (host->dma_dev)
1024 			dma_sync_single_for_cpu(host->dma_dev,
1025 					host->data_dma, sizeof(*scratch),
1026 					DMA_BIDIRECTIONAL);
1027 
1028 		if (tmp < 0) {
1029 			if (!data->error)
1030 				data->error = tmp;
1031 			return;
1032 		}
1033 
1034 		/* Ideally we collected "not busy" status with one I/O,
1035 		 * avoiding wasteful byte-at-a-time scanning... but more
1036 		 * I/O is often needed.
1037 		 */
1038 		for (tmp = 2; tmp < statlen; tmp++) {
1039 			if (scratch->status[tmp] != 0)
1040 				return;
1041 		}
1042 		tmp = mmc_spi_wait_unbusy(host, timeout);
1043 		if (tmp < 0 && !data->error)
1044 			data->error = tmp;
1045 	}
1046 }
1047 
1048 /****************************************************************************/
1049 
1050 /*
1051  * MMC driver implementation -- the interface to the MMC stack
1052  */
1053 
1054 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1055 {
1056 	struct mmc_spi_host	*host = mmc_priv(mmc);
1057 	int			status = -EINVAL;
1058 	int			crc_retry = 5;
1059 	struct mmc_command	stop;
1060 
1061 #ifdef DEBUG
1062 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
1063 	{
1064 		struct mmc_command	*cmd;
1065 		int			invalid = 0;
1066 
1067 		cmd = mrq->cmd;
1068 		if (!mmc_spi_resp_type(cmd)) {
1069 			dev_dbg(&host->spi->dev, "bogus command\n");
1070 			cmd->error = -EINVAL;
1071 			invalid = 1;
1072 		}
1073 
1074 		cmd = mrq->stop;
1075 		if (cmd && !mmc_spi_resp_type(cmd)) {
1076 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
1077 			cmd->error = -EINVAL;
1078 			invalid = 1;
1079 		}
1080 
1081 		if (invalid) {
1082 			dump_stack();
1083 			mmc_request_done(host->mmc, mrq);
1084 			return;
1085 		}
1086 	}
1087 #endif
1088 
1089 	/* request exclusive bus access */
1090 	spi_bus_lock(host->spi->master);
1091 
1092 crc_recover:
1093 	/* issue command; then optionally data and stop */
1094 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1095 	if (status == 0 && mrq->data) {
1096 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1097 
1098 		/*
1099 		 * The SPI bus is not always reliable for large data transfers.
1100 		 * If an occasional crc error is reported by the SD device with
1101 		 * data read/write over SPI, it may be recovered by repeating
1102 		 * the last SD command again. The retry count is set to 5 to
1103 		 * ensure the driver passes stress tests.
1104 		 */
1105 		if (mrq->data->error == -EILSEQ && crc_retry) {
1106 			stop.opcode = MMC_STOP_TRANSMISSION;
1107 			stop.arg = 0;
1108 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1109 			status = mmc_spi_command_send(host, mrq, &stop, 0);
1110 			crc_retry--;
1111 			mrq->data->error = 0;
1112 			goto crc_recover;
1113 		}
1114 
1115 		if (mrq->stop)
1116 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1117 		else
1118 			mmc_cs_off(host);
1119 	}
1120 
1121 	/* release the bus */
1122 	spi_bus_unlock(host->spi->master);
1123 
1124 	mmc_request_done(host->mmc, mrq);
1125 }
1126 
1127 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1128  *
1129  * NOTE that here we can't know that the card has just been powered up;
1130  * not all MMC/SD sockets support power switching.
1131  *
1132  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1133  * this doesn't seem to do the right thing at all...
1134  */
1135 static void mmc_spi_initsequence(struct mmc_spi_host *host)
1136 {
1137 	/* Try to be very sure any previous command has completed;
1138 	 * wait till not-busy, skip debris from any old commands.
1139 	 */
1140 	mmc_spi_wait_unbusy(host, r1b_timeout);
1141 	mmc_spi_readbytes(host, 10);
1142 
1143 	/*
1144 	 * Do a burst with chipselect active-high.  We need to do this to
1145 	 * meet the requirement of 74 clock cycles with both chipselect
1146 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1147 	 * powered up to Vdd(min), and so is ready to take commands.
1148 	 *
1149 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1150 	 * while most others don't seem to care.
1151 	 *
1152 	 * Note that this is one of the places MMC/SD plays games with the
1153 	 * SPI protocol.  Another is that when chipselect is released while
1154 	 * the card returns BUSY status, the clock must issue several cycles
1155 	 * with chipselect high before the card will stop driving its output.
1156 	 */
1157 	host->spi->mode |= SPI_CS_HIGH;
1158 	if (spi_setup(host->spi) != 0) {
1159 		/* Just warn; most cards work without it. */
1160 		dev_warn(&host->spi->dev,
1161 				"can't change chip-select polarity\n");
1162 		host->spi->mode &= ~SPI_CS_HIGH;
1163 	} else {
1164 		mmc_spi_readbytes(host, 18);
1165 
1166 		host->spi->mode &= ~SPI_CS_HIGH;
1167 		if (spi_setup(host->spi) != 0) {
1168 			/* Wot, we can't get the same setup we had before? */
1169 			dev_err(&host->spi->dev,
1170 					"can't restore chip-select polarity\n");
1171 		}
1172 	}
1173 }
1174 
1175 static char *mmc_powerstring(u8 power_mode)
1176 {
1177 	switch (power_mode) {
1178 	case MMC_POWER_OFF: return "off";
1179 	case MMC_POWER_UP:  return "up";
1180 	case MMC_POWER_ON:  return "on";
1181 	}
1182 	return "?";
1183 }
1184 
1185 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1186 {
1187 	struct mmc_spi_host *host = mmc_priv(mmc);
1188 
1189 	if (host->power_mode != ios->power_mode) {
1190 		int		canpower;
1191 
1192 		canpower = host->pdata && host->pdata->setpower;
1193 
1194 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1195 				mmc_powerstring(ios->power_mode),
1196 				ios->vdd,
1197 				canpower ? ", can switch" : "");
1198 
1199 		/* switch power on/off if possible, accounting for
1200 		 * max 250msec powerup time if needed.
1201 		 */
1202 		if (canpower) {
1203 			switch (ios->power_mode) {
1204 			case MMC_POWER_OFF:
1205 			case MMC_POWER_UP:
1206 				host->pdata->setpower(&host->spi->dev,
1207 						ios->vdd);
1208 				if (ios->power_mode == MMC_POWER_UP)
1209 					msleep(host->powerup_msecs);
1210 			}
1211 		}
1212 
1213 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1214 		if (ios->power_mode == MMC_POWER_ON)
1215 			mmc_spi_initsequence(host);
1216 
1217 		/* If powering down, ground all card inputs to avoid power
1218 		 * delivery from data lines!  On a shared SPI bus, this
1219 		 * will probably be temporary; 6.4.2 of the simplified SD
1220 		 * spec says this must last at least 1msec.
1221 		 *
1222 		 *   - Clock low means CPOL 0, e.g. mode 0
1223 		 *   - MOSI low comes from writing zero
1224 		 *   - Chipselect is usually active low...
1225 		 */
1226 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1227 			int mres;
1228 			u8 nullbyte = 0;
1229 
1230 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1231 			mres = spi_setup(host->spi);
1232 			if (mres < 0)
1233 				dev_dbg(&host->spi->dev,
1234 					"switch to SPI mode 0 failed\n");
1235 
1236 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1237 				dev_dbg(&host->spi->dev,
1238 					"put spi signals to low failed\n");
1239 
1240 			/*
1241 			 * Now clock should be low due to spi mode 0;
1242 			 * MOSI should be low because of written 0x00;
1243 			 * chipselect should be low (it is active low)
1244 			 * power supply is off, so now MMC is off too!
1245 			 *
1246 			 * FIXME no, chipselect can be high since the
1247 			 * device is inactive and SPI_CS_HIGH is clear...
1248 			 */
1249 			msleep(10);
1250 			if (mres == 0) {
1251 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1252 				mres = spi_setup(host->spi);
1253 				if (mres < 0)
1254 					dev_dbg(&host->spi->dev,
1255 						"switch back to SPI mode 3"
1256 						" failed\n");
1257 			}
1258 		}
1259 
1260 		host->power_mode = ios->power_mode;
1261 	}
1262 
1263 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1264 		int		status;
1265 
1266 		host->spi->max_speed_hz = ios->clock;
1267 		status = spi_setup(host->spi);
1268 		dev_dbg(&host->spi->dev,
1269 			"mmc_spi:  clock to %d Hz, %d\n",
1270 			host->spi->max_speed_hz, status);
1271 	}
1272 }
1273 
1274 static int mmc_spi_get_ro(struct mmc_host *mmc)
1275 {
1276 	struct mmc_spi_host *host = mmc_priv(mmc);
1277 
1278 	if (host->pdata && host->pdata->get_ro)
1279 		return !!host->pdata->get_ro(mmc->parent);
1280 	/*
1281 	 * Board doesn't support read only detection; let the mmc core
1282 	 * decide what to do.
1283 	 */
1284 	return -ENOSYS;
1285 }
1286 
1287 static int mmc_spi_get_cd(struct mmc_host *mmc)
1288 {
1289 	struct mmc_spi_host *host = mmc_priv(mmc);
1290 
1291 	if (host->pdata && host->pdata->get_cd)
1292 		return !!host->pdata->get_cd(mmc->parent);
1293 	return -ENOSYS;
1294 }
1295 
1296 static const struct mmc_host_ops mmc_spi_ops = {
1297 	.request	= mmc_spi_request,
1298 	.set_ios	= mmc_spi_set_ios,
1299 	.get_ro		= mmc_spi_get_ro,
1300 	.get_cd		= mmc_spi_get_cd,
1301 };
1302 
1303 
1304 /****************************************************************************/
1305 
1306 /*
1307  * SPI driver implementation
1308  */
1309 
1310 static irqreturn_t
1311 mmc_spi_detect_irq(int irq, void *mmc)
1312 {
1313 	struct mmc_spi_host *host = mmc_priv(mmc);
1314 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1315 
1316 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1317 	return IRQ_HANDLED;
1318 }
1319 
1320 static int mmc_spi_probe(struct spi_device *spi)
1321 {
1322 	void			*ones;
1323 	struct mmc_host		*mmc;
1324 	struct mmc_spi_host	*host;
1325 	int			status;
1326 
1327 	/* We rely on full duplex transfers, mostly to reduce
1328 	 * per-transfer overheads (by making fewer transfers).
1329 	 */
1330 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1331 		return -EINVAL;
1332 
1333 	/* MMC and SD specs only seem to care that sampling is on the
1334 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1335 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1336 	 * which is appropriate for hotplugging, unless the platform data
1337 	 * specify mode 3 (if hardware is not compatible to mode 0).
1338 	 */
1339 	if (spi->mode != SPI_MODE_3)
1340 		spi->mode = SPI_MODE_0;
1341 	spi->bits_per_word = 8;
1342 
1343 	status = spi_setup(spi);
1344 	if (status < 0) {
1345 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1346 				spi->mode, spi->max_speed_hz / 1000,
1347 				status);
1348 		return status;
1349 	}
1350 
1351 	/* We need a supply of ones to transmit.  This is the only time
1352 	 * the CPU touches these, so cache coherency isn't a concern.
1353 	 *
1354 	 * NOTE if many systems use more than one MMC-over-SPI connector
1355 	 * it'd save some memory to share this.  That's evidently rare.
1356 	 */
1357 	status = -ENOMEM;
1358 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1359 	if (!ones)
1360 		goto nomem;
1361 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1362 
1363 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1364 	if (!mmc)
1365 		goto nomem;
1366 
1367 	mmc->ops = &mmc_spi_ops;
1368 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1369 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1370 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1371 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1372 
1373 	mmc->caps = MMC_CAP_SPI;
1374 
1375 	/* SPI doesn't need the lowspeed device identification thing for
1376 	 * MMC or SD cards, since it never comes up in open drain mode.
1377 	 * That's good; some SPI masters can't handle very low speeds!
1378 	 *
1379 	 * However, low speed SDIO cards need not handle over 400 KHz;
1380 	 * that's the only reason not to use a few MHz for f_min (until
1381 	 * the upper layer reads the target frequency from the CSD).
1382 	 */
1383 	mmc->f_min = 400000;
1384 	mmc->f_max = spi->max_speed_hz;
1385 
1386 	host = mmc_priv(mmc);
1387 	host->mmc = mmc;
1388 	host->spi = spi;
1389 
1390 	host->ones = ones;
1391 
1392 	/* Platform data is used to hook up things like card sensing
1393 	 * and power switching gpios.
1394 	 */
1395 	host->pdata = mmc_spi_get_pdata(spi);
1396 	if (host->pdata)
1397 		mmc->ocr_avail = host->pdata->ocr_mask;
1398 	if (!mmc->ocr_avail) {
1399 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1400 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1401 	}
1402 	if (host->pdata && host->pdata->setpower) {
1403 		host->powerup_msecs = host->pdata->powerup_msecs;
1404 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1405 			host->powerup_msecs = 250;
1406 	}
1407 
1408 	dev_set_drvdata(&spi->dev, mmc);
1409 
1410 	/* preallocate dma buffers */
1411 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1412 	if (!host->data)
1413 		goto fail_nobuf1;
1414 
1415 	if (spi->master->dev.parent->dma_mask) {
1416 		struct device	*dev = spi->master->dev.parent;
1417 
1418 		host->dma_dev = dev;
1419 		host->ones_dma = dma_map_single(dev, ones,
1420 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1421 		host->data_dma = dma_map_single(dev, host->data,
1422 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1423 
1424 		/* REVISIT in theory those map operations can fail... */
1425 
1426 		dma_sync_single_for_cpu(host->dma_dev,
1427 				host->data_dma, sizeof(*host->data),
1428 				DMA_BIDIRECTIONAL);
1429 	}
1430 
1431 	/* setup message for status/busy readback */
1432 	spi_message_init(&host->readback);
1433 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1434 
1435 	spi_message_add_tail(&host->status, &host->readback);
1436 	host->status.tx_buf = host->ones;
1437 	host->status.tx_dma = host->ones_dma;
1438 	host->status.rx_buf = &host->data->status;
1439 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1440 	host->status.cs_change = 1;
1441 
1442 	/* register card detect irq */
1443 	if (host->pdata && host->pdata->init) {
1444 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1445 		if (status != 0)
1446 			goto fail_glue_init;
1447 	}
1448 
1449 	/* pass platform capabilities, if any */
1450 	if (host->pdata)
1451 		mmc->caps |= host->pdata->caps;
1452 
1453 	status = mmc_add_host(mmc);
1454 	if (status != 0)
1455 		goto fail_add_host;
1456 
1457 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1458 			dev_name(&mmc->class_dev),
1459 			host->dma_dev ? "" : ", no DMA",
1460 			(host->pdata && host->pdata->get_ro)
1461 				? "" : ", no WP",
1462 			(host->pdata && host->pdata->setpower)
1463 				? "" : ", no poweroff",
1464 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1465 				? ", cd polling" : "");
1466 	return 0;
1467 
1468 fail_add_host:
1469 	mmc_remove_host (mmc);
1470 fail_glue_init:
1471 	if (host->dma_dev)
1472 		dma_unmap_single(host->dma_dev, host->data_dma,
1473 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1474 	kfree(host->data);
1475 
1476 fail_nobuf1:
1477 	mmc_free_host(mmc);
1478 	mmc_spi_put_pdata(spi);
1479 	dev_set_drvdata(&spi->dev, NULL);
1480 
1481 nomem:
1482 	kfree(ones);
1483 	return status;
1484 }
1485 
1486 
1487 static int __devexit mmc_spi_remove(struct spi_device *spi)
1488 {
1489 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1490 	struct mmc_spi_host	*host;
1491 
1492 	if (mmc) {
1493 		host = mmc_priv(mmc);
1494 
1495 		/* prevent new mmc_detect_change() calls */
1496 		if (host->pdata && host->pdata->exit)
1497 			host->pdata->exit(&spi->dev, mmc);
1498 
1499 		mmc_remove_host(mmc);
1500 
1501 		if (host->dma_dev) {
1502 			dma_unmap_single(host->dma_dev, host->ones_dma,
1503 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1504 			dma_unmap_single(host->dma_dev, host->data_dma,
1505 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1506 		}
1507 
1508 		kfree(host->data);
1509 		kfree(host->ones);
1510 
1511 		spi->max_speed_hz = mmc->f_max;
1512 		mmc_free_host(mmc);
1513 		mmc_spi_put_pdata(spi);
1514 		dev_set_drvdata(&spi->dev, NULL);
1515 	}
1516 	return 0;
1517 }
1518 
1519 static struct of_device_id mmc_spi_of_match_table[] __devinitdata = {
1520 	{ .compatible = "mmc-spi-slot", },
1521 	{},
1522 };
1523 
1524 static struct spi_driver mmc_spi_driver = {
1525 	.driver = {
1526 		.name =		"mmc_spi",
1527 		.bus =		&spi_bus_type,
1528 		.owner =	THIS_MODULE,
1529 		.of_match_table = mmc_spi_of_match_table,
1530 	},
1531 	.probe =	mmc_spi_probe,
1532 	.remove =	__devexit_p(mmc_spi_remove),
1533 };
1534 
1535 
1536 static int __init mmc_spi_init(void)
1537 {
1538 	return spi_register_driver(&mmc_spi_driver);
1539 }
1540 module_init(mmc_spi_init);
1541 
1542 
1543 static void __exit mmc_spi_exit(void)
1544 {
1545 	spi_unregister_driver(&mmc_spi_driver);
1546 }
1547 module_exit(mmc_spi_exit);
1548 
1549 
1550 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1551 		"Hans-Peter Nilsson, Jan Nikitenko");
1552 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1553 MODULE_LICENSE("GPL");
1554 MODULE_ALIAS("spi:mmc_spi");
1555