1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/sched.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/bio.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/crc7.h> 33 #include <linux/crc-itu-t.h> 34 #include <linux/scatterlist.h> 35 36 #include <linux/mmc/host.h> 37 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 38 39 #include <linux/spi/spi.h> 40 #include <linux/spi/mmc_spi.h> 41 42 #include <asm/unaligned.h> 43 44 45 /* NOTES: 46 * 47 * - For now, we won't try to interoperate with a real mmc/sd/sdio 48 * controller, although some of them do have hardware support for 49 * SPI protocol. The main reason for such configs would be mmc-ish 50 * cards like DataFlash, which don't support that "native" protocol. 51 * 52 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 53 * switch between driver stacks, and in any case if "native" mode 54 * is available, it will be faster and hence preferable. 55 * 56 * - MMC depends on a different chipselect management policy than the 57 * SPI interface currently supports for shared bus segments: it needs 58 * to issue multiple spi_message requests with the chipselect active, 59 * using the results of one message to decide the next one to issue. 60 * 61 * Pending updates to the programming interface, this driver expects 62 * that it not share the bus with other drivers (precluding conflicts). 63 * 64 * - We tell the controller to keep the chipselect active from the 65 * beginning of an mmc_host_ops.request until the end. So beware 66 * of SPI controller drivers that mis-handle the cs_change flag! 67 * 68 * However, many cards seem OK with chipselect flapping up/down 69 * during that time ... at least on unshared bus segments. 70 */ 71 72 73 /* 74 * Local protocol constants, internal to data block protocols. 75 */ 76 77 /* Response tokens used to ack each block written: */ 78 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 79 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 80 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 81 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 82 83 /* Read and write blocks start with these tokens and end with crc; 84 * on error, read tokens act like a subset of R2_SPI_* values. 85 */ 86 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 87 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 88 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 89 90 #define MMC_SPI_BLOCKSIZE 512 91 92 93 /* These fixed timeouts come from the latest SD specs, which say to ignore 94 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 95 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 96 * reads which takes nowhere near that long. Older cards may be able to use 97 * shorter timeouts ... but why bother? 98 */ 99 #define r1b_timeout (HZ * 3) 100 101 /* One of the critical speed parameters is the amount of data which may 102 * be transferred in one command. If this value is too low, the SD card 103 * controller has to do multiple partial block writes (argggh!). With 104 * today (2008) SD cards there is little speed gain if we transfer more 105 * than 64 KBytes at a time. So use this value until there is any indication 106 * that we should do more here. 107 */ 108 #define MMC_SPI_BLOCKSATONCE 128 109 110 /****************************************************************************/ 111 112 /* 113 * Local Data Structures 114 */ 115 116 /* "scratch" is per-{command,block} data exchanged with the card */ 117 struct scratch { 118 u8 status[29]; 119 u8 data_token; 120 __be16 crc_val; 121 }; 122 123 struct mmc_spi_host { 124 struct mmc_host *mmc; 125 struct spi_device *spi; 126 127 unsigned char power_mode; 128 u16 powerup_msecs; 129 130 struct mmc_spi_platform_data *pdata; 131 132 /* for bulk data transfers */ 133 struct spi_transfer token, t, crc, early_status; 134 struct spi_message m; 135 136 /* for status readback */ 137 struct spi_transfer status; 138 struct spi_message readback; 139 140 /* underlying DMA-aware controller, or null */ 141 struct device *dma_dev; 142 143 /* buffer used for commands and for message "overhead" */ 144 struct scratch *data; 145 dma_addr_t data_dma; 146 147 /* Specs say to write ones most of the time, even when the card 148 * has no need to read its input data; and many cards won't care. 149 * This is our source of those ones. 150 */ 151 void *ones; 152 dma_addr_t ones_dma; 153 }; 154 155 156 /****************************************************************************/ 157 158 /* 159 * MMC-over-SPI protocol glue, used by the MMC stack interface 160 */ 161 162 static inline int mmc_cs_off(struct mmc_spi_host *host) 163 { 164 /* chipselect will always be inactive after setup() */ 165 return spi_setup(host->spi); 166 } 167 168 static int 169 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 170 { 171 int status; 172 173 if (len > sizeof(*host->data)) { 174 WARN_ON(1); 175 return -EIO; 176 } 177 178 host->status.len = len; 179 180 if (host->dma_dev) 181 dma_sync_single_for_device(host->dma_dev, 182 host->data_dma, sizeof(*host->data), 183 DMA_FROM_DEVICE); 184 185 status = spi_sync_locked(host->spi, &host->readback); 186 187 if (host->dma_dev) 188 dma_sync_single_for_cpu(host->dma_dev, 189 host->data_dma, sizeof(*host->data), 190 DMA_FROM_DEVICE); 191 192 return status; 193 } 194 195 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 196 unsigned n, u8 byte) 197 { 198 u8 *cp = host->data->status; 199 unsigned long start = jiffies; 200 201 while (1) { 202 int status; 203 unsigned i; 204 205 status = mmc_spi_readbytes(host, n); 206 if (status < 0) 207 return status; 208 209 for (i = 0; i < n; i++) { 210 if (cp[i] != byte) 211 return cp[i]; 212 } 213 214 if (time_is_before_jiffies(start + timeout)) 215 break; 216 217 /* If we need long timeouts, we may release the CPU. 218 * We use jiffies here because we want to have a relation 219 * between elapsed time and the blocking of the scheduler. 220 */ 221 if (time_is_before_jiffies(start+1)) 222 schedule(); 223 } 224 return -ETIMEDOUT; 225 } 226 227 static inline int 228 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 229 { 230 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 231 } 232 233 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 234 { 235 return mmc_spi_skip(host, timeout, 1, 0xff); 236 } 237 238 239 /* 240 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 241 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 242 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 243 * 244 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 245 * newer cards R7 (IF_COND). 246 */ 247 248 static char *maptype(struct mmc_command *cmd) 249 { 250 switch (mmc_spi_resp_type(cmd)) { 251 case MMC_RSP_SPI_R1: return "R1"; 252 case MMC_RSP_SPI_R1B: return "R1B"; 253 case MMC_RSP_SPI_R2: return "R2/R5"; 254 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 255 default: return "?"; 256 } 257 } 258 259 /* return zero, else negative errno after setting cmd->error */ 260 static int mmc_spi_response_get(struct mmc_spi_host *host, 261 struct mmc_command *cmd, int cs_on) 262 { 263 u8 *cp = host->data->status; 264 u8 *end = cp + host->t.len; 265 int value = 0; 266 int bitshift; 267 u8 leftover = 0; 268 unsigned short rotator; 269 int i; 270 char tag[32]; 271 272 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 273 cmd->opcode, maptype(cmd)); 274 275 /* Except for data block reads, the whole response will already 276 * be stored in the scratch buffer. It's somewhere after the 277 * command and the first byte we read after it. We ignore that 278 * first byte. After STOP_TRANSMISSION command it may include 279 * two data bits, but otherwise it's all ones. 280 */ 281 cp += 8; 282 while (cp < end && *cp == 0xff) 283 cp++; 284 285 /* Data block reads (R1 response types) may need more data... */ 286 if (cp == end) { 287 cp = host->data->status; 288 end = cp+1; 289 290 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 291 * status byte ... and we already scanned 2 bytes. 292 * 293 * REVISIT block read paths use nasty byte-at-a-time I/O 294 * so it can always DMA directly into the target buffer. 295 * It'd probably be better to memcpy() the first chunk and 296 * avoid extra i/o calls... 297 * 298 * Note we check for more than 8 bytes, because in practice, 299 * some SD cards are slow... 300 */ 301 for (i = 2; i < 16; i++) { 302 value = mmc_spi_readbytes(host, 1); 303 if (value < 0) 304 goto done; 305 if (*cp != 0xff) 306 goto checkstatus; 307 } 308 value = -ETIMEDOUT; 309 goto done; 310 } 311 312 checkstatus: 313 bitshift = 0; 314 if (*cp & 0x80) { 315 /* Houston, we have an ugly card with a bit-shifted response */ 316 rotator = *cp++ << 8; 317 /* read the next byte */ 318 if (cp == end) { 319 value = mmc_spi_readbytes(host, 1); 320 if (value < 0) 321 goto done; 322 cp = host->data->status; 323 end = cp+1; 324 } 325 rotator |= *cp++; 326 while (rotator & 0x8000) { 327 bitshift++; 328 rotator <<= 1; 329 } 330 cmd->resp[0] = rotator >> 8; 331 leftover = rotator; 332 } else { 333 cmd->resp[0] = *cp++; 334 } 335 cmd->error = 0; 336 337 /* Status byte: the entire seven-bit R1 response. */ 338 if (cmd->resp[0] != 0) { 339 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 340 & cmd->resp[0]) 341 value = -EFAULT; /* Bad address */ 342 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 343 value = -ENOSYS; /* Function not implemented */ 344 else if (R1_SPI_COM_CRC & cmd->resp[0]) 345 value = -EILSEQ; /* Illegal byte sequence */ 346 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 347 & cmd->resp[0]) 348 value = -EIO; /* I/O error */ 349 /* else R1_SPI_IDLE, "it's resetting" */ 350 } 351 352 switch (mmc_spi_resp_type(cmd)) { 353 354 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 355 * and less-common stuff like various erase operations. 356 */ 357 case MMC_RSP_SPI_R1B: 358 /* maybe we read all the busy tokens already */ 359 while (cp < end && *cp == 0) 360 cp++; 361 if (cp == end) 362 mmc_spi_wait_unbusy(host, r1b_timeout); 363 break; 364 365 /* SPI R2 == R1 + second status byte; SEND_STATUS 366 * SPI R5 == R1 + data byte; IO_RW_DIRECT 367 */ 368 case MMC_RSP_SPI_R2: 369 /* read the next byte */ 370 if (cp == end) { 371 value = mmc_spi_readbytes(host, 1); 372 if (value < 0) 373 goto done; 374 cp = host->data->status; 375 end = cp+1; 376 } 377 if (bitshift) { 378 rotator = leftover << 8; 379 rotator |= *cp << bitshift; 380 cmd->resp[0] |= (rotator & 0xFF00); 381 } else { 382 cmd->resp[0] |= *cp << 8; 383 } 384 break; 385 386 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 387 case MMC_RSP_SPI_R3: 388 rotator = leftover << 8; 389 cmd->resp[1] = 0; 390 for (i = 0; i < 4; i++) { 391 cmd->resp[1] <<= 8; 392 /* read the next byte */ 393 if (cp == end) { 394 value = mmc_spi_readbytes(host, 1); 395 if (value < 0) 396 goto done; 397 cp = host->data->status; 398 end = cp+1; 399 } 400 if (bitshift) { 401 rotator |= *cp++ << bitshift; 402 cmd->resp[1] |= (rotator >> 8); 403 rotator <<= 8; 404 } else { 405 cmd->resp[1] |= *cp++; 406 } 407 } 408 break; 409 410 /* SPI R1 == just one status byte */ 411 case MMC_RSP_SPI_R1: 412 break; 413 414 default: 415 dev_dbg(&host->spi->dev, "bad response type %04x\n", 416 mmc_spi_resp_type(cmd)); 417 if (value >= 0) 418 value = -EINVAL; 419 goto done; 420 } 421 422 if (value < 0) 423 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 424 tag, cmd->resp[0], cmd->resp[1]); 425 426 /* disable chipselect on errors and some success cases */ 427 if (value >= 0 && cs_on) 428 return value; 429 done: 430 if (value < 0) 431 cmd->error = value; 432 mmc_cs_off(host); 433 return value; 434 } 435 436 /* Issue command and read its response. 437 * Returns zero on success, negative for error. 438 * 439 * On error, caller must cope with mmc core retry mechanism. That 440 * means immediate low-level resubmit, which affects the bus lock... 441 */ 442 static int 443 mmc_spi_command_send(struct mmc_spi_host *host, 444 struct mmc_request *mrq, 445 struct mmc_command *cmd, int cs_on) 446 { 447 struct scratch *data = host->data; 448 u8 *cp = data->status; 449 u32 arg = cmd->arg; 450 int status; 451 struct spi_transfer *t; 452 453 /* We can handle most commands (except block reads) in one full 454 * duplex I/O operation before either starting the next transfer 455 * (data block or command) or else deselecting the card. 456 * 457 * First, write 7 bytes: 458 * - an all-ones byte to ensure the card is ready 459 * - opcode byte (plus start and transmission bits) 460 * - four bytes of big-endian argument 461 * - crc7 (plus end bit) ... always computed, it's cheap 462 * 463 * We init the whole buffer to all-ones, which is what we need 464 * to write while we're reading (later) response data. 465 */ 466 memset(cp++, 0xff, sizeof(data->status)); 467 468 *cp++ = 0x40 | cmd->opcode; 469 *cp++ = (u8)(arg >> 24); 470 *cp++ = (u8)(arg >> 16); 471 *cp++ = (u8)(arg >> 8); 472 *cp++ = (u8)arg; 473 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 474 475 /* Then, read up to 13 bytes (while writing all-ones): 476 * - N(CR) (== 1..8) bytes of all-ones 477 * - status byte (for all response types) 478 * - the rest of the response, either: 479 * + nothing, for R1 or R1B responses 480 * + second status byte, for R2 responses 481 * + four data bytes, for R3 and R7 responses 482 * 483 * Finally, read some more bytes ... in the nice cases we know in 484 * advance how many, and reading 1 more is always OK: 485 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 486 * - N(RC) (== 1..N) bytes of all-ones, before next command 487 * - N(WR) (== 1..N) bytes of all-ones, before data write 488 * 489 * So in those cases one full duplex I/O of at most 21 bytes will 490 * handle the whole command, leaving the card ready to receive a 491 * data block or new command. We do that whenever we can, shaving 492 * CPU and IRQ costs (especially when using DMA or FIFOs). 493 * 494 * There are two other cases, where it's not generally practical 495 * to rely on a single I/O: 496 * 497 * - R1B responses need at least N(EC) bytes of all-zeroes. 498 * 499 * In this case we can *try* to fit it into one I/O, then 500 * maybe read more data later. 501 * 502 * - Data block reads are more troublesome, since a variable 503 * number of padding bytes precede the token and data. 504 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 505 * + N(AC) (== 1..many) bytes of all-ones 506 * 507 * In this case we currently only have minimal speedups here: 508 * when N(CR) == 1 we can avoid I/O in response_get(). 509 */ 510 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 511 cp += 2; /* min(N(CR)) + status */ 512 /* R1 */ 513 } else { 514 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 515 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 516 cp++; 517 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 518 cp += 4; 519 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 520 cp = data->status + sizeof(data->status); 521 /* else: R1 (most commands) */ 522 } 523 524 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 525 cmd->opcode, maptype(cmd)); 526 527 /* send command, leaving chipselect active */ 528 spi_message_init(&host->m); 529 530 t = &host->t; 531 memset(t, 0, sizeof(*t)); 532 t->tx_buf = t->rx_buf = data->status; 533 t->tx_dma = t->rx_dma = host->data_dma; 534 t->len = cp - data->status; 535 t->cs_change = 1; 536 spi_message_add_tail(t, &host->m); 537 538 if (host->dma_dev) { 539 host->m.is_dma_mapped = 1; 540 dma_sync_single_for_device(host->dma_dev, 541 host->data_dma, sizeof(*host->data), 542 DMA_BIDIRECTIONAL); 543 } 544 status = spi_sync_locked(host->spi, &host->m); 545 546 if (host->dma_dev) 547 dma_sync_single_for_cpu(host->dma_dev, 548 host->data_dma, sizeof(*host->data), 549 DMA_BIDIRECTIONAL); 550 if (status < 0) { 551 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 552 cmd->error = status; 553 return status; 554 } 555 556 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 557 return mmc_spi_response_get(host, cmd, cs_on); 558 } 559 560 /* Build data message with up to four separate transfers. For TX, we 561 * start by writing the data token. And in most cases, we finish with 562 * a status transfer. 563 * 564 * We always provide TX data for data and CRC. The MMC/SD protocol 565 * requires us to write ones; but Linux defaults to writing zeroes; 566 * so we explicitly initialize it to all ones on RX paths. 567 * 568 * We also handle DMA mapping, so the underlying SPI controller does 569 * not need to (re)do it for each message. 570 */ 571 static void 572 mmc_spi_setup_data_message( 573 struct mmc_spi_host *host, 574 int multiple, 575 enum dma_data_direction direction) 576 { 577 struct spi_transfer *t; 578 struct scratch *scratch = host->data; 579 dma_addr_t dma = host->data_dma; 580 581 spi_message_init(&host->m); 582 if (dma) 583 host->m.is_dma_mapped = 1; 584 585 /* for reads, readblock() skips 0xff bytes before finding 586 * the token; for writes, this transfer issues that token. 587 */ 588 if (direction == DMA_TO_DEVICE) { 589 t = &host->token; 590 memset(t, 0, sizeof(*t)); 591 t->len = 1; 592 if (multiple) 593 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 594 else 595 scratch->data_token = SPI_TOKEN_SINGLE; 596 t->tx_buf = &scratch->data_token; 597 if (dma) 598 t->tx_dma = dma + offsetof(struct scratch, data_token); 599 spi_message_add_tail(t, &host->m); 600 } 601 602 /* Body of transfer is buffer, then CRC ... 603 * either TX-only, or RX with TX-ones. 604 */ 605 t = &host->t; 606 memset(t, 0, sizeof(*t)); 607 t->tx_buf = host->ones; 608 t->tx_dma = host->ones_dma; 609 /* length and actual buffer info are written later */ 610 spi_message_add_tail(t, &host->m); 611 612 t = &host->crc; 613 memset(t, 0, sizeof(*t)); 614 t->len = 2; 615 if (direction == DMA_TO_DEVICE) { 616 /* the actual CRC may get written later */ 617 t->tx_buf = &scratch->crc_val; 618 if (dma) 619 t->tx_dma = dma + offsetof(struct scratch, crc_val); 620 } else { 621 t->tx_buf = host->ones; 622 t->tx_dma = host->ones_dma; 623 t->rx_buf = &scratch->crc_val; 624 if (dma) 625 t->rx_dma = dma + offsetof(struct scratch, crc_val); 626 } 627 spi_message_add_tail(t, &host->m); 628 629 /* 630 * A single block read is followed by N(EC) [0+] all-ones bytes 631 * before deselect ... don't bother. 632 * 633 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 634 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 635 * collect that single byte, so readblock() doesn't need to. 636 * 637 * For a write, the one-byte data response follows immediately, then 638 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 639 * Then single block reads may deselect, and multiblock ones issue 640 * the next token (next data block, or STOP_TRAN). We can try to 641 * minimize I/O ops by using a single read to collect end-of-busy. 642 */ 643 if (multiple || direction == DMA_TO_DEVICE) { 644 t = &host->early_status; 645 memset(t, 0, sizeof(*t)); 646 t->len = (direction == DMA_TO_DEVICE) 647 ? sizeof(scratch->status) 648 : 1; 649 t->tx_buf = host->ones; 650 t->tx_dma = host->ones_dma; 651 t->rx_buf = scratch->status; 652 if (dma) 653 t->rx_dma = dma + offsetof(struct scratch, status); 654 t->cs_change = 1; 655 spi_message_add_tail(t, &host->m); 656 } 657 } 658 659 /* 660 * Write one block: 661 * - caller handled preceding N(WR) [1+] all-ones bytes 662 * - data block 663 * + token 664 * + data bytes 665 * + crc16 666 * - an all-ones byte ... card writes a data-response byte 667 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 668 * 669 * Return negative errno, else success. 670 */ 671 static int 672 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 673 unsigned long timeout) 674 { 675 struct spi_device *spi = host->spi; 676 int status, i; 677 struct scratch *scratch = host->data; 678 u32 pattern; 679 680 if (host->mmc->use_spi_crc) 681 scratch->crc_val = cpu_to_be16( 682 crc_itu_t(0, t->tx_buf, t->len)); 683 if (host->dma_dev) 684 dma_sync_single_for_device(host->dma_dev, 685 host->data_dma, sizeof(*scratch), 686 DMA_BIDIRECTIONAL); 687 688 status = spi_sync_locked(spi, &host->m); 689 690 if (status != 0) { 691 dev_dbg(&spi->dev, "write error (%d)\n", status); 692 return status; 693 } 694 695 if (host->dma_dev) 696 dma_sync_single_for_cpu(host->dma_dev, 697 host->data_dma, sizeof(*scratch), 698 DMA_BIDIRECTIONAL); 699 700 /* 701 * Get the transmission data-response reply. It must follow 702 * immediately after the data block we transferred. This reply 703 * doesn't necessarily tell whether the write operation succeeded; 704 * it just says if the transmission was ok and whether *earlier* 705 * writes succeeded; see the standard. 706 * 707 * In practice, there are (even modern SDHC-)cards which are late 708 * in sending the response, and miss the time frame by a few bits, 709 * so we have to cope with this situation and check the response 710 * bit-by-bit. Arggh!!! 711 */ 712 pattern = scratch->status[0] << 24; 713 pattern |= scratch->status[1] << 16; 714 pattern |= scratch->status[2] << 8; 715 pattern |= scratch->status[3]; 716 717 /* First 3 bit of pattern are undefined */ 718 pattern |= 0xE0000000; 719 720 /* left-adjust to leading 0 bit */ 721 while (pattern & 0x80000000) 722 pattern <<= 1; 723 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 724 pattern >>= 27; 725 726 switch (pattern) { 727 case SPI_RESPONSE_ACCEPTED: 728 status = 0; 729 break; 730 case SPI_RESPONSE_CRC_ERR: 731 /* host shall then issue MMC_STOP_TRANSMISSION */ 732 status = -EILSEQ; 733 break; 734 case SPI_RESPONSE_WRITE_ERR: 735 /* host shall then issue MMC_STOP_TRANSMISSION, 736 * and should MMC_SEND_STATUS to sort it out 737 */ 738 status = -EIO; 739 break; 740 default: 741 status = -EPROTO; 742 break; 743 } 744 if (status != 0) { 745 dev_dbg(&spi->dev, "write error %02x (%d)\n", 746 scratch->status[0], status); 747 return status; 748 } 749 750 t->tx_buf += t->len; 751 if (host->dma_dev) 752 t->tx_dma += t->len; 753 754 /* Return when not busy. If we didn't collect that status yet, 755 * we'll need some more I/O. 756 */ 757 for (i = 4; i < sizeof(scratch->status); i++) { 758 /* card is non-busy if the most recent bit is 1 */ 759 if (scratch->status[i] & 0x01) 760 return 0; 761 } 762 return mmc_spi_wait_unbusy(host, timeout); 763 } 764 765 /* 766 * Read one block: 767 * - skip leading all-ones bytes ... either 768 * + N(AC) [1..f(clock,CSD)] usually, else 769 * + N(CX) [0..8] when reading CSD or CID 770 * - data block 771 * + token ... if error token, no data or crc 772 * + data bytes 773 * + crc16 774 * 775 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 776 * before dropping chipselect. 777 * 778 * For multiblock reads, caller either reads the next block or issues a 779 * STOP_TRANSMISSION command. 780 */ 781 static int 782 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 783 unsigned long timeout) 784 { 785 struct spi_device *spi = host->spi; 786 int status; 787 struct scratch *scratch = host->data; 788 unsigned int bitshift; 789 u8 leftover; 790 791 /* At least one SD card sends an all-zeroes byte when N(CX) 792 * applies, before the all-ones bytes ... just cope with that. 793 */ 794 status = mmc_spi_readbytes(host, 1); 795 if (status < 0) 796 return status; 797 status = scratch->status[0]; 798 if (status == 0xff || status == 0) 799 status = mmc_spi_readtoken(host, timeout); 800 801 if (status < 0) { 802 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 803 return status; 804 } 805 806 /* The token may be bit-shifted... 807 * the first 0-bit precedes the data stream. 808 */ 809 bitshift = 7; 810 while (status & 0x80) { 811 status <<= 1; 812 bitshift--; 813 } 814 leftover = status << 1; 815 816 if (host->dma_dev) { 817 dma_sync_single_for_device(host->dma_dev, 818 host->data_dma, sizeof(*scratch), 819 DMA_BIDIRECTIONAL); 820 dma_sync_single_for_device(host->dma_dev, 821 t->rx_dma, t->len, 822 DMA_FROM_DEVICE); 823 } 824 825 status = spi_sync_locked(spi, &host->m); 826 827 if (host->dma_dev) { 828 dma_sync_single_for_cpu(host->dma_dev, 829 host->data_dma, sizeof(*scratch), 830 DMA_BIDIRECTIONAL); 831 dma_sync_single_for_cpu(host->dma_dev, 832 t->rx_dma, t->len, 833 DMA_FROM_DEVICE); 834 } 835 836 if (bitshift) { 837 /* Walk through the data and the crc and do 838 * all the magic to get byte-aligned data. 839 */ 840 u8 *cp = t->rx_buf; 841 unsigned int len; 842 unsigned int bitright = 8 - bitshift; 843 u8 temp; 844 for (len = t->len; len; len--) { 845 temp = *cp; 846 *cp++ = leftover | (temp >> bitshift); 847 leftover = temp << bitright; 848 } 849 cp = (u8 *) &scratch->crc_val; 850 temp = *cp; 851 *cp++ = leftover | (temp >> bitshift); 852 leftover = temp << bitright; 853 temp = *cp; 854 *cp = leftover | (temp >> bitshift); 855 } 856 857 if (host->mmc->use_spi_crc) { 858 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 859 860 be16_to_cpus(&scratch->crc_val); 861 if (scratch->crc_val != crc) { 862 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 863 "computed=0x%04x len=%d\n", 864 scratch->crc_val, crc, t->len); 865 return -EILSEQ; 866 } 867 } 868 869 t->rx_buf += t->len; 870 if (host->dma_dev) 871 t->rx_dma += t->len; 872 873 return 0; 874 } 875 876 /* 877 * An MMC/SD data stage includes one or more blocks, optional CRCs, 878 * and inline handshaking. That handhaking makes it unlike most 879 * other SPI protocol stacks. 880 */ 881 static void 882 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 883 struct mmc_data *data, u32 blk_size) 884 { 885 struct spi_device *spi = host->spi; 886 struct device *dma_dev = host->dma_dev; 887 struct spi_transfer *t; 888 enum dma_data_direction direction; 889 struct scatterlist *sg; 890 unsigned n_sg; 891 int multiple = (data->blocks > 1); 892 u32 clock_rate; 893 unsigned long timeout; 894 895 if (data->flags & MMC_DATA_READ) 896 direction = DMA_FROM_DEVICE; 897 else 898 direction = DMA_TO_DEVICE; 899 mmc_spi_setup_data_message(host, multiple, direction); 900 t = &host->t; 901 902 if (t->speed_hz) 903 clock_rate = t->speed_hz; 904 else 905 clock_rate = spi->max_speed_hz; 906 907 timeout = data->timeout_ns + 908 data->timeout_clks * 1000000 / clock_rate; 909 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1; 910 911 /* Handle scatterlist segments one at a time, with synch for 912 * each 512-byte block 913 */ 914 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 915 int status = 0; 916 dma_addr_t dma_addr = 0; 917 void *kmap_addr; 918 unsigned length = sg->length; 919 enum dma_data_direction dir = direction; 920 921 /* set up dma mapping for controller drivers that might 922 * use DMA ... though they may fall back to PIO 923 */ 924 if (dma_dev) { 925 /* never invalidate whole *shared* pages ... */ 926 if ((sg->offset != 0 || length != PAGE_SIZE) 927 && dir == DMA_FROM_DEVICE) 928 dir = DMA_BIDIRECTIONAL; 929 930 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 931 PAGE_SIZE, dir); 932 if (direction == DMA_TO_DEVICE) 933 t->tx_dma = dma_addr + sg->offset; 934 else 935 t->rx_dma = dma_addr + sg->offset; 936 } 937 938 /* allow pio too; we don't allow highmem */ 939 kmap_addr = kmap(sg_page(sg)); 940 if (direction == DMA_TO_DEVICE) 941 t->tx_buf = kmap_addr + sg->offset; 942 else 943 t->rx_buf = kmap_addr + sg->offset; 944 945 /* transfer each block, and update request status */ 946 while (length) { 947 t->len = min(length, blk_size); 948 949 dev_dbg(&host->spi->dev, 950 " mmc_spi: %s block, %d bytes\n", 951 (direction == DMA_TO_DEVICE) 952 ? "write" 953 : "read", 954 t->len); 955 956 if (direction == DMA_TO_DEVICE) 957 status = mmc_spi_writeblock(host, t, timeout); 958 else 959 status = mmc_spi_readblock(host, t, timeout); 960 if (status < 0) 961 break; 962 963 data->bytes_xfered += t->len; 964 length -= t->len; 965 966 if (!multiple) 967 break; 968 } 969 970 /* discard mappings */ 971 if (direction == DMA_FROM_DEVICE) 972 flush_kernel_dcache_page(sg_page(sg)); 973 kunmap(sg_page(sg)); 974 if (dma_dev) 975 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 976 977 if (status < 0) { 978 data->error = status; 979 dev_dbg(&spi->dev, "%s status %d\n", 980 (direction == DMA_TO_DEVICE) 981 ? "write" : "read", 982 status); 983 break; 984 } 985 } 986 987 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 988 * can be issued before multiblock writes. Unlike its more widely 989 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 990 * that can affect the STOP_TRAN logic. Complete (and current) 991 * MMC specs should sort that out before Linux starts using CMD23. 992 */ 993 if (direction == DMA_TO_DEVICE && multiple) { 994 struct scratch *scratch = host->data; 995 int tmp; 996 const unsigned statlen = sizeof(scratch->status); 997 998 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 999 1000 /* Tweak the per-block message we set up earlier by morphing 1001 * it to hold single buffer with the token followed by some 1002 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 1003 * "not busy any longer" status, and leave chip selected. 1004 */ 1005 INIT_LIST_HEAD(&host->m.transfers); 1006 list_add(&host->early_status.transfer_list, 1007 &host->m.transfers); 1008 1009 memset(scratch->status, 0xff, statlen); 1010 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 1011 1012 host->early_status.tx_buf = host->early_status.rx_buf; 1013 host->early_status.tx_dma = host->early_status.rx_dma; 1014 host->early_status.len = statlen; 1015 1016 if (host->dma_dev) 1017 dma_sync_single_for_device(host->dma_dev, 1018 host->data_dma, sizeof(*scratch), 1019 DMA_BIDIRECTIONAL); 1020 1021 tmp = spi_sync_locked(spi, &host->m); 1022 1023 if (host->dma_dev) 1024 dma_sync_single_for_cpu(host->dma_dev, 1025 host->data_dma, sizeof(*scratch), 1026 DMA_BIDIRECTIONAL); 1027 1028 if (tmp < 0) { 1029 if (!data->error) 1030 data->error = tmp; 1031 return; 1032 } 1033 1034 /* Ideally we collected "not busy" status with one I/O, 1035 * avoiding wasteful byte-at-a-time scanning... but more 1036 * I/O is often needed. 1037 */ 1038 for (tmp = 2; tmp < statlen; tmp++) { 1039 if (scratch->status[tmp] != 0) 1040 return; 1041 } 1042 tmp = mmc_spi_wait_unbusy(host, timeout); 1043 if (tmp < 0 && !data->error) 1044 data->error = tmp; 1045 } 1046 } 1047 1048 /****************************************************************************/ 1049 1050 /* 1051 * MMC driver implementation -- the interface to the MMC stack 1052 */ 1053 1054 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 1055 { 1056 struct mmc_spi_host *host = mmc_priv(mmc); 1057 int status = -EINVAL; 1058 int crc_retry = 5; 1059 struct mmc_command stop; 1060 1061 #ifdef DEBUG 1062 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 1063 { 1064 struct mmc_command *cmd; 1065 int invalid = 0; 1066 1067 cmd = mrq->cmd; 1068 if (!mmc_spi_resp_type(cmd)) { 1069 dev_dbg(&host->spi->dev, "bogus command\n"); 1070 cmd->error = -EINVAL; 1071 invalid = 1; 1072 } 1073 1074 cmd = mrq->stop; 1075 if (cmd && !mmc_spi_resp_type(cmd)) { 1076 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 1077 cmd->error = -EINVAL; 1078 invalid = 1; 1079 } 1080 1081 if (invalid) { 1082 dump_stack(); 1083 mmc_request_done(host->mmc, mrq); 1084 return; 1085 } 1086 } 1087 #endif 1088 1089 /* request exclusive bus access */ 1090 spi_bus_lock(host->spi->master); 1091 1092 crc_recover: 1093 /* issue command; then optionally data and stop */ 1094 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 1095 if (status == 0 && mrq->data) { 1096 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 1097 1098 /* 1099 * The SPI bus is not always reliable for large data transfers. 1100 * If an occasional crc error is reported by the SD device with 1101 * data read/write over SPI, it may be recovered by repeating 1102 * the last SD command again. The retry count is set to 5 to 1103 * ensure the driver passes stress tests. 1104 */ 1105 if (mrq->data->error == -EILSEQ && crc_retry) { 1106 stop.opcode = MMC_STOP_TRANSMISSION; 1107 stop.arg = 0; 1108 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1109 status = mmc_spi_command_send(host, mrq, &stop, 0); 1110 crc_retry--; 1111 mrq->data->error = 0; 1112 goto crc_recover; 1113 } 1114 1115 if (mrq->stop) 1116 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 1117 else 1118 mmc_cs_off(host); 1119 } 1120 1121 /* release the bus */ 1122 spi_bus_unlock(host->spi->master); 1123 1124 mmc_request_done(host->mmc, mrq); 1125 } 1126 1127 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 1128 * 1129 * NOTE that here we can't know that the card has just been powered up; 1130 * not all MMC/SD sockets support power switching. 1131 * 1132 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 1133 * this doesn't seem to do the right thing at all... 1134 */ 1135 static void mmc_spi_initsequence(struct mmc_spi_host *host) 1136 { 1137 /* Try to be very sure any previous command has completed; 1138 * wait till not-busy, skip debris from any old commands. 1139 */ 1140 mmc_spi_wait_unbusy(host, r1b_timeout); 1141 mmc_spi_readbytes(host, 10); 1142 1143 /* 1144 * Do a burst with chipselect active-high. We need to do this to 1145 * meet the requirement of 74 clock cycles with both chipselect 1146 * and CMD (MOSI) high before CMD0 ... after the card has been 1147 * powered up to Vdd(min), and so is ready to take commands. 1148 * 1149 * Some cards are particularly needy of this (e.g. Viking "SD256") 1150 * while most others don't seem to care. 1151 * 1152 * Note that this is one of the places MMC/SD plays games with the 1153 * SPI protocol. Another is that when chipselect is released while 1154 * the card returns BUSY status, the clock must issue several cycles 1155 * with chipselect high before the card will stop driving its output. 1156 */ 1157 host->spi->mode |= SPI_CS_HIGH; 1158 if (spi_setup(host->spi) != 0) { 1159 /* Just warn; most cards work without it. */ 1160 dev_warn(&host->spi->dev, 1161 "can't change chip-select polarity\n"); 1162 host->spi->mode &= ~SPI_CS_HIGH; 1163 } else { 1164 mmc_spi_readbytes(host, 18); 1165 1166 host->spi->mode &= ~SPI_CS_HIGH; 1167 if (spi_setup(host->spi) != 0) { 1168 /* Wot, we can't get the same setup we had before? */ 1169 dev_err(&host->spi->dev, 1170 "can't restore chip-select polarity\n"); 1171 } 1172 } 1173 } 1174 1175 static char *mmc_powerstring(u8 power_mode) 1176 { 1177 switch (power_mode) { 1178 case MMC_POWER_OFF: return "off"; 1179 case MMC_POWER_UP: return "up"; 1180 case MMC_POWER_ON: return "on"; 1181 } 1182 return "?"; 1183 } 1184 1185 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1186 { 1187 struct mmc_spi_host *host = mmc_priv(mmc); 1188 1189 if (host->power_mode != ios->power_mode) { 1190 int canpower; 1191 1192 canpower = host->pdata && host->pdata->setpower; 1193 1194 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1195 mmc_powerstring(ios->power_mode), 1196 ios->vdd, 1197 canpower ? ", can switch" : ""); 1198 1199 /* switch power on/off if possible, accounting for 1200 * max 250msec powerup time if needed. 1201 */ 1202 if (canpower) { 1203 switch (ios->power_mode) { 1204 case MMC_POWER_OFF: 1205 case MMC_POWER_UP: 1206 host->pdata->setpower(&host->spi->dev, 1207 ios->vdd); 1208 if (ios->power_mode == MMC_POWER_UP) 1209 msleep(host->powerup_msecs); 1210 } 1211 } 1212 1213 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1214 if (ios->power_mode == MMC_POWER_ON) 1215 mmc_spi_initsequence(host); 1216 1217 /* If powering down, ground all card inputs to avoid power 1218 * delivery from data lines! On a shared SPI bus, this 1219 * will probably be temporary; 6.4.2 of the simplified SD 1220 * spec says this must last at least 1msec. 1221 * 1222 * - Clock low means CPOL 0, e.g. mode 0 1223 * - MOSI low comes from writing zero 1224 * - Chipselect is usually active low... 1225 */ 1226 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1227 int mres; 1228 u8 nullbyte = 0; 1229 1230 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1231 mres = spi_setup(host->spi); 1232 if (mres < 0) 1233 dev_dbg(&host->spi->dev, 1234 "switch to SPI mode 0 failed\n"); 1235 1236 if (spi_write(host->spi, &nullbyte, 1) < 0) 1237 dev_dbg(&host->spi->dev, 1238 "put spi signals to low failed\n"); 1239 1240 /* 1241 * Now clock should be low due to spi mode 0; 1242 * MOSI should be low because of written 0x00; 1243 * chipselect should be low (it is active low) 1244 * power supply is off, so now MMC is off too! 1245 * 1246 * FIXME no, chipselect can be high since the 1247 * device is inactive and SPI_CS_HIGH is clear... 1248 */ 1249 msleep(10); 1250 if (mres == 0) { 1251 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1252 mres = spi_setup(host->spi); 1253 if (mres < 0) 1254 dev_dbg(&host->spi->dev, 1255 "switch back to SPI mode 3" 1256 " failed\n"); 1257 } 1258 } 1259 1260 host->power_mode = ios->power_mode; 1261 } 1262 1263 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1264 int status; 1265 1266 host->spi->max_speed_hz = ios->clock; 1267 status = spi_setup(host->spi); 1268 dev_dbg(&host->spi->dev, 1269 "mmc_spi: clock to %d Hz, %d\n", 1270 host->spi->max_speed_hz, status); 1271 } 1272 } 1273 1274 static int mmc_spi_get_ro(struct mmc_host *mmc) 1275 { 1276 struct mmc_spi_host *host = mmc_priv(mmc); 1277 1278 if (host->pdata && host->pdata->get_ro) 1279 return !!host->pdata->get_ro(mmc->parent); 1280 /* 1281 * Board doesn't support read only detection; let the mmc core 1282 * decide what to do. 1283 */ 1284 return -ENOSYS; 1285 } 1286 1287 static int mmc_spi_get_cd(struct mmc_host *mmc) 1288 { 1289 struct mmc_spi_host *host = mmc_priv(mmc); 1290 1291 if (host->pdata && host->pdata->get_cd) 1292 return !!host->pdata->get_cd(mmc->parent); 1293 return -ENOSYS; 1294 } 1295 1296 static const struct mmc_host_ops mmc_spi_ops = { 1297 .request = mmc_spi_request, 1298 .set_ios = mmc_spi_set_ios, 1299 .get_ro = mmc_spi_get_ro, 1300 .get_cd = mmc_spi_get_cd, 1301 }; 1302 1303 1304 /****************************************************************************/ 1305 1306 /* 1307 * SPI driver implementation 1308 */ 1309 1310 static irqreturn_t 1311 mmc_spi_detect_irq(int irq, void *mmc) 1312 { 1313 struct mmc_spi_host *host = mmc_priv(mmc); 1314 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1315 1316 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1317 return IRQ_HANDLED; 1318 } 1319 1320 static int mmc_spi_probe(struct spi_device *spi) 1321 { 1322 void *ones; 1323 struct mmc_host *mmc; 1324 struct mmc_spi_host *host; 1325 int status; 1326 1327 /* We rely on full duplex transfers, mostly to reduce 1328 * per-transfer overheads (by making fewer transfers). 1329 */ 1330 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) 1331 return -EINVAL; 1332 1333 /* MMC and SD specs only seem to care that sampling is on the 1334 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1335 * should be legit. We'll use mode 0 since the steady state is 0, 1336 * which is appropriate for hotplugging, unless the platform data 1337 * specify mode 3 (if hardware is not compatible to mode 0). 1338 */ 1339 if (spi->mode != SPI_MODE_3) 1340 spi->mode = SPI_MODE_0; 1341 spi->bits_per_word = 8; 1342 1343 status = spi_setup(spi); 1344 if (status < 0) { 1345 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1346 spi->mode, spi->max_speed_hz / 1000, 1347 status); 1348 return status; 1349 } 1350 1351 /* We need a supply of ones to transmit. This is the only time 1352 * the CPU touches these, so cache coherency isn't a concern. 1353 * 1354 * NOTE if many systems use more than one MMC-over-SPI connector 1355 * it'd save some memory to share this. That's evidently rare. 1356 */ 1357 status = -ENOMEM; 1358 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1359 if (!ones) 1360 goto nomem; 1361 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1362 1363 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1364 if (!mmc) 1365 goto nomem; 1366 1367 mmc->ops = &mmc_spi_ops; 1368 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1369 mmc->max_segs = MMC_SPI_BLOCKSATONCE; 1370 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1371 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1372 1373 mmc->caps = MMC_CAP_SPI; 1374 1375 /* SPI doesn't need the lowspeed device identification thing for 1376 * MMC or SD cards, since it never comes up in open drain mode. 1377 * That's good; some SPI masters can't handle very low speeds! 1378 * 1379 * However, low speed SDIO cards need not handle over 400 KHz; 1380 * that's the only reason not to use a few MHz for f_min (until 1381 * the upper layer reads the target frequency from the CSD). 1382 */ 1383 mmc->f_min = 400000; 1384 mmc->f_max = spi->max_speed_hz; 1385 1386 host = mmc_priv(mmc); 1387 host->mmc = mmc; 1388 host->spi = spi; 1389 1390 host->ones = ones; 1391 1392 /* Platform data is used to hook up things like card sensing 1393 * and power switching gpios. 1394 */ 1395 host->pdata = mmc_spi_get_pdata(spi); 1396 if (host->pdata) 1397 mmc->ocr_avail = host->pdata->ocr_mask; 1398 if (!mmc->ocr_avail) { 1399 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1400 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1401 } 1402 if (host->pdata && host->pdata->setpower) { 1403 host->powerup_msecs = host->pdata->powerup_msecs; 1404 if (!host->powerup_msecs || host->powerup_msecs > 250) 1405 host->powerup_msecs = 250; 1406 } 1407 1408 dev_set_drvdata(&spi->dev, mmc); 1409 1410 /* preallocate dma buffers */ 1411 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1412 if (!host->data) 1413 goto fail_nobuf1; 1414 1415 if (spi->master->dev.parent->dma_mask) { 1416 struct device *dev = spi->master->dev.parent; 1417 1418 host->dma_dev = dev; 1419 host->ones_dma = dma_map_single(dev, ones, 1420 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1421 host->data_dma = dma_map_single(dev, host->data, 1422 sizeof(*host->data), DMA_BIDIRECTIONAL); 1423 1424 /* REVISIT in theory those map operations can fail... */ 1425 1426 dma_sync_single_for_cpu(host->dma_dev, 1427 host->data_dma, sizeof(*host->data), 1428 DMA_BIDIRECTIONAL); 1429 } 1430 1431 /* setup message for status/busy readback */ 1432 spi_message_init(&host->readback); 1433 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1434 1435 spi_message_add_tail(&host->status, &host->readback); 1436 host->status.tx_buf = host->ones; 1437 host->status.tx_dma = host->ones_dma; 1438 host->status.rx_buf = &host->data->status; 1439 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1440 host->status.cs_change = 1; 1441 1442 /* register card detect irq */ 1443 if (host->pdata && host->pdata->init) { 1444 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1445 if (status != 0) 1446 goto fail_glue_init; 1447 } 1448 1449 /* pass platform capabilities, if any */ 1450 if (host->pdata) 1451 mmc->caps |= host->pdata->caps; 1452 1453 status = mmc_add_host(mmc); 1454 if (status != 0) 1455 goto fail_add_host; 1456 1457 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1458 dev_name(&mmc->class_dev), 1459 host->dma_dev ? "" : ", no DMA", 1460 (host->pdata && host->pdata->get_ro) 1461 ? "" : ", no WP", 1462 (host->pdata && host->pdata->setpower) 1463 ? "" : ", no poweroff", 1464 (mmc->caps & MMC_CAP_NEEDS_POLL) 1465 ? ", cd polling" : ""); 1466 return 0; 1467 1468 fail_add_host: 1469 mmc_remove_host (mmc); 1470 fail_glue_init: 1471 if (host->dma_dev) 1472 dma_unmap_single(host->dma_dev, host->data_dma, 1473 sizeof(*host->data), DMA_BIDIRECTIONAL); 1474 kfree(host->data); 1475 1476 fail_nobuf1: 1477 mmc_free_host(mmc); 1478 mmc_spi_put_pdata(spi); 1479 dev_set_drvdata(&spi->dev, NULL); 1480 1481 nomem: 1482 kfree(ones); 1483 return status; 1484 } 1485 1486 1487 static int __devexit mmc_spi_remove(struct spi_device *spi) 1488 { 1489 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1490 struct mmc_spi_host *host; 1491 1492 if (mmc) { 1493 host = mmc_priv(mmc); 1494 1495 /* prevent new mmc_detect_change() calls */ 1496 if (host->pdata && host->pdata->exit) 1497 host->pdata->exit(&spi->dev, mmc); 1498 1499 mmc_remove_host(mmc); 1500 1501 if (host->dma_dev) { 1502 dma_unmap_single(host->dma_dev, host->ones_dma, 1503 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1504 dma_unmap_single(host->dma_dev, host->data_dma, 1505 sizeof(*host->data), DMA_BIDIRECTIONAL); 1506 } 1507 1508 kfree(host->data); 1509 kfree(host->ones); 1510 1511 spi->max_speed_hz = mmc->f_max; 1512 mmc_free_host(mmc); 1513 mmc_spi_put_pdata(spi); 1514 dev_set_drvdata(&spi->dev, NULL); 1515 } 1516 return 0; 1517 } 1518 1519 static struct of_device_id mmc_spi_of_match_table[] __devinitdata = { 1520 { .compatible = "mmc-spi-slot", }, 1521 {}, 1522 }; 1523 1524 static struct spi_driver mmc_spi_driver = { 1525 .driver = { 1526 .name = "mmc_spi", 1527 .bus = &spi_bus_type, 1528 .owner = THIS_MODULE, 1529 .of_match_table = mmc_spi_of_match_table, 1530 }, 1531 .probe = mmc_spi_probe, 1532 .remove = __devexit_p(mmc_spi_remove), 1533 }; 1534 1535 1536 static int __init mmc_spi_init(void) 1537 { 1538 return spi_register_driver(&mmc_spi_driver); 1539 } 1540 module_init(mmc_spi_init); 1541 1542 1543 static void __exit mmc_spi_exit(void) 1544 { 1545 spi_unregister_driver(&mmc_spi_driver); 1546 } 1547 module_exit(mmc_spi_exit); 1548 1549 1550 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1551 "Hans-Peter Nilsson, Jan Nikitenko"); 1552 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1553 MODULE_LICENSE("GPL"); 1554 MODULE_ALIAS("spi:mmc_spi"); 1555