1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/sched.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/module.h> 31 #include <linux/bio.h> 32 #include <linux/dma-mapping.h> 33 #include <linux/crc7.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/scatterlist.h> 36 37 #include <linux/mmc/host.h> 38 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 39 40 #include <linux/spi/spi.h> 41 #include <linux/spi/mmc_spi.h> 42 43 #include <asm/unaligned.h> 44 45 46 /* NOTES: 47 * 48 * - For now, we won't try to interoperate with a real mmc/sd/sdio 49 * controller, although some of them do have hardware support for 50 * SPI protocol. The main reason for such configs would be mmc-ish 51 * cards like DataFlash, which don't support that "native" protocol. 52 * 53 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 54 * switch between driver stacks, and in any case if "native" mode 55 * is available, it will be faster and hence preferable. 56 * 57 * - MMC depends on a different chipselect management policy than the 58 * SPI interface currently supports for shared bus segments: it needs 59 * to issue multiple spi_message requests with the chipselect active, 60 * using the results of one message to decide the next one to issue. 61 * 62 * Pending updates to the programming interface, this driver expects 63 * that it not share the bus with other drivers (precluding conflicts). 64 * 65 * - We tell the controller to keep the chipselect active from the 66 * beginning of an mmc_host_ops.request until the end. So beware 67 * of SPI controller drivers that mis-handle the cs_change flag! 68 * 69 * However, many cards seem OK with chipselect flapping up/down 70 * during that time ... at least on unshared bus segments. 71 */ 72 73 74 /* 75 * Local protocol constants, internal to data block protocols. 76 */ 77 78 /* Response tokens used to ack each block written: */ 79 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 80 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 81 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 82 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 83 84 /* Read and write blocks start with these tokens and end with crc; 85 * on error, read tokens act like a subset of R2_SPI_* values. 86 */ 87 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 88 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 89 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 90 91 #define MMC_SPI_BLOCKSIZE 512 92 93 94 /* These fixed timeouts come from the latest SD specs, which say to ignore 95 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 96 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 97 * reads which takes nowhere near that long. Older cards may be able to use 98 * shorter timeouts ... but why bother? 99 */ 100 #define r1b_timeout (HZ * 3) 101 102 /* One of the critical speed parameters is the amount of data which may 103 * be transferred in one command. If this value is too low, the SD card 104 * controller has to do multiple partial block writes (argggh!). With 105 * today (2008) SD cards there is little speed gain if we transfer more 106 * than 64 KBytes at a time. So use this value until there is any indication 107 * that we should do more here. 108 */ 109 #define MMC_SPI_BLOCKSATONCE 128 110 111 /****************************************************************************/ 112 113 /* 114 * Local Data Structures 115 */ 116 117 /* "scratch" is per-{command,block} data exchanged with the card */ 118 struct scratch { 119 u8 status[29]; 120 u8 data_token; 121 __be16 crc_val; 122 }; 123 124 struct mmc_spi_host { 125 struct mmc_host *mmc; 126 struct spi_device *spi; 127 128 unsigned char power_mode; 129 u16 powerup_msecs; 130 131 struct mmc_spi_platform_data *pdata; 132 133 /* for bulk data transfers */ 134 struct spi_transfer token, t, crc, early_status; 135 struct spi_message m; 136 137 /* for status readback */ 138 struct spi_transfer status; 139 struct spi_message readback; 140 141 /* underlying DMA-aware controller, or null */ 142 struct device *dma_dev; 143 144 /* buffer used for commands and for message "overhead" */ 145 struct scratch *data; 146 dma_addr_t data_dma; 147 148 /* Specs say to write ones most of the time, even when the card 149 * has no need to read its input data; and many cards won't care. 150 * This is our source of those ones. 151 */ 152 void *ones; 153 dma_addr_t ones_dma; 154 }; 155 156 157 /****************************************************************************/ 158 159 /* 160 * MMC-over-SPI protocol glue, used by the MMC stack interface 161 */ 162 163 static inline int mmc_cs_off(struct mmc_spi_host *host) 164 { 165 /* chipselect will always be inactive after setup() */ 166 return spi_setup(host->spi); 167 } 168 169 static int 170 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 171 { 172 int status; 173 174 if (len > sizeof(*host->data)) { 175 WARN_ON(1); 176 return -EIO; 177 } 178 179 host->status.len = len; 180 181 if (host->dma_dev) 182 dma_sync_single_for_device(host->dma_dev, 183 host->data_dma, sizeof(*host->data), 184 DMA_FROM_DEVICE); 185 186 status = spi_sync_locked(host->spi, &host->readback); 187 188 if (host->dma_dev) 189 dma_sync_single_for_cpu(host->dma_dev, 190 host->data_dma, sizeof(*host->data), 191 DMA_FROM_DEVICE); 192 193 return status; 194 } 195 196 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout, 197 unsigned n, u8 byte) 198 { 199 u8 *cp = host->data->status; 200 unsigned long start = jiffies; 201 202 while (1) { 203 int status; 204 unsigned i; 205 206 status = mmc_spi_readbytes(host, n); 207 if (status < 0) 208 return status; 209 210 for (i = 0; i < n; i++) { 211 if (cp[i] != byte) 212 return cp[i]; 213 } 214 215 if (time_is_before_jiffies(start + timeout)) 216 break; 217 218 /* If we need long timeouts, we may release the CPU. 219 * We use jiffies here because we want to have a relation 220 * between elapsed time and the blocking of the scheduler. 221 */ 222 if (time_is_before_jiffies(start+1)) 223 schedule(); 224 } 225 return -ETIMEDOUT; 226 } 227 228 static inline int 229 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout) 230 { 231 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 232 } 233 234 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout) 235 { 236 return mmc_spi_skip(host, timeout, 1, 0xff); 237 } 238 239 240 /* 241 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 242 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 243 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 244 * 245 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 246 * newer cards R7 (IF_COND). 247 */ 248 249 static char *maptype(struct mmc_command *cmd) 250 { 251 switch (mmc_spi_resp_type(cmd)) { 252 case MMC_RSP_SPI_R1: return "R1"; 253 case MMC_RSP_SPI_R1B: return "R1B"; 254 case MMC_RSP_SPI_R2: return "R2/R5"; 255 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 256 default: return "?"; 257 } 258 } 259 260 /* return zero, else negative errno after setting cmd->error */ 261 static int mmc_spi_response_get(struct mmc_spi_host *host, 262 struct mmc_command *cmd, int cs_on) 263 { 264 u8 *cp = host->data->status; 265 u8 *end = cp + host->t.len; 266 int value = 0; 267 int bitshift; 268 u8 leftover = 0; 269 unsigned short rotator; 270 int i; 271 char tag[32]; 272 273 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 274 cmd->opcode, maptype(cmd)); 275 276 /* Except for data block reads, the whole response will already 277 * be stored in the scratch buffer. It's somewhere after the 278 * command and the first byte we read after it. We ignore that 279 * first byte. After STOP_TRANSMISSION command it may include 280 * two data bits, but otherwise it's all ones. 281 */ 282 cp += 8; 283 while (cp < end && *cp == 0xff) 284 cp++; 285 286 /* Data block reads (R1 response types) may need more data... */ 287 if (cp == end) { 288 cp = host->data->status; 289 end = cp+1; 290 291 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 292 * status byte ... and we already scanned 2 bytes. 293 * 294 * REVISIT block read paths use nasty byte-at-a-time I/O 295 * so it can always DMA directly into the target buffer. 296 * It'd probably be better to memcpy() the first chunk and 297 * avoid extra i/o calls... 298 * 299 * Note we check for more than 8 bytes, because in practice, 300 * some SD cards are slow... 301 */ 302 for (i = 2; i < 16; i++) { 303 value = mmc_spi_readbytes(host, 1); 304 if (value < 0) 305 goto done; 306 if (*cp != 0xff) 307 goto checkstatus; 308 } 309 value = -ETIMEDOUT; 310 goto done; 311 } 312 313 checkstatus: 314 bitshift = 0; 315 if (*cp & 0x80) { 316 /* Houston, we have an ugly card with a bit-shifted response */ 317 rotator = *cp++ << 8; 318 /* read the next byte */ 319 if (cp == end) { 320 value = mmc_spi_readbytes(host, 1); 321 if (value < 0) 322 goto done; 323 cp = host->data->status; 324 end = cp+1; 325 } 326 rotator |= *cp++; 327 while (rotator & 0x8000) { 328 bitshift++; 329 rotator <<= 1; 330 } 331 cmd->resp[0] = rotator >> 8; 332 leftover = rotator; 333 } else { 334 cmd->resp[0] = *cp++; 335 } 336 cmd->error = 0; 337 338 /* Status byte: the entire seven-bit R1 response. */ 339 if (cmd->resp[0] != 0) { 340 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS) 341 & cmd->resp[0]) 342 value = -EFAULT; /* Bad address */ 343 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0]) 344 value = -ENOSYS; /* Function not implemented */ 345 else if (R1_SPI_COM_CRC & cmd->resp[0]) 346 value = -EILSEQ; /* Illegal byte sequence */ 347 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 348 & cmd->resp[0]) 349 value = -EIO; /* I/O error */ 350 /* else R1_SPI_IDLE, "it's resetting" */ 351 } 352 353 switch (mmc_spi_resp_type(cmd)) { 354 355 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 356 * and less-common stuff like various erase operations. 357 */ 358 case MMC_RSP_SPI_R1B: 359 /* maybe we read all the busy tokens already */ 360 while (cp < end && *cp == 0) 361 cp++; 362 if (cp == end) 363 mmc_spi_wait_unbusy(host, r1b_timeout); 364 break; 365 366 /* SPI R2 == R1 + second status byte; SEND_STATUS 367 * SPI R5 == R1 + data byte; IO_RW_DIRECT 368 */ 369 case MMC_RSP_SPI_R2: 370 /* read the next byte */ 371 if (cp == end) { 372 value = mmc_spi_readbytes(host, 1); 373 if (value < 0) 374 goto done; 375 cp = host->data->status; 376 end = cp+1; 377 } 378 if (bitshift) { 379 rotator = leftover << 8; 380 rotator |= *cp << bitshift; 381 cmd->resp[0] |= (rotator & 0xFF00); 382 } else { 383 cmd->resp[0] |= *cp << 8; 384 } 385 break; 386 387 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 388 case MMC_RSP_SPI_R3: 389 rotator = leftover << 8; 390 cmd->resp[1] = 0; 391 for (i = 0; i < 4; i++) { 392 cmd->resp[1] <<= 8; 393 /* read the next byte */ 394 if (cp == end) { 395 value = mmc_spi_readbytes(host, 1); 396 if (value < 0) 397 goto done; 398 cp = host->data->status; 399 end = cp+1; 400 } 401 if (bitshift) { 402 rotator |= *cp++ << bitshift; 403 cmd->resp[1] |= (rotator >> 8); 404 rotator <<= 8; 405 } else { 406 cmd->resp[1] |= *cp++; 407 } 408 } 409 break; 410 411 /* SPI R1 == just one status byte */ 412 case MMC_RSP_SPI_R1: 413 break; 414 415 default: 416 dev_dbg(&host->spi->dev, "bad response type %04x\n", 417 mmc_spi_resp_type(cmd)); 418 if (value >= 0) 419 value = -EINVAL; 420 goto done; 421 } 422 423 if (value < 0) 424 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 425 tag, cmd->resp[0], cmd->resp[1]); 426 427 /* disable chipselect on errors and some success cases */ 428 if (value >= 0 && cs_on) 429 return value; 430 done: 431 if (value < 0) 432 cmd->error = value; 433 mmc_cs_off(host); 434 return value; 435 } 436 437 /* Issue command and read its response. 438 * Returns zero on success, negative for error. 439 * 440 * On error, caller must cope with mmc core retry mechanism. That 441 * means immediate low-level resubmit, which affects the bus lock... 442 */ 443 static int 444 mmc_spi_command_send(struct mmc_spi_host *host, 445 struct mmc_request *mrq, 446 struct mmc_command *cmd, int cs_on) 447 { 448 struct scratch *data = host->data; 449 u8 *cp = data->status; 450 u32 arg = cmd->arg; 451 int status; 452 struct spi_transfer *t; 453 454 /* We can handle most commands (except block reads) in one full 455 * duplex I/O operation before either starting the next transfer 456 * (data block or command) or else deselecting the card. 457 * 458 * First, write 7 bytes: 459 * - an all-ones byte to ensure the card is ready 460 * - opcode byte (plus start and transmission bits) 461 * - four bytes of big-endian argument 462 * - crc7 (plus end bit) ... always computed, it's cheap 463 * 464 * We init the whole buffer to all-ones, which is what we need 465 * to write while we're reading (later) response data. 466 */ 467 memset(cp++, 0xff, sizeof(data->status)); 468 469 *cp++ = 0x40 | cmd->opcode; 470 *cp++ = (u8)(arg >> 24); 471 *cp++ = (u8)(arg >> 16); 472 *cp++ = (u8)(arg >> 8); 473 *cp++ = (u8)arg; 474 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 475 476 /* Then, read up to 13 bytes (while writing all-ones): 477 * - N(CR) (== 1..8) bytes of all-ones 478 * - status byte (for all response types) 479 * - the rest of the response, either: 480 * + nothing, for R1 or R1B responses 481 * + second status byte, for R2 responses 482 * + four data bytes, for R3 and R7 responses 483 * 484 * Finally, read some more bytes ... in the nice cases we know in 485 * advance how many, and reading 1 more is always OK: 486 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 487 * - N(RC) (== 1..N) bytes of all-ones, before next command 488 * - N(WR) (== 1..N) bytes of all-ones, before data write 489 * 490 * So in those cases one full duplex I/O of at most 21 bytes will 491 * handle the whole command, leaving the card ready to receive a 492 * data block or new command. We do that whenever we can, shaving 493 * CPU and IRQ costs (especially when using DMA or FIFOs). 494 * 495 * There are two other cases, where it's not generally practical 496 * to rely on a single I/O: 497 * 498 * - R1B responses need at least N(EC) bytes of all-zeroes. 499 * 500 * In this case we can *try* to fit it into one I/O, then 501 * maybe read more data later. 502 * 503 * - Data block reads are more troublesome, since a variable 504 * number of padding bytes precede the token and data. 505 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 506 * + N(AC) (== 1..many) bytes of all-ones 507 * 508 * In this case we currently only have minimal speedups here: 509 * when N(CR) == 1 we can avoid I/O in response_get(). 510 */ 511 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 512 cp += 2; /* min(N(CR)) + status */ 513 /* R1 */ 514 } else { 515 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 516 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 517 cp++; 518 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 519 cp += 4; 520 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 521 cp = data->status + sizeof(data->status); 522 /* else: R1 (most commands) */ 523 } 524 525 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 526 cmd->opcode, maptype(cmd)); 527 528 /* send command, leaving chipselect active */ 529 spi_message_init(&host->m); 530 531 t = &host->t; 532 memset(t, 0, sizeof(*t)); 533 t->tx_buf = t->rx_buf = data->status; 534 t->tx_dma = t->rx_dma = host->data_dma; 535 t->len = cp - data->status; 536 t->cs_change = 1; 537 spi_message_add_tail(t, &host->m); 538 539 if (host->dma_dev) { 540 host->m.is_dma_mapped = 1; 541 dma_sync_single_for_device(host->dma_dev, 542 host->data_dma, sizeof(*host->data), 543 DMA_BIDIRECTIONAL); 544 } 545 status = spi_sync_locked(host->spi, &host->m); 546 547 if (host->dma_dev) 548 dma_sync_single_for_cpu(host->dma_dev, 549 host->data_dma, sizeof(*host->data), 550 DMA_BIDIRECTIONAL); 551 if (status < 0) { 552 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 553 cmd->error = status; 554 return status; 555 } 556 557 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 558 return mmc_spi_response_get(host, cmd, cs_on); 559 } 560 561 /* Build data message with up to four separate transfers. For TX, we 562 * start by writing the data token. And in most cases, we finish with 563 * a status transfer. 564 * 565 * We always provide TX data for data and CRC. The MMC/SD protocol 566 * requires us to write ones; but Linux defaults to writing zeroes; 567 * so we explicitly initialize it to all ones on RX paths. 568 * 569 * We also handle DMA mapping, so the underlying SPI controller does 570 * not need to (re)do it for each message. 571 */ 572 static void 573 mmc_spi_setup_data_message( 574 struct mmc_spi_host *host, 575 int multiple, 576 enum dma_data_direction direction) 577 { 578 struct spi_transfer *t; 579 struct scratch *scratch = host->data; 580 dma_addr_t dma = host->data_dma; 581 582 spi_message_init(&host->m); 583 if (dma) 584 host->m.is_dma_mapped = 1; 585 586 /* for reads, readblock() skips 0xff bytes before finding 587 * the token; for writes, this transfer issues that token. 588 */ 589 if (direction == DMA_TO_DEVICE) { 590 t = &host->token; 591 memset(t, 0, sizeof(*t)); 592 t->len = 1; 593 if (multiple) 594 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 595 else 596 scratch->data_token = SPI_TOKEN_SINGLE; 597 t->tx_buf = &scratch->data_token; 598 if (dma) 599 t->tx_dma = dma + offsetof(struct scratch, data_token); 600 spi_message_add_tail(t, &host->m); 601 } 602 603 /* Body of transfer is buffer, then CRC ... 604 * either TX-only, or RX with TX-ones. 605 */ 606 t = &host->t; 607 memset(t, 0, sizeof(*t)); 608 t->tx_buf = host->ones; 609 t->tx_dma = host->ones_dma; 610 /* length and actual buffer info are written later */ 611 spi_message_add_tail(t, &host->m); 612 613 t = &host->crc; 614 memset(t, 0, sizeof(*t)); 615 t->len = 2; 616 if (direction == DMA_TO_DEVICE) { 617 /* the actual CRC may get written later */ 618 t->tx_buf = &scratch->crc_val; 619 if (dma) 620 t->tx_dma = dma + offsetof(struct scratch, crc_val); 621 } else { 622 t->tx_buf = host->ones; 623 t->tx_dma = host->ones_dma; 624 t->rx_buf = &scratch->crc_val; 625 if (dma) 626 t->rx_dma = dma + offsetof(struct scratch, crc_val); 627 } 628 spi_message_add_tail(t, &host->m); 629 630 /* 631 * A single block read is followed by N(EC) [0+] all-ones bytes 632 * before deselect ... don't bother. 633 * 634 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 635 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 636 * collect that single byte, so readblock() doesn't need to. 637 * 638 * For a write, the one-byte data response follows immediately, then 639 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 640 * Then single block reads may deselect, and multiblock ones issue 641 * the next token (next data block, or STOP_TRAN). We can try to 642 * minimize I/O ops by using a single read to collect end-of-busy. 643 */ 644 if (multiple || direction == DMA_TO_DEVICE) { 645 t = &host->early_status; 646 memset(t, 0, sizeof(*t)); 647 t->len = (direction == DMA_TO_DEVICE) 648 ? sizeof(scratch->status) 649 : 1; 650 t->tx_buf = host->ones; 651 t->tx_dma = host->ones_dma; 652 t->rx_buf = scratch->status; 653 if (dma) 654 t->rx_dma = dma + offsetof(struct scratch, status); 655 t->cs_change = 1; 656 spi_message_add_tail(t, &host->m); 657 } 658 } 659 660 /* 661 * Write one block: 662 * - caller handled preceding N(WR) [1+] all-ones bytes 663 * - data block 664 * + token 665 * + data bytes 666 * + crc16 667 * - an all-ones byte ... card writes a data-response byte 668 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 669 * 670 * Return negative errno, else success. 671 */ 672 static int 673 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t, 674 unsigned long timeout) 675 { 676 struct spi_device *spi = host->spi; 677 int status, i; 678 struct scratch *scratch = host->data; 679 u32 pattern; 680 681 if (host->mmc->use_spi_crc) 682 scratch->crc_val = cpu_to_be16( 683 crc_itu_t(0, t->tx_buf, t->len)); 684 if (host->dma_dev) 685 dma_sync_single_for_device(host->dma_dev, 686 host->data_dma, sizeof(*scratch), 687 DMA_BIDIRECTIONAL); 688 689 status = spi_sync_locked(spi, &host->m); 690 691 if (status != 0) { 692 dev_dbg(&spi->dev, "write error (%d)\n", status); 693 return status; 694 } 695 696 if (host->dma_dev) 697 dma_sync_single_for_cpu(host->dma_dev, 698 host->data_dma, sizeof(*scratch), 699 DMA_BIDIRECTIONAL); 700 701 /* 702 * Get the transmission data-response reply. It must follow 703 * immediately after the data block we transferred. This reply 704 * doesn't necessarily tell whether the write operation succeeded; 705 * it just says if the transmission was ok and whether *earlier* 706 * writes succeeded; see the standard. 707 * 708 * In practice, there are (even modern SDHC-)cards which are late 709 * in sending the response, and miss the time frame by a few bits, 710 * so we have to cope with this situation and check the response 711 * bit-by-bit. Arggh!!! 712 */ 713 pattern = scratch->status[0] << 24; 714 pattern |= scratch->status[1] << 16; 715 pattern |= scratch->status[2] << 8; 716 pattern |= scratch->status[3]; 717 718 /* First 3 bit of pattern are undefined */ 719 pattern |= 0xE0000000; 720 721 /* left-adjust to leading 0 bit */ 722 while (pattern & 0x80000000) 723 pattern <<= 1; 724 /* right-adjust for pattern matching. Code is in bit 4..0 now. */ 725 pattern >>= 27; 726 727 switch (pattern) { 728 case SPI_RESPONSE_ACCEPTED: 729 status = 0; 730 break; 731 case SPI_RESPONSE_CRC_ERR: 732 /* host shall then issue MMC_STOP_TRANSMISSION */ 733 status = -EILSEQ; 734 break; 735 case SPI_RESPONSE_WRITE_ERR: 736 /* host shall then issue MMC_STOP_TRANSMISSION, 737 * and should MMC_SEND_STATUS to sort it out 738 */ 739 status = -EIO; 740 break; 741 default: 742 status = -EPROTO; 743 break; 744 } 745 if (status != 0) { 746 dev_dbg(&spi->dev, "write error %02x (%d)\n", 747 scratch->status[0], status); 748 return status; 749 } 750 751 t->tx_buf += t->len; 752 if (host->dma_dev) 753 t->tx_dma += t->len; 754 755 /* Return when not busy. If we didn't collect that status yet, 756 * we'll need some more I/O. 757 */ 758 for (i = 4; i < sizeof(scratch->status); i++) { 759 /* card is non-busy if the most recent bit is 1 */ 760 if (scratch->status[i] & 0x01) 761 return 0; 762 } 763 return mmc_spi_wait_unbusy(host, timeout); 764 } 765 766 /* 767 * Read one block: 768 * - skip leading all-ones bytes ... either 769 * + N(AC) [1..f(clock,CSD)] usually, else 770 * + N(CX) [0..8] when reading CSD or CID 771 * - data block 772 * + token ... if error token, no data or crc 773 * + data bytes 774 * + crc16 775 * 776 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 777 * before dropping chipselect. 778 * 779 * For multiblock reads, caller either reads the next block or issues a 780 * STOP_TRANSMISSION command. 781 */ 782 static int 783 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t, 784 unsigned long timeout) 785 { 786 struct spi_device *spi = host->spi; 787 int status; 788 struct scratch *scratch = host->data; 789 unsigned int bitshift; 790 u8 leftover; 791 792 /* At least one SD card sends an all-zeroes byte when N(CX) 793 * applies, before the all-ones bytes ... just cope with that. 794 */ 795 status = mmc_spi_readbytes(host, 1); 796 if (status < 0) 797 return status; 798 status = scratch->status[0]; 799 if (status == 0xff || status == 0) 800 status = mmc_spi_readtoken(host, timeout); 801 802 if (status < 0) { 803 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 804 return status; 805 } 806 807 /* The token may be bit-shifted... 808 * the first 0-bit precedes the data stream. 809 */ 810 bitshift = 7; 811 while (status & 0x80) { 812 status <<= 1; 813 bitshift--; 814 } 815 leftover = status << 1; 816 817 if (host->dma_dev) { 818 dma_sync_single_for_device(host->dma_dev, 819 host->data_dma, sizeof(*scratch), 820 DMA_BIDIRECTIONAL); 821 dma_sync_single_for_device(host->dma_dev, 822 t->rx_dma, t->len, 823 DMA_FROM_DEVICE); 824 } 825 826 status = spi_sync_locked(spi, &host->m); 827 828 if (host->dma_dev) { 829 dma_sync_single_for_cpu(host->dma_dev, 830 host->data_dma, sizeof(*scratch), 831 DMA_BIDIRECTIONAL); 832 dma_sync_single_for_cpu(host->dma_dev, 833 t->rx_dma, t->len, 834 DMA_FROM_DEVICE); 835 } 836 837 if (bitshift) { 838 /* Walk through the data and the crc and do 839 * all the magic to get byte-aligned data. 840 */ 841 u8 *cp = t->rx_buf; 842 unsigned int len; 843 unsigned int bitright = 8 - bitshift; 844 u8 temp; 845 for (len = t->len; len; len--) { 846 temp = *cp; 847 *cp++ = leftover | (temp >> bitshift); 848 leftover = temp << bitright; 849 } 850 cp = (u8 *) &scratch->crc_val; 851 temp = *cp; 852 *cp++ = leftover | (temp >> bitshift); 853 leftover = temp << bitright; 854 temp = *cp; 855 *cp = leftover | (temp >> bitshift); 856 } 857 858 if (host->mmc->use_spi_crc) { 859 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 860 861 be16_to_cpus(&scratch->crc_val); 862 if (scratch->crc_val != crc) { 863 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 864 "computed=0x%04x len=%d\n", 865 scratch->crc_val, crc, t->len); 866 return -EILSEQ; 867 } 868 } 869 870 t->rx_buf += t->len; 871 if (host->dma_dev) 872 t->rx_dma += t->len; 873 874 return 0; 875 } 876 877 /* 878 * An MMC/SD data stage includes one or more blocks, optional CRCs, 879 * and inline handshaking. That handhaking makes it unlike most 880 * other SPI protocol stacks. 881 */ 882 static void 883 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 884 struct mmc_data *data, u32 blk_size) 885 { 886 struct spi_device *spi = host->spi; 887 struct device *dma_dev = host->dma_dev; 888 struct spi_transfer *t; 889 enum dma_data_direction direction; 890 struct scatterlist *sg; 891 unsigned n_sg; 892 int multiple = (data->blocks > 1); 893 u32 clock_rate; 894 unsigned long timeout; 895 896 if (data->flags & MMC_DATA_READ) 897 direction = DMA_FROM_DEVICE; 898 else 899 direction = DMA_TO_DEVICE; 900 mmc_spi_setup_data_message(host, multiple, direction); 901 t = &host->t; 902 903 if (t->speed_hz) 904 clock_rate = t->speed_hz; 905 else 906 clock_rate = spi->max_speed_hz; 907 908 timeout = data->timeout_ns + 909 data->timeout_clks * 1000000 / clock_rate; 910 timeout = usecs_to_jiffies((unsigned int)(timeout / 1000)) + 1; 911 912 /* Handle scatterlist segments one at a time, with synch for 913 * each 512-byte block 914 */ 915 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 916 int status = 0; 917 dma_addr_t dma_addr = 0; 918 void *kmap_addr; 919 unsigned length = sg->length; 920 enum dma_data_direction dir = direction; 921 922 /* set up dma mapping for controller drivers that might 923 * use DMA ... though they may fall back to PIO 924 */ 925 if (dma_dev) { 926 /* never invalidate whole *shared* pages ... */ 927 if ((sg->offset != 0 || length != PAGE_SIZE) 928 && dir == DMA_FROM_DEVICE) 929 dir = DMA_BIDIRECTIONAL; 930 931 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0, 932 PAGE_SIZE, dir); 933 if (direction == DMA_TO_DEVICE) 934 t->tx_dma = dma_addr + sg->offset; 935 else 936 t->rx_dma = dma_addr + sg->offset; 937 } 938 939 /* allow pio too; we don't allow highmem */ 940 kmap_addr = kmap(sg_page(sg)); 941 if (direction == DMA_TO_DEVICE) 942 t->tx_buf = kmap_addr + sg->offset; 943 else 944 t->rx_buf = kmap_addr + sg->offset; 945 946 /* transfer each block, and update request status */ 947 while (length) { 948 t->len = min(length, blk_size); 949 950 dev_dbg(&host->spi->dev, 951 " mmc_spi: %s block, %d bytes\n", 952 (direction == DMA_TO_DEVICE) 953 ? "write" 954 : "read", 955 t->len); 956 957 if (direction == DMA_TO_DEVICE) 958 status = mmc_spi_writeblock(host, t, timeout); 959 else 960 status = mmc_spi_readblock(host, t, timeout); 961 if (status < 0) 962 break; 963 964 data->bytes_xfered += t->len; 965 length -= t->len; 966 967 if (!multiple) 968 break; 969 } 970 971 /* discard mappings */ 972 if (direction == DMA_FROM_DEVICE) 973 flush_kernel_dcache_page(sg_page(sg)); 974 kunmap(sg_page(sg)); 975 if (dma_dev) 976 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 977 978 if (status < 0) { 979 data->error = status; 980 dev_dbg(&spi->dev, "%s status %d\n", 981 (direction == DMA_TO_DEVICE) 982 ? "write" : "read", 983 status); 984 break; 985 } 986 } 987 988 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 989 * can be issued before multiblock writes. Unlike its more widely 990 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 991 * that can affect the STOP_TRAN logic. Complete (and current) 992 * MMC specs should sort that out before Linux starts using CMD23. 993 */ 994 if (direction == DMA_TO_DEVICE && multiple) { 995 struct scratch *scratch = host->data; 996 int tmp; 997 const unsigned statlen = sizeof(scratch->status); 998 999 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 1000 1001 /* Tweak the per-block message we set up earlier by morphing 1002 * it to hold single buffer with the token followed by some 1003 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 1004 * "not busy any longer" status, and leave chip selected. 1005 */ 1006 INIT_LIST_HEAD(&host->m.transfers); 1007 list_add(&host->early_status.transfer_list, 1008 &host->m.transfers); 1009 1010 memset(scratch->status, 0xff, statlen); 1011 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 1012 1013 host->early_status.tx_buf = host->early_status.rx_buf; 1014 host->early_status.tx_dma = host->early_status.rx_dma; 1015 host->early_status.len = statlen; 1016 1017 if (host->dma_dev) 1018 dma_sync_single_for_device(host->dma_dev, 1019 host->data_dma, sizeof(*scratch), 1020 DMA_BIDIRECTIONAL); 1021 1022 tmp = spi_sync_locked(spi, &host->m); 1023 1024 if (host->dma_dev) 1025 dma_sync_single_for_cpu(host->dma_dev, 1026 host->data_dma, sizeof(*scratch), 1027 DMA_BIDIRECTIONAL); 1028 1029 if (tmp < 0) { 1030 if (!data->error) 1031 data->error = tmp; 1032 return; 1033 } 1034 1035 /* Ideally we collected "not busy" status with one I/O, 1036 * avoiding wasteful byte-at-a-time scanning... but more 1037 * I/O is often needed. 1038 */ 1039 for (tmp = 2; tmp < statlen; tmp++) { 1040 if (scratch->status[tmp] != 0) 1041 return; 1042 } 1043 tmp = mmc_spi_wait_unbusy(host, timeout); 1044 if (tmp < 0 && !data->error) 1045 data->error = tmp; 1046 } 1047 } 1048 1049 /****************************************************************************/ 1050 1051 /* 1052 * MMC driver implementation -- the interface to the MMC stack 1053 */ 1054 1055 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 1056 { 1057 struct mmc_spi_host *host = mmc_priv(mmc); 1058 int status = -EINVAL; 1059 int crc_retry = 5; 1060 struct mmc_command stop; 1061 1062 #ifdef DEBUG 1063 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 1064 { 1065 struct mmc_command *cmd; 1066 int invalid = 0; 1067 1068 cmd = mrq->cmd; 1069 if (!mmc_spi_resp_type(cmd)) { 1070 dev_dbg(&host->spi->dev, "bogus command\n"); 1071 cmd->error = -EINVAL; 1072 invalid = 1; 1073 } 1074 1075 cmd = mrq->stop; 1076 if (cmd && !mmc_spi_resp_type(cmd)) { 1077 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 1078 cmd->error = -EINVAL; 1079 invalid = 1; 1080 } 1081 1082 if (invalid) { 1083 dump_stack(); 1084 mmc_request_done(host->mmc, mrq); 1085 return; 1086 } 1087 } 1088 #endif 1089 1090 /* request exclusive bus access */ 1091 spi_bus_lock(host->spi->master); 1092 1093 crc_recover: 1094 /* issue command; then optionally data and stop */ 1095 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 1096 if (status == 0 && mrq->data) { 1097 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 1098 1099 /* 1100 * The SPI bus is not always reliable for large data transfers. 1101 * If an occasional crc error is reported by the SD device with 1102 * data read/write over SPI, it may be recovered by repeating 1103 * the last SD command again. The retry count is set to 5 to 1104 * ensure the driver passes stress tests. 1105 */ 1106 if (mrq->data->error == -EILSEQ && crc_retry) { 1107 stop.opcode = MMC_STOP_TRANSMISSION; 1108 stop.arg = 0; 1109 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1110 status = mmc_spi_command_send(host, mrq, &stop, 0); 1111 crc_retry--; 1112 mrq->data->error = 0; 1113 goto crc_recover; 1114 } 1115 1116 if (mrq->stop) 1117 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 1118 else 1119 mmc_cs_off(host); 1120 } 1121 1122 /* release the bus */ 1123 spi_bus_unlock(host->spi->master); 1124 1125 mmc_request_done(host->mmc, mrq); 1126 } 1127 1128 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 1129 * 1130 * NOTE that here we can't know that the card has just been powered up; 1131 * not all MMC/SD sockets support power switching. 1132 * 1133 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 1134 * this doesn't seem to do the right thing at all... 1135 */ 1136 static void mmc_spi_initsequence(struct mmc_spi_host *host) 1137 { 1138 /* Try to be very sure any previous command has completed; 1139 * wait till not-busy, skip debris from any old commands. 1140 */ 1141 mmc_spi_wait_unbusy(host, r1b_timeout); 1142 mmc_spi_readbytes(host, 10); 1143 1144 /* 1145 * Do a burst with chipselect active-high. We need to do this to 1146 * meet the requirement of 74 clock cycles with both chipselect 1147 * and CMD (MOSI) high before CMD0 ... after the card has been 1148 * powered up to Vdd(min), and so is ready to take commands. 1149 * 1150 * Some cards are particularly needy of this (e.g. Viking "SD256") 1151 * while most others don't seem to care. 1152 * 1153 * Note that this is one of the places MMC/SD plays games with the 1154 * SPI protocol. Another is that when chipselect is released while 1155 * the card returns BUSY status, the clock must issue several cycles 1156 * with chipselect high before the card will stop driving its output. 1157 */ 1158 host->spi->mode |= SPI_CS_HIGH; 1159 if (spi_setup(host->spi) != 0) { 1160 /* Just warn; most cards work without it. */ 1161 dev_warn(&host->spi->dev, 1162 "can't change chip-select polarity\n"); 1163 host->spi->mode &= ~SPI_CS_HIGH; 1164 } else { 1165 mmc_spi_readbytes(host, 18); 1166 1167 host->spi->mode &= ~SPI_CS_HIGH; 1168 if (spi_setup(host->spi) != 0) { 1169 /* Wot, we can't get the same setup we had before? */ 1170 dev_err(&host->spi->dev, 1171 "can't restore chip-select polarity\n"); 1172 } 1173 } 1174 } 1175 1176 static char *mmc_powerstring(u8 power_mode) 1177 { 1178 switch (power_mode) { 1179 case MMC_POWER_OFF: return "off"; 1180 case MMC_POWER_UP: return "up"; 1181 case MMC_POWER_ON: return "on"; 1182 } 1183 return "?"; 1184 } 1185 1186 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1187 { 1188 struct mmc_spi_host *host = mmc_priv(mmc); 1189 1190 if (host->power_mode != ios->power_mode) { 1191 int canpower; 1192 1193 canpower = host->pdata && host->pdata->setpower; 1194 1195 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1196 mmc_powerstring(ios->power_mode), 1197 ios->vdd, 1198 canpower ? ", can switch" : ""); 1199 1200 /* switch power on/off if possible, accounting for 1201 * max 250msec powerup time if needed. 1202 */ 1203 if (canpower) { 1204 switch (ios->power_mode) { 1205 case MMC_POWER_OFF: 1206 case MMC_POWER_UP: 1207 host->pdata->setpower(&host->spi->dev, 1208 ios->vdd); 1209 if (ios->power_mode == MMC_POWER_UP) 1210 msleep(host->powerup_msecs); 1211 } 1212 } 1213 1214 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1215 if (ios->power_mode == MMC_POWER_ON) 1216 mmc_spi_initsequence(host); 1217 1218 /* If powering down, ground all card inputs to avoid power 1219 * delivery from data lines! On a shared SPI bus, this 1220 * will probably be temporary; 6.4.2 of the simplified SD 1221 * spec says this must last at least 1msec. 1222 * 1223 * - Clock low means CPOL 0, e.g. mode 0 1224 * - MOSI low comes from writing zero 1225 * - Chipselect is usually active low... 1226 */ 1227 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1228 int mres; 1229 u8 nullbyte = 0; 1230 1231 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1232 mres = spi_setup(host->spi); 1233 if (mres < 0) 1234 dev_dbg(&host->spi->dev, 1235 "switch to SPI mode 0 failed\n"); 1236 1237 if (spi_write(host->spi, &nullbyte, 1) < 0) 1238 dev_dbg(&host->spi->dev, 1239 "put spi signals to low failed\n"); 1240 1241 /* 1242 * Now clock should be low due to spi mode 0; 1243 * MOSI should be low because of written 0x00; 1244 * chipselect should be low (it is active low) 1245 * power supply is off, so now MMC is off too! 1246 * 1247 * FIXME no, chipselect can be high since the 1248 * device is inactive and SPI_CS_HIGH is clear... 1249 */ 1250 msleep(10); 1251 if (mres == 0) { 1252 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1253 mres = spi_setup(host->spi); 1254 if (mres < 0) 1255 dev_dbg(&host->spi->dev, 1256 "switch back to SPI mode 3" 1257 " failed\n"); 1258 } 1259 } 1260 1261 host->power_mode = ios->power_mode; 1262 } 1263 1264 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1265 int status; 1266 1267 host->spi->max_speed_hz = ios->clock; 1268 status = spi_setup(host->spi); 1269 dev_dbg(&host->spi->dev, 1270 "mmc_spi: clock to %d Hz, %d\n", 1271 host->spi->max_speed_hz, status); 1272 } 1273 } 1274 1275 static int mmc_spi_get_ro(struct mmc_host *mmc) 1276 { 1277 struct mmc_spi_host *host = mmc_priv(mmc); 1278 1279 if (host->pdata && host->pdata->get_ro) 1280 return !!host->pdata->get_ro(mmc->parent); 1281 /* 1282 * Board doesn't support read only detection; let the mmc core 1283 * decide what to do. 1284 */ 1285 return -ENOSYS; 1286 } 1287 1288 static int mmc_spi_get_cd(struct mmc_host *mmc) 1289 { 1290 struct mmc_spi_host *host = mmc_priv(mmc); 1291 1292 if (host->pdata && host->pdata->get_cd) 1293 return !!host->pdata->get_cd(mmc->parent); 1294 return -ENOSYS; 1295 } 1296 1297 static const struct mmc_host_ops mmc_spi_ops = { 1298 .request = mmc_spi_request, 1299 .set_ios = mmc_spi_set_ios, 1300 .get_ro = mmc_spi_get_ro, 1301 .get_cd = mmc_spi_get_cd, 1302 }; 1303 1304 1305 /****************************************************************************/ 1306 1307 /* 1308 * SPI driver implementation 1309 */ 1310 1311 static irqreturn_t 1312 mmc_spi_detect_irq(int irq, void *mmc) 1313 { 1314 struct mmc_spi_host *host = mmc_priv(mmc); 1315 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1316 1317 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1318 return IRQ_HANDLED; 1319 } 1320 1321 static int mmc_spi_probe(struct spi_device *spi) 1322 { 1323 void *ones; 1324 struct mmc_host *mmc; 1325 struct mmc_spi_host *host; 1326 int status; 1327 1328 /* We rely on full duplex transfers, mostly to reduce 1329 * per-transfer overheads (by making fewer transfers). 1330 */ 1331 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX) 1332 return -EINVAL; 1333 1334 /* MMC and SD specs only seem to care that sampling is on the 1335 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1336 * should be legit. We'll use mode 0 since the steady state is 0, 1337 * which is appropriate for hotplugging, unless the platform data 1338 * specify mode 3 (if hardware is not compatible to mode 0). 1339 */ 1340 if (spi->mode != SPI_MODE_3) 1341 spi->mode = SPI_MODE_0; 1342 spi->bits_per_word = 8; 1343 1344 status = spi_setup(spi); 1345 if (status < 0) { 1346 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1347 spi->mode, spi->max_speed_hz / 1000, 1348 status); 1349 return status; 1350 } 1351 1352 /* We need a supply of ones to transmit. This is the only time 1353 * the CPU touches these, so cache coherency isn't a concern. 1354 * 1355 * NOTE if many systems use more than one MMC-over-SPI connector 1356 * it'd save some memory to share this. That's evidently rare. 1357 */ 1358 status = -ENOMEM; 1359 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1360 if (!ones) 1361 goto nomem; 1362 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1363 1364 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1365 if (!mmc) 1366 goto nomem; 1367 1368 mmc->ops = &mmc_spi_ops; 1369 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1370 mmc->max_segs = MMC_SPI_BLOCKSATONCE; 1371 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE; 1372 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE; 1373 1374 mmc->caps = MMC_CAP_SPI; 1375 1376 /* SPI doesn't need the lowspeed device identification thing for 1377 * MMC or SD cards, since it never comes up in open drain mode. 1378 * That's good; some SPI masters can't handle very low speeds! 1379 * 1380 * However, low speed SDIO cards need not handle over 400 KHz; 1381 * that's the only reason not to use a few MHz for f_min (until 1382 * the upper layer reads the target frequency from the CSD). 1383 */ 1384 mmc->f_min = 400000; 1385 mmc->f_max = spi->max_speed_hz; 1386 1387 host = mmc_priv(mmc); 1388 host->mmc = mmc; 1389 host->spi = spi; 1390 1391 host->ones = ones; 1392 1393 /* Platform data is used to hook up things like card sensing 1394 * and power switching gpios. 1395 */ 1396 host->pdata = mmc_spi_get_pdata(spi); 1397 if (host->pdata) 1398 mmc->ocr_avail = host->pdata->ocr_mask; 1399 if (!mmc->ocr_avail) { 1400 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1401 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1402 } 1403 if (host->pdata && host->pdata->setpower) { 1404 host->powerup_msecs = host->pdata->powerup_msecs; 1405 if (!host->powerup_msecs || host->powerup_msecs > 250) 1406 host->powerup_msecs = 250; 1407 } 1408 1409 dev_set_drvdata(&spi->dev, mmc); 1410 1411 /* preallocate dma buffers */ 1412 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1413 if (!host->data) 1414 goto fail_nobuf1; 1415 1416 if (spi->master->dev.parent->dma_mask) { 1417 struct device *dev = spi->master->dev.parent; 1418 1419 host->dma_dev = dev; 1420 host->ones_dma = dma_map_single(dev, ones, 1421 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1422 host->data_dma = dma_map_single(dev, host->data, 1423 sizeof(*host->data), DMA_BIDIRECTIONAL); 1424 1425 /* REVISIT in theory those map operations can fail... */ 1426 1427 dma_sync_single_for_cpu(host->dma_dev, 1428 host->data_dma, sizeof(*host->data), 1429 DMA_BIDIRECTIONAL); 1430 } 1431 1432 /* setup message for status/busy readback */ 1433 spi_message_init(&host->readback); 1434 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1435 1436 spi_message_add_tail(&host->status, &host->readback); 1437 host->status.tx_buf = host->ones; 1438 host->status.tx_dma = host->ones_dma; 1439 host->status.rx_buf = &host->data->status; 1440 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1441 host->status.cs_change = 1; 1442 1443 /* register card detect irq */ 1444 if (host->pdata && host->pdata->init) { 1445 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1446 if (status != 0) 1447 goto fail_glue_init; 1448 } 1449 1450 /* pass platform capabilities, if any */ 1451 if (host->pdata) 1452 mmc->caps |= host->pdata->caps; 1453 1454 status = mmc_add_host(mmc); 1455 if (status != 0) 1456 goto fail_add_host; 1457 1458 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n", 1459 dev_name(&mmc->class_dev), 1460 host->dma_dev ? "" : ", no DMA", 1461 (host->pdata && host->pdata->get_ro) 1462 ? "" : ", no WP", 1463 (host->pdata && host->pdata->setpower) 1464 ? "" : ", no poweroff", 1465 (mmc->caps & MMC_CAP_NEEDS_POLL) 1466 ? ", cd polling" : ""); 1467 return 0; 1468 1469 fail_add_host: 1470 mmc_remove_host (mmc); 1471 fail_glue_init: 1472 if (host->dma_dev) 1473 dma_unmap_single(host->dma_dev, host->data_dma, 1474 sizeof(*host->data), DMA_BIDIRECTIONAL); 1475 kfree(host->data); 1476 1477 fail_nobuf1: 1478 mmc_free_host(mmc); 1479 mmc_spi_put_pdata(spi); 1480 dev_set_drvdata(&spi->dev, NULL); 1481 1482 nomem: 1483 kfree(ones); 1484 return status; 1485 } 1486 1487 1488 static int __devexit mmc_spi_remove(struct spi_device *spi) 1489 { 1490 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1491 struct mmc_spi_host *host; 1492 1493 if (mmc) { 1494 host = mmc_priv(mmc); 1495 1496 /* prevent new mmc_detect_change() calls */ 1497 if (host->pdata && host->pdata->exit) 1498 host->pdata->exit(&spi->dev, mmc); 1499 1500 mmc_remove_host(mmc); 1501 1502 if (host->dma_dev) { 1503 dma_unmap_single(host->dma_dev, host->ones_dma, 1504 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1505 dma_unmap_single(host->dma_dev, host->data_dma, 1506 sizeof(*host->data), DMA_BIDIRECTIONAL); 1507 } 1508 1509 kfree(host->data); 1510 kfree(host->ones); 1511 1512 spi->max_speed_hz = mmc->f_max; 1513 mmc_free_host(mmc); 1514 mmc_spi_put_pdata(spi); 1515 dev_set_drvdata(&spi->dev, NULL); 1516 } 1517 return 0; 1518 } 1519 1520 static struct of_device_id mmc_spi_of_match_table[] __devinitdata = { 1521 { .compatible = "mmc-spi-slot", }, 1522 {}, 1523 }; 1524 1525 static struct spi_driver mmc_spi_driver = { 1526 .driver = { 1527 .name = "mmc_spi", 1528 .bus = &spi_bus_type, 1529 .owner = THIS_MODULE, 1530 .of_match_table = mmc_spi_of_match_table, 1531 }, 1532 .probe = mmc_spi_probe, 1533 .remove = __devexit_p(mmc_spi_remove), 1534 }; 1535 1536 1537 static int __init mmc_spi_init(void) 1538 { 1539 return spi_register_driver(&mmc_spi_driver); 1540 } 1541 module_init(mmc_spi_init); 1542 1543 1544 static void __exit mmc_spi_exit(void) 1545 { 1546 spi_unregister_driver(&mmc_spi_driver); 1547 } 1548 module_exit(mmc_spi_exit); 1549 1550 1551 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1552 "Hans-Peter Nilsson, Jan Nikitenko"); 1553 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1554 MODULE_LICENSE("GPL"); 1555 MODULE_ALIAS("spi:mmc_spi"); 1556