xref: /openbmc/linux/drivers/mmc/host/mmc_spi.c (revision 22246614)
1 /*
2  * mmc_spi.c - Access SD/MMC cards through SPI master controllers
3  *
4  * (C) Copyright 2005, Intec Automation,
5  *		Mike Lavender (mike@steroidmicros)
6  * (C) Copyright 2006-2007, David Brownell
7  * (C) Copyright 2007, Axis Communications,
8  *		Hans-Peter Nilsson (hp@axis.com)
9  * (C) Copyright 2007, ATRON electronic GmbH,
10  *		Jan Nikitenko <jan.nikitenko@gmail.com>
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  */
27 #include <linux/hrtimer.h>
28 #include <linux/delay.h>
29 #include <linux/bio.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/crc7.h>
32 #include <linux/crc-itu-t.h>
33 #include <linux/scatterlist.h>
34 
35 #include <linux/mmc/host.h>
36 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
37 
38 #include <linux/spi/spi.h>
39 #include <linux/spi/mmc_spi.h>
40 
41 #include <asm/unaligned.h>
42 
43 
44 /* NOTES:
45  *
46  * - For now, we won't try to interoperate with a real mmc/sd/sdio
47  *   controller, although some of them do have hardware support for
48  *   SPI protocol.  The main reason for such configs would be mmc-ish
49  *   cards like DataFlash, which don't support that "native" protocol.
50  *
51  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
52  *   switch between driver stacks, and in any case if "native" mode
53  *   is available, it will be faster and hence preferable.
54  *
55  * - MMC depends on a different chipselect management policy than the
56  *   SPI interface currently supports for shared bus segments:  it needs
57  *   to issue multiple spi_message requests with the chipselect active,
58  *   using the results of one message to decide the next one to issue.
59  *
60  *   Pending updates to the programming interface, this driver expects
61  *   that it not share the bus with other drivers (precluding conflicts).
62  *
63  * - We tell the controller to keep the chipselect active from the
64  *   beginning of an mmc_host_ops.request until the end.  So beware
65  *   of SPI controller drivers that mis-handle the cs_change flag!
66  *
67  *   However, many cards seem OK with chipselect flapping up/down
68  *   during that time ... at least on unshared bus segments.
69  */
70 
71 
72 /*
73  * Local protocol constants, internal to data block protocols.
74  */
75 
76 /* Response tokens used to ack each block written: */
77 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
78 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
79 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
80 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
81 
82 /* Read and write blocks start with these tokens and end with crc;
83  * on error, read tokens act like a subset of R2_SPI_* values.
84  */
85 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
86 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
87 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
88 
89 #define MMC_SPI_BLOCKSIZE	512
90 
91 
92 /* These fixed timeouts come from the latest SD specs, which say to ignore
93  * the CSD values.  The R1B value is for card erase (e.g. the "I forgot the
94  * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after
95  * reads which takes nowhere near that long.  Older cards may be able to use
96  * shorter timeouts ... but why bother?
97  */
98 #define readblock_timeout	ktime_set(0, 100 * 1000 * 1000)
99 #define writeblock_timeout	ktime_set(0, 250 * 1000 * 1000)
100 #define r1b_timeout		ktime_set(3, 0)
101 
102 
103 /****************************************************************************/
104 
105 /*
106  * Local Data Structures
107  */
108 
109 /* "scratch" is per-{command,block} data exchanged with the card */
110 struct scratch {
111 	u8			status[29];
112 	u8			data_token;
113 	__be16			crc_val;
114 };
115 
116 struct mmc_spi_host {
117 	struct mmc_host		*mmc;
118 	struct spi_device	*spi;
119 
120 	unsigned char		power_mode;
121 	u16			powerup_msecs;
122 
123 	struct mmc_spi_platform_data	*pdata;
124 
125 	/* for bulk data transfers */
126 	struct spi_transfer	token, t, crc, early_status;
127 	struct spi_message	m;
128 
129 	/* for status readback */
130 	struct spi_transfer	status;
131 	struct spi_message	readback;
132 
133 	/* underlying DMA-aware controller, or null */
134 	struct device		*dma_dev;
135 
136 	/* buffer used for commands and for message "overhead" */
137 	struct scratch		*data;
138 	dma_addr_t		data_dma;
139 
140 	/* Specs say to write ones most of the time, even when the card
141 	 * has no need to read its input data; and many cards won't care.
142 	 * This is our source of those ones.
143 	 */
144 	void			*ones;
145 	dma_addr_t		ones_dma;
146 };
147 
148 
149 /****************************************************************************/
150 
151 /*
152  * MMC-over-SPI protocol glue, used by the MMC stack interface
153  */
154 
155 static inline int mmc_cs_off(struct mmc_spi_host *host)
156 {
157 	/* chipselect will always be inactive after setup() */
158 	return spi_setup(host->spi);
159 }
160 
161 static int
162 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
163 {
164 	int status;
165 
166 	if (len > sizeof(*host->data)) {
167 		WARN_ON(1);
168 		return -EIO;
169 	}
170 
171 	host->status.len = len;
172 
173 	if (host->dma_dev)
174 		dma_sync_single_for_device(host->dma_dev,
175 				host->data_dma, sizeof(*host->data),
176 				DMA_FROM_DEVICE);
177 
178 	status = spi_sync(host->spi, &host->readback);
179 
180 	if (host->dma_dev)
181 		dma_sync_single_for_cpu(host->dma_dev,
182 				host->data_dma, sizeof(*host->data),
183 				DMA_FROM_DEVICE);
184 
185 	return status;
186 }
187 
188 static int
189 mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte)
190 {
191 	u8		*cp = host->data->status;
192 
193 	timeout = ktime_add(timeout, ktime_get());
194 
195 	while (1) {
196 		int		status;
197 		unsigned	i;
198 
199 		status = mmc_spi_readbytes(host, n);
200 		if (status < 0)
201 			return status;
202 
203 		for (i = 0; i < n; i++) {
204 			if (cp[i] != byte)
205 				return cp[i];
206 		}
207 
208 		/* REVISIT investigate msleep() to avoid busy-wait I/O
209 		 * in at least some cases.
210 		 */
211 		if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0)
212 			break;
213 	}
214 	return -ETIMEDOUT;
215 }
216 
217 static inline int
218 mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout)
219 {
220 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
221 }
222 
223 static int mmc_spi_readtoken(struct mmc_spi_host *host)
224 {
225 	return mmc_spi_skip(host, readblock_timeout, 1, 0xff);
226 }
227 
228 
229 /*
230  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
231  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
232  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
233  *
234  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
235  * newer cards R7 (IF_COND).
236  */
237 
238 static char *maptype(struct mmc_command *cmd)
239 {
240 	switch (mmc_spi_resp_type(cmd)) {
241 	case MMC_RSP_SPI_R1:	return "R1";
242 	case MMC_RSP_SPI_R1B:	return "R1B";
243 	case MMC_RSP_SPI_R2:	return "R2/R5";
244 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
245 	default:		return "?";
246 	}
247 }
248 
249 /* return zero, else negative errno after setting cmd->error */
250 static int mmc_spi_response_get(struct mmc_spi_host *host,
251 		struct mmc_command *cmd, int cs_on)
252 {
253 	u8	*cp = host->data->status;
254 	u8	*end = cp + host->t.len;
255 	int	value = 0;
256 	char	tag[32];
257 
258 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
259 		cmd->opcode, maptype(cmd));
260 
261 	/* Except for data block reads, the whole response will already
262 	 * be stored in the scratch buffer.  It's somewhere after the
263 	 * command and the first byte we read after it.  We ignore that
264 	 * first byte.  After STOP_TRANSMISSION command it may include
265 	 * two data bits, but otherwise it's all ones.
266 	 */
267 	cp += 8;
268 	while (cp < end && *cp == 0xff)
269 		cp++;
270 
271 	/* Data block reads (R1 response types) may need more data... */
272 	if (cp == end) {
273 		unsigned	i;
274 
275 		cp = host->data->status;
276 
277 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
278 		 * status byte ... and we already scanned 2 bytes.
279 		 *
280 		 * REVISIT block read paths use nasty byte-at-a-time I/O
281 		 * so it can always DMA directly into the target buffer.
282 		 * It'd probably be better to memcpy() the first chunk and
283 		 * avoid extra i/o calls...
284 		 */
285 		for (i = 2; i < 9; i++) {
286 			value = mmc_spi_readbytes(host, 1);
287 			if (value < 0)
288 				goto done;
289 			if (*cp != 0xff)
290 				goto checkstatus;
291 		}
292 		value = -ETIMEDOUT;
293 		goto done;
294 	}
295 
296 checkstatus:
297 	if (*cp & 0x80) {
298 		dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n",
299 					tag, *cp);
300 		value = -EBADR;
301 		goto done;
302 	}
303 
304 	cmd->resp[0] = *cp++;
305 	cmd->error = 0;
306 
307 	/* Status byte: the entire seven-bit R1 response.  */
308 	if (cmd->resp[0] != 0) {
309 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS
310 					| R1_SPI_ILLEGAL_COMMAND)
311 				& cmd->resp[0])
312 			value = -EINVAL;
313 		else if (R1_SPI_COM_CRC & cmd->resp[0])
314 			value = -EILSEQ;
315 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
316 				& cmd->resp[0])
317 			value = -EIO;
318 		/* else R1_SPI_IDLE, "it's resetting" */
319 	}
320 
321 	switch (mmc_spi_resp_type(cmd)) {
322 
323 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
324 	 * and less-common stuff like various erase operations.
325 	 */
326 	case MMC_RSP_SPI_R1B:
327 		/* maybe we read all the busy tokens already */
328 		while (cp < end && *cp == 0)
329 			cp++;
330 		if (cp == end)
331 			mmc_spi_wait_unbusy(host, r1b_timeout);
332 		break;
333 
334 	/* SPI R2 == R1 + second status byte; SEND_STATUS
335 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
336 	 */
337 	case MMC_RSP_SPI_R2:
338 		cmd->resp[0] |= *cp << 8;
339 		break;
340 
341 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
342 	case MMC_RSP_SPI_R3:
343 		cmd->resp[1] = get_unaligned_be32(cp);
344 		break;
345 
346 	/* SPI R1 == just one status byte */
347 	case MMC_RSP_SPI_R1:
348 		break;
349 
350 	default:
351 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
352 				mmc_spi_resp_type(cmd));
353 		if (value >= 0)
354 			value = -EINVAL;
355 		goto done;
356 	}
357 
358 	if (value < 0)
359 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
360 			tag, cmd->resp[0], cmd->resp[1]);
361 
362 	/* disable chipselect on errors and some success cases */
363 	if (value >= 0 && cs_on)
364 		return value;
365 done:
366 	if (value < 0)
367 		cmd->error = value;
368 	mmc_cs_off(host);
369 	return value;
370 }
371 
372 /* Issue command and read its response.
373  * Returns zero on success, negative for error.
374  *
375  * On error, caller must cope with mmc core retry mechanism.  That
376  * means immediate low-level resubmit, which affects the bus lock...
377  */
378 static int
379 mmc_spi_command_send(struct mmc_spi_host *host,
380 		struct mmc_request *mrq,
381 		struct mmc_command *cmd, int cs_on)
382 {
383 	struct scratch		*data = host->data;
384 	u8			*cp = data->status;
385 	u32			arg = cmd->arg;
386 	int			status;
387 	struct spi_transfer	*t;
388 
389 	/* We can handle most commands (except block reads) in one full
390 	 * duplex I/O operation before either starting the next transfer
391 	 * (data block or command) or else deselecting the card.
392 	 *
393 	 * First, write 7 bytes:
394 	 *  - an all-ones byte to ensure the card is ready
395 	 *  - opcode byte (plus start and transmission bits)
396 	 *  - four bytes of big-endian argument
397 	 *  - crc7 (plus end bit) ... always computed, it's cheap
398 	 *
399 	 * We init the whole buffer to all-ones, which is what we need
400 	 * to write while we're reading (later) response data.
401 	 */
402 	memset(cp++, 0xff, sizeof(data->status));
403 
404 	*cp++ = 0x40 | cmd->opcode;
405 	*cp++ = (u8)(arg >> 24);
406 	*cp++ = (u8)(arg >> 16);
407 	*cp++ = (u8)(arg >> 8);
408 	*cp++ = (u8)arg;
409 	*cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01;
410 
411 	/* Then, read up to 13 bytes (while writing all-ones):
412 	 *  - N(CR) (== 1..8) bytes of all-ones
413 	 *  - status byte (for all response types)
414 	 *  - the rest of the response, either:
415 	 *      + nothing, for R1 or R1B responses
416 	 *	+ second status byte, for R2 responses
417 	 *	+ four data bytes, for R3 and R7 responses
418 	 *
419 	 * Finally, read some more bytes ... in the nice cases we know in
420 	 * advance how many, and reading 1 more is always OK:
421 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
422 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
423 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
424 	 *
425 	 * So in those cases one full duplex I/O of at most 21 bytes will
426 	 * handle the whole command, leaving the card ready to receive a
427 	 * data block or new command.  We do that whenever we can, shaving
428 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
429 	 *
430 	 * There are two other cases, where it's not generally practical
431 	 * to rely on a single I/O:
432 	 *
433 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
434 	 *
435 	 *    In this case we can *try* to fit it into one I/O, then
436 	 *    maybe read more data later.
437 	 *
438 	 *  - Data block reads are more troublesome, since a variable
439 	 *    number of padding bytes precede the token and data.
440 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
441 	 *      + N(AC) (== 1..many) bytes of all-ones
442 	 *
443 	 *    In this case we currently only have minimal speedups here:
444 	 *    when N(CR) == 1 we can avoid I/O in response_get().
445 	 */
446 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
447 		cp += 2;	/* min(N(CR)) + status */
448 		/* R1 */
449 	} else {
450 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
451 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
452 			cp++;
453 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
454 			cp += 4;
455 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
456 			cp = data->status + sizeof(data->status);
457 		/* else:  R1 (most commands) */
458 	}
459 
460 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
461 		cmd->opcode, maptype(cmd));
462 
463 	/* send command, leaving chipselect active */
464 	spi_message_init(&host->m);
465 
466 	t = &host->t;
467 	memset(t, 0, sizeof(*t));
468 	t->tx_buf = t->rx_buf = data->status;
469 	t->tx_dma = t->rx_dma = host->data_dma;
470 	t->len = cp - data->status;
471 	t->cs_change = 1;
472 	spi_message_add_tail(t, &host->m);
473 
474 	if (host->dma_dev) {
475 		host->m.is_dma_mapped = 1;
476 		dma_sync_single_for_device(host->dma_dev,
477 				host->data_dma, sizeof(*host->data),
478 				DMA_BIDIRECTIONAL);
479 	}
480 	status = spi_sync(host->spi, &host->m);
481 
482 	if (host->dma_dev)
483 		dma_sync_single_for_cpu(host->dma_dev,
484 				host->data_dma, sizeof(*host->data),
485 				DMA_BIDIRECTIONAL);
486 	if (status < 0) {
487 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
488 		cmd->error = status;
489 		return status;
490 	}
491 
492 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
493 	return mmc_spi_response_get(host, cmd, cs_on);
494 }
495 
496 /* Build data message with up to four separate transfers.  For TX, we
497  * start by writing the data token.  And in most cases, we finish with
498  * a status transfer.
499  *
500  * We always provide TX data for data and CRC.  The MMC/SD protocol
501  * requires us to write ones; but Linux defaults to writing zeroes;
502  * so we explicitly initialize it to all ones on RX paths.
503  *
504  * We also handle DMA mapping, so the underlying SPI controller does
505  * not need to (re)do it for each message.
506  */
507 static void
508 mmc_spi_setup_data_message(
509 	struct mmc_spi_host	*host,
510 	int			multiple,
511 	enum dma_data_direction	direction)
512 {
513 	struct spi_transfer	*t;
514 	struct scratch		*scratch = host->data;
515 	dma_addr_t		dma = host->data_dma;
516 
517 	spi_message_init(&host->m);
518 	if (dma)
519 		host->m.is_dma_mapped = 1;
520 
521 	/* for reads, readblock() skips 0xff bytes before finding
522 	 * the token; for writes, this transfer issues that token.
523 	 */
524 	if (direction == DMA_TO_DEVICE) {
525 		t = &host->token;
526 		memset(t, 0, sizeof(*t));
527 		t->len = 1;
528 		if (multiple)
529 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
530 		else
531 			scratch->data_token = SPI_TOKEN_SINGLE;
532 		t->tx_buf = &scratch->data_token;
533 		if (dma)
534 			t->tx_dma = dma + offsetof(struct scratch, data_token);
535 		spi_message_add_tail(t, &host->m);
536 	}
537 
538 	/* Body of transfer is buffer, then CRC ...
539 	 * either TX-only, or RX with TX-ones.
540 	 */
541 	t = &host->t;
542 	memset(t, 0, sizeof(*t));
543 	t->tx_buf = host->ones;
544 	t->tx_dma = host->ones_dma;
545 	/* length and actual buffer info are written later */
546 	spi_message_add_tail(t, &host->m);
547 
548 	t = &host->crc;
549 	memset(t, 0, sizeof(*t));
550 	t->len = 2;
551 	if (direction == DMA_TO_DEVICE) {
552 		/* the actual CRC may get written later */
553 		t->tx_buf = &scratch->crc_val;
554 		if (dma)
555 			t->tx_dma = dma + offsetof(struct scratch, crc_val);
556 	} else {
557 		t->tx_buf = host->ones;
558 		t->tx_dma = host->ones_dma;
559 		t->rx_buf = &scratch->crc_val;
560 		if (dma)
561 			t->rx_dma = dma + offsetof(struct scratch, crc_val);
562 	}
563 	spi_message_add_tail(t, &host->m);
564 
565 	/*
566 	 * A single block read is followed by N(EC) [0+] all-ones bytes
567 	 * before deselect ... don't bother.
568 	 *
569 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
570 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
571 	 * collect that single byte, so readblock() doesn't need to.
572 	 *
573 	 * For a write, the one-byte data response follows immediately, then
574 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
575 	 * Then single block reads may deselect, and multiblock ones issue
576 	 * the next token (next data block, or STOP_TRAN).  We can try to
577 	 * minimize I/O ops by using a single read to collect end-of-busy.
578 	 */
579 	if (multiple || direction == DMA_TO_DEVICE) {
580 		t = &host->early_status;
581 		memset(t, 0, sizeof(*t));
582 		t->len = (direction == DMA_TO_DEVICE)
583 				? sizeof(scratch->status)
584 				: 1;
585 		t->tx_buf = host->ones;
586 		t->tx_dma = host->ones_dma;
587 		t->rx_buf = scratch->status;
588 		if (dma)
589 			t->rx_dma = dma + offsetof(struct scratch, status);
590 		t->cs_change = 1;
591 		spi_message_add_tail(t, &host->m);
592 	}
593 }
594 
595 /*
596  * Write one block:
597  *  - caller handled preceding N(WR) [1+] all-ones bytes
598  *  - data block
599  *	+ token
600  *	+ data bytes
601  *	+ crc16
602  *  - an all-ones byte ... card writes a data-response byte
603  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
604  *
605  * Return negative errno, else success.
606  */
607 static int
608 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t)
609 {
610 	struct spi_device	*spi = host->spi;
611 	int			status, i;
612 	struct scratch		*scratch = host->data;
613 
614 	if (host->mmc->use_spi_crc)
615 		scratch->crc_val = cpu_to_be16(
616 				crc_itu_t(0, t->tx_buf, t->len));
617 	if (host->dma_dev)
618 		dma_sync_single_for_device(host->dma_dev,
619 				host->data_dma, sizeof(*scratch),
620 				DMA_BIDIRECTIONAL);
621 
622 	status = spi_sync(spi, &host->m);
623 
624 	if (status != 0) {
625 		dev_dbg(&spi->dev, "write error (%d)\n", status);
626 		return status;
627 	}
628 
629 	if (host->dma_dev)
630 		dma_sync_single_for_cpu(host->dma_dev,
631 				host->data_dma, sizeof(*scratch),
632 				DMA_BIDIRECTIONAL);
633 
634 	/*
635 	 * Get the transmission data-response reply.  It must follow
636 	 * immediately after the data block we transferred.  This reply
637 	 * doesn't necessarily tell whether the write operation succeeded;
638 	 * it just says if the transmission was ok and whether *earlier*
639 	 * writes succeeded; see the standard.
640 	 */
641 	switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) {
642 	case SPI_RESPONSE_ACCEPTED:
643 		status = 0;
644 		break;
645 	case SPI_RESPONSE_CRC_ERR:
646 		/* host shall then issue MMC_STOP_TRANSMISSION */
647 		status = -EILSEQ;
648 		break;
649 	case SPI_RESPONSE_WRITE_ERR:
650 		/* host shall then issue MMC_STOP_TRANSMISSION,
651 		 * and should MMC_SEND_STATUS to sort it out
652 		 */
653 		status = -EIO;
654 		break;
655 	default:
656 		status = -EPROTO;
657 		break;
658 	}
659 	if (status != 0) {
660 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
661 			scratch->status[0], status);
662 		return status;
663 	}
664 
665 	t->tx_buf += t->len;
666 	if (host->dma_dev)
667 		t->tx_dma += t->len;
668 
669 	/* Return when not busy.  If we didn't collect that status yet,
670 	 * we'll need some more I/O.
671 	 */
672 	for (i = 1; i < sizeof(scratch->status); i++) {
673 		if (scratch->status[i] != 0)
674 			return 0;
675 	}
676 	return mmc_spi_wait_unbusy(host, writeblock_timeout);
677 }
678 
679 /*
680  * Read one block:
681  *  - skip leading all-ones bytes ... either
682  *      + N(AC) [1..f(clock,CSD)] usually, else
683  *      + N(CX) [0..8] when reading CSD or CID
684  *  - data block
685  *	+ token ... if error token, no data or crc
686  *	+ data bytes
687  *	+ crc16
688  *
689  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
690  * before dropping chipselect.
691  *
692  * For multiblock reads, caller either reads the next block or issues a
693  * STOP_TRANSMISSION command.
694  */
695 static int
696 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t)
697 {
698 	struct spi_device	*spi = host->spi;
699 	int			status;
700 	struct scratch		*scratch = host->data;
701 
702 	/* At least one SD card sends an all-zeroes byte when N(CX)
703 	 * applies, before the all-ones bytes ... just cope with that.
704 	 */
705 	status = mmc_spi_readbytes(host, 1);
706 	if (status < 0)
707 		return status;
708 	status = scratch->status[0];
709 	if (status == 0xff || status == 0)
710 		status = mmc_spi_readtoken(host);
711 
712 	if (status == SPI_TOKEN_SINGLE) {
713 		if (host->dma_dev) {
714 			dma_sync_single_for_device(host->dma_dev,
715 					host->data_dma, sizeof(*scratch),
716 					DMA_BIDIRECTIONAL);
717 			dma_sync_single_for_device(host->dma_dev,
718 					t->rx_dma, t->len,
719 					DMA_FROM_DEVICE);
720 		}
721 
722 		status = spi_sync(spi, &host->m);
723 
724 		if (host->dma_dev) {
725 			dma_sync_single_for_cpu(host->dma_dev,
726 					host->data_dma, sizeof(*scratch),
727 					DMA_BIDIRECTIONAL);
728 			dma_sync_single_for_cpu(host->dma_dev,
729 					t->rx_dma, t->len,
730 					DMA_FROM_DEVICE);
731 		}
732 
733 	} else {
734 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
735 
736 		/* we've read extra garbage, timed out, etc */
737 		if (status < 0)
738 			return status;
739 
740 		/* low four bits are an R2 subset, fifth seems to be
741 		 * vendor specific ... map them all to generic error..
742 		 */
743 		return -EIO;
744 	}
745 
746 	if (host->mmc->use_spi_crc) {
747 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
748 
749 		be16_to_cpus(&scratch->crc_val);
750 		if (scratch->crc_val != crc) {
751 			dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, "
752 					"computed=0x%04x len=%d\n",
753 					scratch->crc_val, crc, t->len);
754 			return -EILSEQ;
755 		}
756 	}
757 
758 	t->rx_buf += t->len;
759 	if (host->dma_dev)
760 		t->rx_dma += t->len;
761 
762 	return 0;
763 }
764 
765 /*
766  * An MMC/SD data stage includes one or more blocks, optional CRCs,
767  * and inline handshaking.  That handhaking makes it unlike most
768  * other SPI protocol stacks.
769  */
770 static void
771 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
772 		struct mmc_data *data, u32 blk_size)
773 {
774 	struct spi_device	*spi = host->spi;
775 	struct device		*dma_dev = host->dma_dev;
776 	struct spi_transfer	*t;
777 	enum dma_data_direction	direction;
778 	struct scatterlist	*sg;
779 	unsigned		n_sg;
780 	int			multiple = (data->blocks > 1);
781 
782 	if (data->flags & MMC_DATA_READ)
783 		direction = DMA_FROM_DEVICE;
784 	else
785 		direction = DMA_TO_DEVICE;
786 	mmc_spi_setup_data_message(host, multiple, direction);
787 	t = &host->t;
788 
789 	/* Handle scatterlist segments one at a time, with synch for
790 	 * each 512-byte block
791 	 */
792 	for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) {
793 		int			status = 0;
794 		dma_addr_t		dma_addr = 0;
795 		void			*kmap_addr;
796 		unsigned		length = sg->length;
797 		enum dma_data_direction	dir = direction;
798 
799 		/* set up dma mapping for controller drivers that might
800 		 * use DMA ... though they may fall back to PIO
801 		 */
802 		if (dma_dev) {
803 			/* never invalidate whole *shared* pages ... */
804 			if ((sg->offset != 0 || length != PAGE_SIZE)
805 					&& dir == DMA_FROM_DEVICE)
806 				dir = DMA_BIDIRECTIONAL;
807 
808 			dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
809 						PAGE_SIZE, dir);
810 			if (direction == DMA_TO_DEVICE)
811 				t->tx_dma = dma_addr + sg->offset;
812 			else
813 				t->rx_dma = dma_addr + sg->offset;
814 		}
815 
816 		/* allow pio too; we don't allow highmem */
817 		kmap_addr = kmap(sg_page(sg));
818 		if (direction == DMA_TO_DEVICE)
819 			t->tx_buf = kmap_addr + sg->offset;
820 		else
821 			t->rx_buf = kmap_addr + sg->offset;
822 
823 		/* transfer each block, and update request status */
824 		while (length) {
825 			t->len = min(length, blk_size);
826 
827 			dev_dbg(&host->spi->dev,
828 				"    mmc_spi: %s block, %d bytes\n",
829 				(direction == DMA_TO_DEVICE)
830 				? "write"
831 				: "read",
832 				t->len);
833 
834 			if (direction == DMA_TO_DEVICE)
835 				status = mmc_spi_writeblock(host, t);
836 			else
837 				status = mmc_spi_readblock(host, t);
838 			if (status < 0)
839 				break;
840 
841 			data->bytes_xfered += t->len;
842 			length -= t->len;
843 
844 			if (!multiple)
845 				break;
846 		}
847 
848 		/* discard mappings */
849 		if (direction == DMA_FROM_DEVICE)
850 			flush_kernel_dcache_page(sg_page(sg));
851 		kunmap(sg_page(sg));
852 		if (dma_dev)
853 			dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
854 
855 		if (status < 0) {
856 			data->error = status;
857 			dev_dbg(&spi->dev, "%s status %d\n",
858 				(direction == DMA_TO_DEVICE)
859 					? "write" : "read",
860 				status);
861 			break;
862 		}
863 	}
864 
865 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
866 	 * can be issued before multiblock writes.  Unlike its more widely
867 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
868 	 * that can affect the STOP_TRAN logic.   Complete (and current)
869 	 * MMC specs should sort that out before Linux starts using CMD23.
870 	 */
871 	if (direction == DMA_TO_DEVICE && multiple) {
872 		struct scratch	*scratch = host->data;
873 		int		tmp;
874 		const unsigned	statlen = sizeof(scratch->status);
875 
876 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
877 
878 		/* Tweak the per-block message we set up earlier by morphing
879 		 * it to hold single buffer with the token followed by some
880 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
881 		 * "not busy any longer" status, and leave chip selected.
882 		 */
883 		INIT_LIST_HEAD(&host->m.transfers);
884 		list_add(&host->early_status.transfer_list,
885 				&host->m.transfers);
886 
887 		memset(scratch->status, 0xff, statlen);
888 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
889 
890 		host->early_status.tx_buf = host->early_status.rx_buf;
891 		host->early_status.tx_dma = host->early_status.rx_dma;
892 		host->early_status.len = statlen;
893 
894 		if (host->dma_dev)
895 			dma_sync_single_for_device(host->dma_dev,
896 					host->data_dma, sizeof(*scratch),
897 					DMA_BIDIRECTIONAL);
898 
899 		tmp = spi_sync(spi, &host->m);
900 
901 		if (host->dma_dev)
902 			dma_sync_single_for_cpu(host->dma_dev,
903 					host->data_dma, sizeof(*scratch),
904 					DMA_BIDIRECTIONAL);
905 
906 		if (tmp < 0) {
907 			if (!data->error)
908 				data->error = tmp;
909 			return;
910 		}
911 
912 		/* Ideally we collected "not busy" status with one I/O,
913 		 * avoiding wasteful byte-at-a-time scanning... but more
914 		 * I/O is often needed.
915 		 */
916 		for (tmp = 2; tmp < statlen; tmp++) {
917 			if (scratch->status[tmp] != 0)
918 				return;
919 		}
920 		tmp = mmc_spi_wait_unbusy(host, writeblock_timeout);
921 		if (tmp < 0 && !data->error)
922 			data->error = tmp;
923 	}
924 }
925 
926 /****************************************************************************/
927 
928 /*
929  * MMC driver implementation -- the interface to the MMC stack
930  */
931 
932 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
933 {
934 	struct mmc_spi_host	*host = mmc_priv(mmc);
935 	int			status = -EINVAL;
936 
937 #ifdef DEBUG
938 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
939 	{
940 		struct mmc_command	*cmd;
941 		int			invalid = 0;
942 
943 		cmd = mrq->cmd;
944 		if (!mmc_spi_resp_type(cmd)) {
945 			dev_dbg(&host->spi->dev, "bogus command\n");
946 			cmd->error = -EINVAL;
947 			invalid = 1;
948 		}
949 
950 		cmd = mrq->stop;
951 		if (cmd && !mmc_spi_resp_type(cmd)) {
952 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
953 			cmd->error = -EINVAL;
954 			invalid = 1;
955 		}
956 
957 		if (invalid) {
958 			dump_stack();
959 			mmc_request_done(host->mmc, mrq);
960 			return;
961 		}
962 	}
963 #endif
964 
965 	/* issue command; then optionally data and stop */
966 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
967 	if (status == 0 && mrq->data) {
968 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
969 		if (mrq->stop)
970 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
971 		else
972 			mmc_cs_off(host);
973 	}
974 
975 	mmc_request_done(host->mmc, mrq);
976 }
977 
978 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
979  *
980  * NOTE that here we can't know that the card has just been powered up;
981  * not all MMC/SD sockets support power switching.
982  *
983  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
984  * this doesn't seem to do the right thing at all...
985  */
986 static void mmc_spi_initsequence(struct mmc_spi_host *host)
987 {
988 	/* Try to be very sure any previous command has completed;
989 	 * wait till not-busy, skip debris from any old commands.
990 	 */
991 	mmc_spi_wait_unbusy(host, r1b_timeout);
992 	mmc_spi_readbytes(host, 10);
993 
994 	/*
995 	 * Do a burst with chipselect active-high.  We need to do this to
996 	 * meet the requirement of 74 clock cycles with both chipselect
997 	 * and CMD (MOSI) high before CMD0 ... after the card has been
998 	 * powered up to Vdd(min), and so is ready to take commands.
999 	 *
1000 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1001 	 * while most others don't seem to care.
1002 	 *
1003 	 * Note that this is one of the places MMC/SD plays games with the
1004 	 * SPI protocol.  Another is that when chipselect is released while
1005 	 * the card returns BUSY status, the clock must issue several cycles
1006 	 * with chipselect high before the card will stop driving its output.
1007 	 */
1008 	host->spi->mode |= SPI_CS_HIGH;
1009 	if (spi_setup(host->spi) != 0) {
1010 		/* Just warn; most cards work without it. */
1011 		dev_warn(&host->spi->dev,
1012 				"can't change chip-select polarity\n");
1013 		host->spi->mode &= ~SPI_CS_HIGH;
1014 	} else {
1015 		mmc_spi_readbytes(host, 18);
1016 
1017 		host->spi->mode &= ~SPI_CS_HIGH;
1018 		if (spi_setup(host->spi) != 0) {
1019 			/* Wot, we can't get the same setup we had before? */
1020 			dev_err(&host->spi->dev,
1021 					"can't restore chip-select polarity\n");
1022 		}
1023 	}
1024 }
1025 
1026 static char *mmc_powerstring(u8 power_mode)
1027 {
1028 	switch (power_mode) {
1029 	case MMC_POWER_OFF: return "off";
1030 	case MMC_POWER_UP:  return "up";
1031 	case MMC_POWER_ON:  return "on";
1032 	}
1033 	return "?";
1034 }
1035 
1036 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1037 {
1038 	struct mmc_spi_host *host = mmc_priv(mmc);
1039 
1040 	if (host->power_mode != ios->power_mode) {
1041 		int		canpower;
1042 
1043 		canpower = host->pdata && host->pdata->setpower;
1044 
1045 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1046 				mmc_powerstring(ios->power_mode),
1047 				ios->vdd,
1048 				canpower ? ", can switch" : "");
1049 
1050 		/* switch power on/off if possible, accounting for
1051 		 * max 250msec powerup time if needed.
1052 		 */
1053 		if (canpower) {
1054 			switch (ios->power_mode) {
1055 			case MMC_POWER_OFF:
1056 			case MMC_POWER_UP:
1057 				host->pdata->setpower(&host->spi->dev,
1058 						ios->vdd);
1059 				if (ios->power_mode == MMC_POWER_UP)
1060 					msleep(host->powerup_msecs);
1061 			}
1062 		}
1063 
1064 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1065 		if (ios->power_mode == MMC_POWER_ON)
1066 			mmc_spi_initsequence(host);
1067 
1068 		/* If powering down, ground all card inputs to avoid power
1069 		 * delivery from data lines!  On a shared SPI bus, this
1070 		 * will probably be temporary; 6.4.2 of the simplified SD
1071 		 * spec says this must last at least 1msec.
1072 		 *
1073 		 *   - Clock low means CPOL 0, e.g. mode 0
1074 		 *   - MOSI low comes from writing zero
1075 		 *   - Chipselect is usually active low...
1076 		 */
1077 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1078 			int mres;
1079 
1080 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1081 			mres = spi_setup(host->spi);
1082 			if (mres < 0)
1083 				dev_dbg(&host->spi->dev,
1084 					"switch to SPI mode 0 failed\n");
1085 
1086 			if (spi_w8r8(host->spi, 0x00) < 0)
1087 				dev_dbg(&host->spi->dev,
1088 					"put spi signals to low failed\n");
1089 
1090 			/*
1091 			 * Now clock should be low due to spi mode 0;
1092 			 * MOSI should be low because of written 0x00;
1093 			 * chipselect should be low (it is active low)
1094 			 * power supply is off, so now MMC is off too!
1095 			 *
1096 			 * FIXME no, chipselect can be high since the
1097 			 * device is inactive and SPI_CS_HIGH is clear...
1098 			 */
1099 			msleep(10);
1100 			if (mres == 0) {
1101 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1102 				mres = spi_setup(host->spi);
1103 				if (mres < 0)
1104 					dev_dbg(&host->spi->dev,
1105 						"switch back to SPI mode 3"
1106 						" failed\n");
1107 			}
1108 		}
1109 
1110 		host->power_mode = ios->power_mode;
1111 	}
1112 
1113 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1114 		int		status;
1115 
1116 		host->spi->max_speed_hz = ios->clock;
1117 		status = spi_setup(host->spi);
1118 		dev_dbg(&host->spi->dev,
1119 			"mmc_spi:  clock to %d Hz, %d\n",
1120 			host->spi->max_speed_hz, status);
1121 	}
1122 }
1123 
1124 static int mmc_spi_get_ro(struct mmc_host *mmc)
1125 {
1126 	struct mmc_spi_host *host = mmc_priv(mmc);
1127 
1128 	if (host->pdata && host->pdata->get_ro)
1129 		return host->pdata->get_ro(mmc->parent);
1130 	/* board doesn't support read only detection; assume writeable */
1131 	return 0;
1132 }
1133 
1134 
1135 static const struct mmc_host_ops mmc_spi_ops = {
1136 	.request	= mmc_spi_request,
1137 	.set_ios	= mmc_spi_set_ios,
1138 	.get_ro		= mmc_spi_get_ro,
1139 };
1140 
1141 
1142 /****************************************************************************/
1143 
1144 /*
1145  * SPI driver implementation
1146  */
1147 
1148 static irqreturn_t
1149 mmc_spi_detect_irq(int irq, void *mmc)
1150 {
1151 	struct mmc_spi_host *host = mmc_priv(mmc);
1152 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1153 
1154 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1155 	return IRQ_HANDLED;
1156 }
1157 
1158 struct count_children {
1159 	unsigned	n;
1160 	struct bus_type	*bus;
1161 };
1162 
1163 static int maybe_count_child(struct device *dev, void *c)
1164 {
1165 	struct count_children *ccp = c;
1166 
1167 	if (dev->bus == ccp->bus) {
1168 		if (ccp->n)
1169 			return -EBUSY;
1170 		ccp->n++;
1171 	}
1172 	return 0;
1173 }
1174 
1175 static int mmc_spi_probe(struct spi_device *spi)
1176 {
1177 	void			*ones;
1178 	struct mmc_host		*mmc;
1179 	struct mmc_spi_host	*host;
1180 	int			status;
1181 
1182 	/* MMC and SD specs only seem to care that sampling is on the
1183 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1184 	 * should be legit.  We'll use mode 0 since it seems to be a
1185 	 * bit less troublesome on some hardware ... unclear why.
1186 	 */
1187 	spi->mode = SPI_MODE_0;
1188 	spi->bits_per_word = 8;
1189 
1190 	status = spi_setup(spi);
1191 	if (status < 0) {
1192 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1193 				spi->mode, spi->max_speed_hz / 1000,
1194 				status);
1195 		return status;
1196 	}
1197 
1198 	/* We can use the bus safely iff nobody else will interfere with us.
1199 	 * Most commands consist of one SPI message to issue a command, then
1200 	 * several more to collect its response, then possibly more for data
1201 	 * transfer.  Clocking access to other devices during that period will
1202 	 * corrupt the command execution.
1203 	 *
1204 	 * Until we have software primitives which guarantee non-interference,
1205 	 * we'll aim for a hardware-level guarantee.
1206 	 *
1207 	 * REVISIT we can't guarantee another device won't be added later...
1208 	 */
1209 	if (spi->master->num_chipselect > 1) {
1210 		struct count_children cc;
1211 
1212 		cc.n = 0;
1213 		cc.bus = spi->dev.bus;
1214 		status = device_for_each_child(spi->dev.parent, &cc,
1215 				maybe_count_child);
1216 		if (status < 0) {
1217 			dev_err(&spi->dev, "can't share SPI bus\n");
1218 			return status;
1219 		}
1220 
1221 		dev_warn(&spi->dev, "ASSUMING SPI bus stays unshared!\n");
1222 	}
1223 
1224 	/* We need a supply of ones to transmit.  This is the only time
1225 	 * the CPU touches these, so cache coherency isn't a concern.
1226 	 *
1227 	 * NOTE if many systems use more than one MMC-over-SPI connector
1228 	 * it'd save some memory to share this.  That's evidently rare.
1229 	 */
1230 	status = -ENOMEM;
1231 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1232 	if (!ones)
1233 		goto nomem;
1234 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1235 
1236 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1237 	if (!mmc)
1238 		goto nomem;
1239 
1240 	mmc->ops = &mmc_spi_ops;
1241 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1242 
1243 	/* As long as we keep track of the number of successfully
1244 	 * transmitted blocks, we're good for multiwrite.
1245 	 */
1246 	mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE;
1247 
1248 	/* SPI doesn't need the lowspeed device identification thing for
1249 	 * MMC or SD cards, since it never comes up in open drain mode.
1250 	 * That's good; some SPI masters can't handle very low speeds!
1251 	 *
1252 	 * However, low speed SDIO cards need not handle over 400 KHz;
1253 	 * that's the only reason not to use a few MHz for f_min (until
1254 	 * the upper layer reads the target frequency from the CSD).
1255 	 */
1256 	mmc->f_min = 400000;
1257 	mmc->f_max = spi->max_speed_hz;
1258 
1259 	host = mmc_priv(mmc);
1260 	host->mmc = mmc;
1261 	host->spi = spi;
1262 
1263 	host->ones = ones;
1264 
1265 	/* Platform data is used to hook up things like card sensing
1266 	 * and power switching gpios.
1267 	 */
1268 	host->pdata = spi->dev.platform_data;
1269 	if (host->pdata)
1270 		mmc->ocr_avail = host->pdata->ocr_mask;
1271 	if (!mmc->ocr_avail) {
1272 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1273 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1274 	}
1275 	if (host->pdata && host->pdata->setpower) {
1276 		host->powerup_msecs = host->pdata->powerup_msecs;
1277 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1278 			host->powerup_msecs = 250;
1279 	}
1280 
1281 	dev_set_drvdata(&spi->dev, mmc);
1282 
1283 	/* preallocate dma buffers */
1284 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1285 	if (!host->data)
1286 		goto fail_nobuf1;
1287 
1288 	if (spi->master->dev.parent->dma_mask) {
1289 		struct device	*dev = spi->master->dev.parent;
1290 
1291 		host->dma_dev = dev;
1292 		host->ones_dma = dma_map_single(dev, ones,
1293 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1294 		host->data_dma = dma_map_single(dev, host->data,
1295 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1296 
1297 		/* REVISIT in theory those map operations can fail... */
1298 
1299 		dma_sync_single_for_cpu(host->dma_dev,
1300 				host->data_dma, sizeof(*host->data),
1301 				DMA_BIDIRECTIONAL);
1302 	}
1303 
1304 	/* setup message for status/busy readback */
1305 	spi_message_init(&host->readback);
1306 	host->readback.is_dma_mapped = (host->dma_dev != NULL);
1307 
1308 	spi_message_add_tail(&host->status, &host->readback);
1309 	host->status.tx_buf = host->ones;
1310 	host->status.tx_dma = host->ones_dma;
1311 	host->status.rx_buf = &host->data->status;
1312 	host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1313 	host->status.cs_change = 1;
1314 
1315 	/* register card detect irq */
1316 	if (host->pdata && host->pdata->init) {
1317 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1318 		if (status != 0)
1319 			goto fail_glue_init;
1320 	}
1321 
1322 	status = mmc_add_host(mmc);
1323 	if (status != 0)
1324 		goto fail_add_host;
1325 
1326 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1327 			mmc->class_dev.bus_id,
1328 			host->dma_dev ? "" : ", no DMA",
1329 			(host->pdata && host->pdata->get_ro)
1330 				? "" : ", no WP",
1331 			(host->pdata && host->pdata->setpower)
1332 				? "" : ", no poweroff");
1333 	return 0;
1334 
1335 fail_add_host:
1336 	mmc_remove_host (mmc);
1337 fail_glue_init:
1338 	if (host->dma_dev)
1339 		dma_unmap_single(host->dma_dev, host->data_dma,
1340 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1341 	kfree(host->data);
1342 
1343 fail_nobuf1:
1344 	mmc_free_host(mmc);
1345 	dev_set_drvdata(&spi->dev, NULL);
1346 
1347 nomem:
1348 	kfree(ones);
1349 	return status;
1350 }
1351 
1352 
1353 static int __devexit mmc_spi_remove(struct spi_device *spi)
1354 {
1355 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1356 	struct mmc_spi_host	*host;
1357 
1358 	if (mmc) {
1359 		host = mmc_priv(mmc);
1360 
1361 		/* prevent new mmc_detect_change() calls */
1362 		if (host->pdata && host->pdata->exit)
1363 			host->pdata->exit(&spi->dev, mmc);
1364 
1365 		mmc_remove_host(mmc);
1366 
1367 		if (host->dma_dev) {
1368 			dma_unmap_single(host->dma_dev, host->ones_dma,
1369 				MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE);
1370 			dma_unmap_single(host->dma_dev, host->data_dma,
1371 				sizeof(*host->data), DMA_BIDIRECTIONAL);
1372 		}
1373 
1374 		kfree(host->data);
1375 		kfree(host->ones);
1376 
1377 		spi->max_speed_hz = mmc->f_max;
1378 		mmc_free_host(mmc);
1379 		dev_set_drvdata(&spi->dev, NULL);
1380 	}
1381 	return 0;
1382 }
1383 
1384 
1385 static struct spi_driver mmc_spi_driver = {
1386 	.driver = {
1387 		.name =		"mmc_spi",
1388 		.bus =		&spi_bus_type,
1389 		.owner =	THIS_MODULE,
1390 	},
1391 	.probe =	mmc_spi_probe,
1392 	.remove =	__devexit_p(mmc_spi_remove),
1393 };
1394 
1395 
1396 static int __init mmc_spi_init(void)
1397 {
1398 	return spi_register_driver(&mmc_spi_driver);
1399 }
1400 module_init(mmc_spi_init);
1401 
1402 
1403 static void __exit mmc_spi_exit(void)
1404 {
1405 	spi_unregister_driver(&mmc_spi_driver);
1406 }
1407 module_exit(mmc_spi_exit);
1408 
1409 
1410 MODULE_AUTHOR("Mike Lavender, David Brownell, "
1411 		"Hans-Peter Nilsson, Jan Nikitenko");
1412 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1413 MODULE_LICENSE("GPL");
1414