1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs 4 * 5 * Copyright (c) 2016 BayLibre, SAS. 6 * Author: Kevin Hilman <khilman@baylibre.com> 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/iopoll.h> 14 #include <linux/of_device.h> 15 #include <linux/platform_device.h> 16 #include <linux/ioport.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/mmc/host.h> 19 #include <linux/mmc/mmc.h> 20 #include <linux/mmc/sdio.h> 21 #include <linux/mmc/slot-gpio.h> 22 #include <linux/io.h> 23 #include <linux/clk.h> 24 #include <linux/clk-provider.h> 25 #include <linux/regulator/consumer.h> 26 #include <linux/reset.h> 27 #include <linux/interrupt.h> 28 #include <linux/bitfield.h> 29 #include <linux/pinctrl/consumer.h> 30 31 #define DRIVER_NAME "meson-gx-mmc" 32 33 #define SD_EMMC_CLOCK 0x0 34 #define CLK_DIV_MASK GENMASK(5, 0) 35 #define CLK_SRC_MASK GENMASK(7, 6) 36 #define CLK_CORE_PHASE_MASK GENMASK(9, 8) 37 #define CLK_TX_PHASE_MASK GENMASK(11, 10) 38 #define CLK_RX_PHASE_MASK GENMASK(13, 12) 39 #define CLK_PHASE_0 0 40 #define CLK_PHASE_180 2 41 #define CLK_V2_TX_DELAY_MASK GENMASK(19, 16) 42 #define CLK_V2_RX_DELAY_MASK GENMASK(23, 20) 43 #define CLK_V2_ALWAYS_ON BIT(24) 44 45 #define CLK_V3_TX_DELAY_MASK GENMASK(21, 16) 46 #define CLK_V3_RX_DELAY_MASK GENMASK(27, 22) 47 #define CLK_V3_ALWAYS_ON BIT(28) 48 49 #define CLK_TX_DELAY_MASK(h) (h->data->tx_delay_mask) 50 #define CLK_RX_DELAY_MASK(h) (h->data->rx_delay_mask) 51 #define CLK_ALWAYS_ON(h) (h->data->always_on) 52 53 #define SD_EMMC_DELAY 0x4 54 #define SD_EMMC_ADJUST 0x8 55 #define ADJUST_ADJ_DELAY_MASK GENMASK(21, 16) 56 #define ADJUST_DS_EN BIT(15) 57 #define ADJUST_ADJ_EN BIT(13) 58 59 #define SD_EMMC_DELAY1 0x4 60 #define SD_EMMC_DELAY2 0x8 61 #define SD_EMMC_V3_ADJUST 0xc 62 63 #define SD_EMMC_CALOUT 0x10 64 #define SD_EMMC_START 0x40 65 #define START_DESC_INIT BIT(0) 66 #define START_DESC_BUSY BIT(1) 67 #define START_DESC_ADDR_MASK GENMASK(31, 2) 68 69 #define SD_EMMC_CFG 0x44 70 #define CFG_BUS_WIDTH_MASK GENMASK(1, 0) 71 #define CFG_BUS_WIDTH_1 0x0 72 #define CFG_BUS_WIDTH_4 0x1 73 #define CFG_BUS_WIDTH_8 0x2 74 #define CFG_DDR BIT(2) 75 #define CFG_BLK_LEN_MASK GENMASK(7, 4) 76 #define CFG_RESP_TIMEOUT_MASK GENMASK(11, 8) 77 #define CFG_RC_CC_MASK GENMASK(15, 12) 78 #define CFG_STOP_CLOCK BIT(22) 79 #define CFG_CLK_ALWAYS_ON BIT(18) 80 #define CFG_CHK_DS BIT(20) 81 #define CFG_AUTO_CLK BIT(23) 82 #define CFG_ERR_ABORT BIT(27) 83 84 #define SD_EMMC_STATUS 0x48 85 #define STATUS_BUSY BIT(31) 86 #define STATUS_DESC_BUSY BIT(30) 87 #define STATUS_DATI GENMASK(23, 16) 88 89 #define SD_EMMC_IRQ_EN 0x4c 90 #define IRQ_RXD_ERR_MASK GENMASK(7, 0) 91 #define IRQ_TXD_ERR BIT(8) 92 #define IRQ_DESC_ERR BIT(9) 93 #define IRQ_RESP_ERR BIT(10) 94 #define IRQ_CRC_ERR \ 95 (IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR) 96 #define IRQ_RESP_TIMEOUT BIT(11) 97 #define IRQ_DESC_TIMEOUT BIT(12) 98 #define IRQ_TIMEOUTS \ 99 (IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT) 100 #define IRQ_END_OF_CHAIN BIT(13) 101 #define IRQ_RESP_STATUS BIT(14) 102 #define IRQ_SDIO BIT(15) 103 #define IRQ_EN_MASK \ 104 (IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\ 105 IRQ_SDIO) 106 107 #define SD_EMMC_CMD_CFG 0x50 108 #define SD_EMMC_CMD_ARG 0x54 109 #define SD_EMMC_CMD_DAT 0x58 110 #define SD_EMMC_CMD_RSP 0x5c 111 #define SD_EMMC_CMD_RSP1 0x60 112 #define SD_EMMC_CMD_RSP2 0x64 113 #define SD_EMMC_CMD_RSP3 0x68 114 115 #define SD_EMMC_RXD 0x94 116 #define SD_EMMC_TXD 0x94 117 #define SD_EMMC_LAST_REG SD_EMMC_TXD 118 119 #define SD_EMMC_SRAM_DATA_BUF_LEN 1536 120 #define SD_EMMC_SRAM_DATA_BUF_OFF 0x200 121 122 #define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */ 123 #define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */ 124 #define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */ 125 #define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */ 126 #define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */ 127 #define SD_EMMC_DESC_BUF_LEN PAGE_SIZE 128 129 #define SD_EMMC_PRE_REQ_DONE BIT(0) 130 #define SD_EMMC_DESC_CHAIN_MODE BIT(1) 131 132 #define MUX_CLK_NUM_PARENTS 2 133 134 struct meson_mmc_data { 135 unsigned int tx_delay_mask; 136 unsigned int rx_delay_mask; 137 unsigned int always_on; 138 unsigned int adjust; 139 }; 140 141 struct sd_emmc_desc { 142 u32 cmd_cfg; 143 u32 cmd_arg; 144 u32 cmd_data; 145 u32 cmd_resp; 146 }; 147 148 struct meson_host { 149 struct device *dev; 150 struct meson_mmc_data *data; 151 struct mmc_host *mmc; 152 struct mmc_command *cmd; 153 154 void __iomem *regs; 155 struct clk *core_clk; 156 struct clk *mux_clk; 157 struct clk *mmc_clk; 158 unsigned long req_rate; 159 bool ddr; 160 161 bool dram_access_quirk; 162 163 struct pinctrl *pinctrl; 164 struct pinctrl_state *pins_clk_gate; 165 166 unsigned int bounce_buf_size; 167 void *bounce_buf; 168 void __iomem *bounce_iomem_buf; 169 dma_addr_t bounce_dma_addr; 170 struct sd_emmc_desc *descs; 171 dma_addr_t descs_dma_addr; 172 173 int irq; 174 175 bool vqmmc_enabled; 176 bool needs_pre_post_req; 177 178 }; 179 180 #define CMD_CFG_LENGTH_MASK GENMASK(8, 0) 181 #define CMD_CFG_BLOCK_MODE BIT(9) 182 #define CMD_CFG_R1B BIT(10) 183 #define CMD_CFG_END_OF_CHAIN BIT(11) 184 #define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12) 185 #define CMD_CFG_NO_RESP BIT(16) 186 #define CMD_CFG_NO_CMD BIT(17) 187 #define CMD_CFG_DATA_IO BIT(18) 188 #define CMD_CFG_DATA_WR BIT(19) 189 #define CMD_CFG_RESP_NOCRC BIT(20) 190 #define CMD_CFG_RESP_128 BIT(21) 191 #define CMD_CFG_RESP_NUM BIT(22) 192 #define CMD_CFG_DATA_NUM BIT(23) 193 #define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24) 194 #define CMD_CFG_ERROR BIT(30) 195 #define CMD_CFG_OWNER BIT(31) 196 197 #define CMD_DATA_MASK GENMASK(31, 2) 198 #define CMD_DATA_BIG_ENDIAN BIT(1) 199 #define CMD_DATA_SRAM BIT(0) 200 #define CMD_RESP_MASK GENMASK(31, 1) 201 #define CMD_RESP_SRAM BIT(0) 202 203 static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data) 204 { 205 unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC; 206 207 if (!timeout) 208 return SD_EMMC_CMD_TIMEOUT_DATA; 209 210 timeout = roundup_pow_of_two(timeout); 211 212 return min(timeout, 32768U); /* max. 2^15 ms */ 213 } 214 215 static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd) 216 { 217 if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error) 218 return cmd->mrq->cmd; 219 else if (mmc_op_multi(cmd->opcode) && 220 (!cmd->mrq->sbc || cmd->error || cmd->data->error)) 221 return cmd->mrq->stop; 222 else 223 return NULL; 224 } 225 226 static void meson_mmc_get_transfer_mode(struct mmc_host *mmc, 227 struct mmc_request *mrq) 228 { 229 struct meson_host *host = mmc_priv(mmc); 230 struct mmc_data *data = mrq->data; 231 struct scatterlist *sg; 232 int i; 233 234 /* 235 * When Controller DMA cannot directly access DDR memory, disable 236 * support for Chain Mode to directly use the internal SRAM using 237 * the bounce buffer mode. 238 */ 239 if (host->dram_access_quirk) 240 return; 241 242 /* SD_IO_RW_EXTENDED (CMD53) can also use block mode under the hood */ 243 if (data->blocks > 1 || mrq->cmd->opcode == SD_IO_RW_EXTENDED) { 244 /* 245 * In block mode DMA descriptor format, "length" field indicates 246 * number of blocks and there is no way to pass DMA size that 247 * is not multiple of SDIO block size, making it impossible to 248 * tie more than one memory buffer with single SDIO block. 249 * Block mode sg buffer size should be aligned with SDIO block 250 * size, otherwise chain mode could not be used. 251 */ 252 for_each_sg(data->sg, sg, data->sg_len, i) { 253 if (sg->length % data->blksz) { 254 dev_warn_once(mmc_dev(mmc), 255 "unaligned sg len %u blksize %u, disabling descriptor DMA for transfer\n", 256 sg->length, data->blksz); 257 return; 258 } 259 } 260 } 261 262 for_each_sg(data->sg, sg, data->sg_len, i) { 263 /* check for 8 byte alignment */ 264 if (sg->offset % 8) { 265 dev_warn_once(mmc_dev(mmc), 266 "unaligned sg offset %u, disabling descriptor DMA for transfer\n", 267 sg->offset); 268 return; 269 } 270 } 271 272 data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE; 273 } 274 275 static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data) 276 { 277 return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE; 278 } 279 280 static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data) 281 { 282 return data && data->flags & MMC_DATA_READ && 283 !meson_mmc_desc_chain_mode(data); 284 } 285 286 static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) 287 { 288 struct mmc_data *data = mrq->data; 289 290 if (!data) 291 return; 292 293 meson_mmc_get_transfer_mode(mmc, mrq); 294 data->host_cookie |= SD_EMMC_PRE_REQ_DONE; 295 296 if (!meson_mmc_desc_chain_mode(data)) 297 return; 298 299 data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len, 300 mmc_get_dma_dir(data)); 301 if (!data->sg_count) 302 dev_err(mmc_dev(mmc), "dma_map_sg failed"); 303 } 304 305 static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq, 306 int err) 307 { 308 struct mmc_data *data = mrq->data; 309 310 if (data && meson_mmc_desc_chain_mode(data) && data->sg_count) 311 dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, 312 mmc_get_dma_dir(data)); 313 } 314 315 /* 316 * Gating the clock on this controller is tricky. It seems the mmc clock 317 * is also used by the controller. It may crash during some operation if the 318 * clock is stopped. The safest thing to do, whenever possible, is to keep 319 * clock running at stop it at the pad using the pinmux. 320 */ 321 static void meson_mmc_clk_gate(struct meson_host *host) 322 { 323 u32 cfg; 324 325 if (host->pins_clk_gate) { 326 pinctrl_select_state(host->pinctrl, host->pins_clk_gate); 327 } else { 328 /* 329 * If the pinmux is not provided - default to the classic and 330 * unsafe method 331 */ 332 cfg = readl(host->regs + SD_EMMC_CFG); 333 cfg |= CFG_STOP_CLOCK; 334 writel(cfg, host->regs + SD_EMMC_CFG); 335 } 336 } 337 338 static void meson_mmc_clk_ungate(struct meson_host *host) 339 { 340 u32 cfg; 341 342 if (host->pins_clk_gate) 343 pinctrl_select_default_state(host->dev); 344 345 /* Make sure the clock is not stopped in the controller */ 346 cfg = readl(host->regs + SD_EMMC_CFG); 347 cfg &= ~CFG_STOP_CLOCK; 348 writel(cfg, host->regs + SD_EMMC_CFG); 349 } 350 351 static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate, 352 bool ddr) 353 { 354 struct mmc_host *mmc = host->mmc; 355 int ret; 356 u32 cfg; 357 358 /* Same request - bail-out */ 359 if (host->ddr == ddr && host->req_rate == rate) 360 return 0; 361 362 /* stop clock */ 363 meson_mmc_clk_gate(host); 364 host->req_rate = 0; 365 mmc->actual_clock = 0; 366 367 /* return with clock being stopped */ 368 if (!rate) 369 return 0; 370 371 /* Stop the clock during rate change to avoid glitches */ 372 cfg = readl(host->regs + SD_EMMC_CFG); 373 cfg |= CFG_STOP_CLOCK; 374 writel(cfg, host->regs + SD_EMMC_CFG); 375 376 if (ddr) { 377 /* DDR modes require higher module clock */ 378 rate <<= 1; 379 cfg |= CFG_DDR; 380 } else { 381 cfg &= ~CFG_DDR; 382 } 383 writel(cfg, host->regs + SD_EMMC_CFG); 384 host->ddr = ddr; 385 386 ret = clk_set_rate(host->mmc_clk, rate); 387 if (ret) { 388 dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n", 389 rate, ret); 390 return ret; 391 } 392 393 host->req_rate = rate; 394 mmc->actual_clock = clk_get_rate(host->mmc_clk); 395 396 /* We should report the real output frequency of the controller */ 397 if (ddr) { 398 host->req_rate >>= 1; 399 mmc->actual_clock >>= 1; 400 } 401 402 dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock); 403 if (rate != mmc->actual_clock) 404 dev_dbg(host->dev, "requested rate was %lu\n", rate); 405 406 /* (re)start clock */ 407 meson_mmc_clk_ungate(host); 408 409 return 0; 410 } 411 412 /* 413 * The SD/eMMC IP block has an internal mux and divider used for 414 * generating the MMC clock. Use the clock framework to create and 415 * manage these clocks. 416 */ 417 static int meson_mmc_clk_init(struct meson_host *host) 418 { 419 struct clk_init_data init; 420 struct clk_mux *mux; 421 struct clk_divider *div; 422 char clk_name[32]; 423 int i, ret = 0; 424 const char *mux_parent_names[MUX_CLK_NUM_PARENTS]; 425 const char *clk_parent[1]; 426 u32 clk_reg; 427 428 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ 429 clk_reg = CLK_ALWAYS_ON(host); 430 clk_reg |= CLK_DIV_MASK; 431 clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180); 432 clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0); 433 clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0); 434 writel(clk_reg, host->regs + SD_EMMC_CLOCK); 435 436 /* get the mux parents */ 437 for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) { 438 struct clk *clk; 439 char name[16]; 440 441 snprintf(name, sizeof(name), "clkin%d", i); 442 clk = devm_clk_get(host->dev, name); 443 if (IS_ERR(clk)) 444 return dev_err_probe(host->dev, PTR_ERR(clk), 445 "Missing clock %s\n", name); 446 447 mux_parent_names[i] = __clk_get_name(clk); 448 } 449 450 /* create the mux */ 451 mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL); 452 if (!mux) 453 return -ENOMEM; 454 455 snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev)); 456 init.name = clk_name; 457 init.ops = &clk_mux_ops; 458 init.flags = 0; 459 init.parent_names = mux_parent_names; 460 init.num_parents = MUX_CLK_NUM_PARENTS; 461 462 mux->reg = host->regs + SD_EMMC_CLOCK; 463 mux->shift = __ffs(CLK_SRC_MASK); 464 mux->mask = CLK_SRC_MASK >> mux->shift; 465 mux->hw.init = &init; 466 467 host->mux_clk = devm_clk_register(host->dev, &mux->hw); 468 if (WARN_ON(IS_ERR(host->mux_clk))) 469 return PTR_ERR(host->mux_clk); 470 471 /* create the divider */ 472 div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL); 473 if (!div) 474 return -ENOMEM; 475 476 snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev)); 477 init.name = clk_name; 478 init.ops = &clk_divider_ops; 479 init.flags = CLK_SET_RATE_PARENT; 480 clk_parent[0] = __clk_get_name(host->mux_clk); 481 init.parent_names = clk_parent; 482 init.num_parents = 1; 483 484 div->reg = host->regs + SD_EMMC_CLOCK; 485 div->shift = __ffs(CLK_DIV_MASK); 486 div->width = __builtin_popcountl(CLK_DIV_MASK); 487 div->hw.init = &init; 488 div->flags = CLK_DIVIDER_ONE_BASED; 489 490 host->mmc_clk = devm_clk_register(host->dev, &div->hw); 491 if (WARN_ON(IS_ERR(host->mmc_clk))) 492 return PTR_ERR(host->mmc_clk); 493 494 /* init SD_EMMC_CLOCK to sane defaults w/min clock rate */ 495 host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000); 496 ret = clk_set_rate(host->mmc_clk, host->mmc->f_min); 497 if (ret) 498 return ret; 499 500 return clk_prepare_enable(host->mmc_clk); 501 } 502 503 static void meson_mmc_disable_resampling(struct meson_host *host) 504 { 505 unsigned int val = readl(host->regs + host->data->adjust); 506 507 val &= ~ADJUST_ADJ_EN; 508 writel(val, host->regs + host->data->adjust); 509 } 510 511 static void meson_mmc_reset_resampling(struct meson_host *host) 512 { 513 unsigned int val; 514 515 meson_mmc_disable_resampling(host); 516 517 val = readl(host->regs + host->data->adjust); 518 val &= ~ADJUST_ADJ_DELAY_MASK; 519 writel(val, host->regs + host->data->adjust); 520 } 521 522 static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode) 523 { 524 struct meson_host *host = mmc_priv(mmc); 525 unsigned int val, dly, max_dly, i; 526 int ret; 527 528 /* Resampling is done using the source clock */ 529 max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk), 530 clk_get_rate(host->mmc_clk)); 531 532 val = readl(host->regs + host->data->adjust); 533 val |= ADJUST_ADJ_EN; 534 writel(val, host->regs + host->data->adjust); 535 536 if (mmc_doing_retune(mmc)) 537 dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1; 538 else 539 dly = 0; 540 541 for (i = 0; i < max_dly; i++) { 542 val &= ~ADJUST_ADJ_DELAY_MASK; 543 val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly); 544 writel(val, host->regs + host->data->adjust); 545 546 ret = mmc_send_tuning(mmc, opcode, NULL); 547 if (!ret) { 548 dev_dbg(mmc_dev(mmc), "resampling delay: %u\n", 549 (dly + i) % max_dly); 550 return 0; 551 } 552 } 553 554 meson_mmc_reset_resampling(host); 555 return -EIO; 556 } 557 558 static int meson_mmc_prepare_ios_clock(struct meson_host *host, 559 struct mmc_ios *ios) 560 { 561 bool ddr; 562 563 switch (ios->timing) { 564 case MMC_TIMING_MMC_DDR52: 565 case MMC_TIMING_UHS_DDR50: 566 ddr = true; 567 break; 568 569 default: 570 ddr = false; 571 break; 572 } 573 574 return meson_mmc_clk_set(host, ios->clock, ddr); 575 } 576 577 static void meson_mmc_check_resampling(struct meson_host *host, 578 struct mmc_ios *ios) 579 { 580 switch (ios->timing) { 581 case MMC_TIMING_LEGACY: 582 case MMC_TIMING_MMC_HS: 583 case MMC_TIMING_SD_HS: 584 case MMC_TIMING_MMC_DDR52: 585 meson_mmc_disable_resampling(host); 586 break; 587 } 588 } 589 590 static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 591 { 592 struct meson_host *host = mmc_priv(mmc); 593 u32 bus_width, val; 594 int err; 595 596 /* 597 * GPIO regulator, only controls switching between 1v8 and 598 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON. 599 */ 600 switch (ios->power_mode) { 601 case MMC_POWER_OFF: 602 if (!IS_ERR(mmc->supply.vmmc)) 603 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); 604 605 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { 606 regulator_disable(mmc->supply.vqmmc); 607 host->vqmmc_enabled = false; 608 } 609 610 break; 611 612 case MMC_POWER_UP: 613 if (!IS_ERR(mmc->supply.vmmc)) 614 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); 615 616 break; 617 618 case MMC_POWER_ON: 619 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { 620 int ret = regulator_enable(mmc->supply.vqmmc); 621 622 if (ret < 0) 623 dev_err(host->dev, 624 "failed to enable vqmmc regulator\n"); 625 else 626 host->vqmmc_enabled = true; 627 } 628 629 break; 630 } 631 632 /* Bus width */ 633 switch (ios->bus_width) { 634 case MMC_BUS_WIDTH_1: 635 bus_width = CFG_BUS_WIDTH_1; 636 break; 637 case MMC_BUS_WIDTH_4: 638 bus_width = CFG_BUS_WIDTH_4; 639 break; 640 case MMC_BUS_WIDTH_8: 641 bus_width = CFG_BUS_WIDTH_8; 642 break; 643 default: 644 dev_err(host->dev, "Invalid ios->bus_width: %u. Setting to 4.\n", 645 ios->bus_width); 646 bus_width = CFG_BUS_WIDTH_4; 647 } 648 649 val = readl(host->regs + SD_EMMC_CFG); 650 val &= ~CFG_BUS_WIDTH_MASK; 651 val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width); 652 writel(val, host->regs + SD_EMMC_CFG); 653 654 meson_mmc_check_resampling(host, ios); 655 err = meson_mmc_prepare_ios_clock(host, ios); 656 if (err) 657 dev_err(host->dev, "Failed to set clock: %d\n,", err); 658 659 dev_dbg(host->dev, "SD_EMMC_CFG: 0x%08x\n", val); 660 } 661 662 static void meson_mmc_request_done(struct mmc_host *mmc, 663 struct mmc_request *mrq) 664 { 665 struct meson_host *host = mmc_priv(mmc); 666 667 host->cmd = NULL; 668 if (host->needs_pre_post_req) 669 meson_mmc_post_req(mmc, mrq, 0); 670 mmc_request_done(host->mmc, mrq); 671 } 672 673 static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz) 674 { 675 struct meson_host *host = mmc_priv(mmc); 676 u32 cfg, blksz_old; 677 678 cfg = readl(host->regs + SD_EMMC_CFG); 679 blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg); 680 681 if (!is_power_of_2(blksz)) 682 dev_err(host->dev, "blksz %u is not a power of 2\n", blksz); 683 684 blksz = ilog2(blksz); 685 686 /* check if block-size matches, if not update */ 687 if (blksz == blksz_old) 688 return; 689 690 dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__, 691 blksz_old, blksz); 692 693 cfg &= ~CFG_BLK_LEN_MASK; 694 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz); 695 writel(cfg, host->regs + SD_EMMC_CFG); 696 } 697 698 static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg) 699 { 700 if (cmd->flags & MMC_RSP_PRESENT) { 701 if (cmd->flags & MMC_RSP_136) 702 *cmd_cfg |= CMD_CFG_RESP_128; 703 *cmd_cfg |= CMD_CFG_RESP_NUM; 704 705 if (!(cmd->flags & MMC_RSP_CRC)) 706 *cmd_cfg |= CMD_CFG_RESP_NOCRC; 707 708 if (cmd->flags & MMC_RSP_BUSY) 709 *cmd_cfg |= CMD_CFG_R1B; 710 } else { 711 *cmd_cfg |= CMD_CFG_NO_RESP; 712 } 713 } 714 715 static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg) 716 { 717 struct meson_host *host = mmc_priv(mmc); 718 struct sd_emmc_desc *desc = host->descs; 719 struct mmc_data *data = host->cmd->data; 720 struct scatterlist *sg; 721 u32 start; 722 int i; 723 724 if (data->flags & MMC_DATA_WRITE) 725 cmd_cfg |= CMD_CFG_DATA_WR; 726 727 if (data->blocks > 1) { 728 cmd_cfg |= CMD_CFG_BLOCK_MODE; 729 meson_mmc_set_blksz(mmc, data->blksz); 730 } 731 732 for_each_sg(data->sg, sg, data->sg_count, i) { 733 unsigned int len = sg_dma_len(sg); 734 735 if (data->blocks > 1) 736 len /= data->blksz; 737 738 desc[i].cmd_cfg = cmd_cfg; 739 desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len); 740 if (i > 0) 741 desc[i].cmd_cfg |= CMD_CFG_NO_CMD; 742 desc[i].cmd_arg = host->cmd->arg; 743 desc[i].cmd_resp = 0; 744 desc[i].cmd_data = sg_dma_address(sg); 745 } 746 desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN; 747 748 dma_wmb(); /* ensure descriptor is written before kicked */ 749 start = host->descs_dma_addr | START_DESC_BUSY; 750 writel(start, host->regs + SD_EMMC_START); 751 } 752 753 /* local sg copy for dram_access_quirk */ 754 static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data, 755 size_t buflen, bool to_buffer) 756 { 757 unsigned int sg_flags = SG_MITER_ATOMIC; 758 struct scatterlist *sgl = data->sg; 759 unsigned int nents = data->sg_len; 760 struct sg_mapping_iter miter; 761 unsigned int offset = 0; 762 763 if (to_buffer) 764 sg_flags |= SG_MITER_FROM_SG; 765 else 766 sg_flags |= SG_MITER_TO_SG; 767 768 sg_miter_start(&miter, sgl, nents, sg_flags); 769 770 while ((offset < buflen) && sg_miter_next(&miter)) { 771 unsigned int buf_offset = 0; 772 unsigned int len, left; 773 u32 *buf = miter.addr; 774 775 len = min(miter.length, buflen - offset); 776 left = len; 777 778 if (to_buffer) { 779 do { 780 writel(*buf++, host->bounce_iomem_buf + offset + buf_offset); 781 782 buf_offset += 4; 783 left -= 4; 784 } while (left); 785 } else { 786 do { 787 *buf++ = readl(host->bounce_iomem_buf + offset + buf_offset); 788 789 buf_offset += 4; 790 left -= 4; 791 } while (left); 792 } 793 794 offset += len; 795 } 796 797 sg_miter_stop(&miter); 798 } 799 800 static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd) 801 { 802 struct meson_host *host = mmc_priv(mmc); 803 struct mmc_data *data = cmd->data; 804 u32 cmd_cfg = 0, cmd_data = 0; 805 unsigned int xfer_bytes = 0; 806 807 /* Setup descriptors */ 808 dma_rmb(); 809 810 host->cmd = cmd; 811 812 cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode); 813 cmd_cfg |= CMD_CFG_OWNER; /* owned by CPU */ 814 cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */ 815 816 meson_mmc_set_response_bits(cmd, &cmd_cfg); 817 818 /* data? */ 819 if (data) { 820 data->bytes_xfered = 0; 821 cmd_cfg |= CMD_CFG_DATA_IO; 822 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, 823 ilog2(meson_mmc_get_timeout_msecs(data))); 824 825 if (meson_mmc_desc_chain_mode(data)) { 826 meson_mmc_desc_chain_transfer(mmc, cmd_cfg); 827 return; 828 } 829 830 if (data->blocks > 1) { 831 cmd_cfg |= CMD_CFG_BLOCK_MODE; 832 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, 833 data->blocks); 834 meson_mmc_set_blksz(mmc, data->blksz); 835 } else { 836 cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz); 837 } 838 839 xfer_bytes = data->blksz * data->blocks; 840 if (data->flags & MMC_DATA_WRITE) { 841 cmd_cfg |= CMD_CFG_DATA_WR; 842 WARN_ON(xfer_bytes > host->bounce_buf_size); 843 if (host->dram_access_quirk) 844 meson_mmc_copy_buffer(host, data, xfer_bytes, true); 845 else 846 sg_copy_to_buffer(data->sg, data->sg_len, 847 host->bounce_buf, xfer_bytes); 848 dma_wmb(); 849 } 850 851 cmd_data = host->bounce_dma_addr & CMD_DATA_MASK; 852 } else { 853 cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK, 854 ilog2(SD_EMMC_CMD_TIMEOUT)); 855 } 856 857 /* Last descriptor */ 858 cmd_cfg |= CMD_CFG_END_OF_CHAIN; 859 writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG); 860 writel(cmd_data, host->regs + SD_EMMC_CMD_DAT); 861 writel(0, host->regs + SD_EMMC_CMD_RSP); 862 wmb(); /* ensure descriptor is written before kicked */ 863 writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG); 864 } 865 866 static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data) 867 { 868 struct scatterlist *sg; 869 int i; 870 871 /* Reject request if any element offset or size is not 32bit aligned */ 872 for_each_sg(data->sg, sg, data->sg_len, i) { 873 if (!IS_ALIGNED(sg->offset, sizeof(u32)) || 874 !IS_ALIGNED(sg->length, sizeof(u32))) { 875 dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n", 876 data->sg->offset, data->sg->length); 877 return -EINVAL; 878 } 879 } 880 881 return 0; 882 } 883 884 static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) 885 { 886 struct meson_host *host = mmc_priv(mmc); 887 host->needs_pre_post_req = mrq->data && 888 !(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE); 889 890 /* 891 * The memory at the end of the controller used as bounce buffer for 892 * the dram_access_quirk only accepts 32bit read/write access, 893 * check the aligment and length of the data before starting the request. 894 */ 895 if (host->dram_access_quirk && mrq->data) { 896 mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data); 897 if (mrq->cmd->error) { 898 mmc_request_done(mmc, mrq); 899 return; 900 } 901 } 902 903 if (host->needs_pre_post_req) { 904 meson_mmc_get_transfer_mode(mmc, mrq); 905 if (!meson_mmc_desc_chain_mode(mrq->data)) 906 host->needs_pre_post_req = false; 907 } 908 909 if (host->needs_pre_post_req) 910 meson_mmc_pre_req(mmc, mrq); 911 912 /* Stop execution */ 913 writel(0, host->regs + SD_EMMC_START); 914 915 meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd); 916 } 917 918 static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd) 919 { 920 struct meson_host *host = mmc_priv(mmc); 921 922 if (cmd->flags & MMC_RSP_136) { 923 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3); 924 cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2); 925 cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1); 926 cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP); 927 } else if (cmd->flags & MMC_RSP_PRESENT) { 928 cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP); 929 } 930 } 931 932 static irqreturn_t meson_mmc_irq(int irq, void *dev_id) 933 { 934 struct meson_host *host = dev_id; 935 struct mmc_command *cmd; 936 struct mmc_data *data; 937 u32 irq_en, status, raw_status; 938 irqreturn_t ret = IRQ_NONE; 939 940 irq_en = readl(host->regs + SD_EMMC_IRQ_EN); 941 raw_status = readl(host->regs + SD_EMMC_STATUS); 942 status = raw_status & irq_en; 943 944 if (!status) { 945 dev_dbg(host->dev, 946 "Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n", 947 irq_en, raw_status); 948 return IRQ_NONE; 949 } 950 951 if (WARN_ON(!host) || WARN_ON(!host->cmd)) 952 return IRQ_NONE; 953 954 /* ack all raised interrupts */ 955 writel(status, host->regs + SD_EMMC_STATUS); 956 957 cmd = host->cmd; 958 data = cmd->data; 959 cmd->error = 0; 960 if (status & IRQ_CRC_ERR) { 961 dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status); 962 cmd->error = -EILSEQ; 963 ret = IRQ_WAKE_THREAD; 964 goto out; 965 } 966 967 if (status & IRQ_TIMEOUTS) { 968 dev_dbg(host->dev, "Timeout - status 0x%08x\n", status); 969 cmd->error = -ETIMEDOUT; 970 ret = IRQ_WAKE_THREAD; 971 goto out; 972 } 973 974 meson_mmc_read_resp(host->mmc, cmd); 975 976 if (status & IRQ_SDIO) { 977 dev_dbg(host->dev, "IRQ: SDIO TODO.\n"); 978 ret = IRQ_HANDLED; 979 } 980 981 if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) { 982 if (data && !cmd->error) 983 data->bytes_xfered = data->blksz * data->blocks; 984 if (meson_mmc_bounce_buf_read(data) || 985 meson_mmc_get_next_command(cmd)) 986 ret = IRQ_WAKE_THREAD; 987 else 988 ret = IRQ_HANDLED; 989 } 990 991 out: 992 if (cmd->error) { 993 /* Stop desc in case of errors */ 994 u32 start = readl(host->regs + SD_EMMC_START); 995 996 start &= ~START_DESC_BUSY; 997 writel(start, host->regs + SD_EMMC_START); 998 } 999 1000 if (ret == IRQ_HANDLED) 1001 meson_mmc_request_done(host->mmc, cmd->mrq); 1002 1003 return ret; 1004 } 1005 1006 static int meson_mmc_wait_desc_stop(struct meson_host *host) 1007 { 1008 u32 status; 1009 1010 /* 1011 * It may sometimes take a while for it to actually halt. Here, we 1012 * are giving it 5ms to comply 1013 * 1014 * If we don't confirm the descriptor is stopped, it might raise new 1015 * IRQs after we have called mmc_request_done() which is bad. 1016 */ 1017 1018 return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status, 1019 !(status & (STATUS_BUSY | STATUS_DESC_BUSY)), 1020 100, 5000); 1021 } 1022 1023 static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id) 1024 { 1025 struct meson_host *host = dev_id; 1026 struct mmc_command *next_cmd, *cmd = host->cmd; 1027 struct mmc_data *data; 1028 unsigned int xfer_bytes; 1029 1030 if (WARN_ON(!cmd)) 1031 return IRQ_NONE; 1032 1033 if (cmd->error) { 1034 meson_mmc_wait_desc_stop(host); 1035 meson_mmc_request_done(host->mmc, cmd->mrq); 1036 1037 return IRQ_HANDLED; 1038 } 1039 1040 data = cmd->data; 1041 if (meson_mmc_bounce_buf_read(data)) { 1042 xfer_bytes = data->blksz * data->blocks; 1043 WARN_ON(xfer_bytes > host->bounce_buf_size); 1044 if (host->dram_access_quirk) 1045 meson_mmc_copy_buffer(host, data, xfer_bytes, false); 1046 else 1047 sg_copy_from_buffer(data->sg, data->sg_len, 1048 host->bounce_buf, xfer_bytes); 1049 } 1050 1051 next_cmd = meson_mmc_get_next_command(cmd); 1052 if (next_cmd) 1053 meson_mmc_start_cmd(host->mmc, next_cmd); 1054 else 1055 meson_mmc_request_done(host->mmc, cmd->mrq); 1056 1057 return IRQ_HANDLED; 1058 } 1059 1060 /* 1061 * NOTE: we only need this until the GPIO/pinctrl driver can handle 1062 * interrupts. For now, the MMC core will use this for polling. 1063 */ 1064 static int meson_mmc_get_cd(struct mmc_host *mmc) 1065 { 1066 int status = mmc_gpio_get_cd(mmc); 1067 1068 if (status == -ENOSYS) 1069 return 1; /* assume present */ 1070 1071 return status; 1072 } 1073 1074 static void meson_mmc_cfg_init(struct meson_host *host) 1075 { 1076 u32 cfg = 0; 1077 1078 cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK, 1079 ilog2(SD_EMMC_CFG_RESP_TIMEOUT)); 1080 cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP)); 1081 cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE)); 1082 1083 /* abort chain on R/W errors */ 1084 cfg |= CFG_ERR_ABORT; 1085 1086 writel(cfg, host->regs + SD_EMMC_CFG); 1087 } 1088 1089 static int meson_mmc_card_busy(struct mmc_host *mmc) 1090 { 1091 struct meson_host *host = mmc_priv(mmc); 1092 u32 regval; 1093 1094 regval = readl(host->regs + SD_EMMC_STATUS); 1095 1096 /* We are only interrested in lines 0 to 3, so mask the other ones */ 1097 return !(FIELD_GET(STATUS_DATI, regval) & 0xf); 1098 } 1099 1100 static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) 1101 { 1102 int ret; 1103 1104 /* vqmmc regulator is available */ 1105 if (!IS_ERR(mmc->supply.vqmmc)) { 1106 /* 1107 * The usual amlogic setup uses a GPIO to switch from one 1108 * regulator to the other. While the voltage ramp up is 1109 * pretty fast, care must be taken when switching from 3.3v 1110 * to 1.8v. Please make sure the regulator framework is aware 1111 * of your own regulator constraints 1112 */ 1113 ret = mmc_regulator_set_vqmmc(mmc, ios); 1114 return ret < 0 ? ret : 0; 1115 } 1116 1117 /* no vqmmc regulator, assume fixed regulator at 3/3.3V */ 1118 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) 1119 return 0; 1120 1121 return -EINVAL; 1122 } 1123 1124 static const struct mmc_host_ops meson_mmc_ops = { 1125 .request = meson_mmc_request, 1126 .set_ios = meson_mmc_set_ios, 1127 .get_cd = meson_mmc_get_cd, 1128 .pre_req = meson_mmc_pre_req, 1129 .post_req = meson_mmc_post_req, 1130 .execute_tuning = meson_mmc_resampling_tuning, 1131 .card_busy = meson_mmc_card_busy, 1132 .start_signal_voltage_switch = meson_mmc_voltage_switch, 1133 }; 1134 1135 static int meson_mmc_probe(struct platform_device *pdev) 1136 { 1137 struct resource *res; 1138 struct meson_host *host; 1139 struct mmc_host *mmc; 1140 int ret; 1141 1142 mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev); 1143 if (!mmc) 1144 return -ENOMEM; 1145 host = mmc_priv(mmc); 1146 host->mmc = mmc; 1147 host->dev = &pdev->dev; 1148 dev_set_drvdata(&pdev->dev, host); 1149 1150 /* The G12A SDIO Controller needs an SRAM bounce buffer */ 1151 host->dram_access_quirk = device_property_read_bool(&pdev->dev, 1152 "amlogic,dram-access-quirk"); 1153 1154 /* Get regulators and the supported OCR mask */ 1155 host->vqmmc_enabled = false; 1156 ret = mmc_regulator_get_supply(mmc); 1157 if (ret) 1158 goto free_host; 1159 1160 ret = mmc_of_parse(mmc); 1161 if (ret) { 1162 if (ret != -EPROBE_DEFER) 1163 dev_warn(&pdev->dev, "error parsing DT: %d\n", ret); 1164 goto free_host; 1165 } 1166 1167 host->data = (struct meson_mmc_data *) 1168 of_device_get_match_data(&pdev->dev); 1169 if (!host->data) { 1170 ret = -EINVAL; 1171 goto free_host; 1172 } 1173 1174 ret = device_reset_optional(&pdev->dev); 1175 if (ret) 1176 return dev_err_probe(&pdev->dev, ret, "device reset failed\n"); 1177 1178 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1179 host->regs = devm_ioremap_resource(&pdev->dev, res); 1180 if (IS_ERR(host->regs)) { 1181 ret = PTR_ERR(host->regs); 1182 goto free_host; 1183 } 1184 1185 host->irq = platform_get_irq(pdev, 0); 1186 if (host->irq <= 0) { 1187 ret = -EINVAL; 1188 goto free_host; 1189 } 1190 1191 host->pinctrl = devm_pinctrl_get(&pdev->dev); 1192 if (IS_ERR(host->pinctrl)) { 1193 ret = PTR_ERR(host->pinctrl); 1194 goto free_host; 1195 } 1196 1197 host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl, 1198 "clk-gate"); 1199 if (IS_ERR(host->pins_clk_gate)) { 1200 dev_warn(&pdev->dev, 1201 "can't get clk-gate pinctrl, using clk_stop bit\n"); 1202 host->pins_clk_gate = NULL; 1203 } 1204 1205 host->core_clk = devm_clk_get(&pdev->dev, "core"); 1206 if (IS_ERR(host->core_clk)) { 1207 ret = PTR_ERR(host->core_clk); 1208 goto free_host; 1209 } 1210 1211 ret = clk_prepare_enable(host->core_clk); 1212 if (ret) 1213 goto free_host; 1214 1215 ret = meson_mmc_clk_init(host); 1216 if (ret) 1217 goto err_core_clk; 1218 1219 /* set config to sane default */ 1220 meson_mmc_cfg_init(host); 1221 1222 /* Stop execution */ 1223 writel(0, host->regs + SD_EMMC_START); 1224 1225 /* clear, ack and enable interrupts */ 1226 writel(0, host->regs + SD_EMMC_IRQ_EN); 1227 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN, 1228 host->regs + SD_EMMC_STATUS); 1229 writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN, 1230 host->regs + SD_EMMC_IRQ_EN); 1231 1232 ret = request_threaded_irq(host->irq, meson_mmc_irq, 1233 meson_mmc_irq_thread, IRQF_ONESHOT, 1234 dev_name(&pdev->dev), host); 1235 if (ret) 1236 goto err_init_clk; 1237 1238 mmc->caps |= MMC_CAP_CMD23; 1239 if (host->dram_access_quirk) { 1240 /* Limit segments to 1 due to low available sram memory */ 1241 mmc->max_segs = 1; 1242 /* Limit to the available sram memory */ 1243 mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN / 1244 mmc->max_blk_size; 1245 } else { 1246 mmc->max_blk_count = CMD_CFG_LENGTH_MASK; 1247 mmc->max_segs = SD_EMMC_DESC_BUF_LEN / 1248 sizeof(struct sd_emmc_desc); 1249 } 1250 mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size; 1251 mmc->max_seg_size = mmc->max_req_size; 1252 1253 /* 1254 * At the moment, we don't know how to reliably enable HS400. 1255 * From the different datasheets, it is not even clear if this mode 1256 * is officially supported by any of the SoCs 1257 */ 1258 mmc->caps2 &= ~MMC_CAP2_HS400; 1259 1260 if (host->dram_access_quirk) { 1261 /* 1262 * The MMC Controller embeds 1,5KiB of internal SRAM 1263 * that can be used to be used as bounce buffer. 1264 * In the case of the G12A SDIO controller, use these 1265 * instead of the DDR memory 1266 */ 1267 host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN; 1268 host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF; 1269 host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF; 1270 } else { 1271 /* data bounce buffer */ 1272 host->bounce_buf_size = mmc->max_req_size; 1273 host->bounce_buf = 1274 dma_alloc_coherent(host->dev, host->bounce_buf_size, 1275 &host->bounce_dma_addr, GFP_KERNEL); 1276 if (host->bounce_buf == NULL) { 1277 dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n"); 1278 ret = -ENOMEM; 1279 goto err_free_irq; 1280 } 1281 } 1282 1283 host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN, 1284 &host->descs_dma_addr, GFP_KERNEL); 1285 if (!host->descs) { 1286 dev_err(host->dev, "Allocating descriptor DMA buffer failed\n"); 1287 ret = -ENOMEM; 1288 goto err_bounce_buf; 1289 } 1290 1291 mmc->ops = &meson_mmc_ops; 1292 mmc_add_host(mmc); 1293 1294 return 0; 1295 1296 err_bounce_buf: 1297 if (!host->dram_access_quirk) 1298 dma_free_coherent(host->dev, host->bounce_buf_size, 1299 host->bounce_buf, host->bounce_dma_addr); 1300 err_free_irq: 1301 free_irq(host->irq, host); 1302 err_init_clk: 1303 clk_disable_unprepare(host->mmc_clk); 1304 err_core_clk: 1305 clk_disable_unprepare(host->core_clk); 1306 free_host: 1307 mmc_free_host(mmc); 1308 return ret; 1309 } 1310 1311 static int meson_mmc_remove(struct platform_device *pdev) 1312 { 1313 struct meson_host *host = dev_get_drvdata(&pdev->dev); 1314 1315 mmc_remove_host(host->mmc); 1316 1317 /* disable interrupts */ 1318 writel(0, host->regs + SD_EMMC_IRQ_EN); 1319 free_irq(host->irq, host); 1320 1321 dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN, 1322 host->descs, host->descs_dma_addr); 1323 1324 if (!host->dram_access_quirk) 1325 dma_free_coherent(host->dev, host->bounce_buf_size, 1326 host->bounce_buf, host->bounce_dma_addr); 1327 1328 clk_disable_unprepare(host->mmc_clk); 1329 clk_disable_unprepare(host->core_clk); 1330 1331 mmc_free_host(host->mmc); 1332 return 0; 1333 } 1334 1335 static const struct meson_mmc_data meson_gx_data = { 1336 .tx_delay_mask = CLK_V2_TX_DELAY_MASK, 1337 .rx_delay_mask = CLK_V2_RX_DELAY_MASK, 1338 .always_on = CLK_V2_ALWAYS_ON, 1339 .adjust = SD_EMMC_ADJUST, 1340 }; 1341 1342 static const struct meson_mmc_data meson_axg_data = { 1343 .tx_delay_mask = CLK_V3_TX_DELAY_MASK, 1344 .rx_delay_mask = CLK_V3_RX_DELAY_MASK, 1345 .always_on = CLK_V3_ALWAYS_ON, 1346 .adjust = SD_EMMC_V3_ADJUST, 1347 }; 1348 1349 static const struct of_device_id meson_mmc_of_match[] = { 1350 { .compatible = "amlogic,meson-gx-mmc", .data = &meson_gx_data }, 1351 { .compatible = "amlogic,meson-gxbb-mmc", .data = &meson_gx_data }, 1352 { .compatible = "amlogic,meson-gxl-mmc", .data = &meson_gx_data }, 1353 { .compatible = "amlogic,meson-gxm-mmc", .data = &meson_gx_data }, 1354 { .compatible = "amlogic,meson-axg-mmc", .data = &meson_axg_data }, 1355 {} 1356 }; 1357 MODULE_DEVICE_TABLE(of, meson_mmc_of_match); 1358 1359 static struct platform_driver meson_mmc_driver = { 1360 .probe = meson_mmc_probe, 1361 .remove = meson_mmc_remove, 1362 .driver = { 1363 .name = DRIVER_NAME, 1364 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1365 .of_match_table = meson_mmc_of_match, 1366 }, 1367 }; 1368 1369 module_platform_driver(meson_mmc_driver); 1370 1371 MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver"); 1372 MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>"); 1373 MODULE_LICENSE("GPL v2"); 1374